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Abstract

We consider a problem of matching guests with suitable hosts in a dynamic, directed

search market in which a visitor’s private taste and plans are subject to change. Guests

learn about hosts by visiting them personally, which reveals whether the destination

merits a repeat visit. Hosts prefer to target guests with high willingness to pay but,

assuming full privacy, cannot tell whether they should rely on previous visitors or hold

a sale to attract new visitors.

We find that guests’ private learning reduces matching frictions by sustaining longer

visits to particularly fitting destinations. The strength of this effect depends on compe-

tition intensity. We also discover that a ban of tracking and targeting technologies may

reduce consumer surplus. Specifically, access to visitor data enables their earlier hosts

to respond more rapidly to demand changes, which can intensify competition and put

downward pressure on prices.
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1 Introduction

For better or worse, people are clearly on the move these days.1 Increased mobility promises great

gains to workers and tourists, their host firms and cities but also constitutes a complex global

matching problem. Mobility frictions manifest, for example, in seasonal unemployment in agricultural

Yuma (Arizona) and touristic congestion in Barcelona (Spain). Higher prices in crowded areas and

lower property values in declining areas are a frequent concern for local residents.

In this paper we study regional matching problems with free mobility and learning. Nowadays,

people have become more mobile and therefore have more experience of different places. There is also

easier access to various sources of coordinating information on the internet. We provide an analysis

for understanding how well markets can work under these new circumstances. Compared to previous

work, we find that information transmission reduces matching frictions greatly.

We employ a so-called directed search approach (e.g., Peters (1984, 1991), Moen (1997), Julien

et al. (2000), and Burdett et al. (2001)) to capture the essence of regional matching problems. These

models study how markets price congestion externalities and coordination frictions when people make

individually optimal mobility decisions in decentralized markets without any central planning.2 The

main twist in this paper is that local products and services, which hosts are providing to their

guests, are horizontally differentiated experience goods. Consumer-good-specific match values are

continuously (uniformly) distributed and, to account for varying preferences in hosting destinations,

independent between time periods.

After a visit, guests learn their updated match values with their most recent hosts automatically

at the beginning of the following period. Search is therefore directed not only by public prices but

also by privately acquired match value information. The idea is that while staying in a certain

place consumers have had time to personally see everything that is relevant to their well-being. So

if they are researchers, they have met the local faculty and participated in local seminars. If they

are surfers, they have tested the winds and waves. If they are movie-goers, they have checked out

the cinemas. Immediately afterwards, they should thus know whether they would prefer to visit the

place repeatedly or stay somewhere else.3

Guests visit their previous hosts again if their newest match values with them are sufficiently

high (above a certain cut-off). In our model, familiarity thus generates a linkage between history and

the future. Due to matching frictions, prices depend on how the market trades off hosts’ availability

1The numbers of immigrant and non-immigrant visa issuances in the US were 617 752 and 10 381 491,
respectively, in 2016 (source: US Department of State, Bureau of Consular Affairs) whereas a total of 4.7
million immigrated to an EU-28 country and 2.8 million emigrated from an EU-28 country in 2015 (source:
Eurostat). Additionally, according to UNESCO, the US hosts annually about 0.9 million university students
and, according to Eurostat, around 1.48 million tertiary level students were studying in 2014 in different EU
countries than where they received their secondary education. The compilation of statistics by the World
Tourism Organization also shows that, for example, the US received 156 245 overnight visitors in 2015 whereas
China received 133 820 and Spain alone 109 764. The number of first time asylum applications was 1 259 955
in the EU in 2016 (source: Eurostat).

2See the recent excellent survey by Wright et al. (2017).
3Because the faculty, movies or beaches change, this may not be the case very long after the visit, and we

thus assume that memory decays in a period.
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for suitability (how the cut-off adjusts). Clarifying these tradeoffs is one of our main contributions.

This paper starts by asking (i) to what extent prices and previously acquired information can solve

regional matching problems and then discusses (ii) how additional coordination (e.g., tracking recent

visitors) and alternative mechanisms (e.g., second price auctions) can help in this. We characterize

the stationary Markov equilibrium with and without visitor tracking; when tracking is enabled, hosts

can observe their previous guests’ new match values. Although we show that learning is generally

welfare improving it also introduces some additional coordination problems. These problems are

removed by giving hosts access to consumer-specific information for targeting the right visitor group.

Thus, only the equilibrium without privacy is (constrained) efficient. Auctions help partially.

As an example of consumer tracking, the most popular travel site of 2017 Booking.com is built on

a platform that collects information about the pages its visitors have browsed, what they have shared

on social media, their reviews and their pictures, etc. These data can then be combined by routine

algorithms with personal information for the purpose of direct marketing and targeted advertizing

via display ads or emails.4,5 In our model, tracking and targeting increases matching efficiency by

informing hosts about their visitors’ new visit plans and preferences. The ability to target prices to

previous visitors invites price discrimination, which (i) enhances market efficiency but (ii) empowers

surplus extraction.6 However, we find that due to the general equilibrium effects of better market

coordination, which put downward pressure on prices, privacy loss can also benefit visitors.

What is notable about learning in general is that long, repeat visits to particularly nice destina-

tions render prices, match values and trade probabilities positively correlated. The realized match

surplus can thus exceed that of perfectly coordinated markets with random matches, which has ear-

lier served as a typically unattainable benchmark in the literature. This paper also obtains novel

results concerning match value cut-offs that trigger a mobility decision; we demonstrate that the

mobility of people never ceases (cut-off is interior for all discount factors) and booming locations

(low cut-off: less screening) and busting locations (high cut-off: more screening) respond differently

to competition and consumer tracking. Screening is generally too intensive with private information

because hosts only care about their own price and trade probability and fail to account for posi-

tive externalities that matching with their previous guests imposes on others. Privacy suppression

removes the problem by allowing hosts to internalize these externalities.

Our findings require us to apply a model which incorporates general equilibrium effects and

endogenous surplus division. Directed search models feature both desirable properties. We use

standard modeling assumptions from the literature. It is assumed that each host (city or firm) has

limited capacity of accommodation or vacancies available. Here a host can accommodate only one

person per period without congestion.7 The exact number of people that fit into a destination is

4For a more complex selling mechanism, BookingSuite provides a revenue management toolbox for tailoring
prices to demand over the booking horizon.

5As for labor-based mobility, human resources management uses various communication channels to keep
updated on key persons’ job satisfaction.

6The ability to attract the same visitor multiple times resembles commodity bundling in Adams and Yellen
(1976), which also discusses these tradeoffs.

7Clearly, most providers of local goods and services operate under limited capacity; exceeding the limits
lowers the value of the commodity.
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inconsequential.8 Before choosing a location, visitors observe the price (salary) level of each host

and form expectations about the prevailing congestion. Thus, because of negative externalities that

lower the value of staying in a particularly popular destination, better terms of trade attract more

visitors to a host but many would still prefer a less congested host.

The literature concentrates on coordination frictions modeled by focusing on symmetric visit

strategies. This means that, in a large decentralized market populated by strangers, consumers

visit equally often destinations that have no observable differences from their view point. As a

consequence, because anonymous consumers cannot agree who visits whom beforehand, some of the

hosts might have too many visitors while others might receive too few. Our paper continues with

this usual assumption. However, here visitors can also condition their strategies on recently learned

match value information. Access to information about some hosts – while others remain unknown –

appears to be crucial for mobility. Many people have experience about particular cities as workers

and tourists and hence either avoid them or visit them again. In this paper, we show how this

privately observed information helps in matching the right people and places. Accordingly, we are

able to make progress in understanding better coordinating forces that arise in steady state setups

with learning.9 Most directed search models are either static or do not make use of the rich strategic

possibilities that open up in dynamic markets.10

At the beginning of each period, our market is populated by two kinds of guests and hosts:

popular hosts were recently visited by a guest who is now informed about his or her match value

with the host. Knowing this, popular hosts increase their prices after a visit. A higher price level

discourages uninformed visitors from choosing a popular host. This can help its previous visitor who

then faces less congestion. It is therefore possible to achieve higher trading probabilities between

informed guests and their hosts than unpopular hosts and uninformed guests.

In particular, in booming markets where competition is softer, we find that popular hosts insure

themselves against no-show of previous consumers by also targeting some new visitors (they target

a ”mass market”). In busting markets where competition is harder, we can show this would be

too expensive and popular hosts instead concentrate on attracting only the most motivated previous

visitors (they target a ”niche market”). Intuition is that demand from informed visitors is more (less)

inelastic for highest (lowest) match values than the demand from new guests, which becomes more

elastic with stronger competition. Monopolistic competition requires keeping the elasticity fixed.

This entails that prices have both a sorting and screening role (e.g., Eeckhout and Kircher, 2010,

2011): First, only the most satisfied informed visitors make repeat visits to the same host (screening).

Second, either all or most of those who visit a new host are channeled to unpopular hosts (sorting).

Moreover, the extent of sorting and the intensity of screening are determined endogenously: booming

markets feature only impartial sorting and less intensive screening. Without visitor privacy, sorting

is perfect and screening less intensive, which is also consistent with efficiency.

8For discussion and extensions to a larger number of products, see Burdett et al. (2001), Lester (2010) and
Godenhielm and Kultti (2015).

9Our model retains the spirit of a directed search approach in that we make no use of complicated punish-
ment strategies and we let only payoff-relevant features direct search decisions.

10Camera and Kim (2016) observe, for example, that if hosts apply trigger strategies for punishment, it is
possible to sustain a continuum of collusive outcomes in dynamic directed search.
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Our results are related to literature on directed search, consumer privacy, and switching costs.

Directed search has recently developed to incorporate more heterogeneity (see Guerrieri et al. (2010),

Watanabe (2010), Menzio and Trachter (2015), Albrecht et al. (2016), Chang (2017), etc.) into the

originally simpler setting. We contribute to this research program by analyzing the effects of learning

and consumer tracking and investigating (i) how this new information alleviates the mobility problem

and (ii) how market conditions affect the prevalence of prolonged matching.11

Shi (2016) also studies endogenous customer relationships and their effects on price dynamics.12

However, customer relationships in Shi (2016) are sustained by priority treatment for previous cus-

tomers and here they arise only from price differences and prior information.13 The models also have

other noteworthy differences. In his case, the match value between a consumer and a product is

persistent and either low (consumer visits the same firm) or high (consumer visits some other firm).

In our case, this match value is distributed continuously and the cut-off which tells whether the guest

visits the same host again is determined endogenously.

Coles and Eeckhout (2000) find that introducing visitor heterogeneity results in perfectly directed

search and coordinated visit strategies; sellers post direct mechanisms in the spirit of Vickrey-Clarke-

Groves that induce efficient choices. Instead, consumer search in our paper never becomes perfectly

directed because low match value consumers visit unrelated hosts. Moreover, individual hosts cannot

perfectly separate because there are only two kinds of hosts in the market. In Coles and Eeckhout

(2000) every consumer is informed about her relative position in the market as in assignment literature

whereas we study the usual independent private values case.

Moraga-González and Watanabe (2016) consider directed, sequential search for a satisfactory

match. They observe that efficiency requires consumers to put higher emphasis on product availability

than product suitability. Their paper does not study dynamic market interactions and learning about

products from earlier purchasing experience. Delacroix and Shi (2013) explore the signaling potential

of posted prices. They allow goods to have an experience component but their focus is on the role

of higher prices in signaling product quality. Here we have no vertical product differences but higher

prices essentially signal lower availability to uninformed visitors.

Acquisti and Varian (2005) and Taylor (2004) find that consumer privacy may increase welfare

by encouraging low valuation consumers to purchase earlier. Both papers analyze two-period models

with horizontally differentiated products in which firms set the same price for all consumers with

consumer privacy but can apply price discrimination when the history of consumer purchases is

observed.14 Without privacy, firms charge such high prices in the first period that only high valuation

consumers are willing to pay for them. The price is lower in the second period and thus the previously

excluded low valuation consumers postpone buying until that stage. This does not arise in our steady-

11Relatedly, Keisuke et al. (2014) consider directed labor search with moving costs, which give rise to
inefficiency. Here the source of inefficiencies is asymmetric information. Li and Weng (2017) study efficient
learning about constant match quality with directed on-the-job search.

12The introduction of match values to the final paper, Shi (2016), is contemporary to this work. The paper
which existed when we started to present our findings in 2016, Shi (2013), has no match values. Priority
treatment is then the only way to sustain repeat purchases.

13The effects of customer relationships are also studied in the recent work by Gourio and Rudanko (2014).
14Acquisti and Varian (2005) analyzes a monopoly model whereas Taylor (2004) studies a duopoly market.
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state setup.15 Rather, here gains from consumer privacy suppression come from (i) reduced search

frictions, (ii) improved match quality, and (iii) competitive general equilibrium effects. While the

latter mechanism is new, the former ones have some resemblance to earlier results.16,17 As discussed

by Leahy (2011), Campbell (1997), Varian (2009), and Wang and Petrison (1993) consumers may

tolerate privacy intrusion if it helps firms to better address their individual needs.

The paper has connections to switching costs literature as well.18 Informed visitors are reluctant

to switch to new hosts that offer them a lower trade probability and, perhaps, a smaller expected

match value. Most of these switching costs are thus endogenous and they originate from differences

between the prices that target old and new consumers. Shy and Stenbacka (2015) study switching

costs and find that welfare and consumer surplus increase with more protection. Weaker privacy

allows for more aggressive poaching (lower prices for new consumers) but helps price discrimination

(higher prices for old consumers). In our work the former effect can be dominant but in their paper

the latter effect is always stronger. The main distinction from switching costs literature is that in

our model price differences arise, ultimately, because of limited capacity. We have many small hosts.

Furthermore, a consumer’s match values change from period to period, which prevents hosts from

harvesting informed consumers permanently. Still, the typical pricing pattern with switching costs

features bargains for new consumers and ripoffs for old consumers much like here.19,20

The rest of this paper is organized as follows. Section 2 describes our modeling assumptions. We

characterize the market with consumer privacy in Section 3 and the market without consumer privacy

in Section 4. In Section 5, we compare different privacy regimes and, in Section 6, we consider second

price auctions. Section 7 provides a concluding discussion. The proofs and additional derivations are

in the Appendix.

2 Model

We consider a large decentralized market in infinite discrete time t ∈ Z. There are Nh hosts (firms,

cities) and Ng guests (consumers, visitors) both of whom are infinitely lived. The number of hosts

and the number of guests are large Ng → ∞ and Nh → ∞ but their ratio ν = Nh/Ng is strictly

15As discussed by Cabral (2016), a downside of two period models relative to steady state setups is the
start-period-final-period effects that can make the setup too clean.

16Our work can be viewed to formalize the hypothesis of Stigler (1980) and Posner (1981), that privacy may
prevent the realization of matching benefits (Hui and Png, 2006).

17Lauermann (2012) notices further that welfare effects of consumer privacy can be reversed when bilateral
trade is embedded in a dynamic setting. In a one-shot game, consumer privacy leads to market failure, whereas
in a dynamic setting, the market is almost efficient without privacy but otherwise inefficient. In his model,
privacy benefits consumers because they obtain no surplus without privacy.

18See Farrell and Klemperer (2007) for a review of the literature.
19There is a slight twist here if we look at values and not prices: in a separating equilibrium the market

value of new consumers and old consumers is the same, whereas in a semi-pooling equilibrium the market
value is greater for old consumers despite their paying higher prices. Since there is no true switching cost or
consumer holdup problem, old consumers cannot obtain less than new consumers.

