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Abstract 5

Before 1697, it would be difficult for a European zoologist to jus-

tify the prediction “the swans in New Holland are black”. Yet the

predictor might well be forward-looking enough to formulate her cur-

rent forecast so as to accommodate such a prediction if, and when, a

new case (observed or theoretical) arrives. Moreover, she may be pru- 10

dent enough to do so in such a way that, the current forecast has the

potential to extend to novel cases without revision and without viola-

tion of basic rationality conditions. In this article, we formalise these

concepts and, to our knowledge, provide the first axiomatisation of

the full set of additive and suitably unique similarity representations. 15

The diverse matrix representation of Gilboa and Schmeidler (2003) is

an important special case: the one where the predictor is experienced.
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From the past, the present acts prudently, lest it spoils future action.

Titian: Allegory of Prudence

1 Introduction

When formulating a forecast, experience is often the most important 20

factor. Yet, outside of stylised small-world settings, even the most

experienced forecasters would not claim to have access to “the full

model” that includes all the relevant states of the world.

The global financial markets provide the canonical example of a

large world where the set of states that are accessible to the forecaster 25

would rarely be exhaustive. The omission (from most models) of de-

tails regarding the nature of the global financial crisis prior to 2007

serves as a strong reminder that, when trying to predict macroeco-

nomic eventualities, it may be prudent to admit our limitations and

adopt a less structured, more open framework than that which the 30

standard Bayesian paradigm allows.

The theory of case-based decisions, and case-based prediction in

particular, addresses these concerns by avoiding state spaces alto-

gether. Instead, observations or (synonymously) cases form the basic

building blocks of the model: where a given case may be empirical or 35

theoretical. The predictor’s model is then naturally bounded in size

and scope by the experience of the forecaster. The present prediction

problem determines the perspective (or vantage point) of this model

as well as the relevance of any experience the predictor might have.

Similar to unlikely states in a probabilistic framework, cases that are 40

fanciful (such as outliers) or that have little relation to the present pre-

diction problem receive a low weight in the present prediction problem.
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In contrast with states, two cases that are identical (in terms of their

information content or similarity to the present problem) for current

prediction problem might provide contrasting information for another. 45

Although her perspective is fixed, case resampling and subsampling

(as in the standard nonparametric bootstrap) allow the predictor to

explore hypothetical databases and extract all the information her

experience can afford. For each feasible (i.e. finite) database of resam-

pled past cases, the predictor provides an ordinal plausibility ranking 50

of eventualities and it is the family of such rankings (what we call a

forecast) that forms the primitive data of the model.

Example 1. Consider a search engine on a standard web browser.

When a user conducts a search, the engine compiles a list of webpages,

with the most plausible at the top, the second most plausible next, 55

and so on. This list of webpages is the search engine’s plausibility

ranking given its current database of past cases. Through resampling

and subsampling of past cases, the predictor can explore the rankings

the engine would generate, for the same search, given other databases.

At one extreme, the engine may yield the same plausibility ranking for 60

every feasible database of past cases. At the other, the current data

may be sufficiently rich that, for every feasible plausibility ranking of

relevant webpages, there is a database that gives rise to that ranking.

The scenarios that arise in example 1 are important for scope of the

present paper. For whilst the axiomatisation of Gilboa and Schmeidler 65

[4] (henceforth [GS]) accounts for predictors with current databases

that are sufficiently rich to support every strict plausibility ranking

of every subset of four eventualities (the content of their Diversity

axiom), it does not accommodate predictors that are less fortunate. In

other words, it does not account for predictors that are inexperienced 70
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for the purposes of the present prediction problem. In this paper,

we fill this gap by dropping Diversity and replacing it with one that

involves the predictor exploring a richer form of resampling. The idea

is that she may mitigate her lack of experience by considering the set

of feasible forecasts that arise in the presence of a novel case type. 75

Since the predictor does not have access to this novel case, one key

subtlety lies in the way we model this novel case.

Example 2. Before the first European observation of black swans in

modern day Australia in 1697, the typical European zoologist’s dataset

would justify the plausibility ranking “On his expedition to New Hol- 80

land, it is more likely that Willem de Vlamingh will observe white

swans than a black ones.” It is only with a sufficiently rich knowledge

of the migratory behaviour of Swans, a rich dataset documenting their

absence in tropical regions, and a phylogenetic theory of Swan evolu-

tion that a zoologist could convincingly propose the reverse plausibility 85

ranking. The fact that de Vlamingh’s observation had the impact on

zoology that it did reveals that few if any zoologists were capable of

such a deep and convincing hypothesis. Nonetheless, a prudent zool-

ogist might well anticipate that, since expeditions typically yield new

data, it would be wise to explore the implications for her forecast of 90

the arrival of a novel case.

Although the inexperienced predictor can only observe past cases,

she might also observe that resampling them does not yield a forecast

with a diverse family of plausibility rankings. And, in turn, she may

observe that, if the present prediction problem turns out to be un- 95

like past cases, her future forecast may well be more diverse than her

current one. She may then ask whether she will need to revise her cur-

rent forecast in order to accommodate a forecast generated by richer
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databases? In the present paper, we show that this line of observation

and questioning naturally leads to the following conclusion: if the in- 100

experienced predictor restricts her resampling procedure to past cases,

then she may be omitting important information that is concealed by

her lack of experience. At least, that is, if she accepts the basic axioms

for case-based decision theory (and prediction in particular).

The basic axioms are as follows. The first and most basic is that, 105

conditional upon any feasible database of past cases, the plausibility

ranking is both transitive and complete. The second axiom, Combi-

nation, is the requirement that whenever the plausibility rankings at

two disjoint databases coincide, then the combined database (formed

by taking the union) generates the same plausibility ranking. When 110

the number of eventualities is finite, the third axiom, Archimedeanity,

requires that for any pair of disjoint databases, the information asso-

ciated with the first is eventually swamped by the combining it with

sufficiently many copies of the second.

The formal question we shall ask is the following: for a predictor 115

with a current forecast that satisfies the basic rationality axioms of

[GS], will these axioms apply to any extension of her current forecast

that is formed by considering databases involving resampled copies of

a novel case? If not, then the omitted information that we refer to

in the penultimate paragraph above may bias her forecast in such a 120

way that intransitive plausibility rankings arise in every extension of

her current forecast that satisfies Completeness (at each database),

Combination and Archimedeanity. This is essence of the Prudence

axiom that we appeal to instead of the Diversity axiom of [GS].

The fact that inexperience or novelty is so closely associated with 125

intransitivity is well-documented in the literature on

The consequence of this bias (i.e. a violation of the Prudence ax-
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iom) is to preclude the representation of the forecast by a real-valued

suitably additive weighting function of the form

v : eventualities ˆ past cases Ñ R.

That is a matrix v such that for any pair of eventualities x and x1 and

any database of resampled past cases D,

x ÀD x1 if, and only if,
ÿ

c PD

vpx, cq ď
ÿ

c PD

vpx1, cq,

where ÀD is the plausibility ranking that is determined by D. (For

instance, in a typical empirical setting, ÀD might be the ordinal con-

tent of the empirical likelihood conditional on D.) In the absence of

this bia 130

Here, each case type forms a distinct dimension, where two cases

are of the same type if their information content is identical for the pur-

poses of the present prediction problem. For instance, in example 1,

the (extremely) inexperienced engine has a forecast of dimension one,

whereas the experienced engine has a forecast that is of dimension at 135

least n!, where n is the number of plausible webpages.

