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Abstract

We consider social learning settings in which a group of agents face uncertainty

regarding a state of the world, observe private signals, share the same utility func-

tion, and act in a general dynamic setting. We introduce Social Learning Equilibria, a

static equilibrium concept that abstracts away from the details of the given dynamics,

but nevertheless captures the corresponding asymptotic equilibrium behavior. We

establish strong equilibrium properties on agreement, herding, and information ag-

gregation.
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1 Introduction

Social learning refers to the inference individuals draw from observing the behavior of

others to their underlying private information. This inference then in turn impacts their

own behavior. Social learning has served as an explanation for economic phenomena such

as herding1, bubbles and crashes in financial markets2, optimal contracting3, technology

adoption4 and more.5
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§Caltech. This work was supported by a grant from the Simons Foundation (#419427, Omer Tamuz).
1See Banerjee (1992); Bikhchandani et al. (1992).
2E.g., Scharfstein and Stein (1990); Welch (1992); Chari and Kehoe (2003).
3E.g., Khanna (1998); Arya et al. (2006).
4E.g., Walden and Browne (2002); Duan et al. (2009).
5Further references can be found in Bikhchandani et al. (1998), Chamley (2004), Vives (2010) and Jack-

son (2011).
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Most theoretical contributions to social learning by rational agents have so far been

based on a given dynamic game, which first specifies the social learning setting: the play-

ers, their actions and common utility function, the state and signal spaces, and a com-

monly known probability distribution thereover. Second, it specifies the extensive form
of the game: the order and frequency of decisions among players, and what each player

knows at every given decision instant. This approach has two inherent weaknesses. First,

the analysis of asymptotic equilibrium behavior in dynamic games is not straightforward,

resulting in a limited range of tractable models and a focus on extremely stylized settings.

Second, when trying to understand or predict behavior in real world social learning set-

tings, the modeler might not know the exact nature of interaction among individuals,

and the importance of each of the modeling assumptions is often unclear.

To address these issues we explore a static equilibrium approach which we call so-
cial learning equilibria (SLE). We abstract away from the extensive form dynamics, and

focus directly on the asymptotic steady state to which the dynamics converge. An SLE in-

cludes a description of the social learning setting, and of what each agent knows about the

other’s private information—presumably learned through some dynamic interaction—

but does not include any details of the extensive form. It also assigns an action to each

agent, with the equilibrium condition requiring that each agent’s action is optimal, given

her information.

In this very general setting we are able to prove results about agreement, informa-

tion aggregation and herd behavior. These generalize and strengthen results that were

previously known for very specific and stylized extensive form social learning games,

showing that strong conclusions can be drawn regarding social learning games with ex-

tremely weak assumptions on the extensive form. Importantly, we point out a novel, deep

connection between agreement and learning, which we call “we must learn to agree”: in

natural settings, agreement can only be reached when large amounts of information are

exchanged, and in particular enough for agents to learn the correct action.

For most of our results we focus attention on the canonical setting of social learning

with countably many agents (i.e., a large group of agents) binary states, a common prior,

conditionally i.i.d. signals and binary actions.

A motivating example

Consider a large group of agents who each have to repeatedly choose between two actions.

Initially, each agent receives a private signal. Then, in each discrete time period, each

makes a choice and observes the others’ choices. The natural questions to ask are: Do they

2



all eventually agree? And when they agree, do they agree on the correct action? Given

answers to these questions one might wonder how particular they are to this very stylized

extensive form. For example, do they still hold if agents also exchange information by

talking to each other? Or if each agent acts in only some of the periods?

Instead of analyzing the extensive form dynamics, we model directly the asymptotic

state reached at the end. Theorem 5, which is essentially a reformulation of a result due

to Rosenberg et al. (2009), establishes that asymptotic behavior in any Nash equilibrium6

of any social learning game is captured by an SLE. Hence equilibrium actions in this

particular game also converge to an SLE. In this game everyone observes everyone else’s

actions, and so this game converges to what we call a complete social learning equilibrium
(CSLE). A CSLE is an SLE in which each agent knows the other agents’ actions.

Agreement and learning in CSLE

Theorem 1 shows that every CSLE in a canonical setting satisfies agreement, i.e., all agents

select the same action almost surely. Previous work7 implies that agreement must hold

unless agents are indifferent. Our contribution is to show that in large groups indifference

is impossible, and so agreement always holds.

The probability of the agreement action being correct can be linked to the structure of

private signals. As defined by Smith and Sørensen (2000), private signals are unbounded

if the support of the probability of either state conditional on one signal contains both

zero and one. Theorem 2 shows that every CSLE in a canonical setting with unbounded

signals aggregates all private information, i.e., the agreement action is optimal condi-

tional on the realized state.

These results imply that in the game described above all agents converge to the same

action, and that, when signals are unbounded, they furthermore converge to the correct

action. This implication does not require any analysis of the extensive form, but merely

that agents know which action their peers converge to. Therefore these conclusions hold

for any extensive form for which this holds. This includes countless possible variations

on the simple, stylized extensive form described above, some of which may potentially

be intractable to detailed analysis.

6The set of Nash equilibria include the perfect Bayesian equilibria—whatever their definition might be
in this case.

7Aumann (1976); Milgrom and Stokey (1982); Sebenius and Geanakoplos (1983); Mueller-Frank (2013);
Rosenberg et al. (2009).
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Herd behavior

An important example of a social learning game is the sequential learning model of

Bikhchandani et al. (1992), in which agents have to decide whether to (say) adopt or not

adopt a new technology. They receive conditionally i.i.d. private signals, and each makes

a decision in an exogenously determined order, after observing the choices of their pre-

decessors. In this highly stylized setting many interesting results were proved regarding

herding and learning, with a particularly important contribution by Smith and Sørensen

(2000). However, it is natural to wonder what happens in more realistic settings. What

if the agents come in groups that act together? Perhaps they exchange information with

the people standing behind them or in front of them in line? Perhaps they are allowed to

change their decision in the five periods following the first one in which they acted?

We say that an SLE is weakly ordered if there exists a weak order on the set of agents

such that if i ≤ j then j knows i’s action. We say that herding occurs in an SLE if almost

surely all agents but a finite subset select the same action.

Theorem 4 shows that every weakly ordered SLE satisfies herding. Thus the herding

result of Bikhchandani et al. (1992) is, in this sense, extremely robust: regardless of the

extensive form, any game (such as the original sequential learning game) that is weakly

ordered will lead to a herd.