20For example, Cabral (2016), Fudenberg and Tirole (2000) and Chen (1997) allow firms to charge different
prices to old and new consumers, with higher prices for old consumers.
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positive and finite.21 All market participants are equally patient and their common discount factor

equals δ ∈ (0, 1). For concreteness, we later refer to guests by feminine pronouns and to hosts by

masculine pronouns.

Differences in hosts’ availability and suitability

We model congestion by assuming that hosts are small and they have limited capacity. Each host

can comfortably accommodate exactly one guest per period. Their identical costs of production are

normalized to zero per unit.

Some environments suit a visitor’s taste and plans better than others. The utility of a consumer

i for visiting a location j equals the difference uij − pj , where uij is a consumer-and-location specific

match value and pj stands for the price.22 These match values are distributed uniformly over the

unit interval [0, 1] and are independent across consumers, locations and periods.

Accommodation involves the provision of local goods like hotel rooms in a particular surrounding

environment. Every guest needs only one unit of accommodation at each time and she is restricted

to visiting only one host in a period.

Moreover, we make the standard assumption that consumers cannot coordinate their visit strate-

gies with each other. Therefore, visitors use symmetric mixed strategies and visit with the same

probabilities all equal looking hosts. To be specific, consumers can condition their visit strategies

only on public prices and their private match values but not, say, on hosts’ names. As usual, this

could lead to either local excess demand or supply because either fewer than one or more than one

consumer might visit the same host.

Technically, we model limited capacity by making the simplifying assumption that a host is

matched with one of the guests at random. Only one of the guests is thereby provided the opportunity

to enjoy local goods and experiment with them. For the prospect of future visits, this implies that

only this one guest may visit that host again whereas the others almost never come back. The other

guests could either be so disturbed by congestion that they would never consider returning or would

not get a clear idea about the place.23

We have now described our model in terms of matching visitors with suitable holiday resorts.

However, if we want to interpret this as a labor market model, the price could stand for the local

purchasing power of a host’s salary offer. Hosts could be, for example, different IT departments or

laboratories in which visitors (IT specialists or researchers) could consider working.

Variations in guests’ information and preferences

Hence, there are two types of hosts and two types of guests in the market each period t. We refer

to them as type 0 and type 1 depending on whether they traded in period t− 1. Type 1 consumers

are informed consumers. They matched with some hosts in period t − 1 and can thus infer their

new match value with those hosts in period t without necessarily visiting them. Type 0 consumers

are uninformed consumers. They did not succeed in matching with any host in period t− 1 and are

thereby now unaware of their match value with any host in period t. Likewise, all hosts who were

21See Burdett et al. (2001) or the survey by Wright et al. (2017).
22The option of not matching and trading gives visitors no utility.
23Without learning, visitors also come back with probability zero.
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visited in period t− 1 are of type 1 in period t whereas a host who did not receive a visit in period

t − 1 becomes or remains a host of type 0 in period t. Type 1 hosts are called popular (or related)

and type 0 hosts unpopular (or unrelated). Note that popularity is information that any host is able

to observe directly from his own sales accounts. To keep the analysis tractable, hosts’ types become

common knowledge at the beginning of each time period. For simplicity, it is further assumed that

consumers have a finite memory, which lasts for only one period. That is, if an informed consumer

matches with some host in period t, she learns her newest match value with her most recent host in

period t+1 but not with any other hosts she may have visited earlier.24 We hence refer to an informed

consumer who knows her match value with host j in time t also as j’s informed/previous/related

consumer.

The assumption that consumers’ match values are independently distributed over time provides

a relatively simple framework for addressing the question of how local hosts are affected by variation

in consumers’ preferences and thus the risk of losing demand. A family may spend three memorable

vacations in a certain spa resort in Corsica but then want to switch to another holiday destination.

Foreign visitors may work some time on a certain project abroad but then prefer to return home or

switch to another project elsewhere. Without a working communication channel, these changes often

come as a surprise to local hosts.

We abstract from possible preference persistence for several reasons. First, the analysis is simpler

with changing tastes than constant tastes. Fixed preferences give rise to additional learning dynamics

because then also hosts start to learn about the preferences of their recent guests. In this paper, the

focus is on other aspects of mobility. Second, in the long-run mobility is mostly driven by changing

tastes because in steady states coordination problems disappear with constant tastes. Such mobility

dynamics are not particularly interesting. With constant tastes we thus need to add new exogenous

elements to sustain mobility while changing tastes present a natural explanation to equilibrium

mobility in themselves.

Furthermore, regarding the welfare effects of learning and privacy, both assumptions about pref-

erences work qualitatively quite alike. We therefore do not lose much either by using our simpler

setting and abstracting from possible correlation of consumer preferences.25,26 A model like this where

consumer tastes change also provides insights into setups where different buyer cohorts enter and

leave the market, become mobile and then settle down. A newly drawn match value could be inter-

preted, say, as a replacement of a satiated consumer by a non-satiated consumer with word-of-mouth

communication between the cohorts.

Timing, trading and privacy

We focus on stationary Markov equilibria in type-symmetric strategies.27 To summarize, our

game has the following extensive form in each period:

24The underlying idea is that tastes change rapidly and observed information becomes quickly obsolete.
25Kovbasyuk and Spagnolo (2017) allow the reputation of a host to last more than one period, which is

equivalent to letting the consumer observe her match value with a host for more than one period.
26Caminal and Vives (1996) and Caminal and Vives (1999) study correlation of consumers’ match values by

allowing consumers to infer the quality of experience goods from past market shares and prices.
27The type of a host is either popular or unpopular, j = 0, 1, and the type of a guest is either informed or

uninformed, i = 0, 1, and for the informed it includes also the most recent match value, uij .
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1. Nature draws new match values between all possible host-guest pairs. Informed visitors (of

type i = 1) learn their current match values with their latest hosts (of type j = 1). Otherwise,

all visitors remain ignorant of their newly drawn match values.

2. Hosts choose their prices simultaneously and they are published immediately afterwards. Type

j = 0 hosts post p0 and type j = 1 hosts post p1.

3. Consumers choose which hosts to visit. They visit with equal probabilities all hosts who offer

them the same price pj and the same expected or observed match value uij .

4. Hosts match and trade randomly with one of the guests who visits them: the host obtains

profit pj and the guest derives utility uij − pj .

This game assumes full consumer privacy. Match values that informed visitors observe in the

first stage remain their private information. We study later the game without privacy. In that case,

both the informed visitor and her last host observe the visitor’s new match value. After acquiring

this information, the host can also offer his previous guest a special price.28

2.1 Visit probabilities and queue lengths

We turn to analyzing market dynamics. The fraction of visitors who succeed to consume local goods

in period t is denoted by ρt. There are hence ρtN
g pairs of hosts and guests who match with

each other in period t. Also, this entails that there are (1− ρt)Ng uninformed consumers and ρtN
g

informed consumers in period t+1. In the following analysis, ρt acts as an endogenous state variable.

Its evolution dynamics are derived in Section 2.2. In stationary Markov equilibria, which we focus

on, ρt = ρt+1 = ρ.29

Every period visitors decide where to go. We denote the probability that a visitor of type

i approaches a particular host of type j by θij = θij [uij ], where uij captures the visitor’s prior

information about the (expected or observed) match value with this host. The value this visit

generates for the consumer is denoted by vij = vij [uij ]. The maximum expected utility that a

consumer of type i can obtain in the market is denoted by Vi = Vi [uij ]. In the literature, this is

called market utility.30,31

The optimality of visitor strategies requires that the following inequalities (1) hold with comple-

mentary slackness for all i = 1, 2 and for all j = 1, 2.

θij [uij ] ≥ 0 and vij [uij ] ≤ Vi [uij ] . (1)

First, consider a consumer of type 0. This consumer has no recent match history on which her

visit strategies could be conditioned, i.e., uij = 1/2. Hence, she visits all hosts that have the same

28In booming markets, targeting is implicit (no other consumer would accept the special price) and, in
busting markets, targeting is explicit (some other consumer might accept the special price).

29To prevent confusion with multiple indexes, we remove the period-specific index unless it is necessary.
30Vi is consumer i’s indirect utility of pursuing her optimal visit strategy.
31For simplicity, we emphasize the dependence on uij only in this section.
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type and the same price with equal probabilities. Because the visiting probabilities of a consumer

add up to one, the following condition must hold in equilibrium.

θ00 [1/2]
(
Nh − ρNg

)
+ θ01 [1/2] ρNg = 1. (2)

Consider a visitor of type 1 next. In contrast to the previous case, the visitor now has recent

match history and has thereby just learned her new match value with the host she was matched with

last period. This match value uij is generally different from the average match value 1/2 that the

consumer can expect to obtain at some random host.

As a consequence, if the recently observed match value is sufficiently high, the consumer has an

incentive to visit again the same host with probability one, whereas if uij is low enough all things

considered, the informed consumer rather visits some other host and thereby behaves like uninformed

consumers. Optimally, the decision follows a cut-off strategy:

θ11(r)
[
u11(r)

]
=

1, if u11(r) ≥ a,

0, if u11(r) < a.

Above, u11(r) denotes the match value with the most recent host 1(r) and a denotes the cut-off

match value such that, if u11(r) ≥ a, the visitor goes back to this host.32 Otherwise, the consumer

visits some other host and applies similar contact strategies with them as any of the uninformed

consumers, i.e., θ01 [1/2] = θ11 [1/2] and θ10 [1/2] = θ00 [1/2]. In this case, an almost identical adding

up constraint applies to consumers of type 1 as type 0.33

θ10 [1/2]
(
Nh − ρNg

)
+ θ11 [1/2] (ρNg − 1) = 1. (3)

We can now proceed to derive the expected measures of new (i.e., uninformed or informed but

unrelated) consumers who approach some host they did not visit in the most recent time period.

We denote by qij the so called queue length of new consumers of type i ∈ {0, 1} at a host of type

j ∈ {0, 1}. Intuitively, this is just the number (measure) of new consumers of type i who visit hosts

of type j over the number (measure) of these hosts.34

The equilibrium queue length of new consumers at a host of type 0 satisfies the following

q0 := Ng (1− ρ) θ00 [1/2]︸ ︷︷ ︸
q00

+Ngρaθ10 [1/2]︸ ︷︷ ︸
q10

, (4)

whereas the queue length of new consumers at a host of type 1 can be derived as follows

q1 := Ng (1− ρ) θ01 [1/2]︸ ︷︷ ︸
q01

+ (Ngρ− 1) aθ11 [1/2]︸ ︷︷ ︸
q11

. (5)

32The optimal match value threshold a is determined in the equilibrium.
33Note that ui1(r) 6= 1/2 almost surely and, if θ11(r)

[
ui1(r)

]
= 1 with host 1(r), then θ1,j(−r) [1/2] = 0 with

other hosts j(−r).
34Technically, it is the Radon-Nikodym derivative, in other words, a change of measure. See Eeckhout and

Kircher (2010).
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In both expressions, the first summand represents the number of uninformed consumers and the

second summand represents the number of informed but unrelated consumers, whose match values

uij are less than a with their previous hosts.

By joining the adding up constraints (2) and (3) with the definitions of queue lengths (4) and

(5) we obtain the following equilibrium condition that relates the queue lengths q0 and q1, cut-off a,

and state variable ρ to market tightness ν:

ρ(1− a) + (ν − ρ)q0 + ρq1 = 1 (6)

This shows where the average consumer is: ρ(1− a) is the probability that she visits the same host.

Otherwise, the consumer is either in queue q0 or in queue q1 (contacting one of the (ν − ρ)Ng type

0 hosts or one of the ρ(Ng − 1) type 1 hosts).

2.2 Trade probabilities and state dynamics

A host always trades when he is visited by a consumer. By following standard arguments, we observe

that a host of type 0 is not visited by any consumer with probability e−q0 . Thus, a host of type 0

trades with probability 1− e−q0 .

Similarly, a host of type 1 trades with probability 1 − e−q1a, where e−q1 is the probability that

no unrelated consumer comes to visit this host, and a is the probability that the host’s previous

consumer has a match value below a.

Because hosts must treat equally all consumers who come to them, we know that if n consumers

approach a host, all the consumers have the same probability 1/n of getting matched. Therefore, the

probability of trading for an unrelated consumer with a host of type 0 is (1− e−q0) /q0. Likewise,

the probability of trading for the related consumer with the host of type 1 is (1− e−q1) /q1.

Trading probabilities with a host of type 1 are a bit different for other visiting consumers, however,

because the presence of the host’s related informed consumer reduces their chances of trading. A

host of type 1 is visited by his related, informed consumer with probability 1 − a. We thus obtain

that the trade probability of any other unrelated, uninformed consumer with this host is35

1− e−q1
q1

− 1− e−q1 − q1e−q1
q21

(1− a) .

To shorten the expressions of payoffs, we use the following notation for trade probabilities and

35The probability of matching with the host is the same for both the previous visitor and new uninformed
visitors but their trade probabilities differ because new visitors compete both with other new visitors and the
previous visitor. The details are in the Appendix. The idea is that, once a guest has chosen to visit a certain

host of type j,
qnj
n! e
−qj denotes the probability that n competing new consumers also come to visit it. As we

know well, in a continuum market like this, new visits follow a Poisson model whereas, in a finite market, new
visits would follow a Binomial model.
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auxiliary variables:

βhj (qj) := 1− e−qj , for j ∈ {0, 1} ,

βgj (qj) :=
1− e−qj

qj
, for j ∈ {0, 1} ,

αg1(qj) :=
1− e−q1 − q1e−q1

q21
.

The number of guests of type 1 (the number of hosts of type 1) in period t + 1 depends on

how many hosts have traded in period t. The number of type 0 hosts who traded in period t is

(1− e−q0)
(
Nh − ρtNg

)
and the number of type 1 hosts who traded in period t is (1− e−q1a) ρtN

g.

The sum of these gives us the number of informed, related consumers in period t+ 1

ρt+1N
g =

(
1− e−q0

) (
Nh − ρtNg

)
+
(
1− e−q1a

)
ρtN

g. (7)

By dividing equation (7) by Ng, we obtain equation (8)

ρt+1 =
(
1− e−q0

)
(ν − ρt) +

(
1− e−q1a

)
ρt, (8)

which immediately gives us the steady-state value of ρ

ρ =
1− e−q0

1− e−q0 + e−q1a
ν. (9)

Note that, because ρ denotes the share of informed visitors, it can be regarded as a measure of

market information.36 Successful trading increases market information: ρ is decreasing in trading

failure e−q0 (with type 0 hosts) and e−q1a (with type 1 hosts).

3 Market equilibrium with full privacy

We next move on to characterize the stationary Markov equilibrium for the case with δ = 0 (only

history-related linkages between periods). This choice keeps the exposition clear and simple and

keeps it comparable with the standard case in the literature where the market is static. Our dynamic

modeling approach is nevertheless crucial here because it enables us to endogenize prior information

that arises from recent visits. The supplementary material that contains the case with δ ∈ (0, 1)

(also future-related linkages between periods) is relegated to the Online Appendix.37

Figures 1b and 1a describe the feasible equilibrium patterns with privacy. A popular host of type

1 charges either (i) a higher price that is attractive only to his previous consumer, who visits the host

36Because ρ depends on history, our model has endogenous types. As in Peters (2016), a trading stage
follows a previous stage in which consumers have explored some offers.