The more general form of resampling that we propose includes

copies of the novel case type. Since our predictor does not have access

to this novel case (for then it would be a past case) we model this

case as a variable (of positive arity) in contrast with past cases which 140

are constants (of arity zero). A variable database is once again a

A generalised database is then obtained by associating a plausibility

ordering with that Then the higher order resampling consists of

have awe propose allows the predictor to peer into the future and

contemplate the potential forecasts that she will be able to make once 145

she has new information.
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Whilst there may be settings where it is costless to update and

revise Whilst it is fairly straightforward to see the value of such an

exploration, there is the s

Moreover, she may wish to ensure that, should a novel case her 150

current forecast will exte accommodates such extensions her predic-

tion is made wish to look at potential extensions of her model She

may therefore, perhaps with an eye on future prediction problems,

contemplate extensions of her model thanovel cases.

Cases that, when combined with existing databases, Whilst the 155

predictor cannot observe these cases, she can the set of feasible exten-

sions She might well decide to ra

As in the Bayesian framework (e.g. the one-shot Kalman filter), the

forecast is represented by a collection of similarity/information weights

and a real-valued suitably additive function on eventualities ˆ cases. 160

In contrast with the Bayesian framework, no prior is assumed: the cur-

rent database of cases is all the predictor needs. Via case resampling

(also known as the standard nonparametric bootstrap), the predic-

tor explores her sample by considering every possible (finite) database

that can be generated from the cases we have observed. At every 165

such database she is endowed with an ordinal plausibility ranking of

eventualities. It is this family of such plausibility rankings allows us

to go beyond ordinal measurement to derive the similarity weighting

functions that parallels the familiar expected utility representation.

More broadly, in contrast with the probabilistic approach, one case 170

does not exclude another and, although the set of cases is supposed to

exhaust the experiences of the predictor, there is nothing to preclude

new cases being added to the model. A basic contribution of the

present paper is to accommodate cases that are novel and distinguish

these from those that are (for the purposes of the present prediction 175
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problem) equivalent to past observations. Cases that are genuinely

novel are conceptually subtle in that, should the predictor have full

access to them, they would no longer be novel: they would form a

part of the predictor’s experience. Since the present axiomatisation

holds for any prediction problem, we model past cases as constants 180

and novel cases as variables (from the view of the predictor).

we cannot simply include them in the if they can be explicitly

modelled

Indeed, as a consequence of the aforementioned case resampling

the expansion of the predictor’s current database to include cases that 185

resemble past cases may change the predictor’s plausibility ranking of

eventualities, but it otherwise leaves the model unchanged.

Indeed, the set of cases grows with the experience of the predictor.

Yet, given the ability to resample cases, a large database is not nec-

essarily a good measure of experience, for if that database consists of 190

identical cases, then the predictions should not change no matter how

many copies we observe. In contrast, a predictor with just a handful

of distinct cases would possess the measure of experience we propose

is

new cases two cases are no mutually exclusive, nor is free to be 195

expanded or These weights are directly related to the data instead of

Information about which eventualities are more plaus is most the

future is most lik Those eventualities that tell us the plausibility of

each object Unlike the probabilistic framework, the predictor ranks the

set of available cases and present a framework derive the appropriate 200

weight for each eventuality ˆ case pair.

The questions we shall address in this paper are as follows: what

makes for an experienced predictor? and should the predictor lack ex-

perience, what are the conditions such that her forecast is represented
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by an additive similarity weighting function? In particular, we extend 205

the axiomatic framework of Gilboa and Schmeidler [4] (henceforth

[GS]) to account for predictors that lack experience.

A search engine ranks one webpage over another if, and only if, it

is a more plausible candidate for the search. In general, a predictor

ranks one eventuality above another if, and only if, she finds it to be

more plausible. The axioms we derive are necessary and sufficient for

the existence of a matrix that assigns a weight to each eventuality ˆ

case pair and that represents the family of plausibility rankings that

make up the forecast in the sense that, for any pair of eventualities x

and x1 and any database of resampled cases D:

x ÀD x1 if, and only if,
ÿ

c PD

vpx, cq ď
ÿ

c PD

vpx1, cq,

where ÀD is the plausibility ranking that is determined by D.1

We refer to the resulting family of (conditional) plausibility rank-

ings as a forecast. Alone, each plausibility ranking is merely ordinal.

Via the axioms, it is the forecast that yields the weights on cases.

These weights provide a subjective measure of the influence of or

similarity between the predictor’s past experiences and the present

prediction problem. Although our basic axioms will allow for more

general representations, we will also identify minimal conditions such

that the weights are unit comparable in the sense that the following

ratio is a unique number for any eventualities x and x1 and any cases

c and c1:
`

vpx, cq ´ vpx1, cq
˘

{
`

vpx, c1q ´ vpx1, c1q
˘

.

When states, events and probabilities summarise the predictor’s

view of the world and its impact on her predictions, each state specifies 210

1In empirical settings ÀD is simply the ordinal content of the empirical likelihood

conditional on D.
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a distinct dimension of the model and the probability distribution

assigns a weight to each dimension. A key feature of [GS], where cases

are primitive, is that the dimensions are endogenous to the problem

at hand. The idea is that, for one prediction problem, two cases may

may be so similar as to considered as equivalent to one another, or 215

of the same case type. For another prediction problem, the same two

cases may no longer be equivalent, each giving rise to different weights

or indeed different plausibility rankings. It is the set of case types that

determines the notion of dimension in the present model.

Our first conceptual extension of [GS] is to consider case types as 220

one measure of experience. The scenarios we describe in example 1

support this interpretation: the search engine with one case type is, in

effect, inexperienced and any resampling of past cases will not change

this fact. It is clear that, the richer the data the search engine has

access to, the more diverse its conditional predictions will be. Yet one 225

forecast is more diverse than another if it contains a greater number of

distinct plausibility rankings. Thus, the diversity of a forecast provides

another measure the predictor’s experience which is distinct from, but

closely related to, case types.

The main contribution of the present work is to allow for forecasts 230

that are nondiverse in the sense that they do not satisfy the diversity

axiom of [GS]. The latter axiom requires that, for every strict or-

dering of four eventualities, there exists a database, conditional upon

which, the predictor’s ranking over all eventualities contains that or-

dering. In [GS], as well as in the closely related models of Gilboa and 235

Schmeidler [3, 2], the diversity axiom is presented as a purely techni-

cal requirement for the desired representation. When diversity fails to

hold, the remaining axioms do not suffice for a matrix representation

that is separable across eventualities. Our answer to this fundamental
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difficulty (which also arises in other settings such as Azrieli [1]), is to 240

ask that the predictor is forward looking. Our predictor is forward

looking if her behaviour can be explained by adding a “novel case” to

the model and studying the “potential extensions” of her forecast.

We conclude the introduction with a brief discussion these con-

cepts and the main axiom to which they give rise. In contrast with 245

a standard case, which determines a plausibility ranking, we define a

novel case to be one that can be associated with any plausibility rank-

ing. Since a novel case is intended to capture cases that lie beyond the

experience of the predictor, its weight in a given a database should be

indeterminate. As such, the plausibility ranking associated with any 250

database that contains a copy of the novel case is also indeterminate.