We must learn to agree

Our main result establishes a fundamental connection between herding, one of the most

prominent concepts in the social learning literature, and information aggregation. Recall

that herding occurs in an SLE if almost surely all agents but a finite subset select the same

action. Since in a general SLE agents are not ordered, we view herding as a weak form of

agreement: it simply means that almost everyone agrees. We say that the herding action

satisfies information aggregation if it is always optimal, conditioned on the state.

Theorem 3 shows that in a canonical setting with unbounded signals, in every SLE that

satisfies herding the herding action satisfies information aggregation. This highlights a

deep connection between the phenomena of agreement and of learning: when agents

exchange enough information to agree on actions, they must in fact exchange a very large

amount of information, enough to learn the state.

The combination of Theorem 3 and Theorem 5 implies that if a social learning game

with unbounded signals satisfies herding, then it also satisfies information aggregation.

Smith and Sørensen (2000) showed that unbounded signals imply information aggrega-

tion in the sequential model. Our result shows that—with unbounded signals and in
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large groups—information aggregation is independent of the exact interaction dynamic,

and even independent of the information agents have beyond their private signals: it

holds whenever a herd forms.

Concentration of Dependence

A driving force behind our results is what we call the Concentration of Dependence Prin-
ciple. Informally, this principle refers to the fact that when a random variable Y is a

function of i.i.d. random variables, then the value of Y is approximately independent

of almost all the random variables. While well known in probability theory, we believe

that the value of applying the principle to economics might go beyond social learning

applications.

In our social learning setting the concentration of dependence principle implies that

social learning outcomes in large groups depend on the state, and beyond that only on

a small number of signals. We use this observation to prove almost all of our results: to

preclude indifference (and hence disagreement) in CSLEs, and to show that agreement

implies aggregation of information.

Extensions

We consider several extension of our results and the model. We analyze the case of

bounded signals, where the support of the belief conditional on one signal contains nei-

ther zero nor one. Here we borrow the concept of information diffusion introduced by

Lobel and Sadler (2015) in the context of the sequential social learning model. We show

that for bounded signals our theorems hold when one replaces information aggregation

with the more general notion of information diffusion.

We next show that all our results carry forward to setting in which we relax the as-

sumption of conditional i.i.d. signals. Instead we assume that signals satisfy a mixing
property. Informally, this means that conditional on the state, each agent’s signal is al-

most independent of almost all the other agents’ signals. Mixing signals model settings in

which agents who are close to each other—either geographically or temporally—observe

same or similar signals, but the signals of agents who are far away from each other are

nearly independent.

Finally, we argue that our results hold for large finite groups, with a probability that

goes to one as the group size goes to infinity.
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Related literature

The social learning literature is too large to comprehensively cite here. We limit the

discussion to those papers whose results are most closely related. Our equilibrium ap-

proach is more in line with Aumann’s approach (1976) of studying a static environment

with common knowledge, as compared to later social learning papers (e.g., Geanakoplos

and Polemarchakis, 1982), which analyze the process by which common knowledge is

reached. Similarly to Aumann, we directly study the equilibrium, rather than specifying

the exact interaction structure and procedure by which the equilibrium is obtained. In-

deed, in many other fields of economics the tendency is to study static equilibria directly

rather than extensive forms.

Our equilibrium notion is conceptually very closely related to that of a rational expec-

tations equilibrium (Grossman, 1981). In its original formulation (for example Radner,

1979) the concept of rational expectation equilibrium (henceforth REE) is applied to mar-

ket environments where participants have private information. A forecast function maps

signal vectors into a pricing vector which is commonly observed by all agents. A REE is

then a forecast function such that markets clear and for (almost) all signal realizations the

portfolios of agents maximize their expected utility conditional on the forecast function

and their private signal.

The main difference between our notion of social learning equilibrium and REE is

threefold. First, we differ from their particular form of forecast function, which imposes

a single summary statistic that is commonly observed. Second, under REE not only do

actions have to be individually optimal as in our setting, but they additionally have to

satisfy a market clearing condition. This difference arises from the fact that in our social

learning setting payoff externalities are absent, contrary to a market environment. Third

and most importantly, we show (Theorem 5) how this static equilibrium notion can serve

to understand asymptotic equilibrium behavior in dynamic social learning games, which,

to the best of our knowledge, is not a general feature of REEs.

Minehart and Scotchmer (1999) introduce a concept of REE in a particular social

learning setting. Despite some superficial similarities, their approach is essentially dif-

ferent from ours. For example, an equilibrium—as they define it—does not usually exist,

and so they revert to an approximate equilibrium notion, in which they prove their main

results.

The seminal paper by Bikhchandani et al. (1992) introduced the sequential social

learning model where, in the canonical setting, agents make a one time choice observ-

ing the action chosen by all predecessors. They showed that a herd on the suboptimal

action might emerge. Our Theorem 4 shows that herding is a more general feature of
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interaction among rational agents. Smith and Sørensen (2000) showed that the herding

action in the sequential social learning model is almost surely optimal if signals are un-

bounded, and suboptimal with positive probability if signals are bounded. Our Theorem

3 shows that any herd by rational agents satisfies information aggregation. Thus the re-

lation between herding and information aggregation established by Smith and Sørensen

(2000) is an extremely robust outcome of interaction among rational individuals. This

result is similar to some results of optimality of REE, by DeMarzo and Skiadas (1999).

Our Theorem 6 is closely related to Lobel and Sadler (2015) who consider the se-

quential social learning model where each agent observes a random (possibly correlated)

subset of her predecessors. For bounded signal, they introduce the notion of information

diffusion, which is a weakening of information aggregation. Assume that the support

of private beliefs is [1 − β,β]. An action satisfies information diffusion if it is optimal

given the state with a probability at least 1 − β. They provide two sufficient conditions

on the random observation structure such that information diffuses (respectively, fails to

diffuse) in any equilibrium. Applying our results to this concept, we shed additional in-

sight by connecting information diffusion to herding. Theorem 3 together with Theorem

5 implies that in any social learning game where herding occurs with probability one,

information diffusion occurs.

Finally, our Theorem 1 extends the agreement results for settings of repeated interac-

tion of Gale and Kariv (2003), Mueller-Frank (2013), and of Rosenberg et al. (2009) which

all show that agreement occurs but in case of indifference among actions. Our Theorem 1

shows that in the canonical settings in a CSLE indifference occurs with probability zero.

The rest of the paper is organized as follows. Section §2 introduces the model and our

equilibrium notion. Section §3 presents our results on agreement and information aggre-

gation in CSLEs. Section §4 establishes our results on herding and information diffusion

in SLEs. Section §5 establishes the formal relation between social learning equilibria and

asymptotic equilibrium behavior in social learning games. Section §6 presents some ex-

tensions. Section §7 concludes.