37We comment on the slight differences that arise when there are not only information linkages but also
continuation value linkages between periods later in the main text.
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only if she has a sufficiently high match value, uij ≥ a, or (ii) a lower price that is attractive also to

new unrelated consumers, whose visits serve as a partial insurance against a low match value, uij < a.

We call the first case a separating equilibrium and the second case a semi-pooling equilibrium. An

unpopular host of type 0 has no recent visit history and thus attracts only new visitors.

(a) (b)

Figure 1: Semi-pooling equilibrium (a) and separating equilibrium (b) with consumer privacy.
Dashed and solid circles represent guests and hosts, respectively.

We proceed by defining equilibrium conditions and characterize the circumstances where different

equilibria arise. We then compare welfare in each case to markets without learning and other closely

related literature benchmarks.

3.1 Equilibrium definition

The values that a consumer derives from visiting, respectively, an unrelated host of type 0, an

unrelated host of type 1, or her related host 1(r) with a known match value u11(r) are shown below:

v00 = βg0 (1/2− p0) ,

v01 = (βg1 − α
g
1(1− a)) (1/2− p1) , and

v11(r) = βg1
(
u11(r) − p1

)
.

Since hosts are horizontally differentiated, a consumer selects her next host considering both the

match value with this host (net of the price) and the level of congestion and the probability of trade.

Consumers maximize expected utility. In constructing an equilibrium, it is therefore necessary

that consumers have no profitable deviations from their postulated visit strategies. The standard way

to formalize this condition is to express the problem of a host as an optimization problem constrained

by market utility V0. To make sure that new consumers remain indifferent between different places,

the queue length q0 that a type 0 host attracts by posting p0 is determined by38

v00 = βg0 (1/2− p0) = V0. (10)

38For the foundations of this market utility approach, see Wright et al. (2017).
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The intuitive idea is that a host must provide his visitors at least as much utility as they obtain at

maximum by visiting some other host. To attract more visitors, a host should generally have either a

lower price or provide his visitor a more suitable or less congested environment. The outside option

of visitors is captured by market utility V0, which is endogenous. However, because the impact on

the larger market is negligible, it can be taken as given in a host’s decision problem.

Specifically, if a host sets a lower price than other hosts, his trade probability keeps increasing

until his guests are indifferent between approaching him and some other host. It increases until the

marginal visitor gets V0. Nevertheless, as consumers trade off lower prices for increasing congestion,

a price cut never attracts all consumers to one host who can only accommodate one of the guests.

The demand from a host is (piecewise) continuous and decreasing in price.39

The main difference between the two feasible equilibrium patterns which arise in our model is

that the queue length q1 for a type 1 host is zero in a separating equilibrium and positive in a semi-

pooling equilibrium. It is determined jointly with equilibrium cut-off a. That is, if a type 1 host is

visited by some new consumers (q1 > 0), his match value cut-off for previous visitors a and his queue

length of unrelated visitors q1 must jointly satisfy the following equations

v1j = βg1 (a− p1) = V0, (11)

v01 = (βg1 − α
g
1(1− a)) (1/2− p1) = V0. (12)

On the other hand, if a type 1 host is only visited by previous consumers (q1 = 0), the cut-off a is

determined by

v1j = a− p1 = V0. (13)

v01 = (1− 1/2(1− a)) (1/2− p1) ≤ V0. (14)

The last inequality is sufficient to guarantee that unrelated consumers have no incentive to approach

a type 1 host.40

The problem of a type 0 host can now be written simply as

J0 =max
p0

(1− e−q0)p0 (15)

s.t. βg0 (1/2− p0) = V0.

39As a and q1 are determined jointly, a continuity break can occur at the point where we move from
(separating) cases where a > 1/2 and q1 = 0 to (semi-pooling) cases where a < 1/2 and q1 > 0.

40If it is not beneficial for an unrelated consumer to visit this host when there are no other unrelated
consumers, i.e., with q1 = 0, it cannot be beneficial with more congestion either, i.e. with q1 > 0.
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The problem of a type 1 host can be expressed similarly as

J1 =max
p1

(1− e−q1a)p1 (16)

s.t. βg1 (a− p1) = V0, (17)

and (βg1 − α
g
1(1− a)) (1/2− p1) = V0, if q1 > 0, (18)

or a− p1 = V0,

and (1− 1/2(1− a)) (1/2− p1) ≤ V0, if q1 = 0.

Both hosts face a tradeoff between the expected demand (trade probability 1− e−q0 or 1− e−q1a)

and the price. However, the demand from popular hosts is less elastic at a given price because a type

1 host has a related consumer but a type 0 host does not. Popularity therefore increases prices.

The constraint set of the type 0 host’s problem defines a one-to-one relationship between the

price p0 and the queue length q0: congestion determines the price. To simplify the problem, we can

thus think that, instead of choosing the price, the type 0 host selects directly the queue length q0.

J0 =max
q0

βh0

(
1

2
− V0
βg0

)
. (19)

The constraint set of the type 1 host is more complicated. His price p1 may not define a unique

cut-off a and a unique queue length q1. To render the problem tractable, we hence apply the following

selection argument: when there are many pairs (a, q1) consistent with a given price p1, we assume

that the host can select the profit maximizing (a, q1). With this assumption, we can rewrite the

problem of the type 1 host simply as follows.

J1 =max
a,q1

(1− e−q1a)

(
a− V0

βg1

)
(20)

s.t. (βg1 − α
g
1(1− a))

(
1/2− a+

V0
βg1

)
= V0, if q1 > 0,

or (1− 1/2(1− a)) (1/2− a+ V0) ≤ V0, if q1 = 0.

Lemma 1 highlights an important consequence of optimal directed search.

Lemma 1 If a ≥ 1/2, then q1 = 0 or, equivalently, if q1 > 0, then a < 1/2.

Proof. By (17) and (18), a necessary condition for q1 > 0 is that the following equality is satisfied:

1/2− a = V0

(
1

βg1 − α
g
1(1− a)

− 1

βg1

)
. (21)

Hence, there is no solution (a, q1) to (20) where a ≥ 1/2 and q1 > 0 because βg1 − α
g
1(1− a) < βg1 . �

Lemma 1 shows that hosts of type 1 can assume two different marketing strategies; They can

either target a niche market or a mass market. When a popular host targets a niche market, he sells

only to very selective informed consumers, a ≥ 1/2, and he does not sell to uninformed consumers,
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q1 = 041, whereas, when the host targets a mass market, he additionally sells to some uninformed

consumers, q1 ≥ 0, and also to less selective informed consumers, a < 1/2. A niche market strategy

features intensive screening in the sense that only the visitors that have above average match values

visit the same host again. There is also perfect sorting because hosts cannot attract any new visitors

using niche market strategy. A mass market strategy features instead more relaxed screening because

visitors with lower than average match values also repeatedly visit their last host. The sorting of

new visitors is then impartial in that unrelated visitors approach both types of hosts. To use colorful

language, the objective of a niche market strategy seems to be to ”squeeze every last penny from

the devoted visitors” and the objective of a mass market strategy is seemingly to ”flood the house

with numerous ignorant tourists”. A niche market strategy corresponds to the separating equilibrium

(Fig. 1b) and a mass market strategy corresponds to the semi-pooling equilibrium (Fig. 1a). Which

of these strategies is more profitable depends on market conditions, particularly, on the intensity of

competition, ν. We study these cases next one by one. The equilibrium is defined as follows.

Definition 1 A Stationary Markov equilibrium (SMPE) with consumer privacy is determined by

a tuple (q0, q1, a, ρ, V0) where the following conditions hold:

1. Strategies are optimal given beliefs: q0, q1, a, and V0 solve (19) and (20).

2. Beliefs are consistent with strategies: q0, q1, a, and ρ satisfy (6) and (9).

Note that we have five unknowns and an equilibrium is thus mostly pinned down by the following

five equations: the first-order conditions for q0, q1, and a, the adding-up condition (6) that relates

them to ρ, and the steady-state condition (9) for ρ.

3.2 Separating equilibrium

In a separating equilibrium, the first-order conditions of type 0 and type 1 hosts’ problems are

expressed, respectively, as

e−q0

2
− V0 = 0, (22)

2a− 1− V0 = 0. (23)

This pins down the values of V0 and a as functions of q0, which captures the intensity of competition

for new visitors

V0 =
e−q0

2
<

1

2
, (24)

a =
1 + e−q0/2

2
>

1

2
. (25)

The existence of a separating equilibrium requires that the market is sufficiently competitive and

has aggregate excess supply.

41Lemma 1 together with the fact that V0 ≤ 1/2 implies that the second constraint in (20) is always satisfied
with a strict inequality: after moving V0 to the left-hand-side of the equation, we obtain 1

2 (1/2− a) (1 + a) +
1
2V0 (a− 1) < 0.
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Proposition 1 There exists a unique SMPE with consumer privacy if ν > 2. The equilibrium is

separating: q0 < 1, q1 = 0 and a > 1/2. The hosts of type 0 set p0 and the hosts of type 1 set p1 such

that p1 > p0.

The intuition for this result is that, when ν is getting smaller, there are fewer competing hosts.

It may therefore become attractive for a host of type 1 to deviate to a significantly lower price. A

large enough price cut also attracts to the host new visitors in addition to the previous visitor. The

higher the value of ν, however, the fewer additional consumers are attracted by a lower price. With

sufficiently many competitors and high enough values of ν, the deviation is not profitable.

As usual, the trade surplus created in association with type 0 hosts is given by the probability of

trade 1− e−q0 times the expected trade surplus 1/2. The host’s share of the trade surplus is

p0 =
1

2
− V0

1− e−q0
q0 =

1

2

(
1− e−q0

1− e−q0
q0

)
, (26)

whereas the consumer’s share is given by

1/2− p0 =
1

2
− 1

2

(
1− e−q0

1− e−q0
q0

)
=

1

2

e−q0

1− e−q0
q0, (27)

which is decreasing in queue length q0.

The trade surplus created in association with type 1 hosts is given by the probability of trade

1− a times the expected trade surplus E [a] = (1 + a)/2. The host’s share of trade surplus is

p1 = a− V0 = a− e−q0

2
, (28)

whereas the consumer’s expected share is given by

(1 + a)/2− p1 = (1− a)/2 +
e−q0

2
=

1

2

(
1− a+ e−q0

)
, (29)

which is decreasing in the queue q0 and the cut-off a.

Note that more intensive screening in terms of a higher cut-off a reduces the likelihood of trading

but increases the hosts’ surplus share and decreases the guests’ surplus share. Hosts thus benefit

from maintaining relatively high screening intensity. Both host types also obtain higher surplus with

higher queue length q0 in the more competitive ”submarket for new visitors”, which determines a

base-line competition level for the whole market. By contrast, guests are always better off if there

are fewer competing uninformed visitors and less intensive screening of previous visitors.

3.3 Semi-pooling equilibrium

The separating equilibrium, where hosts of type 1 focus on their informed visitors, fails to exist for

some parameter values, especially for low values of ν. If there are relatively few hosts and thus

little competition between them, type 0 hosts have rather long queues. New consumers are thus less

reluctant to pay higher prices to type 1 hosts who might also have previous visitors. These popular
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hosts can therefore significantly decrease their no trade risk by slightly lowering their prices, which

attracts to them both previous informed visitors and new uninformed visitors. An equilibrium where

popular hosts trade with different consumer types may arise. We next characterize this equilibrium

and study the conditions for its existence.

With a mass market strategy, the problem of a host of type 0 is similar to what we described

previously. The type 0 host has thus the same first-order condition as before, which is given by (22).

Meanwhile, a host of type 1 must now satisfy two visitor optimality constraints. One is the optimality

condition (17) for the marginal consumer with match value a and the other one is the optimality

condition (18) for uninformed consumers: both must obtain the same market utility. Together, the

associated optimality conditions give (21). This equation allows us to derive a as a function of q1

and then plug this into J1. The problem of host 1 thus boils down to choosing the optimal q1. The

first-order condition of a type 1 host is given by

e−q1
(
a− ∂a

∂q1

)(
a− V0

βg1

)
+
(
1− e−q1a

)( ∂a

∂q1
− V0α

g
1

(βg1)
2

)
= 0, (30)

where we have used the fact that ∂βg1/∂q1 = −αg1.

The existence of a semi-pooling equilibrium requires that the market is not particularly compet-

itive and has aggregate excess demand.

Proposition 2 There exists a unique SMPE with consumer privacy if ν < 1/2. The equilibrium

is semi-pooling: q0 > 1, q1 > 0 and a < 1/2. The hosts of type 0 set p0 and the hosts of type 1 set p1

such that p1 > p0.

In a semi-pooling equilibrium, hosts of type 1 are visited by fewer new consumers than hosts of

type 0 (q1 < q0), but because of low cut-offs a < 1/2 for previous visitors, their trade probabilities are

nevertheless higher, 1− e−q1a > 1− e−q0 , and their prices are higher, p1 > p0 (Figure 2). However,

the differences are quite small because of very high congestion, ν < 1/2.42 This implies that the

probability of trade with a type 1 host is not much higher for the previous consumer than for new

consumers who approach this popular host.43

When an informed visitor manages to trade with her host, their trading still generates a higher

expected match value of E [uij ] ≈ 3/4 than trading with uninformed visitors. But with visitor

privacy this occurs very rarely and does not affect market welfare much. Because of limited capacity,

differences between hosts therefore vanish as competition between them becomes sufficiently mild.

Ultimately, all hosts offer almost the same price and the same trade probability and the informed

consumer thus applies the cut-off a ≈ 1/2 for ν ≈ 0.

3.4 Mixed equilibrium and whole equilibrium set

We have now characterized the unique equilibrium with full visitor privacy for parameters ν > 2 and

ν < 1/2. Our numerical analysis suggests further that a unique equilibrium exists also between ν = 2

42As seen from Figures 4b and 5b, the differences are larger for ν > 2.
43For ν < 1/2, q1 > 1.25 and a > 0.45 which gives αg1(1− a) < 0.15.
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Figure 2: Prices in a semi-pooling equilibrium.

and ν = 1/2. Moreover, the equilibrium set features attractive comparative statics with respect to

competition intensity ν.

Remark 1 Let us denote by ν ≈ 0.938 and ν ≈ 1.280 the values of ν separating different equilib-

rium types and let w ≈ 0.148. With this notation, our numerical and analytical findings show that a

unique equilibrium exists for all ν as follows:

1. A unique pure equilibrium with a mass market strategy exists for all ν ≤ ν. These equilibria

feature a low market utility, V0 ≤ w.

2. A unique mixed equilibrium exist for all ν ∈ (ν, ν). These equilibria feature a constant market

utility, V0 = w.

3. A unique pure equilibrium with a niche market strategy exists for all ν ≥ ν. These equilibria

feature a high market utility, V0 ≥ w.

We sketch a proof below and provide additional derivations in the Online Appendix. We can

numerically show that the highest ν for which a pure equilibrium with a mass market strategy exists

is ν = ν and the lowest ν for which a pure equilibrium with a niche market strategy exists is ν = ν.

Both equilibria have V0 = w and thus the same qm0 = qn0 . In the former equilibrium, hosts of type

1 post a lower price that attracts a positive queue qm1 > 0 and determines a below-average cutoff

am < 1/2. In the latter equilibrium, hosts of type 1 post a higher price that attracts no queue qn1 = 0

and determines an above-average cutoff an > 1/2.