By assigning a plausibility ranking to this case and to its affiliated

databases, we obtain a (potential) extension of the (current) forecast.

It will suffice to study the extensions that involve three or four even-

tualities. Two extensions will be of the same type if they feature the 255

same degree of diversity or experience. Our main axiom requires that

every extension that satisfies all the necessary axioms of [GS] (with

the possible exception of transitivity), has a modification that is of

the same type and that also satisfies transitivity.

The role of our main axiom, which we refer to as prudence is to 260

exclude the forecasts with extensions that feature essential intransi-

tivities. That is, our predictor fails to be prudent if she (behaves as if)

she fails to foresee that, should a certain case arise, the only way she

can satisfy the [GS] axioms avoid specifying an intransitive plausibil-

ity ranking at some database is to retrospectively change her current 265

forecast or by being dogmatic and ruling out certain plausibility rank-

ings regardless of the data. To borrow from our epigraph, by being

imprudent the predictor may spoil her future action.
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Through examples, we will highlight the ways in which prudence is

strictly weaker than imposing the diversity axiom on the forecast. We 270

will also show that prudence is weaker than potential diversity (the

forecast admits an extension that satisfies the diversity condition).

2 Model

2.1 Framework

Where possible, we adopt the notation and interpretations of [GS]. 275

The first primitive of our model is the nonempty set X of conceivable

eventualities of the present prediction problem. For instance, for a

search engine, an eventuality x P X might be “page such-and-such is

the desired webpage”. Recall that search engines present an ordered

list of plausible webpages, with the most plausible appearing at the 280

top, followed by the second most plausible, and so on. The forecaster’s

present prediction problem is to specify a plausibility ranking on X.

Let R denote the set of binary (plausibility) relations on X.

Current memory The forecaster is equipped with her current

memory I‹. We assume that I‹ is the union of a (possibly empty) 285

finite set of past cases D‹ and a novel, variable case n. The cases

in D‹ collectively represent the forecaster’s relevant observations or

experience. Formally, each c P D‹ is a constant (of arity zero). Re-

call that the arity of a variable, function, operation or relation is the

number of arguments it takes. (E.g. The union operation on sets has 290

arity two and is well-defined independently of any specific domain and

range.)

Our first and most fundamental modification of the primitives of
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[GS] is the inclusion of n in the current memory I‹. We model n as

a variable (of positive arity) with unspecified domain and range, to 295

reflect the fact that the forecaster has no experience of it. We include

n in the current memory I‹ of the forecaster in order to capture the

fact that she is aware of her present prediction problem. This also

allows us to model the case where the forecaster has no (relevant)

data. 300

Plausibility given the data Like [GS], we assume the forecaster

possesses a well-defined plausibility relation ÀD that belongs to R, for

each nonempty D Ď D‹. In contrast, Àn is indeterminate and not,

therefore, a member of R. It is however a well-defined free variable

with values in R. (Like n, the domain of Àn is unspecified.) As such, 305

Àn seems to be an accurate representation of a forecaster that either

has no experience or that chooses to ignore all her experience. Our

purpose is to describe a framework that describes how a forecaster

might exploit her experience and impose constraints on the values

that the variable ÀI‹ can take. 310

Conceivable cases Although the set I‹ of current cases is finite,

the predictor is freely able to resample cases and generate hypothet-

ical memories M in the same way that bootstrapped data sets are

hypothetical samples that a forecaster might have drawn. In princi-

ple, this yields a countably infinite set of cases. In general however, 315

resampling may take place in the ambient set (if any) from which the

cases d P D‹ were drawn. In principle, this allows the set of cases to be

uncountable. Thus, as in [GS], we classify resampled copies of a given

case as distinct cases. Resampling n is a simple matter of including

additional copies of n, which also feature as distinct cases. 320
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Like [GS], our framework is general enough to accommodate a fore-

caster that goes beyond her current memory and includes hypothetical

cases that she has not experienced, but which, through reasoning or

interpolation, she can clearly describe. These hypothetical cases are

formally constant, like members of D‹. Arguably, copies of n are in- 325

conceivable: since they lie beyond the experience of the forecaster and

cannot be fully described (c.f. Karni and Vierø [8] and Halpern and

Rêgo [5, 6]) and do not determine a member of R. In the present

article, a copy of n is well-defined and conceivable in the same way

that a physical sector (the minimum storage unit) of a hard-drive is 330

well-defined: independently of any contents that we may eventually

assign to it.

Let A denote the resulting set of all cases that are relevant to the

current prediction problem. The subset rns Ď A consists of the copies

of n in A. Finally, the set D def
“ A´ rns consists of the set of constant 335

or deterministic cases.

Databases We have in mind what is known as case resampling in

the literature on bootstrapping, where every possible resample of a

given size is obtained. Indeed, like [GS], we go further and allow for

every finite sized database. Let

D def
“ tD Ď D : 0 ă #D ă 8u

denote the set of determinate or constant databases (these are referred

to as memories in [GS]).

Like D‹, each D P D contains no copies of n. Perhaps through

experience, in-sample reasoning, or some algorithm the forecaster pos-

sesses a well-defined plausibility ranking ÀD for each D P D. Thus,

ÀD is the point xÀD: D P Dy in RD,
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where ăD and «D denote the asymmetric and symmetric parts of ÀD.

Let I denote the set of variable or indeterminate databases: those 340

that contain at least one copy of n. Like Àn and ÀI‹ , for each I P I,

ÀI is a free variable with values in R. Although, in isolation, each ÀI

is a free variable, when the axioms we introduce hold, ÀI may well be

constrained, but not determined, by the values of ÀD.

The fact that the empty database H is absent from D means that 345

ÀH is undefined (just as ÀD is not defined when D is infinite). If H

were defined, then a necessary condition for the linear representation

we seek is that x «H y for every x, y P X. We leave ÀH undefined

since our axioms will accommodate the possibility that x ăD y for

everyD P D. Indeed the situation where our forecaster is without data 350

and without a novel case would only seem to be justified when she is

entirely unaware of the prediction problem. We opt to accommodate

this hypothetical scenario and simultaneously simplify our exposition

by including H in the set of extensions of D, which we introduce

shortly. 355

Let A def
“ I Y D Y tHu denote the set of all databases: variable,

determinate and empty. We now define the notion of a case type.

Case types As in [GS], for the present prediction problem, two

cases a and a1 in D are of the same type, written a „‹ a1 if, and

only if, ÀAYa “ ÀAYa1 for every A P A such that a, a1 R A and 360

AY a,AY a1 P D. The proof that „‹ is an equivalence relation on D

follows from the corresponding observation in [GS].

Remark 1. By virtue of the fact that H P A, Àa ‰ Àa1 implies

a ‹ a1. The converse, however, is not true: the notion of case types

is subtle enough to measure strength of similarity. 365
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We extend „‹ to A by taking rns to be an equivalence class of its

own. Finally, as in [GS], we extend „‹ to databases in A, by assuming

that A „‹ A1 if, and only if, there exists an isomorphism f : A Ñ A1

such that a „‹ fpaq for every a in A. In this way, „‹ becomes an

equivalence relation on A. 370

The following assumption ensures there are enough databases to

fully identify the weights on cases. It would not, of course, be expected

to hold in a given application. In practice, we would settle for partial

identification of the weights. It requires that case resampling is such

that every finite memory is feasible. 375

Richness Assumption. For every a P A, there are infinitely many

cases a1 P A such that a1 „‹ a.