2 The Model

We consider a group of agents who must each choose an action under uncertainty about

a state of nature. Each agent’s utility depends only on her own action and the state, and

agents are homogeneous in the sense of sharing the same utility function. Each agent

observes a private signal, and additionally some information about the others’ signals. A
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social learning equilibrium is simply a choice of action for each agent that maximizes her

expected utility, given the information available to her; note that this information may

include the choices of others. We now define this formally.

Social learning settings

A social learning setting (N,A,Θ,u,S,µ) is defined by a set of playersN , a compact metriz-

able (common) action space A, a compact metrizable state space Θ, a continuous utility

function u : A ×Θ → R, a measurable private signal space S, and finally a commonly

known joint probability distribution µ over Θ × SN .

We will denote by θ the random state of nature and by s̄ = (si)i∈N the agents’ private

signals. When no ambiguity arises we will denote probabilities and expectations with

respect to µ by P[·] and E[·], respectively. For some modeling applications it will further-

more be useful to add to this probability space a non-atomic random variable r that is

independent of the rest.

Social learning equilibria (SLE)

Each agent i, in addition to her private signal si , learns `i , which is some function of s̄

(and possibly r). Agent i’s (random) action is ai . It takes values in A, and is some function

of `i and si . Equivalently, `i and ai are random variables that are, respectively, σ (s̄, r)- and

σ (`i , si)-measurable.

Let ¯̀ and ā denote (`i)i∈N and (ai)i∈N , respectively. In a given social learning setting,

a social learning equilibrium (or SLE) is a pair ( ¯̀, ā) such that almost surely each agent’s

action ai is a best response, given her information `i and si :

ai ∈ argmax
a∈A

E [u(a,θ) | `i , si] . (1)

So far we have put no restrictions on ¯̀, and so, in this generality, one would not expect

to prove interesting results. In the subsequent sections we will see how some relatively

weak conditions on ¯̀ yield interesting properties of ā.

Complete social learning equilibria (CSLE)

The first class of social learning equilibria which we consider are complete social learning
equilibria (or CSLE). In a CSLE `i = ā. That is, each agent, in addition to her private signal,

learns the actions of all other agents. Thus, in a given social learning setting, the actions
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ā are a CSLE if it holds that

ai ∈ argmax
a∈A

E [u(a,θ) | ā, si] . (2)

To specify a CSLE it suffices to specify the actions ā, since `i = ā for all i.

Note that a related, natural and more general class of SLEs are those in which ā is

σ (`i , si)-measurable. That is, those SLEs in which the agents all know each other’s ac-

tions, and perhaps more information additionally. We will prove our results on CSLEs in

this generality, but prefer to adhere to the definition above because of its simplicity and

proximity to Nash equilibria.

Existence

In every social learning setting there exists an SLE, and moreover a CSLE. This follows di-

rectly from the existence of an optimal action, given knowledge of all the private signals.

For a CSLE that always exists, let a∗ = a∗(s̄) be an action that maximizes expected utility

conditional on s̄, the entire collection of private signals, and set ai = a∗ for all i ∈N . As a∗

aggregates all private information we call such an equilibrium information aggregating.

3 Agreement and Information Aggregation in Complete So-

cial Learning Equilibria

In this section we study complete social learning equilibria (CSLEs). We focus on a class

of social learning settings which appears frequently in the literature: in canonical settings
N is countably infinite, A =Θ = {0,1}, signals are informative and conditionally i.i.d., and

u(a,θ) = 1a=θ, so that the utility is 1 when the action matches the state, and 0 otherwise.

Agreement

An SLE satisfies agreement if almost surely we have ai = aj for all pairs of agents i, j. Our

first result establishes agreement as a property of any CSLE.

Theorem 1. In a canonical setting every CSLE satisfies agreement.

This result shows that Aumann’s seminal agreement result carries over to canonical

social learning settings as a property of every complete social learning equilibrium. The

conceptual reasoning behind the result, however, differs as no epistemic conditions be-

yond knowledge of the information structure and the social learning equilibrium are
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required. Previous results in the literature have established that agreement is achieved,

except in cases of indifference (Mueller-Frank, 2013; Rosenberg et al., 2009). Our con-

tribution is to show that, for the case of CSLE in canonical settings, indifference almost

surely does not occur and hence agreement holds.

To prove this result we first observe that whenever both actions are taken, it must be

that all agents are indifferent between the actions. This follows from the same intuition

that underlies the no trade theorem of Milgrom and Stokey (1982), as well as and similar

results in social learning (e.g., Sebenius and Geanakoplos, 1983; Mueller-Frank, 2013;

Rosenberg et al., 2009).

Thus our contribution is to show that it is impossible for all players to be indiffer-

ent. This follows from what we call the Concentration of Dependence principle, which we

introduce now. This principle underlies almost all of our results.

Informally, concentration of dependence refers to the fact that when a decision or

event is a function of i.i.d. signals then it significantly depends on only very few of them.

The underlying mathematical fact is a well known phenomenon known as mixing, which

we observe to have interesting implications in our settings.

Formally, we say that two random variable X and Y are ε-independent if for every set

A of possible realizations of X and every set B of possible realizations of Y it holds that∣∣∣∣P[X ∈ A,Y ∈ B]−P[X ∈ A] ·P[Y ∈ B]
∣∣∣∣ < ε.

Note that X and Y are independent if and only if the left hand side is zero for any choice

of A and B.

Lemma 1 (Concentration of Dependence Principle). Let X̄ = X1,X2, . . . be i.i.d. random
variables, and let Y ∈ {0,1} be any function of X̄. Then except for at most 1/ε2 many i’s, each
Xi is ε-independent of Y .

For the convenience of the reader we provide a proof of this fact in §.8

In our canonical setting the private signals are i.i.d., conditional on the state. It thus

follows from this principle that every event that depends on the private signals is approx-

imately conditionally independent of almost all of them.

8Readers who are unfamiliar with this idea may wish to engage with some examples. E.g., let X1, . . . ,Xn
be i.i.d. fair coin tosses, and consider two possible functions Y . The first is the majority function, which is
equal to H if the majority of Xi ’s equal H , and to T otherwise. It is easy to calculate and see that all the Xi ’s
are very weakly correlated with Y , and indeed intuitively this is clear. A less obvious example is when Y
is equal to H whenever an even number of Xi ’s is equal to H , and to T otherwise. Here, changing any Xi
(while keeping the rest fixed) results in a change in Y , and so it may seem that Y strongly depends on each
Xi . However, Y is in fact independent of each Xi .
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Returning to the proof of Theorem 1, we observe that in particular the event that all

the agents are indifferent—assuming it has positive probability—is practically indepen-

dent of almost all the players’ private signals. This is impossible, since if i is one of those

players, then i has a private signal that is independent of the event that she is indifferent.

