
Persuasion for the Long-Run∗

James Best † Daniel Quigley‡

2nd August 2017

Abstract

We examine a persuasion game where concerns about future credibility are the
sole source of current credibility. A long-run sender plays a cheap talk game with a
sequence of short-run receivers. Even with perfect monitoring, long-run incentives
do not perfectly substitute for ex-ante commitment to reporting strategies at the
stage game. We then show that different methods of augmenting or garbling history
can better harness long-run incentives and expand the Pareto frontier. In particular,
a ‘review aggregator’ can implement average payoffs and information structures
arbitrarily close to those available under ex-ante commitment. Finally, we examine
applications to e-commerce and finance.

Keywords: Bayesian Persuasion; Cheap Talk; Mechanism Design; Repeated
Games.
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The cost of being caught lying today is being ignored tomorrow. What are the limits of
communication and persuasion when the desire to persuade people in the future is the
only source of credibility today?

The power of these long-run incentives depends on what people observe about the
historical accuracy of a person’s past claims. One might naturally suppose that a complete
public history will be the most efficient source of credibility. Yet, online rating systems like
e-Bay, Airbnb, and Tripadvisor provide aggregate statistics in the form of star ratings.
Similarly, the financial industry requires brokerages to produce aggregate statistics of
their past advice. Is something lost by using such aggregates? Or is it possible that
garbling history can generate more efficient communication and persuasion?
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To answer these questions we develop a long-run persuasion game where a long-run
sender (‘he’) plays a sequence of pure cheap talk games with short-run receivers (each
‘she’). Each period a payoff relevant state is independently drawn. The sender observes
this state and chooses a message to send to the receiver, who then chooses an action based
on her beliefs. The sender has preferences only over the receiver’s action. Receivers
observe all prior messages and a signal about each prior state. We say monitoring is
perfect when the signal is noiseless, and imperfect when the signal is noisy. Importantly,
we focus on short-run receivers so the sender can only influence actions via beliefs about
stage payoffs i.e. via persuasion.

Our first main result is that, even under perfect monitoring, long-run incentives do
not generally substitute for the exogenous commitment introduced by Kamenica and
Gentzkow [2011] (KG hereafter). We derive upper bounds on the sender’s payoff in any
equilibrium and moreover provide strategies that implement these bounds. We show
that a patient sender can achieve the same average payoffs with long-run persuasion if
and only if the optimal information structure under commitment is partitional i.e. a
deterministic mapping from the state space to the message space. To see this, suppose
the sender strictly prefers receivers to take one of two actions. A partitional information,
structure such as truth-telling, can be enforced under perfect monitoring with an off-
path punishment of never being believed in the future after his first lie. However, a
non-partitional information structure requires that the sender mix between the ‘truth’
and a ‘lie’ in some state. Unlike persuasion with commitment such mixing requires
indifference between the two messages. This indifference is achieved by punishing the
sender for sending the message that induces the preferred action. Hence, there is costly
on path punishment and the sender get’s lower expected payoffs than in KG.

We then show the sender can do better if we use a novel mechanism that we call a ‘coin
and cup’ to augment the history with a temporary informational asymmetry. The ‘coin’
is a payoff irrelevant random variable with a known distribution. Each period the coin
realizes a value which is privately observed by the sender and hidden from the receiver
(covered by the ‘cup’). The sender then gives advice and the receiver acts. The cup
is then lifted, publicly revealing the value of the coin. Any non-partitional information
structure can now be converted into a partitional one by deterministically mapping both
the state and the coin realizations into messages. Under perfect monitoring there is
no on path punishment and we achieve the commitment payoffs - providing a potential
micro-foundation for the commitment assumption in KG.

Our second main result is that, when monitoring is imperfect, a ‘review aggregator’
can implement equilibria arbitrarily close to the payoffs and information structures fea-
sible under commitment – dominating the complete history benchmark discussed above.
Review aggregator achieves this by garbling histories. It provides a binary aggregate
rating, good or bad, of the sender’s past behavior. Critically, the receivers see nothing
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but the rating. A ‘good phase’ lasts many periods at the end of which there is a statis-
tical test of the sender’s reports and states. If the test is passed then there is another
good phase. If the test is failed the rating switches to bad, which induces a babbling
equilibrium for a fixed finite number of periods. Like Radner [1986] we use very long
‘good phases’ to statistically monitor the sender almost perfectly. However, unlike Rad-
ner [1986], we find a way of doing this with short-run players. We then characterize
the sender’s optimal strategy and show that it induces an average information structure
which ensures he nearly always passes the test. Moreover due to the garbling of history,
this average information structure can be enforced by short-run receivers with almost no
on-path punishment.

One might think such a review strategy can be implemented without a review aggre-
gator - it cannot. When a short-run receiver observes the full history she only believes
the sender’s message if the sender receives an expected punishment at least equal to
the additional stage payoff of his best deviation at that history. As monitoring is im-
perfect this results in significant on-path punishment at every period even if the sender
behaves.1 This result follows Fudenberg and Levine [1994]: when players are short-run,
payoff sets under imperfect monitoring are generally a strict subset of those under perfect
monitoring.

The review aggregator tackles this problem by allowing the receivers to monitor the
sender’s behavior while still being ignorant of the complete history. Our key insight is
that this can be used to make receivers uncertain over their position within a review
phase to the extent that they can only best respond to the average information structure.
Consequently, the sender’s advice is still obeyed while simultaneously allowing him a
very small amount of deterministic violations. This very small amount of flexibility over
the incentive compatibility constraints of both sender and receivers allows us to expand
the equilibrium payoff set, reclaiming the full commitment payoffs.2 Moreover, the class
of aggregation rules we study allows for a tractable characterization of both sender and
receiver strategies in equilibrium.

These results speak to the value of aggregate statistics in online markets. According
to data from the US Bureau of the Census, sales on e-Commerce websites - such as
eBay, Amazon, Alibaba, and so on - have risen from 0.5% in 1999 to almost 9% of retail
sales in 2016. An important function of these trading platforms is that buyers can leave
reviews regarding the accuracy of product descriptions which are then turned into coarse
aggregate measures of past behavior. Our results imply that, if done correctly, this kind of

1This is true for partitional and non-partitional information structures. Hence, it also holds when
we have a coin and a cup. However, we will see later that the coin and cup still expands the Pareto
frontier under imperfect monitoring - reducing on path punishment due to both mixing and imperfect
monitoring - but it still does not recover the full commitment payoffs.

2Long-run players are capable of taking actions which are not best-responses at the stage game. This
provides them with an ability to make transfers between periods so that they can commit to a review
strategy.
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aggregation can significantly increase trade. Furthermore, whether or not these platforms
manage their ratings in the manner above, they do have the power to implement such a
rating system.3

As a further example, consider the credibility of financial advice. A common problem
is that investment brokerages (sender) have incentives to ‘oversell’ products to their clients
(receivers) and are far too optimistic in their recommendations [Dugar and Nathan, 1995,
Lin and McNichols, 1998, Michaely and Womack, 1999, Krigman et al., 2001, Hong and
Kubik, 2003]. In 2002 the National Association of Security Dealers (NASD), a finan-
cial industry self-regulating body, imposed a new rule forcing brokerages to disclose the
aggregate distribution of their recommendations. Barber et al. [2006] and Kadan et al.
[2009] show that on implementation of the rule ‘Buy’ recommendations fell from 60% of
total recommendations to 42%. Furthermore, prices became more responsive to ‘Buy’
calls, suggesting clients found the new reports more persuasive. We show that this is
broadly in line with the predictions of our model. Finally, we use our analysis to suggest
some potential improvements to this legislation.

Our third set of results concern the analysis of optimal information structures in
the absence of either the coin and cup or a review aggregator. We characterize how
marginal incentives to persuade differ with and without commitment. We then provide
both necessary conditions and sufficient conditions for optimal information structures
to be identical in the long-run and commitment cases. These conditions are closely
related to the concept of a partitional information structure. Our analysis can be applied
to understanding how long-run persuasion affects optimal information provision in many
persuasion, cheap talk and testing problems: such as, KG, Gentzkow and Kamenica [2014,
2016a] Alonso and Câmara [2016a,b] Brocas and Carrillo [2007], Perez-Richet [2014], Che
and Hörner [2015], Kolotilin [2015], Kolotilin et al., Tamura [2016], Ely [2017] Gill and
Sgroi [2008, 2012], Rhodes and Wilson [2017]; Chakraborty and Harbaugh [2010], Che
et al. [2013], Lipnowski and Ravid [2017].

Underlying all of our results are two technical contributions: first, we needed to
show that even in the absence of commitment it is without loss to use the belief based
approach of KG (Lemma 1). Second, we needed to show that the optimal information
structure under commitment generically involves no two messages with the same payoff
(Lemma 2). Lemma 1 allows us to reduce the sender’s strategies down to a choice
over information structures that map the sender’s payoff relevant information into Bayes
plausible distributions over the receiver’s posterior beliefs at each history. We can then use
the tools developed by Fudenberg, Kreps, and Maskin [1990] to characterize the optimal
information structure in long-run persuasion as the solution to a static optimization
problem. We use this to directly compare long-run persuasion to the cases of commitment

3Of course, such platforms have other functions and face other constraints absent in the model ex-
amined in this paper that might complicate matters.
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and static cheap talk. Lemma 2 simplifies the analysis by allowing us to write off the
non-generic set of cases in which static cheap talk on subsets of the state space can do as
well as persuasion with commitment.

The most relevant literature to our paper is that on persuasion. Our main contribution
in this area is to examine how and when the desire for credibility in a dynamic setting
can micro-found the commitment assumption introduced in Kamenica and Gentzkow
[2011]. We also characterize how optimal information structures differ when commitment
is not exogenously imposed. These findings apply to the extensive persuasion literature
discussed above, but also to the problems considered in Aumann and Maschler [1995],
Rayo and Segal, 2010, Taneva, 2016 and Bergemann and Morris [2016]. While Kremer
et al. [2014], Ely [2017] , Bizzotto et al. [2017] consider dynamic persuasion problems,
they do so with commitment at the stage game. Our paper is the first to provide such
foundations for commitment.

Two papers, Perez-Richet [2014] and Piermont [2016], partially relax the degree of
commitment in persuasion settings. They consider a sender who first privately learns the
true distribution of states, and only then commits to an information structure for the rest
of the game. However, we ground persuasion in pure cheap talk communication at every
period of the game - never granting exogenous commitment at any point of the game.

Our approach of garbling histories to improve communication relates to the applied
literature on online reputation and feedback systems.4 The closest papers to ours are
Dellarocas [2005] and Doraszelski and Escobar [2012]. Both papers study forms of feed-
back in settings with both long and short lived players. They find that the payoff sets
identified in Fudenberg and Levine [1994] are strict and achievable bounds on what can
be implemented by their feedback systems. In stark contrast, our review aggregator can
implement payoff vectors that strictly exceed these bounds - attaining payoffs arbitrar-
ily close to those available under commitment. A second important contribution of this
paper then, is to develop mechanisms that allow us to implement Pareto improvements
relative to those identified in the literature thus far.5

Our paper has some relation to recent work on repeated Bayesian games with commu-
nication. For example, Margaria and Smolin [2015] consider long-run receivers in repeated
cheap talk games. Hörner, Takahashi, and Vieille [2015] show that, when all players are
long-run, it is without loss to consider only truthful equilibria for characterizing attain-
able payoff vectors. However, our sender cannot threaten the short-lived receivers, which
creates a role for persuasion in our setting not present in these prior papers.6 Also, unlike

4See Tadelis [2016] for an excellent review.
5In order to say more about persuasion, we have focused on the consequences of review aggregation

for optimal communication. We expect that our results can be extended to more general environments.
6A talk by Laurent Mathevet on January 31st 2017 examined reputational types in our framework,

based upon on going work with David Pearce and Ennio Stacchetti. They find persuasion can sometimes
do well in the long-persuasion game with perfect monitoring when people believe Kamenica and Gentzkow
[2011] types may exist.
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much of the repeated games literature, we focus on how to implement particular payoffs
with specific strategies and information structures.

The rest of this paper is structured as follows: Section 1 provides an extended example
that illustrates our two main results; in Section 2 we describe the model; in Section 3
we analyze the equilibria with perfect monitoring as well as the coin and cup; in Section
4 we analyze the review aggregator mechanism and two applications; in Section 5 we
study how long-run incentives affect the sender’s optimal choice of information structure
in the absence of mechanisms such as the coin and cup or review aggregator. Section 6
concludes. All formal proofs are left to the Appendix.