This more intensive screening under a niche market strategy entails that more informed consumers

return to the market looking for a new host, which lowers market utility V0. Particularly, although

V0 is increasing in ν with both potential market strategies, we observe that the same market utility

V0 = w is reached for a lower ν = ν if hosts are restricted to using a mass market strategy and for a

higher ν = ν if hosts are restricted to using a niche market strategy.44 This w has a special role here

because we find that hosts prefer a mass market strategy when V0 ≤ w and a niche market strategy

when V0 ≥ w.45 Together these findings rule out profitable deviations to a niche market strategy for

ν < ν and to a mass market strategy for ν > ν and guarantee equilibrium uniqueness.

44See Fig. C1 (a) in the Online Appendix.
45See Fig. C1 (b) in the Online Appendix.
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Knowing the boundary equilibria at ν = ν and ν = ν, we can also easily construct mixed

equilibria for the intermediate values ν ∈ (ν, ν) where a fraction µ > 0 of hosts apply the mass

market strategy with the same (am, qm0 , q
m
1 ) as for ν = ν and a fraction 1 − µ > 0 of hosts apply

the niche market strategy with the same (an, qn0 , q
n
1 ) as for ν = ν. Because qm0 = qn0 , this sustains

a constant V0 = e−q
m
0 /2 = e−q

n
0 /2 = w such that hosts are indeed indifferent between their mass

market strategy and their niche market strategy. So proving existence requires us only to show that

for all ν ∈ [ν, ν] there exists a unique (ρ, µ) which solves the (modified) steady-state and adding-up

conditions. Further analysis suggests that this mixed equilibrium pattern is unique.

3.5 Efficiency comparison

We next consider welfare in the equilibria that we have described in Sections 3.2 and 3.3.

Welfare effects of learning: niche market strategy

To determine the effect of consumer learning on welfare under a niche market strategy, we compare

welfare (i) in the benchmark equilibrium without learning and (ii) in the separating equilibrium with

consumer learning. The homogenous benchmark equilibrium is as in Peters (1991) and arises as the

unique equilibrium outcome if we remove our key assumption that consumers can direct their search

based on prior information.46

In that case, all consumers are uninformed in every period. The expected match value with every

host is therefore 1/2. As a result, the equilibrium queue length of any one host is q′0 = Ng/Nh = 1/ν

because, without previous information, all consumers randomize uniformly over all hosts. Welfare

per consumer is given by W ′ =
(

1− e−q′0
)
ν/2.

Consider now the separating equilibrium with consumer learning as described in Proposition

1. In this equilibrium all transactions with type 0 hosts produce the expected joint surplus of 1/2.

Meanwhile, all transactions with type 1 hosts generate the expected joint surplus of (1 + a) /2. Thus,

welfare per consumer in a steady state solves

W =
(
1− e−q0

)
(ν − ρ)

1

2
+ ρ (1− a)

1 + a

2

=
(
1− e−q0

)(1− e−q0 + a

1− e−q0
ρ− ρ

)
1

2
+ ρ (1− a)

1 + a

2

=
(
1 + a− a2

) ρ
2
.

Generally, there are two different effects of consumer learning on welfare in markets where hosts

apply a niche market strategy. On the one hand, given that hosts of type 1 essentially just wait

for their previous consumers to visit them again, some of them inevitably wait in vain because their

related consumers draw low match values, uj < a. This coordination failure postpones trading and

has therefore a negative welfare effect. Both the hosts and their potential new consumers would

benefit from better coordination.

46The underlying assumption in earlier papers is that consumers have no information differences because
earlier visits do not transmit any relevant information about current match values.
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Moreover, informed consumers who draw high match values, uj > a > 1/2, have a higher prob-

ability of trade than the rest of the visitors because their hosts are not inviting other consumers.

In other words, there is positive correlation between a host’s suitability and availability: guests who

value their hosts dearly enough trade with them with certainty, without congestion. The impact on

welfare is positive because the expected match values of uninformed consumers are 1/2 and those of

informed consumers are 1+a
2 .

In addition, learning and coordination failure changes competition for new consumers by affecting

q0 = 1−ρ(1−a)
ν−ρ and ρ = 1−e−q0

1−e−q0+aν. This competition pins down market utility V0 = e−q0/2. Due to

the coordination problems, the submarket for new visitors has a higher queue length q0. Because

informed guests return there in the same period they draw low match values, whereas hosts return

there in the next period. In isolation, this tends to relax competition. Learning also supports long-

term matching and screening. Both affect competition through ρ and a, respectively. First, long-term

relationships keep on average ρ(1− a) guests and ρ hosts away from the market for new visits. For

ν > 1 and a = 0, a higher ρ tends to raise q0. Second, more intensive screening drives a larger wedge

between the numbers of related guests ρ(1− a) and hosts ρ. In isolation, a higher a therefore tends

to raise q0. However, general effects of ρ and a on competition and congestion are ambiguous and

they may depend on the precise a > 1/2 and ν > 2.

To sum up, whether learning improves welfare depends on which of these effects is strongest.

Observe that W is higher than W ′ if

(
1 + a− a2

) ρ
2
>
(

1− e−
1
ν

) ν
2

(31)

The definitions of q0 and ρ (see Equations (47) and (48) in the proof of Proposition 1), yield the

following equivalent condition for W > W ′

ρ
(
1 + a− a2

)
> ν

(
1− e−

1
ν

)
ν

1− e−q0
1− e−q0 + a

> ν
1− e−

1
ν

1 + a− a2

− a2 +
(1− e−q0)−

(
1− e−

1
ν

)
1− e−q0︸ ︷︷ ︸

=:b

a+ e−
1
ν︸︷︷︸

=:c

> 0 (32)

We prove in the Appendix that (i) c (the no trade probability of a type 0 host in markets without

learning) is necessarily so high and (ii) b (the learning induced change in the trade probability of a

type 0 host) is necessarily so low that (31) is satisfied for any cut-off a ∈ (1/2, 3/4), which is the

relevant value range for cut-offs under a niche market strategy by Equation (25).

Thus, positive effects of consumer learning are stronger than the negative effects: learning im-

proves welfare. Generally, this finding also illustrates how introducing taste heterogeneity can al-

leviate frictions in a decentralized market. Learning about match values facilitates coordination;

previously observed information becomes a natural coordinating device.
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Welfare effects of learning: mass market strategy

To analyze the effect of consumer learning under a mass market strategy, we compute market welfare

in a steady-state

W =
(
1− e−q0

) 1

2
(ν − ρ) +

1

2
q1ρ (βg1 − α

g
1 (1− a)) + ρ (1− a)βg1

1 + a

2
(33)

The first summand in (33) is the expected joint trading surplus with a host of type 0. The second

summand is the expected joint surplus obtained when uninformed consumers trade with hosts of

type 1. The third summand is the expected joint surplus generated when informed consumers trade

with their previous hosts.

There are two opposite effects of learning on market welfare. First, because popular and unpop-

ular hosts offer different prices, p0 6= p1, search for a new host is no longer random across all hosts.

This search distorting effect tends to lower trading surplus for new hosts who offer the same expected

match value 1/2. Random search is known to minimize trading frictions in uncoordinated market

setups with homogenous products. The effect is captured jointly by the two first terms of (33).

Second, learning obviously reduces trading frictions for informed consumers. It allows these

guests to direct their search immediately to their previous hosts if other hosts seem unattractive

either because of higher congestion or lower suitability. This idea is captured by the last term of

(33). It shows that hosts of type 1 derive higher trading surplus with learning, because they can

trade with their informed related consumer with a positive probability yielding (1 + a) /2 > 1/2.

To sum up, we find that the positive search directing effect for informed consumers is stronger

than the negative search distorting effect for new consumers, which leads to higher total welfare with

learning (Figure 3a).

Welfare effects of learning: market efficiency and perfect coordination

We have found that learning improves matching efficiency. This is so for all levels of competition

intensity we analyze, irrespective of equilibrium type (separating or semi-pooling). However, neither

of these equilibria is fully efficient.

Proposition 3 Equilibrium with learning and privacy is inefficient.

To show this result, we solve the problem of the social planner who maximizes trade surplus

subject to identical coordination frictions as hosts and guests. The planner cannot violate the equal

treatment condition for different market participants of the same type. It is thus assumed that the

planner can freely choose q0 and q1 to set the screening intensity for informed visitors and sort new

visitors between different hosts.47

Considering maximal joint surplus in each case, we observe market outcome can be improved

(Figure 3). The intuition behind this result is that the social planner can better exploit the fact that

an average trade surplus for an informed consumer is higher than 1/2 for any a > 0. The planner

would therefore optimally reduce the cut-off a below the level generated by market forces. Because

47The cut-off is determined by consumer self-sorting. The details are in the Online Appendix.
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hosts have local monopoly power, they have instead an incentive to intensify screening excessively.

This has a direct effect on their profit.

Note that, if there are few hosts (ν < 1), relaxed screening (lower a) raises congestion at hosts of

type 1. This decreases q1 and increases q0. As a result, we can conclude that prices are too low in

the semi-pooling equilibrium. Meanwhile, if there are many hosts (ν > 1), lower a directly reduces

q0 because the optimal q1 equals zero. Hence, prices are too high in the separating equilibrium

compared to the social optimum.

(a) (b)

Figure 3: Welfare in markets with learning (W ) and without learning (W ′) compared to the
social planner’s solution (with learning) and perfectly coordinated markets (without learning).

We also notice that learning can increase market welfare even above the level that would be

generated if all agents on the shorter market side were matched one for one with agents on the longer

market side: this would yield the total trade surplus of max {ν, 1} /2 (per visitor). As shown in Figure

3, this upper bound is never attained in markets without learning. Because learning reduces trading

for low ui,j , we can beat this benchmark for very low values of ν (relatively few hosts trade almost

surely for above average match values) and also for higher values of ν (relatively few guests trade

almost surely for above average match values). This makes it clear that learning provides welfare

gains that go much beyond simple coordination.

4 Market equilibrium without privacy

In this section, we characterize the equilibrium without consumer privacy. Specifically, we assume

that at the beginning of each period a host of type 1 can observe the identity and the match value of

his previous visitor.48 Nevertheless, the host still knows nothing about other visitors. The host can

thus either choose to make his previous visitor a take-it-or-leave-it price offer or make a general price

offer that targets new visitors. In other words, we are studying the welfare consequences of consumer

48A more sophisticated case of consumer tracking would be to allow the host to observe an imperfect
but informative signal s about his previous visitor’s match value u. Then, the host would make an offer
argmaxp̂kPr(u > p̂k + V̂0|s)p̂k that targets his visitor if this gives more profit than Ĵ0 from targeting new
visitors; assuming that values and signals are positively correlated, the price p̂k(s) would be higher for a
higher signal s. This entails that imperfect signals reduce coordination frictions between a host and his
previous visitor but do not totally remove them like our perfect signals do.
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tracking and targeting in the booking industry. To distinguish this case from the setting in Section

3, all the variables relating to markets without visitor privacy have a wedge (∧) above them.

First, consider a host of type 1 that we here denote by k. The immediate effect of suppressed

privacy is that the host can make his informed visitor such a price offer that his previous consumer

is indifferent between accepting the offer and going to some other host. In other words, hosts of type

1 need not leave their previous consumers any information rents unlike in Section 3. This implies

that market utilities equal V̂1 = V̂0 for all visitor types.

Thus, the price offer p̂k to the previous informed consumer is

p̂k = u11(k) − V̂0,

and the popular host can hence earn the certain profit of Ĵk = p̂k.

Sometimes the previous visitor may not receive a special price offer. Because some guests may

not like the host very much, host k targets his previous informed consumer only if her willingness to

pay for a continuation visit is sufficiently large. We denote the lowest value of u11(k) for which an

informed consumer obtains the special price offer by â. The highest price that host k may charge

equals 1− V̂0 whereas the smallest price is equal to â− V̂0.
The value of â has to be such that host k is indifferent between charging p̂a and p̂0. This

corresponds to the optimal choice of a consumer segment. By charging p̂a, the host attracts only

his informed consumer whereas, by charging p̂0, the host only attracts uninformed consumers. From

this, we obtain the following indifference condition for the cut-off â

â− V̂0 =
1

2

(
1− e−q̂0 − q̂0e−q̂0

)
. (34)

The right-hand-side (RHS) of this equation denotes the profit Ĵ0 from targeting new consumers.

To derive the cut-off â, note that the problem of a host of type 0, who remains completely

uniformed, has not changed from Section 3. The first-order condition of his profit maximization

problem is still given by V̂0 = e−q̂0/2. By combining this condition with (34), we can see that host k

applies a cut-off, which lies below the average match value

â =
1− q̂0e−q̂0

2
<

1

2
. (35)

Suppression of privacy therefore limits screening, which supports long term customer relationships.

In equilibrium, there are Nh−Ngρ̂ (1− â) hosts charging price p̂0 and Ng (1− ρ̂+ ρ̂â) consumers

randomizing uniformly over them. Thus, the queue length at each of these hosts is

q̂0 =
1− ρ̂ (1− â)

ν − ρ̂ (1− â)
. (36)

In a steady state, the evolution equation of ρ is

ρ̂ = (ν − ρ̂ (1− â))
(

1− e−q̂0
)

+ ρ̂ (1− â) . (37)
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This with the adding-up condition (36) yields

â =
(1− ν)

(
1− e−q̂0

)
q̂0ν − ν (1− e−q̂0)− e−q̂0

. (38)

Because match values are uniformly distributed, the average price offer to previous visitors is

E[p̂1] =
1 + â

2
− V̂0.

With this background information, we can show that the following unique equilibrium arises.

Proposition 4 There exists a unique SMPE in the market without consumer privacy. The equi-

librium is separating: q̂1 = 0 and â < 1/2. The hosts of type 0 set a fixed price p̂0 and the hosts of

type 1 apply perfect price discrimination to high match value consumers such that both p̂1 < p̂0 and

p̂1 > p̂0 are possible.

This equilibrium pattern demonstrates that when hosts have sufficient information on target

groups the choice of a visitor segment becomes straightforward. First off, the possibility of tracking

eliminates coordination problems that arise with privacy because hosts are unable to stay tuned into

their visitor’s plans. Further, the possibility of targeting removes the need to attract simultaneously

previous and new visitors to offer insurance if earlier guests fail to show up. Even more importantly,

additional information also allows popular hosts to internalize the externalities, that their pricing

choices cause to their previous visitors’ matching probability. We prove in the next section that the

equilibrium without privacy is efficient.

5 Comparison of equilibria with and without privacy

In this section, we compare the previously derived equilibria with and without consumer privacy

from Section 3 and 4, respectively. One of the main conclusions of this comparison is that tracking

and targeting not only improves welfare but may also benefit consumers.

Consumer surplus is determined by market utility V0 = eq0/2, which depends on how strongly

unpopular firms are competing for new consumers; the intensity of competition is captured by q0.

With privacy, this queue length is obtained directly from Eq. (39)

q0 =
1− ρ(1− a)

ν − ρ
− ρ

ν − ρ
q1. (39)

However, without privacy, it changes to

q̂0 =
1− ρ̂(1− â)

ν − ρ̂(1− â)
(40)

because popular hosts no longer target (i) previous visitors who have low match values and (ii)

previous and new visitors simultaneously.