Information aggregation

We next turn to the question of the learning properties of CSLEs. We have shown in

the previous section that the agents agree on the same (random) action. Under which

conditions is this agreement action optimal? In terms of our definitions from the previous

section, we ask: under which conditions is a SLE information aggregating? Note that in a

canonical setting an SLE is information aggregating if almost surely ai = θ for all i.

The private belief pi of an agent is equal to her posterior probability conditional on her

private signal only:

pi = P[θ = 1 | si]. (3)

As defined by Smith and Sørensen (2000), private signals are unbounded if the support

of the private belief contains both 0 and 1. Similarly, private signals are bounded if the

support of private beliefs contains neither 0 nor 1. Smith and Sørensen (2000) showed

that in the sequential social learning model unbounded private signals are sufficient for

agents eventually to select the action that corresponds to the true state. The following re-

sult relates the unbounded signal property to information aggregation in social learning

equilibria.

Theorem 2. In a canonical setting with unbounded signals every CSLE is information aggre-
gating.

The proof of this theorem is also driven by the Concentration of Dependence Prin-

ciple. By Theorem 1, there is some (random) agreement action a0 that all players take.

Consider (towards a contradiction) the case in which the probability that a0 = θ was not

1, but some q < 1. A player i can consider the deviation in which, instead of always

choosing a0, she chooses a0 when her private signal is weak, but follows her private sig-

nal whenever her private belief pi is strong. By strong we mean either greater that q (in

which case she would take action 1) or less than 1−q (in which case she would take action

0). Because signals are unbounded, this occurs with positive probability.

By the Concentration of Dependence Principle, a0 is essentially a function of some

finite number of private signals, and almost all players i have a private signal that is

almost independent of the agreement action a0. Therefore this deviation is profitable for
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some (in fact, almost all) players. Thus it is impossible that in equilibrium q < 1, and so

in equilibrium a0 = θ almost surely.

4 Herding, agreement and Information Diffusion

Arguably the most prominent result in the social learning literature is the herding re-

sult established by Bikhchandani et al. (1992) in the canonical sequential social learning

model. They show that if agents make an irreversible binary decision in strict sequen-

tial order, observing all the actions taken before them, then eventually all agents take

the same action, i.e., a herd occurs. Furthermore, the action chosen by this herd is not

necessarily optimal, even though the information contained in the pooled private sig-

nals suffices to choose the optimal action. Later, Smith and Sørensen (2000) showed that

when signals are unbounded a herd still occurs, but the action chosen by the herd is

almost surely optimal.

In analogy to this herding phenomenon, we say that an SLE satisfies herding if there

is almost surely a cofinite set of agents who choose the same action. We call this (ran-

dom) action the herding action. In a canonical setting, we say that the herding action is

aggregating if it is equal to θ with probability one.

We would like to emphasize that despite the image that the term “herd” evokes, herd-

ing does not imply that the agents take a mindless, suboptimal action; indeed, the action

chosen by the herd can be correct with probability one, as in the case unbounded signals

in the model of Smith and Sørensen (2000). Accordingly, we think of a herding as a form

of weak agreement: a herding SLE in one in which almost all the agents agree.

We must learn to agree

Our first result of this section highlights a deep connection between agreement and learn-

ing: one cannot agree without learning. In other words, in order for agents to agree they

must exchange a large amount of information, and in particular such a large amount that

they learn much about the state in the process. We thus offer the phrase “we must learn

to agree” not as an imperative but as an observation.

Theorem 3. In a canonical setting, and when signals are unbounded, in every SLE that satisfies
herding, the herding action is information aggregating.

The proof of this theorem again relies on the Concentration of Dependence Principle,

and is similar to the proof of Theorem 2. The herding action is approximately indepen-

dent of almost all the private signals. Yet, it is taken by almost all the agents. Therefore,
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there will be an agent that takes the herding action with very high probability, and whose

signal is almost completely independent from it. Hence such an agent would prefer to

follow her own private signal whenever doing so is more likely to be correct than follow-

ing the herd. But in equilibrium this agent does follow the herd, and so it must be that her

private signals never give an indication that is stronger than the information contained

in the herding action. But this is impossible when signals are unbounded.

This result is related to similar results for rational expectations equilibria (e.g., De-

Marzo and Skiadas, 1999). There, however, agreement implies efficient aggregation of

information even for a small number of players and bounded signals, whereas in our set-

ting this holds less generally and crucially depends on both the large size of the group

and the unboundedness of the signals.

Herding in weakly ordered SLEs

We study a class of SLEs that correspond to a large class of social learning games, includ-

ing the sequential models of Bikhchandani et al. (1992) and Smith and Sørensen (2000).

We focus on canonical settings, and on SLEs ( ¯̀, ā) that are weakly ordered: there is some

weak order ≤ on the agents such that, if i ≤ j then agent j observes i’s action: ai is σ (`j)-

measurable. The case that the order is strict and `j = (a1, . . . , aj−1) corresponds to the

classical sequential models. Weakly ordered SLEs correspond to a much wider class of

social learning games: perhaps the agents come in groups that act together; perhaps they

exchange information by cheap talk with the people standing behind them or in front of

them in line.

We next show that every weakly ordered SLE satisfies herding

Theorem 4. In a canonical setting every weakly ordered SLE satisfies herding.

The proof of Theorem 4 uses similar ideas to that of Theorem 3, but involves a number

of additional steps. Here, one must first observe that if both actions are taken infinitely

often then agents must asymptotically be indifferent. If this occurs with positive proba-

bility, then eventually agents will be able to guess (correctly with high probability) that

this will happen. Since—again asymptotically—almost all agents have signals that are

independent of this event, they would choose to ignore it and follow their own private

signals. But then they would not be indifferent, and thus this cannot happen with positive

probability.

A direct corollary of Theorems 3 and 4 is the following theorem, which is a general-

ization of the results of Smith and Sørensen (2000).
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Corollary 1. In a canonical setting, and when signals are unbounded, then every weakly or-
dered SLE satisfies herding, and the herding action is aggregating.

5 Social Learning Equilibria and Social Learning Games

In this section we consider a large class of social learning games. Given a social learning

setting, a social learning game is a dynamic game with incomplete information in which

agents choose actions and observe information about other agents’ actions and signals.

This class includes many models studied in the literature, including sequential learning

models and models of repeated interaction on social networks.