1 An Example

Each period t a long-run seller (with discount rate δ) tries to convince a new short-run
customer (discount rate 0) to buy a product of quality θt ∈ {1, 3} at a fixed price, q = 2.7

The seller and customer have a common prior belief µ0 = 1/3 that the quality of each
good is high (θt = 3), where quality is i.i.d. across periods. The seller privately learns
whether the quality of the good is high or low (θt = 1) and sends a cheap talk message to
the customer, who then decides whether to buy the good or not. Both the seller and the
customer get a payoff of 0 if the customer does not buy. If the customer buys then the
seller gets a payoff of 1; the customer gets θt − q, and leaves a public review ωt ∈ {1, 3}.
This review is informative but potentially imperfect: Pr(ωt = θt|θt) = p ∈ (0.5, 1]. When
p = 1 the review always matches quality, ωt = θt, and we say monitoring is perfect;
otherwise, we say monitoring is imperfect. Finally, the public history is the sequence of
(i) seller’s past messages; and (ii) (potentially noisy) signals about the quality of goods.

We will first consider the stage game. The customer will only buy the good if she
believes Pr (θt = 3) ≥ 0.5. The solid line in Figure 1 then shows the seller’s payoffs, v(.),
as a function of the customer’s posterior probability, µt, that the good is of high quality:

v(µt) =

1 if µ ≥ 0.5

0 if µ < 0.5
.

The customer’s expected payoff as a function of her posterior belief is given by u (µ) =

max {2(µ− 0.5), 0}. First, suppose that the seller can commit to recommending ‘Buy’
or ‘Don′t Buy’ as a (potentially stochastic) function of quality. As KG show, the seller’s
problem can be thought of as a choice of any pair of message conditional posteriors
satisfying the law of total probabilities

Pr(θt = 3) = Pr(θt = 3|Buy)Pr(Buy) + Pr(θt = 3|Don′t Buy)(1− Pr(Buy)), (1)
7We ask the reader to delay worries about fixed prices as we justify this in Subsection 4.1.
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Hence, we can think of a feasible information structure as any choice of posteriors
µD := Pr(G|Don′t Buy) and µB := Pr(G|Buy) around µ0. The customer’s preferred
information structure is truth-telling, (µD,µB) = (0, 1). For the seller, this information
structure pays out for high quality goods only. The payoff is represented in Figure 1 by
the weighted average of v(0) and v(1), which lies above µ0.

𝜇
1𝜇# = 0

𝑣 𝜇

1
2

1

2
3

𝜇)

1
3

Figure 1: Seller’s payoffs given Customer’s posteriors

However, the seller can get a better stage payoff with the policy (µD, µB) = (0, 0.5)

which concavifies the value function as in KG. This information structure maximizes the
unconditional probability of sending an incentive compatible Buy message to the seller;
it is achieved by sending a Buy message whenever the quality is high, and half the time
when the quality is low; the seller then sells the good with an ex-ante probability of 2

3

(Figure 1). While this information structure gives the seller his highest expected stage
payoff it gives the customer zero expected surplus, irrespective of the message.

Of course, without commitment, there is no equilibrium information structure of the
stage game in which the customer follows the seller’s advice. All equilibria are payoff
equivalent to babbling – where the seller always reports Buy and the customers ignore
him. However, we can do better in the long-run setting where the seller maximizes his
expected lifetime discounted utility,

V0 =
∞∑
t=0

δtv(µt),

and customers form their posteriors based on both the message they receive and the
public history. This is because a period of babbling can now be used to punish the seller
whenever there is a bad review, ωt = 1, and hence can help generate credibility at the
stage game.

To be concrete, consider a putative truth-telling equilibrium where a period of bab-
bling reduces the seller’s discounted equilibrium continuation payoffs by 1/p when he
reports Buy and subsequently gets a bad review. The probability of being punished for
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sending Buy when θ = 1 is p. Consequently, the expected punishment for this is just
equal to 1 - the stage payoff from selling the good. The seller then is indifferent between
messages when quality is low, strictly prefers to send Buy when the quality is high, and
so truth-telling is incentive compatible.

Notice two things here: first, when the seller sends Buy and θt = 3 there is an expected
on path punishment of (1−p)/p from a bad review being left incorrectly; and second, 1/p

is the most efficient punishment that satisfies incentive compatibility. The value of this
equilibrium to the seller (and receiver) at any stage where the seller is not being punished
with babbling is

V T ′ =
1

3

(
1− 1− p

p

)
=

2p− 1

3p
> 0. (2)

As this payoff is positive, babbling for a finite period of time can induce a punishment
of 1/p for sufficiently patient sellers and hence enforce the equilibrium. Further, as a
punishment of 1/p makes the seller indifferent between messages when θt = 1, it is easy
to see that we can use this punishment to support any equilibrium information structure
such that µD = 0 and µB ∈ [0.5, 1]. However, all of these information structures only
provide the seller with the same discounted average payoffs. Indeed, the seller only picks
up positive payoffs (net of punishments) when the quality of the good is high. The average
payoffs of customers however is increasing in µB. The available equilibrium payoffs are
described in figure 2a below:

𝐷

𝐵

E[𝑣]

E[𝑢(]

𝑇

𝑃

𝐷′ 𝑇′

2𝑝 − 1
3𝑝

2𝑝 − 1
3𝑝

(a) Standard Setting

𝐷

𝐵

E[𝑣]

E[𝑢(]

𝑇

𝑃

𝐷′ 𝑇′

2𝑝 − 1
3𝑝

2𝑝 − 1
3𝑝

Reduced
`Mixing’	

Punishment	

Reduced	
`Accidental’	
Punishment𝑃′

(b) Coin and Cup

Figure 2: Average Payoff Sets

The full-triangle BTP describes the stage payoff pairs available at any period. The
lower triangle BT ′D′ describes the average payoff pairs available in equilibrium. The sole
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efficient information structure here is truth-telling – all other policies can only (weakly)
reduce the seller’s discounted average payoffs, and strictly harm receivers. Notice that,
as monitoring becomes perfect, the payoff sets tend to BTD - a strict subset of what can
be achieved under commitment (the triangle BTP ).

A Coin and Cup

Now consider a slight change to the stage game where we augment the history with
temporary asymmetric information. At the beginning of each period the seller shakes a
coin in a cup, places it on the table and peeks under the cup to see whether the coin
came up heads or tails. The customer observes the seller do all this, but does not see
the coin. The cup, with the coin still under it, is left on the table. Then the seller learns
the quality of the good, sends a report, and the customer makes her decision, as before.
After the decision the customer lifts the cup, observes the coin, and now records whether
the coin was heads or tails with her review. All customers now observe the history of
messages, reviews and coin flips.

We can now look for equilibrium information structures that map both the quality and
the value of the coin into Bayes plausible posteriors. In particular, the seller can replicate
(µD, µB) = (0, 0.5) by reporting Don′t Buy if and only if θ = 1 and the coin comes up
tails. This is enforced with a punishment of 1/p whenever the seller leaves a bad review
and the coin is recorded as tails.8 Relative to the same information structure without
the coin and cup, this has two benefits. First, it allows for a pure strategy that is ex-ante
stochastic from the perspective of the customer yet is verifiable ex-post as deterministic
(imperfect monitoring issues aside). This allows the seller to get an extra payoff of 1

when the good is low quality and the coin is heads - an expected gain of half. Second, it
reduces “accidental” punishment where θt = 3 but the customer leaves a bad review; this
has an expected value to the seller of (1−p)/2p. These two benefits are described in figure
2b above.9

If we use a continuous random variable for “the coin” then we can attain the payoff set
of BT ′P ′ in equilibrium. As ex-post monitoring of the seller’s payoff relevant information
set becomes perfect we move towards BTP , achieving it at p = 1. That is, under perfect
monitoring, a coin and cup allows the seller to costlessly commit to the optimal com-
mitment information structure without the need for third party verification, contracts,

8Alternatively one might think of this as a garbling of reviews such that when the coin comes up
heads the seller knows the review will be good whatever message he sends.

9The first benefit is comparable to the gains that come from being able to observe mixed strategies
and identified in Fudenberg, Kreps, and Maskin [1990]. However, the second benefit, as far as we have
been able to ascertain has not been identified. The coin and cup can be seen as a device for replacing
the random shocks considered in Aumann [1961] and Harsanyi [1973] with something that is ex-post
observable. By doing this we are able to still think about observable mixed strategies in an environment
where information sets (or actions) are imperfectly observed.
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or transfers. While the coin and cup costlessly substitutes for commitment when p = 1

it does not when p < 1 and we can still be far from the frontier PT . This raises the
question of whether a larger set of equilibrium payoffs can be achieved by augmenting,
or garbling, the public history further – a question to which we now turn.

A Review Aggregator

In general, if monitoring is imperfect but all players are sufficiently patient we know that
almost any average payoffs are sustainable, subject to some identifiability conditions.
Hence, by conditioning punishments on a large number of observations, might short-lived
customers strip out the noise in the individual reviews? The answer is no - this follows
fairly straightforwardly from Fudenberg and Levine [1994]. However, it turns out that if
we introduce a “Review Aggregator” who garbles the history we can run a statistical test
and get arbitrarily close to commitment payoffs and information structures.

The review aggregator provides the customers with a binary aggregate rating, good
or bad, of the seller’s past behavior. A good rating lasts for T individual reviews. If the
number of individual bad reviews are below some critical threshold, X < T , then the
seller “passes the test” and keeps his good rating for a further T individual reviews. If
the seller gets X or more bad individual reviews then he “fails the test” and his aggregate
rating becomes bad for a finite number of periods Z. The customers only observe the
current aggregate rating – in particular they do not see the full history of play and they
are kept uncertain about how many reviews there are before the next test. The seller
does not see the individual reviews either, but he knows how many reviews there will be
before he is next tested. As before, the seller sends messages directly to the customers
who then make a decision based on the aggregate rating and the message.

Suppose the seller is arbitrarily patient and the customers always obey advice when
there is a good aggregate rating. A straightforward extension of Radner [1985] shows that
with the correct choice of T, X and Z, we can achieve almost any average information
structure such that (µD = 0, µB ∈ (0.5, 1)) with negligible on path punishments. This
implies further, that we get average payoffs arbitrarily close to the Pareto frontier PT .
While the average information structure may be (µD = 0, µB ∈ (0.5, 1)) the particular
information structure that the seller chooses will depend on the number and quality of
goods sold since the last test. In particular, there are histories at which the seller will
choose to always send Buy. If at that history the customer could see the number of goods
sold since the last test, or even all the reviews, she could infer that the seller will send
Buy regardless of the state. However, as the customer knows neither the number nor
quality of goods sold since the last test she just faces the average information structure:
(µD = 0, µB ∈ (0.5, 1)). Consequently, it is incentive compatible for each customer to
follow the seller’s advice.
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The job of the review aggregator here, is providing some record of the seller’s behavior
while keeping each customer uncertain about the precise information structure they are
facing at t. Without the aggregator, following advice is only ever incentive compatible
for the short-run customer at t if she believes µB ∈ [0.5, 1] at that precise history. This
is only possible if the sender is punished for a bad review at t by at least 1/p. Hence, any
positive stage payoff for the seller must be associated with on-path punishments holding
us down to the payoffs in (2).

In order to effectively use a statistical test to reduce on path punishments the seller
has to be allowed to deterministically report Buy at some histories while still having
his advice obeyed by the customer. This is not incentive compatible though when the
customers see the complete history, and so we need the review aggregator. What is
striking here, is how little we need to relax these constraints to achieve payoffs arbitrarily
close to those available under commitment. For instance, if one were to consider enforcing
truth-telling, the seller would only lie deterministically on an arbitrarily small proportion
of occasions. Yet, if we don’t allow this small number of deterministic lies the tool of the
statistical test comes tumbling down.

2 The Model

A sender S (‘he’) plays the following stage game against an infinite sequence of receivers
R (each ‘she’).