Potential extensions The definition that follows will allow for a

precise analysis of the potential impact of novel cases. For any Y Ď X,

let RY denote the set of binary plausibility relations on Y . 380

Definition 1. ÀE “ xÀE : E P Ey is a proper Y -extension if, for

some Y Ď X, there exists an evaluation function ev : A Ñ A ˆRY
such that E “ evpAq and,

1. for every E P E, if E “ Aˆ r, then ÀE
def
“ r;

2. for every D P D, if E “ evpDq, then ÀE “ ÀD X Y 2; 385

3. for every a P A, a „‹ n if, and only if, for every A P A such that

a, n R A, ÀevpAYaq “ ÀevpAYnq.

Let E˚ denote the (unique) improper extension ÀE˚ that satisfies ev :

D Ñ D ˆRX , E˚ “ evpDq, and parts 1 and 2 above.

We often abbreviate and refer to ÀE or indeed E simply as an 390

extension. The latter is a minor abuse of notation since, for any given

16



E , the definition of its associated evaluation function evE ensures that

E “
 

A ˆ ÀevEpAq : A P A
1
(

for A1 “ D or A1 “ A. That is to say,

there is an obvious isomorphism between E and the graph of ÀE . We

let E‹ denote the unique (improper) extension that is isomorphic to 395

the graph tD ˆ ÀD : D P Du of ÀD. As a matter of expedience, we

therefore refer to ÀD, or D, as an extension of itself. We will only refer

to E as a Y -extension when we wish to highlight that the dependence

of E on the subset Y of eventualities that it extends.

For any given extension evpA1q, the most natural union operation

for our purposes is the following: for every A,A1 P A1,

evpAq Y evpA1q
def
“ evpAYA1q.

This union operation applies only to the database dimension of evpA1q. 400

This operation will allow us to combine potential databases indepen-

dently of the orderings that ev associates with the elements of A1.

Let E be arbitrary extension and let „E be the binary relation on

te : e “ evEpaq for some a P Au

such that e „E e1 if, and only if, for every E P E such that e, e1 R E,

ÀEYe “ ÀEYe1 . Like „‹, we extend „E to databases in E by assuming

that E „E E1 if, and only if, there exists an isomorphism f : E Ñ E1 405

such that e „E fpeq for every e P E.

When E “ evpA1q is a proper extension, A1 “ A, so that n P A1,

and, by part 3 of definition 2, evEpnq E evEpcq for every c P D. In

other words, rns forms a distinct equivalence class of „E in evEpAq. In

combination with part 2 of definition 2, this leads to 410

Observation 1. For every Y Ď X, if E and E 1 are two proper Y -

extensions, then „E “ „E 1.
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We shall see that it suffices to consider Y -extensions such that Y

consists of three or four pairwise D-distinct elements in X. For any

x, y P X, x and y are D-distinct if x ffD x1 for some D P D. On the 415

set of subsets Y of X, we define the counting measure Y ÞÑ |Y |D to

be the number of D-distinct elements in Y . Thus, when Y consists of

D-distinct elements alone, |Y |D “ #Y .

2.2 Axioms

In the following axioms, E denotes a given potential extension of D. 420

For reasons that will become apparent, we separate the order axiom

of [GS] into the two classical axioms: transitivity and completeness.

A1 (Transitivity). For every E P E, ÀE is transitive on X.

A2 (Completeness). For every E P E, ÀE is complete on X.

A3 (Combination). For every disjoint E,E1 P E and every x, y P X, 425

together x ÀE y and x ÀE1 y imply x ÀEYE1 y, and if either premise

holds strictly, then x ăEYE1 y.

A4 (Archimedeanity). For every disjoint E,E1 P E and every x, y P

X, if x ăE y, then there exist pairwise disjoint E1, . . . , Ek P E such

that Ej „E E and Ej XE1 “ H for each j ď k and x ăE1Y¨¨¨YEkYE1 y. 430

Recalling that E‹ is isomorphic to D, we note that A1–A4 coincide

with the corresponding axioms of [GS] when E “ E‹. We adopt the

above, more flexible, statement of the above axioms so as to accommo-

date the remaining axiom of our main representation theorem which

relaxes the diversity axiom of [GS]. 435

To the same end, we introduce one final notion. The extension E 1

features the rankings of E if, for every E P E such that ÀE is complete

and transitive, there exists E1 P E 1 such that ÀE1 “ ÀE .
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A5 (Prudence). For every Y Ď X, #Y “ |Y |D “ 3, 4, and every

proper Y -extension E that satisfies A2–A4, there exists a Y -extension 440

that satisfies A1–A4 and that features the rankings of E.

Definition 2 ensures that A5 is a restriction on ÀD. As such, it is

meaningful to say that ÀD satisfies or does not satisfy A5.

3 Results

3.1 Existence 445

Theorem 1. Let there be given X, A and ÀD, as above, satisfying the

richness condition and such that |X|D is countable. Then ÀD satisfies

A1–A5 if, and only if, some matrix v : X ˆ DÑ R satisfies

(i) for every c, d P D, c „‹ d if, and only if, vp¨, cq “ vp¨, dq;

(ii) for every x, y P X and for every D P D,

x ÀD y iff
ÿ

c PD

vpx, cq ď
ÿ

c PD

vpy, cq.

Proof that the axioms are sufficient for a representation. Recall that 450

each equivalence class of „‹ defines a case type. Let T be the set

of equivalence classes of „‹ in A and let S def
“ T´ rns.

Until the final step of the present proof, we work with

Assumption 1. Every pair of distinct elements in X is D-distinct.

In the first step of the proof we translate our model into one where 455

databases are represented by rational vectors, the dimensions of which

are the case types. This translation relies on the axioms, but also

involves a translation of these

Step 1 (Translation of the model to rational vectors).
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Step 1.1 (Databases as integer-valued vectors). We begin

by showing that the set D{„‹ of equivalence classes of „‹ in D is

isomorphic to the subset I Ĺ ZS
ě0 of nonnegative integer-valued vectors

J : SÑ Zě0 such that 0 ă #ts : 0 ă Jpsqu ă 8.

Take any J P I. Then for some s1, . . . , sk, there exists n1, . . . , nk 460

such that Jpsjq “ nj for j “ 1, . . . , k. Similarly, by the richness

assumption and the definition of D, there exists DJ P D such that

#tc P D : c P sju “ nj for j “ 1, . . . , k. Let i : D Ñ I denote the

surjection DJ ÞÑ J for each J P I. We wish to take ÀipDq “ ÀD. The

next lemma confirms that ÀJ is well-defined member of R for each J . 465

It implies that the quotient space D{„‹ is isomorphic to the set I.

Lemma 1. For every C,D P D, C „‹ D implies ÀC “ ÀD.

Proof of lemma 1. For the case where C “ tcu and D “ tdu,

ÀC “ ÀD follows directly from the definition of „‹ and the fact that

H P A. For the case where #D ą 1, the proof proceeds by induction. 470

Suppose that the lemma holds for pairs of databases of cardinality k.