The main result of this section relates social learning games to SLEs. We show that the

asymptotic equilibrium behavior of agents in any social learning game is captured by an

SLE: for any distribution over asymptotic equilibrium action profiles of a social learning

game there exists an SLE with a matching distribution over action profiles.

This correspondence provides motivation for studying SLEs, and also allows to un-

derstand the long-run behavior of agents in many dynamic settings.

Social learning games

A social learning game includes a social learning environment (N,A,Θ,u,S,µ), together

with a description of the dynamics by which agents interact and learn. This consists of

the tuple (T ,k,σ ,δ). For each agent i the set Ti ⊆ {1,2, . . .} denotes the set of action times i,
i.e., the set of time periods in which agent i exogenously “wakes up”, receives information

and takes an action. The set T = (Ti)i∈N denotes the tuple of action times. For each agent

i and time t ∈ Ti , let ki,t be the information learned by agent i at time t, and let σi,t be the

action taken by agent i at time t. We denote by

kti = {ki,τ : τ ≤ t,τ ∈ Ti}

the information observed by agent i by time t, and by

ki = {ki,t : t ∈ Ti}

all the information observed by her, excluding her signal. We denote by

σ ti = {σi,τ : τ < t,τ ∈ Ti}
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the actions taken by agent i before time t, and by

σ t = (σ ti )i∈N

all the actions taken by all the agents before time t.

Each action σi,t takes values in A, and is some function of the information known to

agent i at time t, which consists of kti and her private signal si :

σi,t = σi,t(k
t
i , si).

The collection of maps σi = (σi,t)t∈Ti is player i’s strategy, and the tuple of strategies across

all agents, (σi)i∈N , is the strategy profile.

The information ki,t is some function of the agents’ actions before time t, the private

signals themselves, as well as the additional independent random variable r, and takes

values in some measurable space:

ki,t = ki,t(σ
t, s̄, r).

The (possible) dependence on r allows this framework to include mixed strategies and

random observation sets like for example observing a random subset of the previously

chosen actions.

Finally, δ is the common discount factor, and agent i’s discounted expected utility is∑
t∈Ti

δt ·E[u(σi,t,θ)].

A strategy profile σ is a Nash equilibrium if for each agent i her strategy σi maximizes her

discounted expected utility given σ−i , among all possible strategies for player i.

If agents are myopic, i.e. δ = 0, a strategy profile σ is a Nash equilibrium if for each

agent i, given σ−i , in each period t her strategy σi,t maximizes her expected utility in

period t ∈ Ti conditional on kti and si :

σi,t ∈ argmax
a∈A

E[u(σi,t,θ) | kti , si].

This definition of a social learning game is rather general and captures a variety of

different models. Most prominently it captures the sequential social learning model of

Bikhchandani et al. (1992), and Smith and Sørensen (2000). To see this simply set Ti = {i}
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for every agent i and

ki,i = ki = {σj,j : j < i}.

The sequential social learning models of Acemoglu et al. (2011), Lobel and Sadler

(2015) and others are likewise included in this framework. Here we have Ti = {i} again,

but ki,t does not include all the actions of the predecessors, but rather only those of a

random subset of the predecessors. The models of repeated interaction on social networks

of Gale and Kariv (2003), Mossel et al. (2014) and Mossel et al. (2015) can be captured

by setting Ti = N for all agents i and where ki,t contains the last period actions of all

the neighbors of agent i. Rosenberg et al. (2009) study a more general model that is not

subsumed by the framework, but still shares many similarities. In fact, the proof of our

result for this section, Theorem 5, follows exactly the proof of their Proposition 2.1.

Finally, the models of repeated communication of beliefs in a social network analyzed

in Geanakoplos and Polemarchakis (1982), Parikh and Krasucki (1990), and Mueller-

Frank (2013) can be captured by a squared loss utility function and a discount factor

equal to zero, hence inducing myopic behavior.

Let Āi denote the (random) set of accumulation points of agent i’s realized actions

(σi,t)t∈Ti ; if Ti is finite, then let Āi be the singleton that contains only the last period action

of agent i. If Ti is infinite and A finite, then Āi consists of the actions chosen infinitely

often.

Given these definitions, we are ready to establish the relation between Nash equilibria

of the social learning game and SLEs. As we mention above, this theorem is essentially

due to Rosenberg et al. (2009).

Theorem 5. Consider a social learning environment and a social learning game (T ,k,σ ,δ). Let
ā be any (random) action such that ai ∈ Āi , and let `i = ki . Then ( ¯̀, ā) is an SLE.

Thus, the asymptotic behavior in any Nash equilibrium9 of a social learning game is

captured by an SLE. Given the formulation of the SLE, the result follows if any limit ac-

tion by any agent i is optimal conditional on his limit information ki . Rosenberg et al.

(2009) have shown this to be true. We provide a version of their proof adjusted to our lan-

guage and notation in the appendix. The value from Theorem 5 derives from establishing

a link between their result and our concept of SLE.

9The set of Nash equilibria include the perfect Bayesian equilibria—whatever their definition might be
in this case.
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Learning and agreeing in social learning games

Recall that in Theorem 5 we showed that the asymptotic outcomes of social learning

games correspond to social learning equilibria. Therefore, a straightforward application

of Theorem 3 to social learning games implies that in every social learning game which

is played in a canonical setting with unbounded signals, it holds that if herding occurs

(i.e., if a cofinite set of agents converges to the same action) then a cofinite set of agents

converges to the correct action. Likewise, Corollary 1 implies that herding is indeed the

outcome across a large spectrum of social learning games: it suffices that there is a weak

order on the agents such that if i ≤ j then j observes which actions i chooses infinitely

often. This generalizes the results of Smith and Sørensen (2000), highlighting the deeper

forces that drive them.

6 Extensions

6.1 Bounded signals

Recall that Theorem 2 shows that in a canonical setting with unbounded signals every

CSLE is information aggregating.

What can be said about information aggregation when signals are bounded? Since

independent of the signal structure there always exists an information aggregating equi-

librium, the question is what is the worst possible equilibrium outcome in terms of in-

formation aggregation. To answer this, we borrow the notion of information diffusion

introduced by Lobel and Sadler (2015) in context of the sequential social learning model.

Consider the support of the private belief and let its convex hull be [βL,βH ]. For simplic-

ity assume that the support is symmetric, i.e., [β,1− β].

An SLE in a canonical setting satisfies information diffusion if the probability of any

agent’s action being optimal is at least 1− β:

P[ai ∈ argmax
a∈A

u(a,θ)] ≥ 1− β.

As Lobel and Sadler highlight, the notion of information diffusion is particularly insight-

ful if strong signals, i.e., those that induce a posterior belief close to β or 1− β, are rare.