Stage Game

Each period, a one-period receiver Rt must take an action at from a compact set A.
Her payoffs from action at depend on an unknown state of the world, (θt, ωt) ∈ Θ ×
Ω =

{
θ1, θ2, . . . , θN

}
×
{
ω1, ω2, . . . , ωNω

}
. Her payoffs are given by the utility function

uR (at, θt, ωt). Each θt is drawn independently across time, from a prior distribution
represented by the vector µ0 ∈ ∆Θ.10 Conditional on θt, ωt follows the distribution
g (ωt | θt) > 0, where ωt is also independent of θτ , ωτ , τ 6= t.11 However, note that we
allow for θt and ωt to be contemporaneously correlated.

At each t, a receiver Rt arrives ex-ante uninformed about (θt, ωt) and leaves the game
at the end of the period. At the beginning of each period, an infinitely-lived sender S
privately observes the realization, θt. Before Rt takes an action, S sends a message mt

from some set, M . With some notational abuse, we sometimes refer to the cardinality of
the message space by M . Within a period, the sender only cares about the action taken

10Following standard notation, we use ∆X to denote the simplex over set X.
11Note in particular that we assume the conditional distribution of ωt has full support, for all θt. While

this assumption is not strictly necessary for the main results, it significantly aids exposition of our results
related to the review aggregator in Section 4.
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by Rt and has stage utility uS (at).
Within period, the timing of this static cheap talk game is as follows:

1. θt, ωt are drawn respectively from distributions µ0, g (ωt | θt). S privately observes
θt.

2. S sends a message mt ∈M (possibly random) to Rt.

3. After observation of mt, Rt chooses an action at ∈ A.

4. After taking action at, ωt is observed by all players.

We interpret θt as the sender’s private information relevant for receiver’s decision problem,
and ωt as ex post feedback that the receiver learns only after taking action. Written this
way, the model is flexible enough to describe interactions where (i) the sender is better
informed about receiver’s preferences, uR (a, θ); (ii) receiver’s final information of her
own preferences after taking action will be better than the sender’s, uR (a, ω); and (iii)
neither the sender nor receiver information can be ranked as superior for decision-making,
uR (a, θ, ω).12

After receiving message mt, the receiver Rt forms her posterior belief µt and chooses
her action at (µt) to maximize E [uR (at, θt, ωt) | mt]. We often refer directly to the sender’s
equilibrium period-t stage payoff, as a function of the receiver’s posterior:

v (µt) := uS (a (µt)) .

As in KG, we assume that whenever Rt’s posterior belief leaves her indifferent between
two or more actions, she chooses the one S prefers. This ensures that v (µt) is an upper
semi-continuous function. We refer to this stage game by Γt. As the stage game is
a standard cheap talk game, there always exists a babbling equilibrium in which S’s
messages are completely uninformative.

We will contrast this game with a static information design problem, in which S can
commit in advance to a (mixed) reporting strategy before learning θt. In the persuasion
game, the timing and available actions are as follows:

1. S chooses an experiment : a message space M , and a random mapping ŝ : Θ →
∆M .

2. θt is privately drawn from distribution µ0. Conditional on θt, mt ∈ M is drawn
from s0.

3. Rt observes mt and chooses an action at ∈ A.
12These functions can be used to think respectively about (i) uncertainty over a good’s quality; (ii)

experience goods with heterogeneous preferences; or (iii) asset and/or matching markets.
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In the static information design problem, S commits (before observing θt) to an experi-
ment (a message space M , and a garbling ŝ of θt). The key distinguishing feature of an
experiment is that S can commit to any (potentially stochastic) policy.

Define v̂ (µ) as the smallest concave function that is everywhere weakly greater than
v (µ). That is,

v̂ (µ) := sup {ν : ν ∈ co(v)}

where co(v) denotes the convex hull of the graph of v. KG show that S’s optimal payoff
via information design is exactly v̂ (µ0), the optimal commitment payoffs.

By definition, v̂ (µ0) ≥ v (µ0). If v̂ (µ0) = v (µ0), then S’s optimal payoff can be
achieved by sending no information to Rt, or by a babbling equilibrium of the cheap talk
game. To ensure that persuasion is a useful tool for the sender, we assume in the rest of
the paper that v, µ0 are such that

v̂ (µ0) > v (µ0) .

The Repeated Game

The stage game Γt is played again against a new receiver each period t = 0, 1, 2, . . . .
We refer to this long-run persuasion game by Γ∞. At each period t and public history
φt = (mt, at, ωt)

t−1
τ=0, the sender and receiver Rτ observe φt (the sender also observes the

private history θt = (θτ )
t
τ=0) and play game Γt. The sender’s discounted payoff from a

sequence of receiver actions a = (a1, a2, . . . ) is

∞∑
t=0

δtuS (at) .

Let the set of all period-t histories be Φt. At period t, let the map st : Φt×Θt → ∆M

express a history and state dependent probability distribution over the sender’s messages.
A strategy for the sender is a collection s = (st)

∞
t=0. Similarly, let a mixed strategy for

receiver Rt be a map ρt : Φt ×M → ∆A.
We use the term equilibrium to refer to Perfect Bayesian Equilibria of the above

game. An equilibrium specifies: a strategy s for the sender; strategies ρ = (ρt)
∞
t=0 for

each Rt; and history-dependent posterior belief functions {µt}∞t=0, where µt ∈ ∆Θ is an
N -dimensional vector, such that:

1. Given the receivers’ strategies and history (φt, θt), smaximizes the sender’s expected
discounted payoff E [

∑∞
τ=t δ

τuS (at) | φt, θt; ρ] .

2. Given the sender’s strategy, ρt maximizes Rt’s expected payoff,
∑N

i=1 µ
i
t · uR (a, θit) .
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3. Where possible, the receiver’s posterior beliefs µt =
(
µ1
t , . . . , µ

N
t

)
satisfy

µit = Pr
(
θt = θit | φt,mt; s

)
.

Regardless of play in rounds τ < t, condition 3 above ensures messages in the support
of the sender’s strategy at any history φt must be consistent with the prior belief over
θt. However, for off-path messages chosen at time t, equilibrium places no restrictions on
receiver Rt’s beliefs.

A Direct Equilibrium

Building on an insight from KG, the notion of equilibrium in the long-run persuasion
game can be cast entirely in terms of history-dependent lotteries over beliefs, µt. Define
the stage game Γ̂t as follows: the sender sends message µ̃t from the set of possible posterior
beliefs that Rt may hold, ∆Θ, and is elsewhere the same as Γt. The long-run persuasion
game, Γ̂∞, is analogously defined. In such an environment, histories are now vectors
of the form ht = (µ̃τ , aτ , ωτ )

t−1
τ=0, the set of all period-t histories Ht, and (behavioural)

strategies σ = (στ (hτ , θ
τ ))∞τ=0, where each σt : Ht × Θt → ∆M , and ρt : Φt ×M → ∆A

for S, Rt respectively. We denote the set of all strategies for S by Σ.
Let the function µt (ht, µ̃t) specify Rt’s beliefs given history ht and message µ̃t. We

define the concepts of information structure as follows:

Definition 1. An information structure is a lottery λ = (λj,µj)
M
j=1 ⊂ ∆ (∆Θ) over a set

of M ≤ N posteriors {µj}Mj=1 where λj = Pr(µ = µj).

An information structure is Bayes plausible if µ0 =
∑M

j=1 λjµt,j. We refer to the set of
Bayes plausible information structures as Λ (µ0) ⊂ ∆ (∆Θ). We can now define a direct
equilibrium of the long-run persuasion game as follows:

1. Given the receivers’ belief functions µt (ht, µ̃t), µ̃t ∈ supp (σt (ht, θt)) maximizes the
sender’s expected discounted payoff

Vt (ht, θt) = v (µt (ht, µ̃t)) + δE [Vt+1 ((ht, µ̃t, θt) , θt+1)] (3)

where Vt is the sender’s continuation payoff at history (ht, θt).

2. The receiver has obedient beliefs: µt (ht, µ̃t) = µ̃t for all µ̃t ∈ ∪θt∈Θsupp (σt (ht, θt)).

3. The information structure, λt, is Bayes plausible and Mt ≤ N for all ht.

Vt is simply the sum of S’s discounted payoffs from equilibrium play at history (ht, θt)

onwards. In any equilibrium, S must maximize (3) at all histories of the game tree, given
µτ (hτ , µ̃τ ), τ ≥ t. Moreover, a direct equilibrium requires that (i) Rt’s beliefs conform to
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the recommendation made by S, for any µ̃t on the equilibrium path, (ii) at any history,
S’s mixed strategy over messages can be ‘averaged back’ to the prior µ0. Finally, given a
belief µt, recall that the optimal equilibrium behavior of the receiver is implicitly included
in the sender’s value function, v (µt (ht, µ̃t)).

The following Lemma establishes is without loss to restrict attention to direct equilibria
of game Γ∞:

Lemma 1. For any equilibrium of game Γ∞, there is a direct equilibrium of game Γ̂∞

that induces the same distribution over receivers’ actions, for each state θt and history ht
on the equilibrium path.

In order to prove Lemma 1 we cannot directly employ the approach of KG as we do
not have full commitment. Instead, we show that we can map any non-direct strategy
into a direct strategy such that the equilibrium conditions 1 to 3 are satisfied.

3 The Limits of Long-Run Persuasion

In this section, we establish necessary and sufficient conditions under which long-run per-
suasion and persuasion under commitment have the same optimal payoffs. As a prelimi-
nary we show that for any typical persuasion problem under commitment, it is without
loss to restrict attention to cases where the optimum is achieved only by information
structures involving posteriors that have different values:

Lemma 2. Generically, the concave envelope at µ0, v̂(µ0), is supported by distinct pos-
teriors {µ?j}Mj=1 such that v(µ?j) 6= v(µ?l ) for any j 6= l.

Lemma 2 establishes that the optimal commitment information structure, λ?, typically
involves a lottery over posteriors over which the sender has strict preferences. Formally,
we use a convex polyhedral approximation to the subgraph of v̂ to establish that the set
of value functions for which the above condition holds is open and dense. One important
implication of this is:

Corollary 1. Generically, optimal commitment payoffs cannot be achieved in a static
cheap talk game.

Since cheap talk requires the sender to be indifferent across all messages, Lemma 2
tells us that such equilibria are generically not optimal for the sender. Hence, generically
there is a strict wedge between the payoffs achievable with and without commitment,
respectively. This gap provides the upper and lower bounds on what can be achieved by
long-run persuasion.

Given Lemma 2, we restrict attention to the following generic class of problems:

Assumption 1. The concave envelope at µ0, v̂(µ0), is not supported by distinct posteriors
{µ?j}Mj=1 such that v(µ?j) = v(µ?k) for any j 6= k.
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3.1 Perfect Monitoring

Here we analyze the case where S’s signal always matches the feedback i.e. θt = ωt for all
t. We do this because the perfect monitoring case represents an upper bound on the value
of repetition to persuasion. We will show that even in this setting, long-run persuasion
cannot typically achieve optimal commitment payoffs.

To analyze the problem, we apply Lemma 1 and the tools of Fudenberg, Kreps,
and Maskin [1990] to reduce the search for an optimal information structure in long-run
persuasion to a static optimization problem that is directly comparable to both persuasion
with commitment and to static cheap talk. As will be shown, the optimal Bayes plausible
information structure for each type of problem is given by:

λKG ∈arg max
λ∈Λ(µ0)

∑
Θ

λjv (µj) ; (Commitment)

λLP ∈arg max
λ∈Λ(µ0)

∑
Θ

µi0 min
{
v (µ) : µ ∈M i

}
; (Long-Run Persuasion)

λCT ∈arg max
λ∈Λ(µ0)

∑
Θ

µi0 min {v (µ) : µ ∈M} ; (Static Cheap Talk)

where M i :=
{
µj ∈ supp (λ) : µij > 0

}
is the subset of messages sent with positive prob-

ability in state θi. To see where these equations come from, consider first the long-run
persuasion problem of maximizing S’s period-0 discounted utility across all possible equi-
libria of the long-run persuasion game:

maxσ∈Σ Eθ [V0 (θ0)] , such that for all ht ∈ Ht :

v (µt) + δE [Vt+1 ((ht, µt, θt) , θt+1)] ≥ v (µ′t) + δE [Vt+1 ((ht, µ
′
t, θt) , θt+1)] ;

for all µt ∈ supp (σt (ht, θt)) and µ′t /∈ supp (σt (ht, θt)) ;

µ0 =
∑M

j=1 λjµt,j.