Take C and D to be of cardinality k ` 1 and such that C „‹ D. Let

f : C Ñ D be the bijection that satisfies c „‹ fpcq for each c P C.

By the induction hypothesis, C 1 „‹ fpC 1q for some C 1 Ă C such that

#C 1 “ k. Then C ´C 1 “ tc1u for some c1 such that c1 „‹ fpc1q. Since 475

C is the disjoint union of C 1 and c1 and D is the disjoint union of

fpC 1q and fpc1q, it follows that ÀC “ ÀD, as required.

For each s P S, let Js P I denote the basis vector for dimension s,

so that Jspsq “ 1 and Jsps1q “ 0 for every s1 ‰ s.

Claim 1. For every s P S, ÀJs “ Àc for every c P s. 480
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Proof of claim 1. Let D P D be such that ipDq “ Js. Then, by

step 1.1, #D “ 1, so that D “ tcu and Àc “ ÀJs for some c P s.

Since c1 „‹ c for every c1 P s, lemma 1 implies that Àc1 “ Àc for every

such c1.

Recall that the discrete union operation is algebraically equiva- 485

lent to addition (e.g. ??). We may therefore let A1,A2 and A3 ap-

ply directly to pI,`q and, by lemma 1, rewrite A4 as follows. If

ipC1q “ J “ pn1, . . . , nkq and C1, . . . , Ck are pairwise disjoint and

„‹-equivalent, then ipC1 Y ¨ ¨ ¨ Y Ckq “ pk ¨ n1, . . . , k ¨ nkq “ kJ. Thus

A41 (Archimedean axiom). For every J, J 1 P I and every x, x1 P Y , if 490

x ăJ x
1, then there exists k P Zą0 such that x ăkJ`J 1 x

1.

Like [GS], we refer to the following basic result as

Claim 2. For every J P I and k P Zą0, ÀkJ “ ÀJ .

(For any given k, the proof of claim 2 follows via k´1 applications

of A3.) Claim 2 is essential for the next substep. 495

Step 1.2 (The [GS] axioms for rational-valued vectors).

Take J Ď QS
ě0 to be the set of nonnegative rational-valued vectors

J such that 0 ă #ts : 0 ă Jpsqu ă 8. Fix J P J such that 0 ă

Jpsjq “ qj for j “ 1, . . . , k. Since k is finite, there exists a minimal

κ P Zą0 such that κ ¨ qj P Zą0 for j “ 1, . . . , k. For each J P J, let 500

KJ
def
“ κ ¨ J belong to I. Then the map J ÞÑ ÀJ

def
“ ÀKJ

is well-defined

and ÀJ “ xÀJyJPJ belongs to RJ.

Claim 3. For every J P J and q P Qą0, ÀqJ “ ÀJ .

Proof of claim 3. We wish to apply claim 2. Let J 1 def
“ qJ and take

j, κ, κ1 P Zą0 such that κJ “ K P I and q “ j
κ1 . Since κ1J 1 “ jJ , we 505

have κ ¨ pκ1J 1q “ κ ¨ pjJq “ jK and, by claim 2, ÀJ 1 “ ÀK “ ÀJ
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Together, A1-A3, A41 and claim 3 ensure that ÀJ satisfies

Claim 4.

A1˚ For every J P J, ÀJ is transitive on X,

A2˚ For every J P J, ÀJ complete on X, 510

A3˚ For every J, J 1 P J, every x, x1 P X and every q, q1 P Qą0, if

J2 “ qJ ` q1J 1, x ÀJ x
1 (x ăJ x

1) and x ÀJ 1 x
1, then

x ÀJ2 x
1 (x ăJ2 x

1),

A4˚ For every J, J 1 P J and every x, x1 P X if x ăJ x1, then there

exists q1 P QX p0, 1q such that

x ăp1´qqJ`qJ 1 x
1 for every q P QX p0, q1q.

Proof of claim 4. Of A1˚–A4˚, only A4˚ does not follow directly from

the preceding arguments. Note that A41 and the construction of ÀJ

ensure that x ăκK`K1 x
1 for some κ P Zą0 and K,K 1 P I such that

jJ “ K and j1J 1 “ K 1 for some j, j1 P Zą0. Let z
def
“ 1

κj`j1 . Then take

q1 “ zj1 P QX p0, 1q and note that 1´ q1 “ zκj. Moreover,

J2
def
“ p1´ q1qJ ` q1J 1 “ zpκK `K 1q.

Since z P Qą0 and κI ` I 1 P J, claim 2 implies ÀJ2 “ ÀκI`I 1 . Thus,

x ăJ2 x
1, as required. Finally, take any q P QXp0, q1q. If it is the case

that p1´qqJ`qJ 1 is rational combination of J and J2, then, via A3˚,

x ăJ x1 and x ăJ2 x
1 together imply x ăp1´qqJ`qJ 1 x

1, as required.

From basic properties of the the real numbers, there exists µ ă 1 such 515

that q “ µq1 and, moreover, µ is rational. Then p1 ´ qqJ ` qJ 1 “

p1´ µqJ ` µJ2 follows from the fact that q1pJ 1 ´ Jq “ J2 ´ J .
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Step 1.3 (Y -extensions and A5 for rational-valued vectors).

For a given extension E , let TE denote the set of equivalence classes

of „E . Observation 1 ensures that, for every Y Ď X, if E and E 1 are 520

two proper Y -extensions, then the associated sets of case types are

identical. As such, for every Y Ď X, the notation TY is well-defined

to be the set of types generated by any given proper Y -extension E .

In turn, we let SY
def
“ TY ´rns. The statements of step 1.1 and step 1.2

carry over to arbitrary Y Ď X. 525

Let LY be the set of vectors

L : TY Ñ Qě0 such that 0 ă #ts : 0 ă Lpsqu ă 8.

The following is a translation of definition 2 to setting of rational

vectors.

Definition 2. ÀLY
“ xÀL : L P LY y is a proper Y -extension if, for

some Y Ď X, there exists a function ev : LY Ñ RY , such that

1. for every L P LY , ÀL
def
“ evpLq; and 530

2. for every J P J, if L “ J ˆ 0, then ÀL “ ÀJ X Y 2.

By step 1.1 and step 1.2, we are able to translate A5 into a state-

ment involving rational vectors.

A5˚ For every Y Ď X, #Y “ |Y |D “ 3, 4, and every proper Y -

extension ÀLY
that satisfies A2˚–A4˚, there exists a Y -extension 535

that satisfies A1˚–A4˚ and that features the rankings of ÀLY
.

Step 2 (#S ă 8 and #X “ 2). When S is finite, J coincides

with QS
ě0 ´ t0u. Throughout the sequel, whenever the set to which

J belongs is suppressed, it is understood that J P J. We begin by

extending lemma 1 of [GS] to allow for the fact that the Diversity 540

axiom of [GS] may not hold.
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Lemma 2. For every x, x1 P X, there exists vxx1 , vx1x P RS such that

1. F xx1`

def
“ tJ : x ÀJ x

1u “

!

J : 0 ď J ¨ vxx
1
)

2. Gxx1`

def
“ tJ : x ăJ x

1u “

!