The next theorem, is a generalization of Theorem 2 to the bounded signal setting.

Theorem 6. In a canonical setting every CSLE satisfies information diffusion.
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Likewise, the next theorem is a generalization of Theorem 3 to the bounded signal

setting.

Theorem 7. In a canonical setting every SLE that satisfies herding also satisfies information
diffusion.

6.2 Mixing signals and canonical* settings

All of our results hold when we relax the requirement that signals are i.i.d., and require

only a form of mixing.

We say that a sequence X1,X2, . . . of random variables is mixing if (1) the marginal

distributions of the Xi are all identical, and (2) for each ε > 0 there is a n(ε) such that for

each agent i there are at most n(ε) agents j such that Xi and Xj are not ε-independent. We

say that private signals are mixing when they are mixing random variables, conditional

on the state.

Intuitively, private signals are mixing when for each agent i there are only finitely

many other agents with whom i has a significantly correlated signal. One obvious ex-

ample of mixing signals are i.i.d. signals. Other examples arise naturally when agents

who are close to each other—either geographically or temporally—observe same or simi-

lar signals, but agents who are far away from each other observe only very weakly related

signals.

The following Lemma captures the Concentration of Measure Principle for mixing

random variables.

Lemma 2 (Concentration of Dependence for Mixing Random Variables). Let X̄ = X1,X2, . . .

be mixing random variables, and let Y ∈ {0,1} be any function of X̄. Then for every ε > 0 then
is an m(ε) such that, except for at most m(ε) many i’s, each Xi is ε-independent of Y .

In canonical* settingsN is countably infinite, A =Θ = {0,1}, the utility function assigns

1 if the action of an agent matches the state and 0 otherwise (as in canonical settings),

but signals are informative and mixing, rather than just i.i.d. As mention above, all of

our results hold when we relax the requirement that signals are i.i.d., and require only

mixing; in the Appendix we prove our theorems in this generality.

6.3 Large finite groups

All of our theorems are proved in settings with infinitely many agents. Analogous quali-

fied statements for large finite groups follow from our proofs.
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For example, Theorem 2 states that in a canonical setting, and when signals are un-

bounded, every CSLE is aggregating, so that

P[ai = θ for all i] = 1.

A careful reading of the proof shows that if we fix the marginal distributions of the

(unbounded) private signals, then for every ε > 0 there is a k(ε) such that in every CSLE

with more than k(ε) players it holds that

P[ai = θ for all i] > 1− ε.

6.4 Heterogeneous preferences and priors

A natural extension is to relax the homogeneity assumption and consider agents who

have different priors or different utility functions. For example, in a canonical setting one

may wish to consider agents who have the same belief regarding the conditional signal

distributions, but have different priors regarding the state. This is equivalent to agents

who have the same prior, but whose utility for matching the action to the state varies with

the state (but for whom it is still preferable to match than mismatch).

Alter a canonical setting by considering a finite number of types of agents (here types

could refer either to the priors or the utility functions), and assuming that the agents’

types are common knowledge. It is easy to adapt our proofs to such a setting to show

that (1) in a CSLE agents of the same type must agree (2) in a CSLE agents of a type that

appears infinitely often must choose the correct action, if signals are unbounded; these

are the generalizations of Theorems 1 and 2. Similarly, in an SLE in which one of the

types form a herd, the herding action will be correct when signals are unbounded; this

generalizes Theorem 3.

7 Conclusion

We introduced the concept of social learning equilibrium as a useful tool to analyze social

learning. The advantage over the conventional approach is that results or predictions can

be made without knowing the exact dynamic of the interaction structure. We provide

the agreement, herding and information aggregation results of social learning equilibria

that unify and shed additional insight on the literature on social learning. In particular,

we show that the relation between unbounded signals and the optimality of the herding

action established by Smith and Sørensen (2000) holds much more generally. In fact, in
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any social learning environment with unbounded signals the action selected in a Bayesian

herd is optimal.

The main value deriving from our analysis, however, is to show that the asymptotic

equilibrium behavior of any social learning game might be analyzed via the static concept

of social learning equilibrium, greatly simplifying the analysis.

Finally, our concept can easily be adjusted to capture payoff heterogeneity and payoff
externalities. This extension is kept for future work.
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A Agreement and Information Aggregation in Complete

Social Learning Equilibria

In this section we prove Theorem 1. We start with the following lemma, which is essen-

tially a formulation of the No Trade Theorem of Milgrom and Stokey (1982). This lemma

states that when there is disagreement then players must be indifferent.

In the context of an SLE, denote agent i’s equilibrium belief by

qi = P[θ = 1 | `i , si],

and let D be the event that ai , aj for some i, j ∈N .

Lemma 3. In any SLE with a setting with A =Θ = {0,1} and u(a,θ) = 1a=θ (as in a canonical
setting, but with no restrictions on the signals), if the event D has positive probability, then
conditioned on D it almost surely holds that qi = 1/2 for all i.
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Proof. Consider an outside observer who observes all the agents’ actions ā. Her belief is

q∗ = P[θ = 1 | ā].

Since ā is σ (`i , si)-measurable, it follows from the law of total expectations that for every

i

q∗ = E[qi | ā]. (4)

Since 1 is the action that is optimal for beliefs above 1/2, we have that ai = 1 implies that

qi ≥ 1/2. Likewise, ai = 0 implies qi ≤ 1/2. Hence the claim follows by (4).

Thus, to prove Theorem 1, it suffices to show that indifference is impossible, which,

as we now show, follows from mixing. In fact, we prove it more generally, for canonical*

settings (see §6.2).

Proof of Theorem 1. It follows from Lemma 3 that to prove our claim it suffices to show

that the indifference event F = {qi = 1/2 for all i} occurs with probability 0.

Assume towards a contradiction that F has positive probability, and consider, for each

player i, the deviation of following her private signal only whenever F occurs, and choos-

ing action ai otherwise. That is, choosing

bi ∈ argmax
a∈A

P[θ = a | si],

whenever F occurs, and ai otherwise. The profit player i stands to gain from this deviation

is

P = P[bi = θ,F]−P[ai = θ,F].

The second term is simply equal to 1
2P[F], since conditioned on F player i is indifferent,

and so her expected utility from any action is 1/2.

Let

Q = P[bi = θ]

be the expected utility of a player who always follows her own signal. ThenQ = 1/2+ε for

some ε > 0, since signals are informative. By the Concentration of Dependence Principle,
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it holds for all agents but finitely many that∣∣∣∣P[bi = θ,F]−P[bi = θ] ·P[F]
∣∣∣∣ < εP[F],

and hence that

P[bi = θ,F] > (Q − ε) ·P[F] >
1
2
P[F] = P[ai = θ,F],

so that P > 0. Thus this is a profitable deviation, and we have reached a contradiction

with our equilibrium assumption.