Comparing q0 and q̂0 suggests that privacy suppression has four general equilibrium effects on

consumer surplus through V0 alone: one pro-competitive, one anti-competitive, and two that could
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work in either direction. First, because tracking enables hosts to respond immediately to a low

demand realization,49 there will be more hosts in the market competing for new consumers. With

privacy the number of hosts who charge the lower price, p0, is ν−ρ (per consumer) whereas, without

privacy, it is ν − ρ̂(1− â) (per consumer). By eliminating unnecessary coordination frictions, visitor

tracking thus reduces the queue length q0, which tends to have a pro-competitive effect.

Second, targeting removes sorting to different ”submarkets” because all new consumers visit

unpopular hosts and no one approaches popular hosts anymore. In booming markets, this means

that a number of new consumers reallocates themselves from q̂1 to q̂0, which tends to increase the

queue length, q̂0. Taken alone, this weaker sorting reduces market utility V̂0.

Finally, average trading probability ρ increases without privacy. Whether the effect strengthens

competition depends on market tightness. If there are more guests, ν < 1, q̂0 is increasing in ρ̂ (less

competition without privacy) whereas, if there are more hosts, ν > 1, q̂0 is decreasing in ρ̂ (more

competition without privacy). Lower screening intensity â has similar effects.

5.1 Prices

We can show that the equilibrium features more trading and less screening without consumer privacy,

which implies ρ̂ > ρ and a > 1/2 > â. This entails that aggregate demand conditions, ν, determine

the effect of privacy on market prices. When there are more hosts, ν > 1, queue lengths q0 become

shorter when type 1 hosts can observe the match values of their previous visitors,

q0 >
1− ρ (1− a)

ν − ρ (1− a)
>

1− ρ̂ (1− â)

ν − ρ̂+ ρ̂â
= q̂0.

The opposite holds when there are more guests, ν < 1.

We study first a market with higher ν > 1. In that case, shorter queues foster tougher competition:

p0 > p̂0 and V0 < V̂0. Furthermore, hosts that charge p̂1 are disciplined by hosts that charge p̂0.

Without privacy all hosts leave all guests the same larger consumer surplus V̂0. Thus, an informed

consumer whose match value equals a pays less without privacy.

Obviously, an informed consumer who has the highest match value u11(r) = 1 is still worse off

under perfect price discrimination.50 Nevertheless, considering that a > 1/2 is above average with

privacy and â < 1/2 is below average without privacy for ν > 1, informed consumers will pay less on

the average in the equilibrium without consumer privacy.51, 52

This does not hold with fewer hosts ν < 1. In that case, p0 < p̂0 implies V0 > V̂0. We can thus

conclude that popular hosts charge higher prices on average: E [p̂1] > p1. To summarize, weaker

49By posting p̂k for u11(k) ≥ â and posting p̂0 for u11(k) < â.
50There should thus exist some value uij ∈ (a, 1) at which the previous visitor is indifferent between paying

p0 and paying p̂1.
51This result resembles the outcome in oligopolistic markets with “best-response asymmetry” where hosts

may set different prices in weak and strong markets (see Armstrong (2006)). Different from that setting, our
results arise due to hosts’ capacity constraints instead of negative correlation of match values across products.

52Lester (2011) studies a market where a fraction of consumers is uninformed about prices. He finds that
more information can either increase or decrease prices. Here some consumers are informed about their private
match values. Increasing this fraction ρ can also both increase and decrease prices, albeit for different reasons.
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consumer privacy has a polarising effect on prices: it reduces them further when competition is

sufficiently hard, and raises them when competition is sufficiently mild:

Proposition 5 If ν > 2, prices are lower without privacy: p̂0 < p0 and E[p̂1] < p1 whereas, if

ν < 1/2, prices are higher without privacy: p0 < p̂0 and E[p̂1] > p1.

In a cyclical market, where competition intensity is different, say, in the summer and winter

booking seasons, this suggests that tracking and targeting technologies may benefit certain consumer

segments but not all. Similarly, access to information about recent demographic trends (e.g., use

of online/survey/register data to support planning at a city or firm level) might affect differently

expanding and declining areas.

(a) Comparison to semi-pooling (b) Comparison to separating

Figure 4: Prices p0 with and without privacy.

(a) Comparison to semi-pooling (b) Comparison to separating

Figure 5: Prices p1 with and without privacy.

5.2 Cut-offs

The relationship between the cut-off a and competition ν is determined by two conflicting incentives:

screening motive to keep prices high and insurance motive to keep demand high. As shown by Lemma
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1, a host can either use a niche market strategy (a > 1/2 and q1 = 0) or a mass market strategy

(a < 1/2 and q1 > 0). The advantage of a niche market strategy is that it allows the host to extract

more surplus from his high match value guests. The disadvantage is that the host has more uncertain

demand because his previous consumers are then less likely to return. A mass market strategy does

not allow for strong screening of informed consumers but, by targeting different consumer segments,

it offers some demand insurance in case the host loses his previous visitor.

Whether screening or insurance motive is stronger with visitor privacy depends on competition

intensity, which modifies the tradeoff of prices and demand. For a fixed price p1 ∈ (0, 1/2) the

maximal demand that a host can attract decreases in the market utility V0. When visitors have a high

market utility V0 ≈ 1/2, p1 is attractive to only the most motivated informed consumers with high

match values but, when visitors have low outside option V0 ≈ 0, new visitors and informed visitors

with low match values are also attracted by this same p1. With additional market competition,

higher demand requires large price sacrifices from a host, which are otherwise not necessary. The

host has therefore an incentive to expand his demand aggressively for lower ν < 1 and V0 but dispose

of some of his demand for higher ν > 1 and V0.

Specifically, when there are more hosts, competition among hosts of type 0 becomes stronger and

p0 is therefore decreasing in ν. Thus, a firm of type 1 must also leave more surplus to his visitors.

There are two different ways to achieve this: the host can either lower his price to maintain his

previous demand (similar a and q1) or keep the same price but focus on visitors with higher match

values (higher a and lower q1). The former strategy is attractive when it is cheap to attract new

consumers but becomes less so when there are many hosts competing for the average visitor. Figure

6 compares cut-offs with and without privacy.

(a) Comparison to semi-pooling (b) Comparison to separating

Figure 6: cut-offs a with and without privacy.

Note that the demand from previous visitors with observed match value a = 1/2 is less elastic than

that from new visitors with expected match value uij = 1/2. However, the demand from previous

visitors with very low match values is the most elastic and the demand from previous visitors with

very high match values the most inelastic. All demands become more elastic with competition but

the demand from previous visitors with very high uij reacts the least and the demand from informed
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consumers with very low uij reacts the most. To satisfy the standard Lerner formula53 under different

market conditions, a host will thus target only highest match value visitors if competition is hard and

lowest and average match value visitors if competition is mild. This optimality condition requires

that the price elasticity of demand remains one for all ν.

To see how competition affects the elasticity of (inverse) demand, recall that p1 = a−V0/βg1 in the

semi-pooling equilibrium and p1 = a−V0 in the separating equilibrium. For simplicity, consider some

constant p0 and a that are kept the same in both equilibria. Then, if ν increases, q0 goes down, which

raises V0. In a separating equilibrium, p1 decreases at a rate −1 and, in a semi-pooling equilibrium, it

decreases at a rate −1/βg1 < −1. Also, q1 decreases in ν which further reduces ∂ (−V0/βg1)/∂ν. This

shows that the price p1 is more sensitive to aggregate conditions ν when the number of hosts is small.

Regarding a, note that, since p1 and q1 decrease rapidly with ν < 1, it becomes more attractive to

visit the same host and a thus decreases but, since p1 decreases more slowly with ν > 1, other hosts

start to look relatively more attractive and a thus increases.

5.3 Welfare

We have seen that with visitor privacy the equilibrium is inefficient and generally features too intensive

screening. To compare this result with market performance without privacy, we next consider the

problem of a planner in this case. The planner is subject to the same matching frictions as others

and cannot handle differently individuals of the same type. The idea is to look for maximum welfare

in markets with similar coordination frictions that we have so far assumed. In doing so, we thus

abstract from prices that only transfer surplus from one side of the market to the other, and instead

let the planner choose the sorting between q∗0 and q∗1 and the appropriate screening intensity a∗. We

denote all variables in the planner’s solution by an asterisk (∗).
The planner observes the type of each visitor, including the match values of informed visitors, and

thereafter determines (i) whether an informed visitor with a particular match value should approach

the same host or some other host (this is given by the cut-off a∗) and (ii) whether a visitor who

approaches some new host visits in random one of the popular hosts or unpopular hosts (this is given

by the queues q∗0 and q∗1). Without privacy, a host k of type 1(k) is counted in q1 if u11(k) ≥ a∗ and in

q0 if u11(k) < a∗. However, the problem can be simplified significantly from this because the planner

does not gain anything by directing both an informed visitor and a new consumer to the same host.

Similar to markets, the planner thus chooses q∗1 = 0.54

The problem of the planner can now be expressed as the problem of choosing the optimal cut-off

at in period t given some prior information in the market, ρ

Wt = max
at

(
1− e−q0t(at)

)
(ν − ρt−1 (1− at))

1

2
+ ρt−1

1− a2t
2

,

53max p(D −MC) implies p−MC
p = − D(p)

D′(p)
1
p = − 1

ε , which gives − 1
ε = 1 assuming MC = 0.

54Note that the planner’s problem is defined in a different way with and without privacy. In the earlier
section, the planner chooses (q0, q1, a) without knowing the consumers’ match values. The cut-off a must thus
satisfy the visitor’s incentive compatibility constraint. In the current section, the planner chooses (q0, q1, a)
knowing the consumers’ match values.
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where ρt−1 needs to satisfy a similar condition to (37) and the adding up constraint gives q0t =

(1− ρt−1 (1− at)) / (ν − ρt−1 (1− at)). The first-order condition of the planner’s problem in a steady-

state is given by
ρ∗

2

(
1− a∗ − q∗0e−q

∗
0

)
= 0. (41)

We can now compare the first-order conditions in the planner solution and in the market solution

(35) with the respective steady-state conditions. Both sets of equations pin down the same cut-off.55

Proposition 6 The equilibrium without consumer privacy is socially efficient: the social planner

sets the same cut-off as markets a∗ = â.

Corollary Market welfare is higher without consumer privacy for all considered parameter values

ν < 1/2 (for q0 > 1/2 and q1 > 1) and ν > 2.

As discussed, consumer privacy may either increase or decrease consumer surplus. This is because

some consumers are better off whereas other consumers are worse off without privacy. The total effect

hence depends on the sizes of these different consumer groups. Let us first study higher values of

ν for which hosts apply a niche market strategy with consumer privacy. If consumer privacy is

suppressed, all new consumers who pay p̂0 obtain more surplus, although there are now fewer of

them, and informed consumers with match values in the middle range u ∈ [â, a] also receive more

surplus. However, informed consumers whose match values u are closer to 1 pay higher prices and

gain less surplus. Summing these effects, we observe that the positive effects dominate when ν is

small (below ν ≈ 4) and the negative effects dominate when ν > 2 is large (above ν ≈ 4) because

the difference in the intensity of competition V̂0 − V0 is decreasing in ν. By contrast, for low values

of ν for which hosts apply a mass market strategy with consumer privacy, suppression of privacy

reduces consumer surplus by alleviating competition: V̂0 < V0 (Figure 7a).56 Figure 7b describes

these patterns.

6 Market equilibrium with second price auctions

In this section, we consider another way of learning the previous visitor’s match value, namely, auction

like booking or selling mechanisms which automatically reveal more private information than posted

prices. The exact timing of the auction setup is as follows. First, hosts post their reservation prices.

Then, guests decide which hosts to visit. After the arrival of consumers at a host, visitors observe

how many of them have come and participate in the auction.

We denote the reservation prices chosen by hosts of types 0 and 1 by r0 and r1 respectively. The

maximization problem of a host of type 0 thereby becomes

J0 = max
r0

q0e
−q0r0 +

(
1− e−q0 − q0e−q0

) 1

2
. (42)

55However, we find that a∗ > â if δ > 0 because hosts then invest excessively in customer relationships that
allow them to extract more profit from guests (Prop. 4 in the Online Appendix of this paper).

56If δ is positive such that the semi-pooling equilibrium exists for higher values of ν, for which V̂0 > V0, the
ranking of consumer surplus can be the opposite (Fig. 23 in the Online Appendix of this paper).
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(a) Comparison to semi-pooling
,

(b) Comparison to separating

Figure 7: Consumer surplus comparison with and without consumer privacy.

(a) Comparison to semi-pooling (b) Comparison to separating

Figure 8: Market welfare comparison with and without consumer privacy.

If only one visitor arrives, the host gets the reservation price r0 but, if more than one visitor contacts

him, he obtains the expected valuation 1/2 for a new host.

As before, a host of type 0 must take into account visitor choices. A guest must obtain at least

the market value V0 in order to visit the host. A visitor receives positive surplus only if she is the

only visitor and r0 < 1/2. Otherwise, the winner of the auction pays 1/2, which leaves her without

surplus. Hence, the constraint coming from a visitor side is

e−q0
(

1

2
− r0

)
= V0. (43)

After taking this constrain into account, we obtain that the host maximizes the following problem

max
q0

(
1− e−q0

)(1

2
− V0
βc0

)
.

The first-order condition of this problem is the same as with posted prices: e−q0 = 2V0 in Sections

3.2 and 3.3. As is typical for homogenous or ex ante similar-looking products, the optimal reservation
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price r0 thus equals zero.57

Somewhat similarly as with posted prices, the profit of a host of type 1 depends on the reservation

price r1, which determines whether the host attracts only his previous visitor (if uij ≥ a) or also

some new unrelated visitors. Consider first a higher r1 such that a host of type 1 only attracts his

previous visitor. Then, popular hosts maximize the following profit expression

J1 = max
r1

(1− a)r1,

subject to the optimality constraint for the informed consumer: a − r1 = V0. Again, this problem

is identical to the one with posted prices in Section 3.2. The same first-order condition applies for

optimal r1 as for optimal p1 in a separating equilibrium: 1 − 2a + V0 = 0. We can thus concludes

that r1 = p1 and r0 = 0 in this candidate equilibrium with second price auctions.

Note that the optimal cut-offs and queue lengths at both types of hosts are also the same as those

with posted prices in a separating equilibrium. Total market welfare is thus the same and surplus

division is unchanged and still given by Equations (26), (27), (28) and (29). Posted prices and second

price auctions are thus equivalent58 with and without learning and the analysis of beneficial learning

effects applies for both.

Nevertheless, the range of ν for which this equilibrium type exists may not be the same with

auctions because of different welfare and surplus division when q1 > 0. To analyze this case, suppose

next that r1 is so low that a host of type 1 attracts both his previous visitor and some new consumers.

To attract a positive q1 > 0, it must be that r1 < 1/2 and a < 1/2.59 Then, a host of type 1 maximizes

the following profit expression

J1 = max
r1

(
(1− a)e−q1 + aq1e

−q1) r1 + q1e
−q1
(

1

2
− a
)(

1

4
+
a

2

)
+

(
1− e−q1 (1− a)− ae−q1q1 − q1e−q1

(
1

2
− a
)
− e−q1a

)
1

2
(44)

The first summand in (44) denotes the revenue of the host if he is visited by only one consumer:

then the host earns r1. Instead, if the host is visited by one new consumer and his previous consumer,

and the match value of the informed consumer is less than or equal to 1/2, then the host earns this

match value, which in expectation is 1
1/2−a

∫ 1/2
a udu = 1/4 + a/2. This is captured by the second

summand in (44). Otherwise (if there are more than one visitor whose match value is either higher

or equal to 1/2), the host always earns 1/2, which gives the last summand in (44).