J : 0 ă J ¨ vxx
1
)

3. vx1x “ ´vxx1. 545

Proof of lemma 2. Fix an arbitrary pair x ‰ x1 in X. If Gxx1` and Gx1x`
are both nonempty, then the Diversity axiom holds for x, x1 and our

proof follows from that of lemma 1 of [GS]. W.l.o.g., we henceforth

assume that Gx1x` “ H. By assumption 1 and the previous steps, Gxx1`

is nonempty. (Note that the case where assumption 1 does not hold 550

for x and x1 is easily accounted for by taking vxx1 “ 0).

Recall the definition of the basis vectors tJs : s P Su of claim 1. By

A1˚ and the assumption that Gx1x` “ H, S is the disjoint union of

Să
def
“ ts : x ăJs x

1u and S«
def
“ ts : x «Js x

1u. Take any vxx1 such that

vxx
1

psq ą 0 if s P Să and vxx1psq “ 0 otherwise. Since J ¨ vxx1 ě 0 for 555

every J P J, part 1 of the lemma holds.

For part 2 of the lemma we will show that J ¨ vxx1 “ 0, if, and

only if, x «J x1. Fix an arbitrary J P J and let SJ
def
“ ts : Jpsq ą 0u

and note that SJ is nonempty because J P J. It suffices to show that

SJ Ď S« if, and only if, x «J x1. Let 1, . . . , k be an enumeration 560

of SJ , and let J1, . . . , Jk be the corresponding basis vectors. Then

J “ q1J1 ` ¨ ¨ ¨ ` qkJk for some q1, . . . , qk. If SJ Ď S«, then x «Jj x1

for every j “ 1, . . . , k and k ´ 1 applications of A3˚ yield x «J x1.

Now suppose that Jpsq ą 0 for some s P Să, so that SJ Ę S«. Then,

for some j, x ăJj x
1. Since Gx1x` “ H, we have x ÀJi x

1 for every i ‰ j 565

and, via k ´ 1 applications of A3˚, we obtain x ăJ x
1.

For part 3, let vx1x def
“ ´vxx

1 . Then vx
1x itself satisfies part 2 of

lemma 2 since both Gx1x` and
!

J : 0 ă ´J ¨ vxx
1
)

are empty. In turn,
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this implies that F x1x` “ tJ : x «J x
1u, and the preceding paragraph

implies that vx1x satisfies part 1. 570

Lemma 2 completes the proof that the axioms are sufficient for a

representation when #S ă 8 and #X “ 2. This completes step 2.

For every x, x1 P X, let Nxx1
`

def
“ tJ : x «J x

1u. For each x, x1 P X

and each vxx1 that satisfies lemma 2, let

Gxx
1

v
def
“

!

J P RS : 0 ă J ¨ vxx
1
)

and Hxx1

v
def
“

!

J P RS : J ¨ vxx
1

“ 0
)

.

By assumption 1, vxx1 ‰ 0 and Hxx1
v is a well-defined hyperplane.

If uxx1 is another vector that satisfies the conditions of lemma 2

and, for every λ P R, uxx1 ‰ λvxx
1 , then Hxx1

u and Hxx1
v are distinct 575

hyperplanes. The three mutually exclusive sufficient conditions for

Hxx1
v to be the unique hyperplane that contains Nxx1

` are as follows:

• Both Gxx1` and Gx1x` are nonempty (the setting of [GS]); or

• S´ Sxx1« is a singleton; or

• Gxx1` “ H and |S ´ Sxx1« | ą 1, but, via the axioms, Hxx1
v is 580

determined by tNy z : y ‰ x or z ‰ x1u .

The scenarios that arise when the last of these conditions holds is

central to the arguments that follow.

Step 3 (#S ă 8 and #X “ 3). Let X “ tx, x1, x2u. We break this

step down into three substeps: #S “ 1, 2 and 3 ď #S ă 8. 585

Step 3.1 (#S “ 1). Fix J P J. Then, since theorem 1 requires that

|X|D is countable, A1˚ and A2˚ alone suffice for the existence of a

function vJ : X Ñ R such that, for every y, z P X,

y ÀJ z if, and only if, vJpyq ď vJpzq.
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Since #S “ 1, the definition of „‹ implies that ÀJ “ ÀJ 1 for every

J, J 1 P J. Now take v : X ˆ S Ñ R to satisfy vp¨, sq “ vJp¨q for every

s P D. Then, by construction, v satisfies (i) and (ii) of theorem 1.

Since #S “ 1, A3˚ and A4˚ both follow from the observation

ÀJ “ ÀJ 1 for every J, J 1 P J.

It remains to be shown that, in the presence of A1˚ and A2˚, the same

is true of A5. For if the same is true, then the set of ÀJ that satisfy 590

A1˚ and A2˚ coincide with the set of ÀJ that satisfy A1˚–A5˚. Then

the preceding paragraph completes the proof, since A1˚–A2˚ hold if,

and only if, there exists a representation that satisfies (i) and (ii).

Step 3.2 (#S “ 2). Recall that 0 R J and suppose that Nxx1 X

Nxx2 X Nx1x2 contains some vector J . Then, since #S “ 2, Nxx1 “ 595

Nxx2 “ Nx1x2 by claim 2. Let H be the hyperplane generated by 0

and J and let G and G1 be the respective open half spaces generated

by H. W.l.o.g., let px, x1qpx1, x2q be the pre-chain associated with

G. Then px2, x1qpx1, xq is necessarily the pre-chain associated with

G1. Clearly, the vectors we need should generate the open half spaces 600

Gxx
1

v , Gx1x2v and Gxx2v all equal to G. Let vx “ 0 and take vx1 P HK

(the linear space that is perpendicular to H) such that J ¨ vx1 ą 0 if,

and only if, J P G. Finally, take vx2 “ 2vx
1 . Then, for every J P RS,

J ¨ pvx
1

´ vx
2

q ą 0 if, and only if, J P G, as required.

If on the other hand Nxx1 X Nxx2 X Nx1x2 “ H, then assump- 605

tion 1 and the arguments of the previous paragraph together imply

that any triple of vectors v¨¨ def
“

 

vij : i, j P X
(

that represent ÀJ gen-

erates three distinct hyperplanes H ij
v . By claim 2, the arrangement

 

H ij
v : i, j P X

(

is linear. Since #S “ 2, any two of the three vec-

tors span RS (and thus the third vector). The arguments of lemma 2 610

[GS] then suffice to show that v¨¨ can be chosen so as to satisfy the
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Jacobi identity ******that we discuss****** next as part of the proof

for the scenario #S ě 3.

Step 3.3 (3 ď #S ă 8). First consider the scenario where every

representation v¨¨ of ÀJ fails to satisfy the Jacobi identity. That is, 615

vxx
1

`vx
1x2 ‰ vxx

2 . Then every representation v¨¨ is such that the three

vectors in v¨¨ are linearly independent and there is no representation

of ÀJ that satisfies theorem 1.

Fix an arbitrary representation v¨¨. By linear independence, the

hyperplanes form a linear arrangement that is in general position. As 620

such, by Zaslavsky’s theorem and the fact that #S ě 3, they separate

RS into the maximal number of regions: eight. Thus, in addition to

the 3! “ 6 regions regions where, together, 0 ď J ¨vxx
1 and 0 ď J ¨vx

1x2

imply J ¨ vxx2 ă 0, there exists an open cone G such that, for every

J P G, 0 ď J ¨ vxx
1 , 0 ď J ¨ vx

1x2 and J ¨ vxx
2

ă 0. The fact that 625

G Ă RS ´ RS
ě0 follows from A1˚-A4˚.