B Herding

In this section we prove Theorem 4, in the more general framework of canonical* settings

(see §6.2).

Let

xi = P[θ = 1 | a1, . . . , ai]

be the sequence of public beliefs, and let

qi = P[θ = 1 | `i , si]

be agent i’s equilibrium belief. Note that, since each agent i knows {a1, . . . , ai},

xi = E [qi | a1, . . . , ai] , (5)

by the law of total expectations.

Note that the action 1 is optimal for beliefs 1/2 and higher, and the action 0 is optimal

for beliefs 1/2 and lower. Therefore, and since ā is an equilibrium,

ai = 1⇒ qi ≥ 1/2 and ai = 0⇒ qi ≤ 1/2 (6)

and

E[u(ai ,θ) | qi] = P[ai = θ | qi] = max{qi ,1− qi}. (7)

We start with two simple claims regarding ai and xi .
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Claim 1. If ai = 1 then xi ≥ 1/2. If ai = 0 then xi ≤ 1/2.

Proof. By (6) we have that qi ≥ 1/2 conditioned on ai = 1. Hence, by (5), xi ≥ 1/2 condi-

tioned on ai = 1. An analogous argument holds for the case ai = 0.

Claim 2. P[ai = θ | xi] = max{xi ,1− xi}.

Proof. By Claim 1

P[θ = ai | xi] =


P[θ = 1 | xi] if xi > 1/2

P[θ = 0 | xi] if xi < 1/2

P[θ = ai | xi] if xi = 1/2.

By (5) and (6), if xi = 1/2 then xi = qi . Therefore, and since P[θ = 1 | xi] = xi , and P[ai =

θ | qi = 1/2] = 1/2 by (7),

P[θ = ai | xi] =


xi if xi > 1/2

1− xi if xi < 1/2

1/2 if xi = 1/2.

Thus P[θ = ai | xi] = max{xi ,1− xi}.

Let

x = P[θ = 1 | ā],

and note that xi is a bounded martingale that converges a.s. to x. It thus follows from

Claim 1 that conditioned on ai taking both values infinitely often it holds that x = 1/2.

Thus, to prove our theorem, we will show that the probability of x = 1/2 is zero. Accord-

ingly, define the event

F0 = {x = 1/2},

and for ε > 0 define the events

Fεi = {xi ∈ (1/2− ε,1/2 + ε)}.

The event Fεi is the event that the public belief xi is close to 1/2. Since the sequence (xi)i
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converges a.s. to x, we have that

lim
i→∞

P[F0 \Fiε] = 0 (8)

for every ε > 0, and that

lim
ε→0

limsup
i→∞

P[Fεi ] = P[F0]. (9)

Thus, to prove that P[F0] = 0—which, as we explained above, proves the claim—it suffices

to show that the left hand side of the above expression vanishes.

To this end, let

bi = b(si) ∈ argmax
a∈A

P[θ = a | si]

be an optimal action chosen given agent i’s private signal only. These are all chosen using

the same function b, and so, since the private signals si are identically distributed (but

not necessarily independently), the random variables bi are also identically distributed.

Imagine that player i chooses bi instead of ai , whenever Fεi occurs. Then player i’s gain

in expected utility from this deviation is

P[bi = θ,Fεi ]−P[ai = θ,Fεi ].

We prove that the left-hand side of (9) vanishes by showing that

lim
ε→0

limsup
i→∞

P[bi = θ,Fεi ]−P[ai = θ,Fεi ] > 0,

and thus this is a profitable deviation for some ε small enough and i large enough, con-

tradicting the assumption that ā is an SLE.

To this end, we note that

P[bi = θ,Fεi ] ≥ P[bi = θ,F0]−P[bi = θ,F0 \Fεi ],

since

F0 \ (F0 \Fεi ) = F0 ∩Fεi ⊆ F
ε
i .
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It thus follows by (8) that

liminf
i→∞

P[bi = θ,Fεi ] ≥ liminf
i→∞

P[bi = θ,F0].

Now, conditioned on θ, the si ’s are i.i.d., and in particular mixing. Since F0 is measurable

in σ (s̄), it follows that

lim
i→∞

P[bi = θ,F0 | θ] = P[bi = θ | θ] ·P[F0 | θ],

where the right-hand side does not depend on i, since the bi ’s are identically distributed.

Hence

lim
i→∞

P[bi = θ,F0] = P[bi = θ] ·P[F0].

Since private signals are informative, it follows that P[bi = θ] > 1/2, and so we have that

liminf
ε→0

liminf
i→∞

P[bi = θ,Fεi ] >
1
2
P[F0]. (10)

Now,

P[ai = θ | Fεi ] = E

[
P[ai = θ | xi] | Fεi

]
= E

[
max{xi ,1− xi} | Fεi

]
,

where the second equality is an application of Claim 2. Since xi ∈ (1/2− ε,1/2 + ε) condi-

tioned on Fεi , we get that

P[ai = θ,Fεi ] <
(1
2

+ ε
)
·P[Fεi ].

Therefore, by (9),

lim
ε→0

limsup
i→∞

P[ai = θ,Fεi ] ≤ 1
2
·P[F0].

Therefore, in combination with (10), the expected profit from deviating from ai to bi
on Fεi satisfies

lim
ε→0

limsup
i→∞

P[bi = θ,Fεi ]−P[ai = θ,Fεi ] > 0,

and thus this is a profitable deviation for some ε small enough and i large enough. Hence
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it follows that F0 has probability zero, concluding the proof of Theorem 4.

C Concentration of Dependence

Proof of Lemmas 1 and 2. Choose any ε > 0 and let Xi1 ,Xi2 , . . . ,Xik be k random variables

that are not ε-independent of Y . Without loss of generality we may assume that (i1, i2, . . . , ik) =

(1, . . . , k). Let A1, . . . ,Ak and B1, . . . ,Bk be sets that witness the violation of ε-independence,

so that for i = 1, . . . , k ∣∣∣∣P[Xi ∈ Ai ,Y ∈ Bi]−P[Xi ∈ Ai] ·P[Y ∈ Bi]
∣∣∣∣ ≥ ε. (11)

Note that since Y only takes values in {0,1}, and assuming without loss of generality that

no Bi is trivial, we have that Bi is either {0} or {1}. In either case, if we let Ii be the indicator

of the event Xi ∈ Ai . Then we can write (11) as∣∣∣∣Cov(Ii ,Y )
∣∣∣∣ ≥ ε.