(4)

Problem (4) involves choosing a strategy profile σ = (σ1, σ2 (h2) , . . . ) for S that
maximizes his present discounted utility, such that at each history ht: (i) the choice of
message is optimal for S given Rt’s beliefs; (ii) beliefs satisfy Bayes plausibility. There is a
subtle difference between problem (4) and the description of equilibrium. In equilibrium,
S need only maximize his choice of µ̃t at each history ht, subject to Rt’s beliefs. In
problem (4), when we choose a strategy σ′, we are also able to vary Rt’s beliefs following
any message sent, so long as they conform to equilibrium restrictions. In addition, the
choice of strategy must be optimal for S, given the receivers’ beliefs.

To characterize the solution to problem (4), we introduce some notation. Let vi (λ) :=

min {v (µ) : µ ∈ supp (λ) , µi > 0} be the minimum payoff to S among all posteriors µ that
(i) are in the support of distribution λ ∈ ∆ (∆Θ) and (ii) occur with strictly positive
probability conditional on state θit (under λ). Then we have:
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Proposition 1. The sender’s discounted average continuation value from any long-run
persuasion game is bounded above by

(1− δ)Eθ [V0 (θ0)] ≤ max
λ∈Λ(µ0)

∑
µi0vi (λ) (5)

There exists δ such that ∀1 > δ ≥ δ, this upper bound can be attained at some equilibrium.

Equation (5) bounds S’s payoffs above by the best expected statewise-minimal payoff
among all lotteries of posteriors λ ∈ Λ (µ0). Moreover, Proposition 1 says this is attainable
for sufficiently patient S. The intuition is as follows: if in some state, θt, S wants to
mix between messages with different stage payoffs then he must be indifferent. This
indifference requires that all messages but the worst induce an on-path punishment that
wipe out the stage gains of that message - pinning down the upper-bound. We can sustain
this equilibrium for sufficiently patient S by threat of the worst cheap talk equilibrium,
as in the earlier example. The logic here is very similar to that in Fudenberg, Kreps, and
Maskin [1990]. However, by restricting analysis to direct equilibria of a communication
game we are able to say more about the form of a sender’s objective function and,
ultimately, his behavior in terms of optimal information structures.

One might worry that the above discussion does not mention enforceability constraints
- what if the worst cheap talk equilibrium is too attractive? However, at the optimum it
necessarily follows that this enforceability constraint is slack. In the worst case λLP = λCT

which is itself enforceable.
The nature of the sender’s problem in long-run persuasion now demonstrated, we

can turn to how this relates to the problem under commitment and in static cheap talk.
Equation (Commitment) trivially represents the optimal commitment problem in KG.
However, formally, equation (Static Cheap Talk) is missing a constraint - cheap talk
requires indifference across all messages. Lipnowski and Ravid [2017] show that this
constraint is slack. 13

These three equations will help us compare both the average payoffs and optimal
information structures under different forms of persuasion. In this section we will be using
them to study only the payoffs and will apply them to the analysis of optimal information
structures in Section 5. That said, we need to introduce a particular class of information
structure before using these results to establish necessary and sufficient conditions for

13Equation (Static Cheap Talk) tells us that any information structure with different value messages is
still pinned down to the lowest message. Hence, the best the sender can do is the quasi-concave envelope
which is the optimal cheap talk payoff.
It’s worth noting further, that this set can contain information structures not achievable by static cheap

talk. In fact, this equation describes the set of optimal information structures for long-run persuasion
with no monitoring i.e. θt independent of ωt. In this case, the sender has to be indifferent between all
messages - hence, on-path punishments pin him down to the best payoffs in the static cheap talk problem.
This provides a stark contrast to the folk theorem in Margaria and Smolin [2015]: with short-run receivers
and no monitoring we can’t do better than static cheap talk.
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long-run persuasion to achieve the same payoffs as the commitment benchmark:

Definition 2. A information structure is partitional if and only if it satisfies:

supp(µj) ∩ supp(µk) = ∅ ∀j 6= k

λj =
∑

i∈supp(µj)

µi0 ∀j

µij =
µi0
λj
∀i ∈ supp(µj)

Such an information structure is implemented by deterministically mapping states
into posteriors – this can be many to one, but not one to many. With this definition in
hand we can establish the following:

Theorem 1. Under perfect monitoring there exists a δ such that optimal commitment
payoffs are attainable in the long-run persuasion game if and only if the optimal infor-
mation structure under commitment is partitional, for all δ ≥ δ .

First, note that an immediate implication is that persuasion with commitment weakly
dominates long-run persuasion. For any state-contingent lottery the sender gets the state-
wise average value of the messages under commitment but the state-wise minimum value
with long-run persuasion. Hence, any two lotteries can only induce the same average
payoffs across the two problems when the state-wise average is equal to the state-wise
minimum. There are two ways this can happen: one, there is only one message sent
in any state; and two, when there are multiple messages sent in some state, they have
the same payoff. It then follows that long-run persuasion achieves the same payoffs as
persuasion under commitment if and only if λKG satisfies one of these two conditions.
The first case is simply a partitional information structure. The second case, however, is
ruled out as non-generic following Lemma 2.

3.2 A Coin and Cup

We now introduce a novel ‘coin and cup’ mechanism which can always retrieve optimal
commitment payoffs under perfect monitoring. A ‘coin and cup’ mechanism introduces a
payoff-irrelevant variable, ct ∼ U [0, 1], drawn independently of θ:

1. θt, ct are drawn from their respective distributions. S privately observes both
realizations.

2. S sends a message mt ∈Mt to Rt. Rt only observes the message.

3. After observation of mt, Rt chooses an action at ∈ At.

4. After taking action at, ct and the state θt are observed by all receivers.
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As the next theorem shows, the coin and cup allows the sender to achieve his full
commitment payoffs:

Theorem 2. For any payoff available to S from some experiment, there exists δ such that
the payoff is attainable with a coin and cup whenever it exceeds S’s worst stage payoff,
for δ ≥ δ.

With a coin and cup, all information structures can be implemented as partitions of
a larger ‘state space’, consisting of the unit interval and Θ.14 In this way, a deterministic
strategy conditioned on both θt and ct can appear mixed from the perspective of the
receiver that period, but ex-post is verifiable. Hence, under perfect monitoring, the
threat of punishment never need be exercised.

A useful feature of a coin and cup is that it is implementable without any specialist
knowledge of the decision problem or the realization of θ. Further, we do not require
S to be able to commit to a specific experimental procedure for generating a particular
distribution, ct. As the simplest possible example described in Section 1, we can do
this with something as mundane as a coin and cup - or many coins and a time-lock
safe. As a more high-tech example, blockchain technologies (such as that underpinning
Bitcoin) support decentralized recording and updating of information among peers using
cryptographic methods. These technologies can be used to share information in a way
that cannot subsequently be tampered with, and allow for information to be withheld
from some participants until pre-specified times.

In one sense, the coin and cup is a tool that substitutes for the observable mixed
strategies examined in Fudenberg, Kreps, and Maskin [1990]. However, it more closely
resembles the models of mixed strategies discussed in Aumann [1961] or Harsanyi [1973]
where agents condition pure strategies on privately observed variables. By taking this
approach we are also able to see that such a device is not only useful under perfect
monitoring but also under imperfect monitoring. Indeed, as we saw earlier, it allows a
larger set of feasible average payoffs than in Fudenberg and Levine [1994] who did not
examine observable mixed strategies under imperfect monitoring.

4 Review Aggregation

In Section 1 we saw that under imperfect monitoring both average payoffs and informa-
tion structures were strictly bounded away from the case with exogenous commitment.
This result extends more generally by a straightforward application of the analysis in
Fudenberg and Levine [1994]. However, we will now show that a review aggregator can

14Such a partitional mapping is identical to the definition of a signal introduced by Green and Stokey
[1978] and used later in Gentzkow and Kamenica [2017].
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overcome these constraints on payoffs. With the aggregator, we can now get arbitrarily
close to the full set of payoffs available under commitment.

For the purpose of exposition, we will use the payoffs, priors, and actions of the exam-
ple in Section 1. We will consider a symmetric binary review of the sender’s information
set Pr(ωt = θt|θt) = p, where 1 > p > 1

2
, that has no direct impact on the receivers’ stage

payoffs. For a generalization of these results, we refer the reader to the Online Appendix.
The role of the review aggregator will be to garble the receivers’ observations of the

sender’s past interactions in a particular way. Importantly however, it does not interfere
with the direct communication between the sender and receiver. More specifically, the
aggregator changes the model of Section 2 as follows.15 At time 0, the aggregator an-
nounces to the first receiver that the sender has a ‘Good’ rating, G. Subsequently, the
sender and current receiver play the cheap talk game as before. This is repeated for T
interactions, and at each time the incoming receiver is told only that the sender’s past
play means that his rating is ‘Good’. We call this block of interactions a ‘G-phase’.

Importantly, receivers observe nothing else. We let the aggregator randomly permute
the ordering of the T receivers so that they cannot infer their position in the line from
their index, t. In our context this is a simple way of capturing the uncertainty about the
relationship between the calendar date and the actual number of interactions that have
taken place when receivers only observe an aggregate statistic.16

At the end of the first T periods, the aggregator conducts a statistical test of the
sender’s strategy compared to some benchmark (mixed) strategy, σ? : Θ → ∆ (∆Θ),
chosen in advance. This is done by comparing the empirical joint distribution of reports(
θ̃t

)T−1

t=0
and subsequent feedback, (ωt)

T−1
t=0 . If the sender is sufficiently likely to have

played a strategy ‘close to’ σ? he passes the test and another G-phase begins. Otherwise,
the aggregator switches to announcing to the next βT ∈ N receivers that the sender’s
rating is ‘bad’, B.

We establish the following Theorem:

Theorem 3. A review aggregator can achieve average payoffs arbitrarily close to those
under commitment.

Theorem 3 shows that we can now achieve the full commitment payoffs, demonstrat-
ing the value of review aggregators, such as those used by eBay, for sustaining efficient
communication and persuasion. This provides a further micro-foundation for the commit-
ment assumption in the persuasion literature. The proof of the Theorem is constructive.
In any B-phase, both senders and receiver play a babbling equilibrium. This provides the

15A fuller, formal description of the aggregator’s role is postponed to the Online Appendix.
16Alternatively, we could model this by having the review aggregator generate uncertainty by ran-

domising the lengths of each ‘G-phase’ and ‘B-phase’. This complicates the analysis considerably and so
we simplify the analysis by using this assumption. Gershkov and Szentes [2009] and Kremer et al. [2014]
make similar assumptions in different contexts.
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punishment to a sender for deviating ‘too far’ from σ? on average during any G-phase.
The test is chosen to be strict enough that S’s optimal strategy can be bounded close
enough to σ? on average by the expected costs of falling into a B-phase, but lenient
enough that if S did adopt σ? each period he would pass with a high probability. Finally,
we show that the bounds on S’s optimal strategy, along with the uncertainty they face
about the history of play, are enough to satisfy each receiver’s incentive constraint.

Our review aggregator plays two roles in making the full set of commitment payoffs
feasible. First, in its interaction with S, it uses the individual reviews ωt to statistically
monitor the sender’s strategy (as in Radner [1985]). By doing this, we can reduce on
path punishment, almost costlessly ensuring the sender plays close to σ?.

The aggregator’s second role, however, is novel. As we discussed above, short-run
receivers cannot profitably agree to conduct these tests. By obfuscating the history of the
Sender’s past interactions in a G-phase, the aggregator makes it much easier to satisfy the
receiver’s incentive constraints. Instead of requiring that the sender’s strategy be credible
at each and every instant in the game, a receiver now only needs to be satisfied that the
sender plays close to σ? on average (across T ). Given this, and a lack of knowledge about
where she is in the G-phase, she now finds it optimal to follow sender’s reports. This is
crucial to achieving payoff sets that are strictly larger than those identified by Fudenberg
and Levine [1994].

This slight relaxing of the Receiver’s incentive constraint is powerful. By breaking
the need for credibility each and every period, the sender can now obtain benefits from
persuasion without the need for being punished. For instance, in the example of Section 1,
suppose we set σ? such that Pr (m = Buy | θ = 3) = 1, Pr (m = Buy | θ = 1) = 1

2
−ε, ε >

0. For ε small enough, the sender can always guarantee close to the optimal commitment
payoff by playing according to σ? each period. In doing so, he secures the optimal
commitment payoff during the G-phase, and he is highly likely to pass the test. Each
receiver follows his recommendations because (i) punishments ensure the sender will not
deviate much from σ? on average, and (ii) they can do no better than make an average
assessment of his credibility in reporting to them. By contrast, when credibility was
required at each history of the game S’s payoffs were instead no greater than under
truth-telling.