Thus, popular hosts maximize (44) subject to following two constraints:

e−q1 (a− r1) = V0 (45)

57See the discussion in Eeckhout and Kircher (2010).
58This equivalence is demonstrated by Kultti (1999).
59The setting with r1 < 1/2 and a ≥ 1/2 is infeasible because there exist no a ≥ 1/2 and r1 < 1/2 that

satisfy the indifference constraints of an informed and an uninformed consumer simultaneously.
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(a) Welfare (b) Consumer surplus

Figure 9: Comparison of welfare W and consumer surplus CS in the planner solution with
privacy, in auctions, and with tracking

(a) Welfare (b) Consumer surplus

Figure 10: Comparison of welfare W and consumer surplus CS in the planner solution with
privacy, in auctions, and with tracking

and

ae−q1
(

1

2
− r1

)
+ e−q1

(
1

2
− a
)(

1

2
− 1

4
− a

2

)
= V0. (46)

When q1 > 0, an informed consumer with a match value a obtains surplus a − r1 if no other

consumer comes, and obtains nothing if there is at least one uninformed consumer. This gives

constraint (45). A new consumer obtains positive surplus only if she is either the only visitor (the

first summand on the LHS in (46)) or the only uninformed visitor against an informed visitor with

a match value less than 1/2 (the second summand in the LHS of (46)).

Numerical analysis shows immediately that the basic equilibrium pattern is similar with auctions

and posted prices: if there are fewer hosts (ν < 1), a < 1/2 and q1 > 0 whereas, if there are fewer

guests (ν > 1), a > 1/2 and q1 = 0; mixing between higher r1 (and q1 = 0) and lower r1 (and q1 > 0)

occurs around ν = 1. If q1 > 0, we can show that the cut-off a < 1/2 is lower than the corresponding

cut-off in the semi-pooling equilibrium with prices and, if q1 = 0, we know already that the cut-off
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a > 1/2 is equal to the corresponding cut-off in the separating equilibrium with prices.60

The underlying intuition is similar to before: market utility V0 increases with ν and popular hosts

will thus look for less elastic demand with additional competition. When ν > 2, hosts only target

marginal informed consumers with a > 1/2 but, when ν < 1/2 is low, they also target marginal

informed consumers with a < 1/2 and some new uninformed consumers. However, as we move below

the average match value cut-off a = 1/2, which occurs at about the same point as with prices (around

ν ≈ 1), things become slightly different with auctions.

Namely, relative to posted prices, the demand from a marginal previous visitor is more responsive

to q1 (because she never wins uninformed consumers uij = 1/2) and the demand from new consumers

is less responsive to reductions in a (because they always win informed visitors with uij < 1/2). This

is so because auctions allocate local goods efficiently to the highest match value visitor whereas

posted prices allocate them randomly. To maintain constant demand elasticities, as required by the

Lerner pricing formula, a host will thus choose lower a and lower q1 for a given V0.

Interestingly, we find that relative to the equilibrium without privacy, auctions encourage hosts

to overinvest in relationships. This helps them to coordinate when they do not have visitor data.

Proposition 7 Relative to equilibrium with consumer tracking, auctions feature too low cut-offs

if ν < 1/2 (aspa < a?) and too high cut-offs if ν > 2 (aspa > a?).

This entails that aggregate surplus remains smaller with auctions than with tracking (Figure 9a).

Regarding consumer welfare, however, tracking might sometimes still be less attractive (Figure 9b).61

7 Concluding discussion

We consider learning and visitor tracking in a dynamic, directed search market with horizontally

differentiated experience goods and taste variation. All equilibria with learning feature implicit con-

sumer relationships between a host and his previous visitor, which alleviates coordination frictions.

This looks like habit formation but does not rely on stable tastes. Our model helps in understanding

how (i) public price information, (ii) private taste information and (iii) the revelation of taste infor-

mation to concerned hosts affect market welfare. It establishes the importance of privately observed

information flows. Tracking and targeting technologies allow hosts to stay tuned into their guests’

future plans. This can intensify competition and reduce prices in markets with some aggregate excess

supply.

We discuss our results in the context of (i) mobility of tourists and developments in the online

booking industry, and (i) mobility of urban labor and competition between metropolitan economies.

Gyourko et al. (2013) have data on so called superstar cities. They find that the main drivers of

price dynamics in urban areas are (i) the fixed short run capacity of housing and services and (ii) the

demand for the unique local living environment. These are also the main ingredients in our steady

state setup.62 Because the capacity of a given place cannot be expanded instantly, prices must absorb

60The details are in the Appendix.
61Initially, we presumed they might work similarly. Both are ways to reveal private information to hosts.
62An extensive literature on spatial sorting analyzes the effects of observable and unobservable skills on
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the changes in demand for a particular location.63 Beyond travel, our results extend to consumer

markets with logistics frictions where people do not travel to local products but local products travel

to people.

Our findings contribute to the ongoing discussion about the need for additional regulation on

online behavioral advertizing, that is, the profiling and targeting of consumers based on their prefer-

ences as inferred from their internet browsing or purchase history.64 We find that the relation between

consumer privacy and consumer surplus is not straightforward. In particular, collected private data

may result in some additional consumer surplus transfer from consumers to hosts. However, in some

cases (it depends on market tightness), an increase in total surplus due to lower search frictions is

shared between both sides of the market. Applied to a single large market like the US or the EU, this

entails that universal rulings on consumer tacking can have unforeseen general equilibrium effects

on the rate of matching consumers to suitable products and the aggregate price level. Specifically,

we demonstrate in this paper that looser privacy regulation allows hosts to respond more rapidly

to demand changes, which could strengthen competition (for new consumers) and put downward

pressure on prices (for all consumers). As conservative policy advice, this suggests that it may not

be desirable to go all the way in the protection of consumer privacy for online markets.

The problems of privacy suppression in online markets have been extensively documented (Ac-

quisti et al., 2016). The key issues relate to firms’ increased ability to engage in price discrimination

with efficient computation facilities. It is well known that, in a text book setup, price discrimination

is harmful because it boosts firms’ profits at the expense of consumers. Our paper shows a notable

exception to this rule. In our model, privacy suppression results in perfect price discrimination. How-

ever, although this equalizes the surplus across different consumers, it does not necessarily impair

the average consumer’s welfare. That is, we describe a mechanism that allows consumers also profit

from the improved matching efficiency associated with price discrimination.

Our paper contributes additionally to the understanding of efficiency in mobility problems, which

is still deficient. For instance, the concept of matching efficiency differs in stochastic frontier analy-

sis65, and in directed search models that generate an endogenous matching function (Acemoglu and

Shimer (1999)). In discussing the relative merits of matching models, Stevens (2007) points out

that the problem with the former approach is that is has only weak micro-foundations whereas the

location choices. For references, see especially Eeckhout et al. (2014). Our contribution is to highlight the role
of idiosyncratic taste differences on matching efficiency and mobility decisions. Also, the focus of our paper is
more on short-term visits on business or vacation than on long-term choices of permanent residence on which
the spatial sorting literature concentrates.

63Our model can be compared to a standard Roy model where earnings prospects in a country are log(w) =
α + rs + ε, where w gives the wage, r denotes returns to observable skills s and ε captures the effects of
unobserved skills. Roy models have been applied to study selection of immigrants based on observable and
unobservable characteristics (e.g., Borjas et al. (2015)). Our setup features negative selection for match values:
because private tastes direct mobility, consumers with lowest match values move away.

64In the US, the regulation is based on the Do Not Track Me Online Act (2011) and the Kerry/McCain
Commercial Privacy Bill of Rights Act (2011) and the self-regulation of the Network Advertising Alliance
(NAA). In the EU, the legislative framework for the single market is provided by the ePrivacy Directive (2009),
possibly later modified by the recent European Commission (EC) Proposal for a Regulation on Privacy and
Electronic Communications (2017). See Dwoskin (2015), Kaye (2015), and Pociask (2016).

65See Destefanis and Fonseca (2007), Fahr and Sunde (2006), Ibourk et al. (2004), and Ilmakunnas and
Pesola (2003) (2003).
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problem with the latter approach is that it seems to lead to unreasonably high coordination frictions.

We attempt to circumvent both problems here. This is done by introducing learning dynamics into

an otherwise typical directed search framework. Trade history endows a party with a piece of prior

information about the other side, after which the previously similar-looking counter-parties no longer

look the same. This makes it easier to match the right people with the right places and, in our big

data extension where both sides view the same information, avoids the costly delay of investing in

uninterested trading partners. Additional information may also have beneficial effects on market

competition. In the future, we would like to study this in a setup with network effects.
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Appendix

Derivation of consumers’ trading probabilities. We derive these probabilities by following the

methodology of Shi (2013).

The probability that a consumer of type 0 trades with a host of type 0 is g0 (1), where

g0 (x) =

(1−ρ)Ng−1∑
i=0

ρNg∑
j=0

Ci(1−ρ)Ng−1 (1− θ00)(1−ρ)N
g−1−i (xθ00)

i

i+ j + 1
×
[
CjρNg (1− aθ10)ρN

g−j (xaθ10)
j
]

Then,

∂xg (x)

∂x
=

(1−ρ)Ng−1∑
i=0

Ci(1−ρ)Ng−1 (1− θ00)(1−ρ)N
g−1−i (xθ00)

i ×
ρNg∑
j=0

CjρNg (1− aθ10)ρN
g−j (xaθ10)

j

= (1− θ00 + xθ00)
(1−ρ)Ng−1 (1− aθ10 + xaθ10)

ρNg

Because xg0 (x) and g0 (x) are bounded for all x ∈ (0, 1), they are also integrable there. Then

xg0 (x) =

∫ x

0
(1− (1− y) θ00)

(1−ρ)Ng−1 (1− (1− y) aθ10)
ρNg

dy

By using the definition of queue lengths we obtain

xg0 (x) =

∫ x

0

(
1− (1− y)

q00
(1− ρ)Ng

)(1−ρ)Ng−1(
1− (1− y)

q10
ρNg

)ρNg

dy

Finally, we take the limit Ng →∞ and obtain

xg0 (x) =

∫ x

0
e−q00(1−y)−q10(1−y)dy =

∫ x

0
e−q0(1−y)dy =

eq0(x−1) − e−q0
q0

After we set x = 1, we obtain the probability of trade for a consumer with a host of type 0 that

equals (1− e−q0) /q0.

Now we derive the probability of a consumer of type 0 to trade with a host of type 1. We denote

this probability by g1 (1). This probability is

g1 (x) =

(1−ρ)Ng−1∑
i=0

ρNg−1∑
j=0

(1− a)xCi(1−ρ)Ng−1 (1− θ01)(1−ρ)N
g−1−i (xθ01)

i

i+ j + 2
×
[
CjρNg−1 (1− aθ10)ρN

g−j (xaθ10)
j
]

+

(1−ρ)Ng−1∑
i=0

ρNg−1∑
j=0

aCi(1−ρ)Ng−1 (1− θ10)(1−ρ)N
g−1−i (xθ10)

i

i+ j + 1
×
[
CjρNg−1 (1− aθ10)ρN

g−j (xaθ10)
j
]
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We take the derivative of xg (x) with respect to x.

∂xg1 (x)

∂x
= (1− a)x

(1−ρ)Ng−1∑
i=0

Ci(1−ρ)Ng−1 (1− θ10)(1−ρ)N
g−1−i (xθ10)

i

×
ρNg−1∑
j=0

CjρNg−1 (1− aθ10)ρN
g−j (xaθ10)

j


+ a

(1−ρ)Ng−1∑
i=0

Ci(1−ρ)Ng−1 (1− θ10)(1−ρ)N
g−1−i (xθ10)

i

×
ρNg−1∑
j=0

CjρNg−1 (1− aθ10)ρN
g−j (xaθ10)

j


= (1− a)x (1− θ10 (1− x))N

g(1−ρ)−1 (1− aθ10 (1− x))ρN
g−1

+ a (1− θ10 (1− x))N
g(1−ρ)−1 (1− aθ10 (1− x))ρN

g−1

By following the same substitution of probabilities with the queue lengths we obtain

xg1 (x) =

∫ x

0
(a+ y (1− a))

(
1− (1− y)

q10
(1− ρ)Ng

)(1−ρ)Ng−1
×
(

1− (1− y)
q10

ρNg − 1

)ρNg−1
dy.

After taking the limit Ng →∞ and using q1, we obtain

xg1 (x) =

∫ x

0
(a+ y (1− a)) e−q1(1−y)dy

= a
−e−q1 + e−q1(1−x)

q1
+ (1− a)

e−q1 + e−q1(1−x) (q1x− 1)

q21

and

g1 (1) = a
1− e−q1

q1
+ (1− a)

e−q1 − 1 + q1
q21

=
1− e−q1

q1
+ (1− a)

e−q1 (1 + q1)− 1

q21
.

The probability for an informed consumer to trade with her host equals
(
1− e−q1

)
/q1.

Proof of Proposition 1

Assuming that q1 = 0 (6) and (9), results in

q0 =
Ng (1− ρ) +Ngρa

Nh − ρNg
=

1− ρ (1− a)

ν − ρ
,

ρ =
1− νq0

1− a− q0
, (47)
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and

ρNg =
(
1− e−q0

) (
Nh − ρNg

)
+ ρNg (1− a) ,

ρ = ν
1− e−q0

1− e−q0 + a
. (48)

By joining (47) and (48), we obtain

ρ =
1− νq0

1− a− q0
= ν

1− e−q0
1− e−q0 + a

,

a =
1

1 + ξ
, where ξ =

2− e−q0 − νq0
(ν − 1)(1− e−q0)

. (49)

Together with the first order conditions (22) and (23), this implies that the following two condi-

tions, which define a as a function of q0 and the parameter ν, must hold in a separating equilibrium

with consumer privacy:

a =
2 + e−q0

4
, (50)

a =
1

1 + ξ
, (51)

where

ξ =
2− e−q0 − νq0

(ν − 1)(1− e−q0)
.

We split the further proof of the proposition into three parts. In the first part we prove that there

is a unique fixed point for the system of equations (51) and (50). In the second part, we specify the

values of ν that make large downwards deviations of a host of type 1 unprofitable. In the third part,

we discuss about the shape of J1 and demonstrate that the payoff function is well-behaved.

Part I. Proving the existence of a fixed-point. We denote the the left-hand-side (LHS) of (50) by

a1. We observe that the RHS of the equation is decreasing in q0. a1 equals 3/4 if q0 = 0 and

limq0→∞ a1 = 1/2. Thus the solution a is in between 1/2 and 3/4.

Next, we denote the LHS of (51) by a2. The denominator of a2 equals zero if q0 = qa =(
1 + ν + νW

(
−e−1−1/ν

))
/ν, where W is a Lambert-W function. The point qa is where a2(q0) is

discontinuous.

The derivative of the RHS of the equation with respect to q0 has the same sign as

− (ν − 1)
(
1− e−q0

)2 ∂ξ

∂q0
= −

(
1− e−q0

) (
e−q0 − ν

)
+ e−q0

(
2− e−q0 − νq0

)
= e−q0 − ν

(
e−q0 − 1 + e−q0q0

)
. (52)

Because e−q0 − 1 + e−q0q0 < 0, we conclude that (52) is positive and a2 is increasing in q0.
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We observe that limq0→0 a2 = 0, and limq0→q0 a2 = ∞. Thus, it crosses with a1 once, which

guarantees the uniqueness of the solution.