Since the arrangement is linear, every neighbourhood N0 of 0 in

RS has nonempty intersection with every chamber in the arrangement.

We will now derive a violation of A5.

Let L “ QT
ě0´t0u. We choose α¨¨ def

“
 

αij : i, j P X
(

such that, for 630

each i, j P X, xpv ˆ αqij , Ly “ 0 for some strictly positive L P L. This

is possible by lemma 3. Endow L with the subspace topology, so that

G Ď L is open if, and only if, G “ L X G1 for some open G1 Ă RT.

Take any neighbourhood NL Ă L of L.

In this paragraph, we will show that there is an isomorphism be- 635

tween the set of chambers that v¨¨ generates in RS and the set of

chambers that pv ˆ αq¨¨ generates in NL. Pick a chamber G of v¨¨

and an arbitrary member J P G. Then J ˆ 0 P RT and the ordering

of X implied by the inner products xv¨¨, JyS and the inner products
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xpv ˆ αq¨¨, J ˆ 0yT is the same. Let Kλ : r0, 1s Ñ L be the map 640

λ ÞÑ p1´ λqpJ ˆ 0q ` λL. Then, for every λ ă 1, the ordering implied

by xpvˆαq¨¨,KλyT coincides with the ordering at J . Finally note that,

for some λ sufficiently close to one, Kλ P NL. Since G was arbitrary,

this completes the argument.

Let ÀE be the extension that satisfies y ÀL z if, and only if, 0 ď

xpv ˆ αqy z, LyT. We have shown that every pre-chain features in E .

Moreover, E satisfies A2–A4. Now suppose that A5 holds, so that

there exists E 1 that satisfies A1–A4 and that features the rankings of

E . But then E 1 on L satisfies the diversity condition and hence all the

axioms of [GS]. This in turn implies the existence of a representation

u : X ˆ TÑ R such that, for every y, z P X and every L P L,

xuy, LyT ď xu
z, LyT if, and only if, y ÀL z,

where ÀL is determined by E 1. Now consider the restriction w : X ˆ 645

S Ñ R of u such that wp¨, sq “ up¨, sq for every s P S. Then let

wxx
1

“ wx
1

´ wx, wx1x2 “ wx
2

´ wx
1 and wxx

2

“ wx
2

´ wx. It is

clear that wxx2 “ wxx
1

` wx
1x2 , so that the Jacobi identity holds.

Finally, we arrive at the desired contradiction by noting the definition

of an extension is such that E 1 and E coincide on J, so that w¨¨ is a 650

representation of ÀJ that satisfies the Jacobi identity.

******************************************

The goal of our proof is to show that the Jacobi identity vxx2 “

vxx
1

` vx
1x2 holds for some

 

vij P RS : i, j P X
(

. If this identity holds,

then we may choose vx “ 0 and vx
1

“ vxx
1 and vx

2

“ vxx
2 . Then, 655

for i “ x1, x2, J ¨ vx ď J ¨ vi if, and only if, x ÀJ x1. Moreover,

since vx1x2 “ vx
2

´ vx
1 and 0 ď J ¨ vx

1x2 if, and only if, x1 ÀJ x
2, we

see that the vectors
 

vi P RS : i P X
(

are suitable for our purpose. In

particular, to obtain a matrix v : X ˆ D Ñ R that satisfies both (i)
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and (ii) of theorem 1, let vpx, cq “ 0 for every c P D; and, for i “ x1, x2 660

and for each s P S, let vpi, cq “ vipsq if, and only if, c P s.

We recall some facts about hyperplane arrangements (see Orlik

and Terao [10]). Let H “ tH1, . . . ,Hnu denote an arrangement of n

distinct hyperplanes in RS and let chpHq denote the set of chambers

(nonempty components) of RS ´
Ťn
i Hi by chpHq. We will only need 665

to consider the subarrangements B Ď H such that |B| “ 3, 4. In our

setting, for |B| “ 3, a typical example of a chamber will be the set

tD : x ăD y ăD zu. H is a linear arrangement iff 0 P
Şn
i Hi. When

H is linear, each of its chambers is an open cone in RS.

We also introduce some notions that are useful for the arguments 670

that follow. H1 “ tH 11, . . . ,H 1nu is an extension of H in RT iff RS X

H 1i “ Hi for i “ 1, . . . n. Similarly, G1 P chpH1q extends G P chpHq

if RS X G1 “ G. We will also find it useful to refer to the empty

chambers echpHq of H. These are “chambers” that are empty because

the hyperplanes intersect in a given way. For instance, when A1 holds, 675

the set tD P D : x ăD y ăD z ăD xu is empty. (Indeed, A1 ensures

that Hxy X Hyz Ď Hxy X Hyz X Hxz, so that the two are in fact

equal.) For |B| “ 3, when chambers are indexed by strict rankings,

the largest possible number of chambers is 8: 3! transitive orderings

and 2 cycles. Note that all 6 transitive orderings are only attainable 680

if |T| ě 3, that is if |S| ě 2. For |B| “ 3, when chambers are indexed

by strict rankings, the largest possible number of chambers is 8: 3

transitive orderings and 2 cycles.

The following lemma captures the key consequence of A5: that any

inconsistency that is hidden in ÀD is revealed by some ÀevpAq. In this 685

lemma, open means relative to the weak‹ topology on RT. We recall

that this is the weakest topology such that the function xv, ¨y : RT Ñ R
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is continuous for every v in the dual space
`

RT˘˚.

We will appeal to the contrapositive of the lemma that follows.

That is, we require that if every no necessary intransitive chamber is 690

revealed by any full extension, then there is no “hidden chamber” that

is intransitive. In this case, the Jacobian identity holds on RS and we

may apply the results of [GS] en route to proving sufficiency of the

axioms.

Lemma 3. Let H be a linear arrangement in RS. If G P chpHq, then 695

there is a linear extension H1 of H in RT such that G1 X RT
ą0 is a

nonempty open cone, where G1 P chpH1q extends G.

Proof of lemma 3. Take n vectors u1, . . . , uk P
`

RS˘˚, each normal

to a hyperplane of H, and such that, for every J P G and every

k “ 1, . . . , n, the inner product xuk, Jy is positive. ‘ For each α P R 700

and k, let uk ˆ α denote the corresponding vector in
`

RT˘˚. Let

J 1 “ Jˆ j be any (strictly) positive vector in RT and fix k. Note that,

for each α P R, xuk ˆ α, J 1yT “ xuk, JyS ` α ¨ j. Since xuk, JyS P R

and j ą 0, there exists αk ą 0 such that xuk ˆ αk, J 1yT is positive.

By continuity of the map J2 ÞÑ xuk ˆ αk, J2yT, there exists an open 705

neighbourhoodGk of J 1 such that xukˆαk, J2yT ą 0 for every J2 P Gk.

The preceding argument holds for k “ 1, . . . , n and, since n is finite,

G “
Şn
k Gk is open an open neighbourhood of J 1 in RT. It remains

to show that we can form a nonempty cone. For every positive ρ P R,

every J2 P G and every i “ 1, . . . , n, the inner product xukˆαk, ρJ2yT

is positive since it is equal to ρ ¨ xuk ˆ αk, J2yT. Let

G1 “
!