Let ηi ∈ {−1,+1} equal the sign of Cov(Ii ,Y ). Then (11) is equivalent to

Cov(ηiIi ,Y ) ≥ ε.

Summing over i we get

k∑
i=1

Cov(ηiIi ,Y ) ≥ kε.

By additivity of covariance, it follows that

Cov

 k∑
i=1

ηiIi ,Y

 ≥ kε.
By the Cauchy-Schwarz inequality it follows that√√√

Var

 k∑
i=1

ηiIi

 ·Var(Y ) ≥ kε.

Denote I =
∑k
i=1ηiIi , and note that Var(Y ) ≤ 1, since Y ∈ {0,1}. So, squaring both sides
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yields

Var(I) ≥ k2ε2. (12)

Consider first the i.i.d. case. Then Var(I) is at most k, since I is the variance of k

independent random variables, each with variance at most 1. Hence we have that

k ≥ k2ε2

or k ≤ 1/ε2. This completes the proof of Lemma 1.

Consider now the mixing case. Write

Var(I) =
k∑
i=1

k∑
j=1

Cov(ηiIi ,ηjIj)

Now, by the mixing property, for each i there are at most n = n(ε2/2) possible j’s such that

Cov(ηiIi ,ηjIj) > ε2/2, in which case it is at most 1. Hence

Var(I) ≤ k(n · 1 + (k −n) · ε2/2) ≤ kn+ k2ε2/2.

Applying this back into (12) yields

kn+ k2ε2/ ≥ k2ε2.

Rearranging yields

k ≤ 2nε2,

and so we can have proved Lemma 2, with m(ε) = 2n(ε)/ε2.

D We must learn to agree

We say that an SLE satisfies herding in probability if there is a random variable a∗ taking

values in A such that

lim
i→∞

P[ai = a∗] = 1.

29



Here the limit is taken by arbitrarily identifying the agents with the set of natural num-

bers.

Theorem 3 is a consequence of the following, stronger statement that applies to herd-

ing in probability, rather than (almost sure) herding in which a cofinite set of agents

chooses the same action.

Theorem 8. In canonical* setting, every SLE that satisfies herding in probability also satisfies
information diffusion.

Let

p = P[a∗ = θ].

It follows from herding in probability that limiP[ai = a∗] = 1, and so

lim
i
P[ai = θ] = lim

i
P[ai = θ,ai = a∗] +P[ai = θ,ai , a

∗]

= lim
i
P[a∗ = θ,ai = a∗] +P[ai = θ,ai , a

∗]

= p.

Assume by contradiction that

p ≤ 1− β − 2ε

for some ε > 0.

As in the proof of Theorem 4, let

bi = b(si) ∈ argmax
a∈A

P[θ = a | si]

be an optimal action chosen given agent i’s private signal only. These are all chosen using

the same function b, and so, since the private signals si are identically distributed (but

not necessarily independently), the random variables bi are also identically distributed.

Let Bi be the event that P[bi = θ | si] > 1− β − ε. Since the bi ’s are identically distributed,

all of the events Bi have the same probability. Furthermore, this probability is positive,

by our assumption on the support of the private signals.

Imagine that agent i deviates and chooses bi whenever Bi occurs, and otherwise fol-

lows ai . Then her expected gain in utility is

P[bi = θ,Bi]−P[ai = θ,Bi].
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To bound the first term, we note that, by the definition of Bi ,

P[bi = θ,Bi] ≥ (1− β − ε)P[Bi].

To bound the second term, we write

P[ai = θ,Bi] = P[ai = θ,ai = a∗,Bi] +P[ai = θ,ai , a
∗,Bi]

= P[a∗ = θ,ai = a∗,Bi] +P[ai = θ,ai , a
∗,Bi]

Since ā satisfies herding in probability, limiP[ai = a∗] = 1, and so it follows that

limsup
i

P[ai = θ,Bi] = limsup
i

P[a∗ = θ,Bi].

Since private signals are conditionally mixing, it follows from Lemma 2 that

limsup
i

P[a∗ = θ,Bi] = P[a∗ = θ]P[Bi] = p ·P[Bi],

where the right-hand side does not depend on i, since the events Bi all have the same

probability. We have thus shown that

limsup
i

P[ai = θ,Bi] = p ·P[Bi],

Combining the bounds on the two terms we get that the expected gain in utility is

liminf
i

P[bi = θ,Bi]−P[ai = θ,Bi] ≥ (1− β − ε − p)P[Bi].

Since we assumed that p ≤ 1−β −2ε we have that this is at least εP[Bi], and in particular

positive. Thus ā is not an equilibrium, as for some i large enough player i would have a

profitable deviation. This completes the proof of Theorem 8.

E Proof of Theorem 5

This proof is essentially a recasting of the proof of Proposition 2.1 in Rosenberg et al.

(2009) to our language and notation.

Fix an agent i. The case that δ = 0 or Ti is finite is immediate. We thus assume

henceforth that δ > 0 and |Ti | =∞.
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Let

vi = max
a∈A

E[u(a,θ) | ki , si]

be the maximum expected utility agent i can guarantee given what she (asymptotically)

knows at the end of the game.

Fix (ki , si) and ε > 0, and let U,W ⊆ A be the sets of actions given by

U =
{
a ∈ A : E[u(a,θ) | ki , si] > vi − ε

}
and

W =
{
b ∈ A : E[u(b,θ) | ki , si] < vi − 3ε

}
.

That is, U is the set of actions that is ε-optimal, and W is the set of actions that is 3ε-

suboptimal—conditioned on the information available to the player at the end of the

game.

Note that the sets U and W are open and disjoint and that utilities are continuous. It

therefore follows from the martingale convergence theorem that, for any η > 0 and t ∈ Ti
large enough, it holds for every a ∈U and b ∈W that

P

[
P[u(a,θ) > u(b,θ) + ε | ki,t, si] > 1− η | ki , si

]
= 1.

That is, for large enough t, the agent will almost surely assign high probability to the

event that any action a ∈U yields at least ε more utility than any b ∈W .

It follows that choosing any b ∈W will, for large enough t, result in an expected utility

loss of at least ε · (1 − η) · (1 − δ) in the subgame starting at t, which, for η small enough,

is greater than δ ·maxa,θ u(a,θ), and thus greater than the continuation utility of any

strategy. It follows that, in equilibrium and conditioned on almost every (ki , si), the agent

eventually stops choosing actions in W . Since this holds for every ε, it follows that every

limit point of actions taken by the agents almost surely maximizes her expected utility,

conditioned on (ki , si).
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