It is worth noting here that while the use of a review aggregator makes the full set of
commitment payoffs achievable, it does not generally provide a full folk theorem. Long-
run receivers can be coerced to take dominated actions through the threat or promise
of future continuation payoffs. By contrast, short-run receivers can only be persuaded
via their beliefs. Hence, persuasion can never induce them to play strictly dominated
actions.17

17The astute reader may have noticed that our results on review aggregation do not rely on any special
feature of communication games. Indeed, these results should extend to general repeated games with
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One last point we should discuss here, is the nature of the review aggregator’s commit-
ment. First, we have introduced less commitment power than is common in mechanism
design. The ex-ante uninformed aggregator only commits to the way it garbles informa-
tion that would have been public otherwise i.e. the history. By contrast, the commitment
power required by the privately informed sender to his experimental design is stronger. It
is as if an agent in a mechanism design problem could commit to some particular commu-
nication strategy independent of his ex-post incentives. Second, in our case, the review
aggregator’s behaviour could be enforced by public revelation of the past history at the
end of every G-phase. Receivers can then verify whether the aggregator has adhered to
its rule.

Discussion: Alternative Mechanisms

One might wonder whether there are other simpler statistical tests that could be con-
ducted and still achieve high payoffs. For example, perhaps we need not make use of
receiver feedback in our tests at all? For instance, in a principal-agent setting, Jackson
and Sonnenschein [2007] show that having many independent copies of an underlying
mechanism design problem can allow a designer to implement the full set of incentive
compatible allocation rules without transfers. In essence, they provide a budget of re-
ports for the agent to allocate across problems, with the reports reflecting the underlying
distribution of types. In our setting, this would amount to providing the sender with
a budget of Buy messages to be used in a G-phase, for example 2

3
T . However, a key

difference in our paper is that the sender’s preferences are not naturally ordered in his
private information by a single crossing condition. Indeed, given such a budget our (im-
patient) sender would prefer to use his entire allocation of Buy messages on the first 2

3
T

of receivers, regardless of their respective θt. Knowing this, a receiver who was told to
Buy would immediately discount it as babbling, regardless of whether the aggregator
garbles the history of play.

In a recent paper with long-run receivers, Margaria and Smolin [2015] describe how a
folk theorem can be obtained even when the long-run receiver receives no feedback of her
utility, ωt. Their main insight is to apply the discounted quota of Frankel [2016], along
with phases of rewards and punishments, to support a folk theorem by making the sender
indifferent between all reports at all stages. In our setting, this is not possible without
a review aggregator. This said, we believe that a review aggregator may make a similar
mechanism possible. Note, however, for any such mechanism to work the aggregator
would need perfect knowledge of δ. Even the slightest mistake would cause the entire
mechanism to unravel. For instance, if the sender was marginally more impatient than
expected, he would strictly prefer Buy to Not Buy at every instant of the mechanism.

long and short-run players more broadly.
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Of course, receiver IC constraints would again be violated everywhere. By contrast, our
mechanism does not require such precise knowledge of δ.

4.1 Application to e-Commerce

A stylized application of the model in Section 2 helps shed light on the economic value of
these review aggregators, and when they might make buyers, sellers, or both, better off.
We will continue the analysis using the seller-customer model18 but where there is a unit
mass of sellers, indexed by i ∈ [0, 1], and of customers, j ∈ [0, 1]. Each customer is long-
lived but can be treated as short-lived because they are anonymous and rematch with a
different seller each period, never interacting with the same seller twice. An e-commerce
firm, RA, acts as a review aggregator charging sellers a fixed share of their surplus per
transaction. Therefore RA’s profits are:

πRA = S · E [(1− δ)V ]

where S is the measure of sellers and C the measure of customers who trade on the
website. Sellers’ and customers participations are determined by:

S = (E [(1− δ)V ]εs · Cγ)

C = (E [u (a, θ)]εc · Sγ)

εs > 0, εc > 0, 0 ≤ γ < 1 measure the responsiveness of sellers’ (customers’) participation
to their surplus per transaction and access to customers (sellers), respectively. Notice that
if γ = εs = εc, then S is just an increasing, concave function of the total profits a seller
expects to earn on the website. As γ < 1, we implicitly assume some decreasing returns
constraining the rate of entry - which could come from offline administrative, congestion
or even direct competitive costs. Finally, if we interpret sales as clicks, the firm’s objective
function can be motivated by the optimal pricing scheme in Baye et al. [2011].

A straightforward application of Theorem 3 tells us that the e-Commerce firm, RA,
can induce an equilibrium with payoffs approximating any allocation of expected average

18The results of this section continue to go through in a model in which the Seller can choose prices
each period, so long as the threat of potential competition prevents him from capturing all the buyer’s
expected surplus. For example, suppose S chooses prices in each period but there is a long-run potential
entrant, whose goods are all of quality θE = 3, faces production costs of dE = 2 and an entry cost
F > 0. Each round, S’s costs inflate with probability δ to dSt = 2 and then remain there forever. There
is an equilibrium of this game in which S signals he is low cost by maintaining a price below 2 each
period, so long as his costs remain dS = 1. Moreover, this yields a v function such that the seller and
customer behave as above. A quantitatively different but qualitatively similar v function obtains if a risk
averse customer has the outside option of buying a “brand new”, i.e. high quality for sure, product at
an exogenous outside price. Alternatively, following Rhodes and Wilson [2017], we could use standard
monopolists - this would have different implications for optimal information structures but would provide
the same motivation for review aggregation.
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Figure 3: Payoff Sets for Online Trading

utilities (u, v) on the Pareto frontier (PT in Figure 3). For example, a test that imple-
ments average payoffs close to truth-telling, T , is passed when bad reviews, ωt = 1, follow
Buy messages at a rate only slightly more than 1− p < 1/2. Alternatively, to implement
maximal persuasion average payoffs, P , the test is passed when bad reviews follow Buy

messages at a rate slightly less than 1/2. The profit-maximizing solution lies along PT ,
and satisfies

1 + εs − γ2

γεc
=
v?

u?
. (6)

Equation (6) tells us that RA’s choice of statistical test depends on two things: (i) the
customers’ and sellers’ relative elasticities of participation with respect to their expected
surplus on the platform, εc/εs; and (ii) the complementarity between seller and customer
participation, γ. Low relative elasticity of customer to seller participation, εc/εs, and
low complementarity between seller and customer participation, γ, tilts RA’s choice of
test towards the seller’s interest i.e. the allowable conditional rate of bad reviews moves
towards 1/2, shifting (u?, v?) towards P . When these values are high, however, the test
tilts towards the customers’ interests i.e. the allowable conditional rate of bad reviews
moves towards 1− p, shifting (u?, v?) towards T .

This simple example provides clear comparative statics on when the use of ratings
systems by e-commerce firms can improve outcomes for buyers, sellers, or both. Under
bilateral trade, consider the (constrained) efficient equilibrium payoffs T ′ in Figure 3.
When p ≈ 1

2
, T ′ is close to (0, 0). In this case, the presence of an e-Commerce firm is

likely to improve outcomes for everyone, regardless of εR
εS

or γ. By contrast as p → 1,
T ′ → T . Accordingly, e-commerce platforms are almost certain to make sellers better off
at the expense of customers. Finally, for intermediate noise, sellers always gain (weakly)
from having e-commerce firms involved, whereas customers gain only if their participation
is sufficiently important for RA’s profits.
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4.2 Application to Financial Advice & Disclosure Rules

Many investment brokerages (the sender) offer investment advice to clients (receivers).
Several papers show that brokerages have incentives to ‘oversell’ products to their clients
and are far too optimistic in their recommendations [Dugar and Nathan, 1995, Lin and
McNichols, 1998, Michaely and Womack, 1999, Krigman et al., 2001, Hong and Kubik,
2003].

In 2002, the National Association of Security Dealers (NASD), a financial industry
self-regulating body, imposed rules that require brokerages to disclose the aggregate dis-
tribution of their recommendations to clients. Barber et al. [2006] and Kadan et al.
[2009] analyze the advice given by brokerages as well as the price reaction to that advice.
Prior to the introduction of these rules, analysts gave ‘Buy’ recommendations 60% of the
time.19 On introduction of these new rules ‘Buy’ calls dropped almost immediately to
51% and by the following year they made up only 42% of total recommendations. Along
with the drop in "Buy" recommendations Kadan et al. [2009] show that prices became
more responsive to ‘Buy’ calls, suggesting clients found the new reports more persuasive.

A simple version of our model can shed light on this intervention. Suppose there are L
clients, each of whom is considering buying an idiosyncratic (i.i.d.) portfolio that, given
their preferences, is overvalued or undervalued: ωlt ∈ {Low,High}. Client payoffs from
buying the portfolio is (−1/p) if ωlt = Low, and 1/p if ωlt = High; not-buying has payoff
0. Ex-ante, Pr(ωlt = High) = µ0 = 1/3 for all t.20,21 The brokerage observes a signal θlt
on the value of each portfolio l, where Pr(ωt = θt|θt) = p > 0.5. The brokerage then
sends a vector of messages µt = (µ1

t , ...., µ
L
t ) to clients. Hence, clients’ expected payoffs

conditional on µlt are as in Section 1, and the brokerage always wants clients to buy.
Prior to the 2002 rules, client l only observed the history of their own interactions with

the brokerage. Thus, this is just L replications of the standard case so the equilibrium
payoff set is identical to that of Section 1: payoffs bounded strictly away from the frontier.
Our predictions are consistent with the data - brokerages were attempting persuasion,
over-recommending ‘Buy’ and were being punished with periods of babbling, in which
their ‘Buy’ reports were having little market impact.22

However, after 2002, it became possible for clients to observe a measure of the history
of all messages sent by the brokerage across clients/assets. For concreteness, suppose

19This was not anomalously high. Since the beginning of their dataset, ‘Buy’s had always exceeded
60%.

20This assumption can be relaxed. It is sufficient to have ex-post observability of overall valuations
across assets. While this example deserves its own asset pricing model, it is beyond the scope of the
present paper.

21Alternatively, the sender gives advice on L asset classes, clients focus on a given class, and do not
monitor the advice given on other assets. Such a model could be grounded in rational inattention or
costly information acquisition. Empirically, different clients do in fact focus on different asset classes.

22Babbling with ‘Buy’ signals is even more natural in a world with some naive clients who take advice
at face value.
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clients observe the aggregate proportion of ‘Buy’ calls sent by the brokerage in the past
in addition to their own advice. The proportion of ‘Buys’ can now act as a sort of review
aggregator where the brokerage is given a per period budget of ‘Buy’ calls to allocate
across clients. Being indifferent about which client buys, there is an equilibrium in which
he recommends ‘Buy’ when θlt = High and then allocates the remaining budget of ‘Buy’s
at random to the remaining clients. When L is large this washes out the noise in the
brokerages predictions and when the budget is less than or equal to two thirds then it
is incentive compatible for the clients to follow the advice. This is all sustained by the
threat of moving to a babbling equilibrium in the future.

In accordance with the data, the policy change allowed for more convincing persuasion,
and less reversion to periods of babbling. In this way brokerages became more disciplined,
and so more convincing, in their ‘Buy’ recommendations. Interestingly, from our earlier
discussions on e-commerce, while the policy change likely made brokerages better off, the
effect on clients’ payoffs is ambiguous.

It is worth discussing some of the theoretical deviations from our review aggregator,
and then the relation of these deviations to the actual problem facing brokerages and
clients. First, the NASD legislation provides a finer aggregate rating than the review
aggregator. As the clients are given the precise outcome of the statistical test every
period the equilibrium is not selected by the review aggregator - leading to a greater
degree of multiplicity. Given this multiplicity we needn’t have moved to a different
equilibrium at all, we could even have moved to one worse for both senders and receivers
- this is a well known problem and we don’t try to solve it here. However, if the new
equilibrium is outside the pre-reform equilibrium set then this would lend support to our
theory regarding review aggregation.23

Second, the NASD legislation, unlike our review aggregator, is an unconditional test -
it does not make use of the realized outcomes of prices. We are able to do this in our model
because the analyst is indifferent across the different portfolios. In reality, brokerages will
care differently about different portfolios, moreover they make these recommendations
over a period of time and so will be discounting. As noted in the discussion of alternative
mechanisms above, this can cause problems for a mechanism that uses only the aggregate
budget and not a conditional budget. That said, we also abstracted away from the
capacity of brokerages to randomize the timing and rate of advice. Moreover, they will
also have privately known heterogenous valuations across clients and portfolio. In such a
setting it is still feasible to generate some uncertainty for clients about the precise strategy
that they are facing and we can recover some of the effective randomization necessary
to sustain a review aggregator. It is not clear without a fuller model, including macro
shocks and asset pricing, how well the brokerages can do this.