Part II. Ruling out large deviations. Suppose that a host of type 1 deviates to a lower price pd1 to

attract uninformed consumers for one period. After the deviation, the host returns to the equilibrium

path and it is common knowledge. In this case, the informed related consumer of the deviant trades

with the host with probability βcd, and the consumer is indifferent if u = ad that is given by

βgd

(
ad − pd1

)
= V0.

Since an uninformed consumer visits the deviant and trades with probability −αgd
(
1− ad

)
+ βgd , she

must be indifferent between visiting the host and any other seller, which gives

pd1 =
1

2
− V0
βgd − (1− ad)αgd

.

By merging the last two equations we obtain

βgd

(
ad − 1

2
+

V0
βgd − (1− ad)αgd

)
= V0, (53)

which requires ad < 1/2.

The profit of the deviant is

Jd1 =
(

1− ade−qd
)
pd1 =

(
1− ade−qd

)(1

2
− V0
βgd − α

g
d (1− ad)

)
.

We use the first-order condition of a host of type 0 and obtain that V0 = e−q0/2. Thus, we have

Jd1 =
(

1− ade−qd
) 1

2

(
1− e−q0

βgd − α
g
d (1− ad)

)
.

The profit of a host of type 1 in equilibrium equals

J1 = (1− a) (a− V0) = (1− a) (1− a) ,

where the second equality has been obtained by using the first-order condition of a host of type 1.

Then the deviation is not profitable if

(
1− ade−qd

) 1

2

(
1− e−q0

βgd − α
g
d (1− ad)

)
− (1− a)2 < 0. (54)
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We replace a with (2 + e−q0) /4 and take the derivative with respect to q0. This derivative is

(
1− ade−qd

) 1

2

e−q0

βgd − α
g
d (1− ad)

− 2

(
1− 2 + e−q0

4

)
e−q0

4
=

e−q0

2

(
1− ade−qd

βgd − α
g
d (1− ad)

− 1

2
+
e−q0

4

)
.

We observe that 1−ade−qd
βgd−α

g
d(1−ad)

is decreasing in ad and 1−e−qd/2
βgd−α

g
d/2

is increasing in qd. Therefore,

1− ade−qd
βgd − α

g
d (1− ad)

− 1

2
+
e−q0

4
≥ lim

qd→0

1− e−qd/2
βgd − α

g
d/2
− 1

2
+
e−q0

4
=

2

3
− 1

2
+
e−q0

4
> 0.

Thus, (54) is less than

(
1− ade−qd

) 1

2

(
1− e−qb

αgd (1− ad) + βgd

)
−
(

1

2
− e−qb

4

)2

, (55)

where qb =

(
7− ν + 3νW

(
e
1
3−

7
3ν (ν−4)
3ν

))
/ (3ν) is obtained by setting a = 3/4 in (51).

The probability of trade αd
(
1− ad

)
+ βcd is smaller if qd is higher, Thus (55) is less than after

taking limqd→0

(
αgd
(
1− ad

)
+ βgd

)
=
(
1 + ad

)
/2, which gives

(
1− ade−qd

) 1

2

(
1− 2e−qb

1 + ad

)
−
(

1

2
− e−qb

4

)2

<
(

1− ade−qb
) 1

2

(
1− 2e−qb

1 + ad

)
−
(

1

2
− e−qb

4

)2

(56)

The derivative of the RHS of (56) with respect to ad is

e−qb

2 (1 + ad)
2

(
2
(
e−qb + 1

)
−
(

1 + ad
)2)

,

and the RHS of (56) attains its maximum when

ad =
√

2 (1 + e−qb)− 1.

We plug this value of ad in the RHS of (56) and obtain

15e−2qb

16
+

3e−qb

4
−
√

2e−2qb√
e−qb + 1

−
√

2e−qb√
e−qb + 1

+
1

4
(57)

The expression (57) is negative if qb < 0.7. This implies that ν must be greater than than 2.

Part III. The shape of J1. We take a host of type 1 that we label host k. Further, we take a

set of pk and plot J1k for fixed values of V0. The result is given in Figure 11. The payoff function

has two peaks. The right peak is at a symmetric separating equilibrium pk = p1. If pk sufficiently

decreases, then we obtain a kink, which is followed by the left peak. At the left peak the deviation

profit of host k is maximized and qk = qd > 0. While running numerical simulations, we obtained

that if V0 > 0.148, then the right peak is higher. Thus, no large downward deviation is profitable.
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However, if V0 is less than this value, then host k prefers to deviate to a smaller price. The value

V0 = 0.148 corresponds to a unique ν = 1.2798. Hence, if ν > 1.2798 the equilibrium in the market

is the described separating equilibrium.

Proof that learning improves welfare in the separating equilibrium under ν > 2. In

the separating equilibrium, by (50) and (51) there is a one-to-one relationship between ν and q0

ν =
1− e−q0 + a

(1− e−q0) (1− a− q0) + q0 (1− e−q0 + a)

=
1− e−q0 + a

(1− e−q0) (1− a) + q0a
=

1− e−q0 + 2+e−q0
4

(1− e−q0)
(

1− 2+e−q0
4

)
+ q0

2+e−q0
4

=
3 (2− e−q0)

(1− e−q0) (2− e−q0) + q0 (2 + e−q0)

We plug this value of ν in (32) and set a = (2 + e−q0) /4. As a result, (32) becomes a function of q0.

The obtained function is positive for any q0 < 0.7

Proof of Proposition 2 We distinguish three parts in the proof. In the first part, we prove the

existence of a unique fixed point. In the second part, we rule out large deviations of hosts of type 1.

In the third part, we discuss the concavity of the payoff of a host of type 1.

Part I. Proving the existence of a fixed-point. In the proof, we focus on q1 < q0. The indifference

condition (21) can be rewritten as

a2αg1 − a
(

3αg1
2
− βg1 +

V0α
g
1

βg1

)
+
V0α

g
1

βg1
+

1

2
αg1 −

βg1
2

= 0. (58)

The LHS of (58) is a convex second-degree polynomial of a. If a = 0, then the LHS of the

equation is negative because

V0α
g
1

βg1
− 1

2

(
e−q1 (q1 + 1)− 1 + q1 − e−q1q1

q21

)
=
V0α

g
1

βg1
− 1

2

(
e−q1 − 1 + q1

q21

)
<

e−q1 (1− e−q1 (1 + q1))

2 (1− e−q1) q1
− 1

2

(
e−q1 − 1 + q1

q21

)
< 0.

Thus, it is the larger one of the two roots of the second order equation that is of our interest.

The root lies below 1/2 because

αg1
4
− 3αg1

4
+
βg1
2
− V0α

g
1

2βg1
+
V0α

g
1

βg1
+

1

2
αg1 −

βg1
2

=
V0α

g
1

2βg1
> 0.

More specifically, this root equals

a =

3
2α

g
1 − β

g
1 +

V0α
g
1

βg1
+
√
D

2αg1
=

3αg1β
g
1 − 2 (βg1)

2
+ 2V0α

g
1 + 2βg1

√
D

4αg1β
g
1

(59)

=
3

4
− βg1

2αg1
+

V0
2βg1

+

√
D

2αg1
,
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where the discriminant is given by

D =

(
−3αg1

2
+ βg1 −

V0α
g
1

βg1

)2

+ 4αg1

(
−V0α

g
1

βg1
− 1

2
αg1 +

βg1
2

)
.

We also observe that the functions βg1/α
g
1 and 1/βg1 are continuous in q1. Hence, we continue by

studying the properties of D/
(

4 (αg1)
2
)

, which equals

1

4 (αg1)
2

(
−3αg1

2
+ βg1 −

V0α
g
1

βg1

)2

+
4αg1

4 (αg1)
2

(
−V0α

g
1

βg1
− 1

2
αg1 +

βg1
2

)
= (60)

1

4

(
−3

2
+
βg1
αg1
− V0
βg1

)2

+

(
−V0
βg1
− 1

2
+

βg1
2αg1

)
Clearly, the expression (60) is continuous in q1. In addition, the derivative of (60) with respect

to V0 is negative:

− 1

2βg1

(
βg1
αg1

+
1

2
− V0
βg1

)
< − 1

2βg1

(
(1− e−q1) q1

1− e−q1 − e−q1q1
+

1

2
− e−q1q1

2 (1− e−q1)

)
< 0.

We set V0/β
g
1 = e−q1/ (2βg1) in (60), and obtain a positive expression

1

4

(
−3

2
+
βg1
αg1
− e−q1

2βg1

)2

+

(
−e
−q1

2βg1
− 1

2
+

βg1
2αg1

)
> 0.

As a result, we conclude that (59) is a continuous function in q1. In what follows, we study the

behavior of the implicit relationship q10 (q1) that is obtained by merging the first-order conditions of

both host types and the indifference condition (58). We analyze how q10 (q1) behaves in the q1q0-plane,

where q1 is hence on the horizontal axis. Particularly, we focus on the area above 45−degree line

where q0 > q1.

The derivative ∂a/∂q1 exists for all q1 < q0. Thus, there is a continuous implicit relationship

q10 (q1) that is defined by (30). To proceed, we next take the limit of the LHS of (30) as q1 → 0,

which gives us

14V 2
0 − 37V0 + 9 + (3− 17V0)

√
4V 2

0 − 20V0 + 9

24
√

4V 2
0 − 20V0 + 9

= 0. (61)

The equation (61) has a unique fixed point V0 = 0.218731, which gives q0 = 0.826764.

On the other hand, if we set q1 = q0, we obtain a negative expression that approaches zero as

q0 approaches infinity. Thus, the implicit relationship q10 (q1) never crosses 45-degree line although it

approaches it asymptotically as q0 →∞.

Next, we study the steady state conditions

(1− e−q0) (ν + q1ν − 1)

e−q1 (1− νq0) + ν (1− e−q0)
− a = 0, (62)

where a is given by (59). This defines an implicit relationship q20 (q1) , which is not continuous. In

47



particular, this relation is not defined for

e−q1 =
ν (1− e−q0)

1− νq0
. (63)

The RHS of (63) is increasing in q0. After we set q0 = q1 and move the terms on the RHS to the

LHS, we obtain the following inequality

e−q1 − ν (1− e−q1)

1− νq1
> e−q1 − lim

ν→∞

ν (1− e−q1)

1− νq1

= e−q1 +
1− e−q1

q1
> 0.

As a result, the implicit relationship q20 (q1) is continuous if q0 > q1.

Thus, we again set q1 = 0 and obtain that the LHS of (62) equals

(1− e−q0) (ν − 1)

1− νq0 + ν (1− e−q0)
− 1

4

(√
4V 2

0 − 20V0 + 9 + 2V0 − 1

)
= 0. (64)

We solve (62) for ν

ν =
ae−q1 + 1− e−q0

(1− e−q0) (1 + q1 − a) + ae−q1q0
. (65)

Then we plug the value of a from (59), set V0 = e−q0/2 and take q1 → 0. This gives ν as a

decreasing function of q0. When q0 approaches 0.826764, the value of ν is less than 1.447.

and set q1 = q0 to obtain

ν =
ae−q0 + 1− e−q0

(1− e−q0) (1 + q0 − a) + ae−q0q0
. (66)

The LHS of (66) is a decreasing function in q0 and there is a value of q0 that solves (66) for any

ν < 1.447. As a result, the implicit relationship q20 (q1), necessarily crosses 45-degree line and thus

the other implicit relationship q10 (q1). Consequently, we conclude that the fixed point exists.

Part II. Ruling out large upward deviations. Suppose that a host of type 1 deviates to a very high

price such that no uninformed consumer visits him, and the informed related consumer is indifferent

between visiting the deviant and going to any other host. Then the deviant host chooses ad to

maximize (
1− ad

)(
ad − V0

)
.

Now, the profit-maximizing ad equals (1 + V0) /2 and the deviation profit is given by

Jd =

(
1− 1 + V0

2

)(
1 + V0

2
− V0

)
=

(1− V0)2

4
.

The deviation is therefore unprofitable if Jd < J1. The equilibrium profits are instead

J1 =
(
1− ae−q1

)(
a− V0

βg1

)
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We next replace the cut-off a with (59) and take the derivative of J1 with respect to V0

∂a

∂V0

(
1− e−q1

(
2a− V0

βg1

))
− 1− ae−q1

βg1
,

where

∂a

∂V0
=

1

2βg1

1−

(
αg1
2 + βg1 −

V0α
g
1

βg1

)
√(
−3αg1

2 + βg1 −
V0α

g
1

βg1

)2
+ 4αg1

(
−V0α

g
1

βg1
− 1

2α
g
1 +

βg1
2

)
 .

We then observe that

(
αg1
2

+ βg1 −
V0α

g
1

βg1

)2

−
(
−3αg1

2
+ βg1 −

V0α1

βg1

)2

− 4αg1

(
−V0α

g
1

βg1
− 1

2
α1 +

βg1
2

)
= 2α1β

g
1 > 0

Therefore, cut-off a is decreasing in V0, and profit J1 is decreasing in V0. The derivative of J1 − Jd

with respect to V0 is given by

∂a

∂V0

(
1− e−q1

(
2a− V0

βg1

))
− 1− ae−q1

βg1
+

1− V0
2

.

We note that a ≤ 1/2 and find that −1−ae−q1
βg1

+ 1−V0
2 is decreasing in V0. By setting V0 = 0 in

−1−ae−q1
βg1

+ 1−V0
2 , we obtain a negative function of q1

−
1− a|V0=0 e

−q1

βg1
+

1

2
< 0.

Hence, either the difference J1−Jd is decreasing in V0 or is increasing in q0. In any case, the difference

is always larger than what it is at q0 = q1. Once we make the substitution q0 = q1, we obtain J1−Jd

as a function of q1. This function is positive if q1 ≥ 1.45103.

When does this hold? If we set q1 = 1.455 in (30), we get the corresponding value of q0 = 2.16922.

Also, if we set q1 = 1.46 in (65) we find that the RHS of the equation is decreasing in q0 ≥ 1.455. To

be sure about the existence of equilibrium, we take q0 > 2.16922 in (65) which gives us ν ≤ 0.499222.

Part III. The shape of J1. We again take a host k that is of type 1 and plot his payoff for any pk

for different V0 (Figure 11). The payoff has two peaks. The left peak corresponds to the symmetric

semi-pooling equilibrium (pk = p1 and qk = q1 > 0). If the host increases pk, then qk decreases until

it becomes equal zero (this gives a kink in Jk). If the host increases his price further, then only an

informed related consumer of the seller buys, provided her match value is sufficiently high. The right

peak corresponds to the deviation profit of host k. If V0 is small, then the left peak is higher, which

renders a deviation to a very high price unprofitable. However, if V0 > 0.148, then the right peak is

higher, which makes the semi-pooling equilibrium unsustainable. Hence, if V0 < 0.148 or ν < 0.938

the equilibrium in the market is the specified semi-pooling equilibrium.
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Figure 11: The payoff of host k

Proof of Proposition 3.

Consider first higher values of ν such that the equilibrium is separating. There the cut-off a is

more than 1/2. By using the fist-order condition of the social planner (see the problem of the social

planner in Part B in the Online appendix) we obtain, that the planner would set66

ap =
e−q

p
0

2
,

Because e−q
p
0 ≤ 1, ap ≤ 1/2. Hence, the equilibrium is inefficient.

Next, consider small values of ν such that the equilibrium is semi-pooling. In this case, the social

planner picks such values of q0 and q1 that the probabilities of trade of an uninformed consumer are

the same across the types of hosts, i.e.