J 1 P RT
ą0 : xu

k ˆ αk, J 1yT ą 0 for k “ 1, . . . , n
)

.

We conclude that G1 is the required extension of G by the following

observation: for each J P G, if J 1 “ J ˆ 0, then xuk ˆ αk, J 1yT “

xuk, JyS for each k. This completes the proof of lemma 3.
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By lemma 3, the linear arrangements generated by ÀD satisfying 710

A1-A5 are transitive. That is,

Lemma 4. For every triple x, y, z P X, the intersection of half spaces

BxyXByzXBzx Ď RS generated by HÀD has empty interior whenever

it is determined.

Proof of lemma 4. Suppose otherwise that G def
“ AxyXAyzXAzx ‰ 715

H for some x, y, z P X. Note that this is only possible if |S| ě 3. (For

if |S| “ 2, then G ‰ H and the fact that 0 P Hxy XHyz XHzx implies

that, for each i ‰ j in tx, y, zu, dimH ij is indeed a hyperplane: of

dimension 1.)

Then lemma 3 implies the existence of a linear extension H1x,y,z
such that the corresponding intersection A1xyXA1yzXA1zx Ď RT

ą0 is a

nonempty open cone and such that w.l.o.g. H 1xyXH
1yz is a nonempty

subset of RT. Then let E be the extension of D that is restricted to

the complement in NT of the union of the two intransitive chambers

A
1xy XA

1yz XA
1zx and W 1

xy XW
1
yz XW

1
zx in H1x,y,z.

and such that x ÀD y if and only D P A1xy XNT and similarly for the 720

pairs py, zq and px, zq. Then, by construction, ÀE satisfies A1–A4.

It remains to be shown that there is no extension ÀevpAq of ÀE

for which A1–A4 holds. We will show that there is only one full

extension ÀevpAq of ÀE that satisfies A3 and A4: the one that satisfies

x ăD y ăD z ăD x for for every D P A
1xy X A

1yz X A
1zx X NT. (This 725

will complete the proof because A1 does not hold for ÀevpAq.)

It suffices to show that each of the hyperplanes in H1x,y,z is deter-

mined. W.l.o.g., we show that it is true for Hxy. x ăD y Since A1–A4

hold on D and members of H1 are hyperplanes, in the subspace topol-

ogy (obtained by considering NT as a topological subspace of RT, there 730

is an nonempty open neighbourhood G of D on which A1–A4 holds.
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The next lemma captures an important effect of ??: that chambers

that are hidden in

Lemma 5. Let H be a transitive linear arrangement in RS and let 735

B Ď H satisfy |B “ 4|. If there exists a linear extension B1 of B in RT

such that |chpB1q| “ 24, then |chpHq| ą 12.

Proof of lemma 5.

In case 1, case 2 and case 3 condition ?? and ?? hold vacuously.

Case 1 (|X| “ 1). Since X “ txu, A1 and A2 together ensure that 740

ăD is empty for every D P D. Thus, there is only one type of case in

D (|T| “ 2) and the zero matrix satisfies conditions (i) and (ii).

Conversely, for any v that satisfies the conditions, (ii) implies that

x «D x for every D P D and so once again there is only one type of

case in D and ?? and A3 hold. (A4 holds vacuously.) For A5, we 745

suppose that ÀE is an arbitrary extension of ÀD that satisfies ??–A4

and prove that the conclusion of A5 holds. Clearly, if ?? holds on E ,

then x «D x for every D P E . Moreover, if we take evpAq such that

x «D x for every D P evpAq, then A5 holds.

Case 2 (|X| “ 2). Let X “ tx, yu. For the subcase where x «D y 750

for every D P D, the arguments of case 1 apply. Consider the subcase

where x ăD y for every D P D. In this case, like in case 1 there is

only one case type in D. Let vpx, ¨q be the zero vector in RD and,

similarly let vpy, ¨q be a vector of ones. Then conditions (i) and (ii)

hold. Conversely, suppose that ÀD are represented by the latter pair 755

of vectors. Then ăD for every D P D. Thus, our only remaining

concern is to show that A5 holds.
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Case 3 (|X| “ 3).

Case 4 (|X| ě 4 and |T| ď 3). Since both the axioms and the

representation fail to hold, the proof of this case is complete. 760

Case 5 (|X| ě 4 and |T| ě 4).

Step 4 (Necessity).

3.2 Uniqueness

A forecaster with just one case type reveals that her experiences are 765

perhaps insufficiently diverse to do case-based prediction with the

above model. It is not that our representation precludes such a predic-

tor, but rather the fact that the best we can hope for without resorting

to further conditions on preferences and on the space of eventualities,

is an ordinal representation. There is no hope of deriving a weighting 770

function that is suitably unique except in the rather exceptional and

uninteresting scenario where there are no D-distinct elements in X.

One could argue that our Zoologists in the black swan example have

a single case type, especially if there are just two eventualities (the

swans are either black or white). On the other hand, one could also 775

argue that a more careful examination of the data would reveal that,

black-and-white swans had already been discovered in South America

long before 1697. This would constitute a second case type and war-

rant a departure from any model that predicts all swans are white for

every subsample. (Though there would still be no evidence to suggest 780

that all the swans in New Holland are black.)

A6 (Weak 2-Diversity). For every x, y P X, if there exists D P D such

that x ăD y, then there exists D1 P D such that y ăD1 x.
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When A6 holds, the scenario of a single case type only arises if

there are no D-distinct elements in X. Thus, the following corollary 785

holds regardless of the number of case types.

Corollary 1. If v : XˆDÑ R satisfies (i) and (ii) of theorem 1 and

A6 holds, then for every w : XˆDÑ R that satisfies (i) and (ii), there

exists λ ą 0 and, for each c P D, µc P R such that wp¨, cq “ λvp¨, cq`µc.

There are significantly weaker conditions than A6 that deliver 790

uniqueness in the sense of corollary 1. In the following discussion

we identify the minimal condition for identifying a unique matrix rep-

resentation even though this is not a behavioural condition, it is useful

since it also provides a simple way to test the model.

4 Discussion 795

4.1 Comparison with other approaches

The neo-Bayesian framework of Schmeidler [12], Quiggin [11] and

many others since allows for ambiguity or nonuniqueness of beliefs,

but it still assumes the predictor has a complete description of the

states of the world. Updating of beliefs remains a futile exercise 800

if states were absent in the first place. By allowing for nonstan-

dard state spaces, where the set of states an agent has access to is

nonexhaustive, the literature on unawareness of FH-Unawareness,

DLR-Nonstandard_state_spaces, Heifetz, Meier, and Schipper

[7] comes much closer to addressing the present concerns. Indeed, by 805

allowing the agent to explicitly model the fact that the predictor ac-

knowledges the possibility that her set of states is nonexhaustive, this

literature would seem to address all the concerns that the predictor

will confront in a large world setting.
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However, there is also complexity to consider. Games of incomplete 810

information where there is uncertainty about a single proposition, but

where infinite hierarchies of knowledge are relevant, yield uncountably

many states of the world. Even a player that is aware of this fact can-

not accommodate such complexity and, from a positive (as opposed to

normative) perspective, it is unreasonable to expect players to reason 815

up through hierarchies of knowledge unless she has found it fruitful to

do so in the past.

Finally, as [GS]point out,

A Proofs
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