23It is not immediately clear to us how one would run this test using the actual reform - but it could
certainly be tested in the lab.
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Given these issues, we would tentatively suggest that brokerages may be better served
by a legislation with features closer to our review aggregator. That is, i) a coarser rating
where movement from bad ratings to good ratings are more insensitive to brokerage
behavior; ii) the review window for each brokerage is private knowledge for the brokerage
and the regulator; iii) a conditional budget for advice. Point (i) reduces the multiplicity
of equilibria by enforcing stage game punishments for bad behavior. Point (ii) allows us
to more effectively randomize the subjective order of clients within a review phase. Point
(iii) stops the regulator being dependent on perfect knowledge of the analysts preferences
across portfolios and clients. Whether this would also be beneficial for clients would
depend on what rules the regulator chose for updating these ratings.

5 Optimal Information Structure

In this section, we study how long-run incentives affect the sender’s optimal choice of
information structure in the absence of mechanisms such as the coin and cup or review
aggregator. To do this we focus on comparing the solutions to equations (Commitment)
and (Long-Run Persuasion). Letting ΛKG, ΛLP , represent the sets of optimal informa-
tion structures under commitment and long-run persuasion respectively, an immediate
corollary of Theorem 1 is:

Corollary 2. If ΛKG contains a partitional information structure, then ΛLP ⊆ ΛKG.

Corollary 2 is intuitive: if a partitional information structure is optimal under commit-
ment, then the sender can also achieve v̂ (µ0) in the long run persuasion game (Theorem
1). Moreover, every λLP ∈ ΛLP must achieve the payoff v̂ (µ0) and thus ΛLP ⊂ ΛKG.
Motivated by this comparison, one might wonder whether optimality of partitional infor-
mation structures is also necessary for λLP ∈ ΛKG. However, in general this need not be
so. Indeed, recall the leading example of Section 1. While the payoff from implementing
λKG was lower without full commitment, we showed that it was nonetheless (weakly)
optimal for the sender to use λLP = λKG.

The difference between incentives under long-run persuasion and commitment is most
clear when v is differentiable. Consider Figure 4. In this case, λKG is not partitional
– under commitment, it is optimal to induce a distribution over receiver posteriors µ?l ,
µ?h, where µ?h ∈ (0, 1). In particular, the optimal policy ensures that the chord con-
necting (µ?l , v (µ?l )) to (µ?h, v (µ?h)) satisfies tangency with v at µ?h. Given Lemma 2, this
tangency condition implies that µ?h never lies at an interior maximum of v. However,
under long-run persuasion the sender earns strictly lower payoffs from this information
structure. Since both µ?l and µ?h are sent when θ = 0, on-path punishments are required
to ensure indifference in this state. The sender’s expected payoffs are therefore as if he
were reporting µ?h only when θ = 1 (point v′ in Figure 4). But the long-run persuader
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can do better than this. Indeed, since he only retains the payoff from a high message in
state θ = 1 he should simply maximize v (µh) – that is, λLP induces a distribution over
µ?l and µ??h . Indeed for this reason, whenever N = 2 and v is differentiable a long-run
persuader’s optimal information structure always differs from the commitment optimum
whenever the latter is not partitional.

𝜇1

𝑣 𝜇

𝜇$𝜇%⋆ 𝜇'⋆ 𝜇'⋆⋆

𝑣(

Figure 4: Optimal information structures with and without commitment

We now generalize this observation. To do this we continue to abstract from the
boundary issues introduced by discontinuities, as they hinder comparative statics analysis:

Assumption 2. v(µ) is differentiable, ∀µ ∈ ∆Θ.

Under differentiability, a change in the sender’s marginal incentives leads directly to
a change in his preferred information structure. Moreover, given uncertainty about the
preferences of others, such an assumption is natural. To be concrete, consider extending
the seller-customer model so that the customer enjoys a random utility from her outside
option, u ∼ N(0, σ2). The customer then buys if and only if E[θ|µ] − q = 2µ − 1 ≥ u,
providing the seller with expected payoffs of v (µ) = Φ((2µ − 1)σ−1). It is easy to see
that, as σ → 0, the problem tends to the original step function.24

Of course, Corollary 2 continues to apply even when v is differentiable. To study the
relationship between ΛLP and ΛKG when partitions are not optimal, we first study value
functions v for which each λKG ∈ ΛKG has the property of being “free”:

Definition 3. A collection of posteriors {µj}Mj=1 are free if for each j, there exists an
ε-ball in ∆supp (µj) such that for all µ′j in that ball, we have

µ0 ∈ co
({
{µj}k 6=j , µ

′
j

})
.

24Kolotilin et al. considers a sender who can offer menus of signals to the Receiver. These issues are
orthogonal to our main results, and so we abstract from them here.
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When posteriors are ‘free’ it is feasible to make local changes to any posterior inde-
pendently, without violating Bayes plausibility. Freeness of λKG is an assumption on the
geometry of the value function, v: recall that the posteriors

{
µ?j
}M
j=1

are those used to
support the concave envelope, v̂, at µ0. In particular, we are not imposing anything on the
nature of λLP . λKG will be free whenever we can use N distinct values, µ?j , j = 1, . . . , N ,
to support the concave envelope. Indeed, the freeness property arises in many solved ex-
amples in the literature: for instance, it arises in all binary state applications where the
sender wishes to share some information, such as in Brocas and Carrillo [2007], Gill and
Sgroi [2012], Che et al. [2013], Gentzkow and Kamenica [2014], Perez-Richet [2014], Che
and Hörner [2015], Alonso and Câmara [2016a], Rhodes and Wilson [2017], Lipnowski
and Ravid [2017], and in the binary action environments of Kamenica and Gentzkow
[2011], Alonso and Câmara [2016b].

By contrast, partitional information structures (other than truth-telling) are not free.
Partitional structures are found in Gentzkow and Kamenica [2016a], Kolotilin [2015],
Kolotilin et al., Kremer et al. [2014], where the receiver’s behavior depends only on the
expectation of a continuous random variable, as well as in Ely [2017]. However, from
Corollary 2, the optimal information structures are the same across the two problems in
these cases.

In this environment, it turns out that ‘quasi-partitional’ information structures are
key to understanding the difference between the optimal choice of information structure
with and without commitment:

Definition 4. An information structure λ is quasi-partitional if {µj}Mj=1 can be divided
into mutually exclusive subsetsM1,M2 with the following properties:

1. With respect to each other, the supports, suppµj, µk ∈M1, form a partition of Θ.

2. For any µj ∈M2, v (µj) ≥ v (µk) for all µk ∈M1 such that supp (µk)∩ supp (µj) 6=
∅.

Notice that in long run persuasion, there is always a dichotomy between two classes
of posterior. First, there are payoff relevant posteriors, µ′ ∈ M1, which directly enter
into the sender’s objective function. They are payoff relevant in the sense that, for each
such message, there exists a state θi in which µ′ ∈ arg min v (µ), subject to µ ∈ M i.
This implies that local changes in µ′ directly affect the sender’s average payoffs. Second,
the remaining messages, µ′′ ∈ M2, are payoff irrelevant: that is, for every θi ∈ Θ,
µ′ /∈ arg min v (µ), s.t. µ ∈ M i. For these posteriors, local movements have no direct
effect on payoffs. A quasi-partitional information structure is thus one in which the payoff
relevant messages form a partition of the state space: no two payoff relevant messages
are ever sent in the same state.
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Given the above, we can now provide the appropriate counterpart to Corollary 2 – a
set of necessary conditions for a commitment structure λKG ∈ ΛKG to also be optimal
under long run persuasion:

Proposition 2. Suppose that λKG =
(
λ?j , µ

?
j

)M
j=1
∈ ΛKG induces free posteriors. Then

there exists a λLP ∈ ΛKG only if there exists a quasi-partitional λKG, such that each
µ?j ∈M1 maximizes v on µ ∈ ∆supp

(
µ?j
)
.

Our necessary conditions relate closely to partitional information structures. Indeed,
Proposition 2 tells us that the only way a long-run persuader could optimally choose to
replicate some λKG is if: (i) the payoff-relevant messages under λKG form a partitional
information structure (with respect to each other), and (ii) these messages achieve the
global maximum of any posterior distribution defined over the same support. Otherwise,
the optimal information structures with and without commitment must be different.

The proof of Proposition 2 exploits variational arguments necessary for optimization
of each problem. Recalling from Lemma 2 that v

(
µ?j
)
are all distinct, we argue that λ?

must be quasi-partitional in two steps: First, consider maximizing the objective function
in (Long-Run Persuasion). We argue that for each payoff-relevant µ?j , v

(
µ?j
)
is a local

maximum of v on ∆supp
(
µ?j
)
(the simplex over θi such that µ?,ij > 0). Otherwise, there

must exist nearby µ̃j ∈ ∆supp
(
µ?j
)
such that v (µ̃j) > v

(
µ?j
)
. Thus, the sender’s payoffs

increase in any θi ∈ supp
(
µ?j
)
for which v

(
µ?j
)
< v (µ?k), ∀µk such that θi ∈ supp (µk).

This strictly increases the objective in (Long-Run Persuasion). Moreover, since µ̃j ∈
∆supp

(
µ?j
)
the objective function is otherwise unchanged. Finally, freeness implies such

a variation is feasible.
Now consider maximizing the objective in (Commitment). We argue that all payoff-

relevant messages must have non-overlapping supports. Otherwise, there would be two
payoff-relevant messages such that supp

(
µ?j
)
∩ supp (µ?k) 6= ∅. Suppose (without loss)

that v
(
µ?j
)
> v (µ?k). Since both messages are sent with positive probability in some

state θi, we can always marginally increase the probability of sending message j in state
θi at the expense of sending message k less. While this variation affects both µ?j and
µ?k, they are each local maxima and therefore the first-order payoff consequences are 0.
Thus, payoffs change due solely to the increase in the probability of sending message j
and offsetting decrease in probability of message k. Since the sender prefers the former,
this would strictly increase his payoffs. To avoid this contradiction, M1 must therefore
be partitional.

Finally, we show that each µ?j ∈M1 must be actually achieve global maximum payoffs
on ∆supp

(
µ?j
)
. This follows from v

(
µ?j
)
being a local maximum and an observation about

tangency conditions required of the concave envelope of v.
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Comparing Tradeoffs: Long Run Persuasion vs. Commitment

In general, one can construct value functions v for which the concave envelope is supported
by posteriors which are not free. Nonetheless, the variational arguments behind the proof
of Proposition 2 can be extended to yield necessary conditions for an information structure
to be optimal both with and without commitment. To illustrate, we provide heuristic
derivations of the sender’s first-order conditions for optimality in each case and use these
to illuminate how the tradeoffs differ across problems.

Consider an interior variation (dλj, dµj)
M
j=1, such that

(
λ?j + dλj, µ

?
j + dµj

)M
j=1

satisfies
Bayes plausibility.25 Then λ? ∈ ΛKG only if the first-order condition

M∑
j=1

λ?jDv
(
µ?j
)T
dµj︸ ︷︷ ︸

Intensive Margin

+
M∑
j=1

v
(
µ?j
)
dλ?j︸ ︷︷ ︸

Extensive Margin

= 0 (7)

holds, where Dv (µj) =
(
∂v
∂µ1j

, . . . , ∂v
∂µNj

)
is the gradient of v (µj) with respect to each

µij, i = 1, . . . , N . For a sender with commitment, equation (7) shows that a marginal
change in the information structure has two consequences. First, there are changes at the
Extensive Margin: by altering the frequency of messages sent in state θi, he can enjoy
the extra payoffs from the more valuable message more often. For example, suppose
the sender wishes to increase the probability of sending some message µj in a state
θi, by reducing the probability of sending some other message µk in that state, where
v (µj) > v (µk). All else equal, the sender will capture the difference v (µj)− v (µk) with
marginal probability dλj.