βg,p1 − α
g,p
1 (1− ap) = βg,p0 .

Meanwhile in the separating equilibrium we have

βg1 − α
g
1 (1− a)

(
1

2
− p1

)
= βg0

(
1

2
− p0

)
Because p1 6= p0, the probabilities of trade are not equal, which means the the planner would

prefer different queue lengths. As a result, we conclude that the equilibrium is inefficient in this case

too.

Proof of Proposition 4 To prove the existence of the equilibrium, we must show that there

exists q̂0 > 0 such that it solves the first-order condition of a host of type 0, given the value of â.

The equation (38) defines the relationship between â and q̂0. We denote this relationship by â1.

The equation (35) gives the second relationship between â and q̂0. We denote this relationship by

â2. In what follows we show that â1 and â2 cross in the plane q̂0× â, where q̂0 ∈ R+ and â ∈ [0, 1/2].

66The superscript p shows that the variable is coming from the problem of the planner.
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The derivative of â1 with respect to q̂0 is

∂â1
∂q̂0

=
(1− ν) e−q̂0

(
q̂0ν − ν

(
1− e−q̂0

)
− e−q̂0

)
− (1− ν)

(
1− e−q̂0

) (
ν − νe−q̂0 + e−q̂0

)
[q̂0ν − ν (1− e−q̂0)− e−q̂0 ]

2

=
(1− ν)

(
ν
(
q̂0e
−q̂0 − 1

)
+ e−q̂0 (ν − 1)

)
[q̂0ν − ν (1− e−q̂0)− e−q̂0 ]

2 .

Take ν > 1. Then, 1 − ν < 0 and the expression in the second parentheses of the numerator is

decreasing in ν. If ν = 1, the latter expression is negative. A a result, â1 is increasing in q̂0 when

ν > 1. If q̂0 approaches zero, then â1 equals zero. The highest value of q̂0 is such that the denominator

of â1 equals zero, which is 1 +W
(
1−ν
eν

)
. When q̂0 approaches this value, â1 approaches infinity.

If ν < 1, then 1− ν > 0 and the second expression in the numerator is negative (it is decreasing

in ν, and it is negative when ν = 0). Thus, the whole numerator is negative. As a result â1 is

decreasing in q̂0. When q̂0 approaches 1 + W
(
1−ν
eν

)
from the right, then â1 approaches infinity. If

q̂0 < 1 +W
(
1−ν
eν

)
, then â1 < 0. Also, limq̂0→∞ â1 = 0.

If ν > 1, then 1 +W
(
1−ν
eν

)
< 1. Thus, we consider q̂0 < 1 and obtain that the relationship â2 is

decreasing in q̂0. When q̂0 = 0, then â2 = 1/2. If q̂0 approaches one, then â2 =
(
1− e−1

)
/2 < 1/2.

As a result, we conclude that if ν > 1, then there is a unique crossing point of â1 and â2.

If ν < 1, then 1 + W
(
1−ν
eν

)
> 1. Hence, we consider q̂0 > 1 and obtain that the relationship â2

is increasing in q̂0. We have that limq̂0→∞ â2 = 1/2. As a result, we obtain that there is a unique

crossing point of â1 and â2 in this instance.

If ν → 1, then 1 +W
(
1−ν
eν

)
= 1, q̂0 = 1 and â =

(
1− e−1

)
/2.

Proof of Proposition 5. The comparison of prices of type 0 hosts. Take high values of ν for which

the equilibrium with consumer privacy is separating. We take a steady state with a, ρ, q0 and q1 and

make the following unexpected change: we force all informed consumers to visit other hosts when

their match values with familiar products are less than a, hosts of type 1 must charge p0 if their

informed visitors draw u < a, and hosts of type 1 whose informed related consumers draw u ≥ a

trade with their related guests.

After this change, the number of consumers who visit hosts charging p0 does not change. However,

the number of hosts charging p0 increases by ρa. Thus, the queue length at a host charging p0

decreases to (1− ρ (1− a)) / (ν − ρ+ ρa).67

The number of consumers who trade changes by

ρ (1− a) + (1− ρ (1− a))
1− e−

1−ρ(1−a)
ν−ρ(1−a)

1−ρ(1−a)
ν−ρ(1−a)

− (1− ρ (1− a))
1− e−

1−ρ(1−a)
ν−ρ

1−ρ(1−a)
ν−ρ

− ρ (1− a) =

(1− ρ(1− a))

1− e−
1−ρ(1−a)
ν−ρ(1−a)

1−ρ(1−a)
ν−ρ(1−a)

− 1− e−
1−ρ(1−a)
ν−ρ

1−ρ(1−a)
ν−ρ

 .

The probability of trade for a visitor who contacts a host charging p0 is decreasing in q0. As

67Because ν > 1, the queue length decreases after adding more hosts. If ν < 1, then the shift of some hosts
of type 1 would make the queues longer.
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a result, we conclude that there are more consumers who trade after this unexpected change. In a

steady state without consumer privacy, a < â. Therefore, there are fewer informed consumers who

visit hosts charging p0 As a result there is even more trade than after the unexpected change and

ρ̂ > ρ.

The ratio (1− ρ (1− a)) / (ν − ρ+ ρa) is decreasing in ρ(1− a). Because a > 1/2 > â and ρ < ρ̂,

we obtain that

q0 >
1− ρ (1− a)

ν − ρ (1− a)
>

1− ρ̂ (1− â)

ν − ρ̂+ ρ̂â
= q̂0.

The result q0 > q̂0 implies tougher price competition which gives p0 > p̂0 and V0 < V̂0.

Further, we take the steady state in a semi-pooling equilibrium and small ν and make the same un-

expected change. The number of visitors per host charging p0 increases to (1− ρ (1− a)) / (ν − ρ (1− a)).

Because ν < 1, this ratio is increasing in ρ and it is decreasing in a.

There are more hosts that trade after this change because the hosts of type 1 whose informed

consumers draw u ≥ a trade with probability one as before. The rest of the hosts of type 1 and the

hosts of type 0 trade more often because the queues at them become longer.

We have that â < a. Therefore, there is even more trade without consumer privacy and ρ̂ > ρ.

Therefore, we have that

q0 <
1− ρ (1− a)

ν − ρ (1− a)
<

1− ρ̂ (1− â)

ν − ρ̂ (1− â)
= q̂0.

Longer queues imply relaxed competition, which gives p0 < p̂0 and V0 > V̂0.

The comparison of prices of type 1 hosts and large ν. We take large values of ν such that the

equilibrium with consumer privacy is separating. We use the fact that V0 = e−q0/2 and obtain

p1 = a− e−q0

2
=

2− e−q0
4

.

Similarly, we obtain

E [p̂1] =
1 + â− e−q̂0

2
=

3− q̂0e−q̂0 − 2e−q̂0

4
.

We observe that p1 is increasing in q0 and E[p̂1] is increasing in q̂0. As a result, the difference between

p1 and E[p̂1] is more than after setting the smallest q0 and the greatest q̂0.

From the proof of Proposition 1 we know that a ≥ 1/2, which implies that

q0 > qz =

(
3− ν + νW

(
e1−

3
ν (ν−2)
ν

))
/ν, which has been obtained by setting a = 1/2 in (51).

Additionally, we know that â ≤ 1/2, which implies that q̂0 ≥ q̂z =

(
2− ν + νW

(
e1−

2
ν (ν−1)
ν

))
/ν.

The latter value has been obtained by setting a = 1/2 in (38).

We plot −1 − e−qz + q̂ze
−q̂z + 2e−q̂z for ν > 1 and obtain that the difference is positive for

ν > 11/10.

The comparison of prices of type 1 hosts and small ν. Next, we take small values of ν such that

the equilibrium with consumer privacy is semi-pooling.
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Because a > â and V̂0 < V0, we obtain that

E [p̂1]− p1 =
1 + â

2
− V̂0 − a+

V0
βg1
≥

≥ 1

2
+
V̂0
βg1

(1− βg1)− a.

From the proof of Proposition 2 Equation (59) we have that

∂a

∂V0
=

1

2βg1

1−
αg1 + 2βg1 − 2

V0α
g
1

βg1

2
√
D

 < 0,

where the inequality has been obtained because(
αg1 + 2βg1 − 2

V0α
g
1

βg1

)2

− 4D = 8αg1β
g
1 ≥ 0.

As a result,

1

2
+
V̂0
βg1

(1− βg1)− a ≥

1

2
+
V̂0
βg1

(1− βg1)− 3

4
+

βg1
2αg1
− V̂0

2βg1
−

√
D|V0=V̂0
2αg1

≥1

2
+
V̂0
βg1

(1− βg1)− 3

4
+

βg1
2αg1
− V̂0

2βg1
−

√
D|V0=V̂0
2αg1


V̂0=0

=

βg1
2αg1
− 1

4
−

√(
βg1 −

3αg1
2

)2
+ 2αg1 (βg1 − α

g
1)

2αg1
=

−

(√
(e−q1 − e−q1q1 − 1 + 2q1)

2 − 2q1 + q1e
−q1 + 1− e−q1

)
4 (1− e−q1 (1 + q1))

(67)

We take q1 > 1 because the semi-pooling equilibrium with consumer privacy exists for q1 > 1.45.

Then we have that e−q1 − e−q1q1 − 1 + 2q1 > 0. Therefore the last line of (67) can be rewritten as

−(e−q1 − e−q1q1 − 1 + 2q1 − 2q1 + q1e
−q1 + 1− e−q1)

4 (1− e−q1 (1 + q1))
= 0.

Thus, we conclude that the first line of (67) is positive, which gives E [p̂1] > p1.

The proof that a > â with a semi-pooling equilibrium The indifference conditions imply that

a satisfies

βg1

(
a− 1

2
+

V0
βg1 − αc1 (1− a)

)
= V0.
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The fact that V̂0 < V0 implies that

a >
1

2
+
V̂0
βg1
− V̂0
βg1 − αc1 (1− a)

= â+ V̂0q̂0 −
V̂0α

c
1 (1− a)

βg1 (βg1 − αc1 (1− a))
, (68)

where the equality follows from (35). The fraction
V̂0αc1(1−a)

βg1(βg1−αc1(1−a))
is decreasing in a. Thus,

V̂0q̂0 −
V̂0α

g
1 (1− a)

βg1 (βg1 − α
g
1 (1− a))

> V̂0q̂0 −
V̂0α

g
1/2

βg1 (βg1 − α
g
1/2)

> V̂0

(
q1 −

αg1/2

βg1 (βg1 − α
g
1/2)

)
> 0. (69)

and a > â.

The analysis for second price auctions

From the constraint (45), we obtain r1 = a − V0/e−q1 . We plug this value into (46) and obtain

equation

ae−q1
(

1

2
− a+

V0
e−q1

)
+

1

2
e−q1

(
1

2
− a
)2

= V0,

which can be rewritten as

−1

2
a2e−q1 + V0a+

1

8
e−q1 − V0 = 0. (70)

The LHS of (70) is a second degree concave polynomial in a (its second derivative with respect

to a equals −e−q1 ≤ 0). If a = 0, then the LHS of (70) is negative: e−q1/8− e−q0/2 < 0 and the first

derivative of the expression with respect to a at this point is positive V0 ≥ 0. Hence, one root of the

polynomial is negative, and the relevant root is the higher one, which is

a (q1) =

−V0 −
√
V 2
0 + 2e−q1

(
e−q1
8 − V0

)
−e−q1

=
V0 +

√
V 2
0 + 1

4e
−2q1 − 2V0e−q1

e−q1
.

Then the derivative of a (q1) is

∂a (q1)

∂q1
=

e−q1(− 1
2
e−2q1+2V0e−q1)

2
√
V 2
0 + 1

4
e−2q1−2V0e−q1

+ e−q1
(
V0 +

√
V 2
0 + 1

4e
−2q1 − 2V0e−q1

)
e−2q1

=
−1

2e
−2q1 + 2V0e

−q1 + 2V 2
0 + 1

2e
−2q1 − 4V0e

−q1 + 2V0

√
V 2
0 + 1

4e
−2q1 − 2V0e−q1

2e−q1
√
V 2
0 + 1

4e
−2q1 − 2V0e−q1

=
−V0e−q1 + V 2

0 + V0

√
V 2
0 + 1

4e
−2q1 − 2V0e−q1

e−q1
√
V 2
0 + 1

4e
−2q1 − 2V0e−q1

=
−V0e−q1 + V 2

0 + V0 (ae−q1 − V0)
e−q1 (ae−q1 − V0)

=
V0 (a− 1)

ae−q1 − V0
.,
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We set r1 = a− V0/e−q1 , and the maximization problem of a firm of type 1 becomes

max
q1

(1− a+ aq1)
(
ae−q1 − V0

)
+

1

2
q1e
−q1
(

1

4
− a2

)
+

1

2

(
1− e−q1 − 1

2
q1e
−q1
)
,

which gives the first-order condition

a
(
ae−q1 − V0

)
− ae−q1 (1− a+ aq1) +

1

2
(1− q1) e−q1

(
1

4
− a2

)
+

1

2
e−q1 − 1

4
e−q1 (1− q1) +

(
(q1 − 1)

(
ae−q1 − V0

)
+ e−q1 (1− a+ aq1)− q1e−q1a

) ∂a
∂q1

=

a
(
2ae−q1 − V0 − e−q1 − ae−q1q1

)
+

1

2
e−q1

(
3

4
− a2

)
+

1

2
q1e
−q1
(

1

4
+ a2

)
+

(
e−q1 (1− 2a+ q1a)− V0 (q1 − 1)

) ∂a (q1)

∂q1
= 0.

Next, we plug in the value of ∂a (q1) /∂q1, and substitute V0/e
−q1 with

1
2( 1

4
−a2)

1−a (it comes from

(70)). This gives

ae−q1

(
2a−

1
2

(
1
4 − a

2
)

1− a
− 1− aq1

)
+

1

2
e−q1

(
3

4
− a2

)
+

1

2
q1e
−q1
(

1

4
+ a2

)
+

e−q1

(
1− 2a+ q1a− (q1 − 1)

1
2

(
1
4 − a

2
)

1− a

) 1
2( 1

4
−a2)

1−a (a− 1)

a−
1
2( 1

4
−a2)

1−a

=

e−q1
16a5 − 96a3 + 128a2 − 69a+ 12

8 (1− a) (4a2 − 8a+ 1)
= 0

which implies that a does not depend on ν.

The solution to 16a5 − 96a3 + 128a2 − 69a+ 12 = 0 is less than 1/3.

Because

r1 = a− V0/e−q1 =
1
2

(
1
4 − a

2
)

1− a
,

the reservation price r1 does not depend on the number of firms too.

The equilibrium values of q1 and q0 are determined by equation
1
2( 1

4
−a2)

1−a = a − e−q0
2e−q1

and the

equation that comes from the steady state condition and the definition of ρ:

ν =
ae−q1 + 1− e−q0

(1− e−q0) (1− a+ q1) + ae−q1q0
.

The value of a that solves 16a5−96a3+128a2−69a+12 = 0 is less than a∗ because the polynomial

16a5 − 96a3 + 128a2 − 69a+ 12 is decreasing in a and

16
(

1− q∗0e−q
∗
0

)5
− 96

(
1− q∗0e−q

∗
0

)3
+ 128

(
1− q∗0e−q

∗
0

)2
− 69

(
1− q∗0e−q

∗
0

)
+ 12 < 0.
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