However, there is also a second effect of such a policy, at the Intensive Margin: By
sending µj more (µk less) in state θi, the equilibrium values of µj and µk change, such
that the sender’s payoff experiences the first-order effect ∂v

∂µij
dµij + ∂v

∂µik
dµik across all states

in which it is sent with positive probability.
Similarly, we can write the necessary first order conditions for λ? ∈ ΛLP as follows. In

addition to satisfying Bayes plausibility, the variations (dλj, dµj)
M
j=1 must now be chosen

to ensure that we do not create discontinuous reductions in vi for some state θi (since this
would be strictly sub-optimal at the margin). Indeed so long as we focus on variations
that leave message supports unchanged, µj + dµj ∈ suppµj, j = 1, . . . ,M , we avoid
costly discontinuities.26 For any such variation, optimal long-run persuasion imposes the
first-order constraints

25While it is easy to explicitly write the feasibility constraints, the specifics are not useful for our
argument. Importantly however, so long as

(
λ?j , µ

?
j

)M
j=1

is not partitional, there always exist feasible
interior variations.

26Again, the only information structures for which there is no feasible (dλj , dµj)
M
j=1 under the addi-

tional support restriction µj + dµj ∈ suppµj are the partitional information structures.
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M∑
j=1

λ̃jDv
(
µ??j
)T
dµj︸ ︷︷ ︸

Intensive Margin

= 0, (8)

where λ̃j :=
∑

i:vi=v(µj)
µi0 is the probability with which the sender’s payoff (net of pun-

ishments) is v
(
µ??j
)
.27,28 Compared with (7), equation (8) appears much reduced. In

particular, if the sender is constrained by long-run credibility concerns it turns out that
he only evaluates changes at the intensive margin. This follows because of the need to
ensure his long-run credibility in equilibrium. Since his payoff in each state is pinned
down to vi, he does not experience any benefit at the extensive margin from sending
higher value messages more in state θi. Instead, he cares only about what such devia-
tions achieve at the intensive margin - that is, to the inherent values of the messages in
M1.

There is a second difference between (7) and (8): the weights the sender uses to eval-
uate the magnitude of the intensive margin. The reason for this is again the presence
of on-path punishments: under long-run persuasion, the sender ‘overweights’ the impor-
tance of messages in M1, since these are the only posteriors relevant to the payoffs he
actually retains. By contrast, under commitment the expected value of the intensive
margin is determined using the actual probabilities, λj = Pr (m = µj) .

Since any feasible first order variation under long-run persuasion is also feasible under
commitment, we can directly compare conditions (7) and (8). Thus, λKG = λLP only if

M∑
j=1

(
λ?j − λ̃j

)
Dv
(
µ?j
)T
dµj +

M∑
j=1

v
(
µ?j
)
dλ?j = 0. (9)

Equation (9) helps to illustrate the intuition behind Proposition 2. It shows that a
necessary condition for λKG = λLP is that differences between the weights that a long-run
and a committed sender respectively attribute to the intensive margin must exactly offset
the costs the committed sender feels at the extensive margin, for all feasible variations.
However, these intensive and extensive effects are very different from each other and there
is no reason to think a priori that they would be the same. For example as the discussion
at the beginning of this section noted, when N = 2 and v is differentiable, ΛLP ∩ΛKG = ∅
if and only if ΛKG contains no partitional information structure.

27Given Lemma 2, we do not have to worry about ‘kinks’ due to the min operator in (Long-Run
Persuasion) at any λ? ∈ ΛKG.

28Notice that λ̃j > 0 if and only if j ∈M1.

32



6 Conclusions and Extensions

In this paper we have characterized the optimal payoffs and information structures under
long-run persuasion. Moreover, we have been able to directly compare them to persuasion
with ex-ante commitment: we found that long-run persuasion is frequently inferior and
requires different information structures. But, when monitoring is perfect, the situation
can be retrieved with the use of a coin and a cup mechanism. However, when monitoring
is imperfect we need a review aggregator if we are to approach the payoffs and information
structures available to a sender with commitment.

Both the coin and cup and review aggregator provide potential micro-foundations for
the commitment assumption in the persuasion and information design literature. Each
achieves the set of commitment outcomes by tampering with the observed history of the
sender’s behavior in an asymmetric fashion. This insight allows us to achieve payoff sets
superior to those identified in earlier literatures on games with short-run players. Further
work should look how these mechanisms apply in the setting of general repeated games.

Several other open questions arise from this paper. How does long-run persuasion
perform when information acquisition is endogenous, or when information is partially
verifiable, or when monitoring is costly? How do these results extend when there are
many interacting senders or receivers? How do we optimally implement the coin and cup
or review aggregator when states are not independent across time? This paper then, is
a first step on the road to having a fuller understanding of persuasion and information
design when commitment has to be generated endogenously.

On top of developing the theory further, there are several applied and empirical issues
which bear examining in our setting. Indeed, in Subsections 4.1, 4.2 and the Online Ap-
pendix, we illustrate key issues and trade-offs in the context of e-commerce, social media,
‘fake-news’, team management, central banking, and financial advice. Yet, to apply our
results to designing policy in these areas we would need a fuller and more detailed char-
acterization of the economic features peculiar to each environment. Moreover, the cases
of e-commerce, social media and finance, seem to be ripe for empirical investigation of
long-run persuasion with and without review aggregation.
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Appendix A

We leave the proofs of Lemmas 1 and 2 and Theorem 1 to the Online Appendix B.

Proof of Proposition 1

Proof. In any equilibrium, S must be indifferent at any history (ht, θ
i
t) between all mes-

sages µ̃ ∈ σt (ht, θ
i
t). Since µi (ht) := arg min vi (σt (ht, θ

i
t)) is by definition in the support

of σt (ht, θ), we must have that payoffs from any equilibrium message at this history are

Vt (ht, θt) = v
(
µ
i
(ht)

)
+ δE [Vt+1 ((ht, µt, θt) , θt+1)] .

Consider the following problem:

supσ∈Σ Eθ [Vt (ht, θ0)] (10)

s.t.

Vt+τ
(
ht+τ , θt+τ

)
= v

(
µ
t+τ

)
+ δE

[
Vt+τ+1

((
ht+τ , µt+τ , θt+τ

)
, θt+τ+1

)]
,

µ0 ∈ co (∪θt∈Θsupp (σt (ht, θt))) ,

37



∀ht s.t. µ̃t = µi
τ
at all subsequences hτ ′ , 0 ≤ τ ′ ≤ τ , of ht at which S acts. We refer

to the set of continuation payoffs that satisfy all constraints in (10), by V . Notice V is
non-empty.29

At t = 0 (where h0 = ∅), problem (10) is a relaxed version of problem (4): it only
retains constraints for histories in which S has always reported the ‘worst’ current message
µi
τ ′

among all those available in the support of his strategy at previous histories, hτ ′ ,
τ ′ < τ . All other constraints from (4) are dropped. Thus, the optimal value of (10)
provides an upper bound on (4).

Let V ?
t (ht, θt) be the supremum achieved in problem (10) at history ht. From the first

constraint, we must have

E
[
V ?
t+τ

(
ht+τ , θt+τ

)]
=

supσt(ht,θ),Vt+τ+1
E
[
v
(
µi
t+τ

)
+ δVt+τ+1

((
ht+τ , µ

i
t+τ
, θt+τ

)
, θt+τ+1

)] (11)

where the supremum is taken over feasible lotteries σt (ht, θ) ∈ Λ (µ0) and feasible payoffs
from the continuation equilibrium, Vt+τ+1 ∈ V .30

For any t + τ , history
(
ht+τ , θt+τ

)
and corresponding strategies σt+τ

(
ht+τ , θt+τ

)
,

Vt+τ
(
ht+τ , θt+τ

)
is maximized by choosing the highest feasible expected continuation,

E
[
V ?
t+τ+1

((
ht+τ , µt+τ , ωt+τ

)
, θt+τ+1

)]
.

Moreover, since the continuation games at histories
(
ht+τ , µt+τ , ωt+τ

)
and ht+τ are iden-

tical, the expected continuation values must be equal:

E
[
V ?
t+τ

(
ht+τ , θt+τ

)]
= E

[
V ?
t+τ+1

((
ht+τ , µt+τ , ωt+τ

)
, θt+τ+1

)]
Substituting into (11) yields, on rearrangement:

(1− δ)Eθ [V ?
0 (θ0)] = sup

λ∈Λ(µ0)

∑
µi0vi (λ) (12)

Since any equilibrium value is bounded by this supremum, the first part of our result
holds.

Since vi (λ) is the minimum of finitely many upper semicontinuous functions (v is
upper-semicontinuous and from Lemma 1, M ≤ N < ∞ ), it is upper semi-continuous.
Moreover, the set Λ (µ0) is clearly compact. Therefore, by the Extreme Value Theorem,
the maximum exists. Let the lottery that achieves this optimum be λ? ∈ Λ (µ0), with
associated support {µ?1, µ?2, . . . , µ?N ′}, where for convenience we index such that v (µ?1) ≤

29The discounted payoff from repeated play of the static babbling equilibrium at each history, v(µ0)
1−δ ,

is feasible.
30Focusing on expected continuations (rather than values conditional on θ) ensures that we do not

violate the constraint µ0 ∈ co (∪θt∈Θsupp (σt (ht, θt))).

38



v (µ?2) ≤ · · · ≤ v (µ?N ′). Notice also that compactness of ∆Θ and the USC of v jointly
imply that v (µ) is bounded above by some v <∞ for all µ ∈ ∆Θ.

Let vB be the worst expected stage payoff to the sender from any equilibrium of the
stage game and σBt be the sender’s corresponding equilibrium strategy. To aid notation,
let v∗ :=

∑N
i=1 µ

i
0v(λ?). Now define σλt as the stage game strategy that induces the lottery

λ?. From Kamenica and Gentzkow [2011], σλt exists. Consider the following strategy σ∗,
such that for all t:

σ∗t =

σλt if ht ∈ H t

σBt if ht ∈ H̄t

⋃
HB
t

,

where HB
t is the set of histories hBt such that the sender reports some µ̃τ /∈ supp (σ∗τ ) at

some sub-history hBτ . Thus histories in H t ∪ H̄t represent on-path histories. H̄t is the set
of punishment periods. A punishment period commences at t if µ̃t−1 6= µi at ht−1 ∈ H t−1

for some µ̃t−1 ∈ supp
(
σλt−1

)
, and lasts for Ki,µ+1b<βi,µ periods. Where the final period of

this punishment is implemented with a public randomization device bt ∼ U [0, 1].31 Ki,µ

and βi,µ ∈ [0, 1] are the values of k and β that solve the following equation:

v(µ)− v(µ
i
) =

k∑
τ=1

δτ (v∗ − vB) + βδk+1(v∗ − vB). (13)

First, note that if v∗ = vB then this payoff can trivially be sustained by repeated play
of σBt at every history. Thus, suppose v∗ > vB. Let δ < 1 be defined by the following
equation:

v̄ =
δ

1− δ
(v∗ − vB).

Since v(µ) − v(µ
i
) < v̄ < ∞, there always exists a k and β solving equation 13 for any

δ ≥ δ. To see that σ∗ is an equilibrium for δ > δ̄, first note at any history ht ∈ H t, all
choices of µ̃t ∈ supp

(
σBt
)
yield the same continuation equilibrium and therefore σBt is the

sender’s best response at ht. Second, by (13), the sender is indifferent between choosing
µi and any µ̃t ∈ supp

(
σλt−1

)
, for all i. Finally, (13) implies that deviating from σλt for

some ht ∈ H t results in an expected utility loss of

∞∑
τ=1

δτ (v∗ − vB) > v̄.

31This is for simplicity only, we could instead approach the proof using deterministic punishments as
in Fudenberg and Maskin [1991].
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Proof of Theorem 2

Proof. We first prove the result for v̂ (µ0). Defining the state variable as (θt, ct) ∈ Θ ×
[0, 1], it is easy to show that the optimal experiment under commitment can be written
as deterministic with respect to (θt, ct). It then follows from Theorem 1 that this is
achievable. Finally, for any v (µ0) ≤ ν? ≤ v̂ (µ0) , where v (µ0) is the sender’s worst stage
game payoff, we can achieve ν? with a public randomization device, which randomizes
between play of the optimal experiment and the cheap talk equilibrium. For δ large
enough, this continues to be an equilibrium supported by the threat of permanently
moving to the worst stage game equilibrium.

Proof of Theorem 3

Proof. For simplicity, we establish the result for the seller-customer environment of Sec-
tion 1. The Online Appendix contains a restatement of the result and its proof for the
more general environment.

The proof is constructive. For any feasible information structure λ, we find a rule
for transitioning between G and B such that, for a patient enough seller, there is an
equilibrium of the review system in which: (i) on-path costs of falling into a B-phase
are negligible; (ii) the seller’s optimal reporting strategy approximately induces λ on
average within a G-phase; (iii) each customer finds it optimal to follows the seller’s
recommendations. To aid exposition, we show the result for λ = λKG. The argument is
identical for other choices of λ.

Let (qθ)θ∈{1,3} ∈ [0, 1]2 be a pair of parameters satisfying q1 = 0.5 − ε, q3 = 1, where
ε > 0, and consider the following class of review systems: At the T th period of any
arbitrary G-phase, Gj, the review system continues on to another T period G-phase (the
seller ‘passes the test’) if

1
T

∑
t∈Gj 1(mt = Buy, ωt = ω) ∈ [µ0z

ω
3 q3 + (1− µ0) zω1 q1 − χ, µ0z

ω
3 q3 + (1− µ0) zω1 q1 + χ]

for ω = 1, 3, where 1(E) is the indicator for event E, zωθ = Pr (ωt = ω | θt = θ), and
χ > 0 is a parameter measuring the test’s strictness.32 Otherwise, the seller ‘fails’ and
the review system switches to a B-phase for βT periods. At the end of any B-phase, the
review system reverts to a new G-phase.

Suppose that during any G-phase customers obey the seller’s recommendation, while
in any B-phase customers treat reports as babbling. We first show that there exist δ?,
T ?, χ?, β?, such that, for all δ ≥ δ?, the seller’s best response in the review system with
parameters T ?, χ?, β?, involves adopting a strategy which (i) passes each test with high
probability; (ii) he earns discounted average payoffs close to 2

3
(1− ε).

32We suppress indices denoting specific phases for notational convenience. See Appendix B.
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For any p 6= 0.5,33 it follows from Chebyshev’s weak Law of Large Numbers that for
any l > 0, ε2 > 0, we can find a sequence (χn, Tn)∞n=1 → (0,∞) that (i) if the seller
reports according to strategy (qθ)θ∈{1,3} throughout a G-phase, then Pr (Pass) ≥ 1− ε2;
while (ii) if ∑

t∈Gj 1(mt = Buy, θt = θ)

T
/∈
[
qθ − l, qθ + l

]
,

for some θ ∈ {1, 3} then Pr (Fail) ≥ 1 − ε2. Fix parameters 0 < ε?2 < ϕ, where ε?2/ϕ

can be chosen arbitrarily small. Given any χ?, T ? satisfying (i) and (ii) for ε2 = ε?2, the
seller’s payoff from any recursive strategy at the start of a G-phase is34

VG =
T ?−1∑
t=0

δt Pr
(
mt = Buy

)
+ δT

? (
1− ϕ+ ϕδβT

?)VG (14)

where ϕ denotes the probability that the seller fails review phase G. We now find β?, δ?

such that the seller will optimally choose ϕ < ϕ, if δ ≥ δ?. If the seller reports according

to (qθ)θ∈{1,3}, his payoffs within a G-phase would be 2/3 (1− ε) 1− δT+1

1− δ
, and from (i),

ϕ ≤ ε?2. Moreover, the expected cost to the seller of failing is no greater than 2
3
ε?2β

?T ?.
Now, set β? = 4/ϕ and consider any other strategy with ϕ ≥ ϕ. Clearly an upper bound
on the incremental payoff such a strategy can yield within the G-phase is 1

3
T ?, while the

marginal failure cost is at least

δT
?+1 2

3
(1− ε)ϕ

(
1− ε?2

ϕ

)
β?T ?.

For δ? large (and ε?2/ϕ small) enough, it is easy to see that the expected marginal costs of
failing exceed the benefits whenever ϕ ≥ ϕ.

Finally, notice that the expected payoffs from adopting the reporting strategy (qθ)θ∈{1,3}
are very close to the commitment benchmark as we take ε, ε?2 small enough: from
such a strategy, the seller earns a discounted average payoff of at least (1− δn)VG ≥
2/3 − O

(
(ε?2)−1). Thus, for any ε, ϕ, and δ? sufficiently large, we have established the

existence of the appropriate T ?, χ?, β?.
We now show that, for a choice of ϕ sufficiently small, it is a best response for any

customer to follow the seller’s recommendation in a G-phase. To do this, we argue that
ε2, ϕ can be chosen small enough to ensure |µB − µ′B| < ε1/2, where

µB :=

∑
t∈G Pr (mt = Buy, θt = 3, t | G)∑

t∈G Pr (mt = Buy, t | G)
(15)

is the equilibrium posterior of a buyer, given rating G and recommendation Buy, and
33Assumption 3 in the Online Appendix is needed to generalize this argument. It allows statistical

test to identify ‘lies’.
34In the proof we establish that S has an optimal strategy, and it is in recursive strategies.
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µ′B = µ0q3
2/3(1−ε) := 1/2 + ε1 is the belief that would be induced if the seller adopted re-

porting strategy (qθ)θ∈{1,3}. Define the seller’s private history at period T of some
G-phase by gst =

(
mτ , θτ

)t
τ=0

, the set of all such histories be Gt, and let the seller’s
(mixed) reporting strategy within such a phase be described by a collection of functions,
rt
(
θt, g

s
t−1

)
:= Pr

(
mt = Buy | θt, gst−1

)
, ∀gst ∈ Gt, t = 1, . . . , T .35 Given (ii) above and

p 6= 1
2
, Chebyshev’s law of large numbers implies that the seller can only fail with a

probability less than some ϕ→ 0 if he adopts a reporting strategy on which∣∣∣∣∣
∑

t∈G rt
(
θt, g

s
t−1

)
T

− qθ

∣∣∣∣∣ ≤ l

along histories, gsT , which occur with arbitrarily high probability. In the Online Appendix,
we establish formally that there exist ε?2, ϕ, l→ 0 such that the seller’s optimal strategy
must involve Pr

(∣∣∑
t∈G

rt(θt,gst−1)/T − qθ
∣∣ ≤ l

)
→ 1 in any G-phase.36

Now consider a customer’s beliefs given rating G and recommendation Buy. We can
calculate the receiver’s posterior probabilities in (15) as∑
t∈G

Pr (mt = Buy, θt = 3, t | G) =
∑
t∈G

Pr (mt = Buy, θt = 3 | G, t) Pr (t|G)

=
∑
t∈G

Pr (mt = Buy | G, t, θt = 3) Pr (θt = 3 | G, t) Pr (t|G)

= E

[∑
t∈G

rt
(
θt, , g

s
t−1

) µ0

T

]
,

where the last line follows from (a) the aggregator’s uniform permutation of customers
within a G-phase; (b) the i.i.d. nature of θt; and (c) the definition of the seller’s strat-

egy. But since
∑
t∈G rt(θt,gst−1)

T
is a bounded random variable which converges to qθ with

probability approaching 1, we must also have E
[∑

t∈G
rt(θt,gst−1)/T

]
→ qθ. Thus,

∑
t∈G

Pr (mt = Buy, θt = 3, t | G)→ 1

3

as ϕ→ 0 and similar calculations imply

∑
t∈G

Pr (mt = Buy, t | G)→ 2

3
(1− ε) .

Thus, for ϕ small, \mu_B → 1
2(1−ε) >

1
2
. Thus, customers indeed obey a m = Buy. It is

easy to verify that they also obey m = R.
35Notice that we have truncated histories to only include information within G-phase. Given customer

and review aggregator behavior, it is without loss for the purposes of our results to consider seller-optimal
behavior in this way.

36The derivation is notationally heavy without adding insight, and so relegated to the Online Appendix.
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Finally, babbling can obviously be sustained as an equilibrium during B-phases, since
it is an equilibrium of the stage game.

Since we are free to choose ε > 0 as small as we necessary, we have therefore established
that payoffs and the underlying information structure from λKG can be approximated
arbitrarily closely.

Proof of Proposition 2

Proof. Let M =
{
µ?j
}M
j=1

and for each state θi, M i := {µ : µ ∈M, µi > 0} be the set
of messages sent in that state. Suppose that there is an information structure λKG =(
λ?j , µ

?
j

)M
j=1

which induces free posteriors and is optimal under both commitment and
long-run persuasion. Then it must solve the following two problems:

max
(λj ,µj)

M
j=1

∑
M

λjv (µj) s.t. µ0 =
M∑
j=1

λjµj (16)

and

max
(λj ,µj)

M
j=1

∑
M

µi0vi(λ) s.t. µ0 =
M∑
j=1

λjµj. (17)

Note that for any feasible policy there trivially exists a subset M̃1 ⊆
{
µ?j
}M
j=1

such
that each µ?k ∈ M̃1 satisfies µ?k ∈ arg min {v : µ ∈M i} for some i ∈ {1, . . . , N} and
∪µ?k∈M̃1

supp (µ?k) = Θ. We first show that since λKG maximizes (17) and
{
µ?j
}M
j=1

are
free, there is a subset M̂1 ⊆ M̃1 for which (i) ∪µ?k∈M̂1

supp (µ?k) = Θ and (ii) the
directional derivatives satisfy

Dv (µ?k)
T dµk = 0 ∀µ?k ∈ M̂1, (18)

∀dµk such that µ?k + dµk ∈ ∆supp {µ?k}. We argue by contradiction. Suppose such
a M̂1 cannot be found. Then since v is differentiable there must exist θi ∈ Θ and,
∀µ?k ∈ M̃1 ∩M i, some feasible µ?k + dµk ∈ ∆supp {µ?k} for which Dv (µ?k)

T dµk > 0.37 Let
this set of posteriors be D and writeM′ =

{
µ′j
}
j∈D∪

{
µ?j
}
j∈{1,...,M}/D. Since by definition

of M , λ?j > 0, ∀j ∈ {1, . . . ,M}, and µ′k = µ?k + dµk ∈ aff {µ?1, . . . , µ?M} for all feasible dµk,
there exist scalars {εj}Mj=1 such that µ0 ∈ co (M′), ∀µ′k = µ?k + dµk ∈ aff {µ?1, . . . , µ?M}
satisfying |dµk| ≤ εk. But then standard arguments imply there must exist

{
µ′j
}
j∈D such

that v
(
µ′j
)
> v

(
µ?j
)
, ∀j ∈ D and therefore

N∑
l=1

µl0 min
{
v (µ) : µ ∈M′, µl > 0

}
>

N∑
l=1

µl0 min {v (µ) : µ ∈M} , (19)

37This is immediate since Dv (µ?k)
T
dµk 6= 0, and µ?k − dµk ∈ ∆supp {µ?k} if µ?k + dµk ∈ ∆supp {µ?k}.
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where min
{
v (µ) : µ ∈M′, µl > 0

}
≥ min {v (µ) : µ ∈M} holds for all l ∈ {1, . . . , N}

and with strict inequality for l = i. But (19) is a contradiction to λKG as a solution to
(17). Thus, such a M̂1 exists.

We now argue that each µ?k ∈ M̂1 must additionally satisfy v (µ?k) > v (µ), ∀µ ∈
∆supp {µ?k}. Suppose not. Then there exists µ′ ∈ ∆supp {µ?k} such that v (µ′) > v (µ?k).
For a vector z ∈ RN , we can define the function h (z) = v (µ?k) +

||z−µ?k||
||µ′−µ?k||

(v (µ′)− v (µ?k)).
Notice that for any z′ = µ?k + α (µ′ − µ?k), α ∈ R, (z′, h (z′)) maps the chord connecting
(µ?k, v (µ?k)) to (µ′, v (µ′)). Thus, the derivative of h for a marginal change dz ∝ z′−µ?k

||z′−µ?k||
is

Dh (µ?k)
T dz =

v (µ′)− v (µ?k)

||µ′ − µ?k||
> 0.

However, by (18), Dv (µ?k)
T dz = 0. Thus, by standard arguments there exists α′ < 0

sufficiently small for which

h (µ?k + α̃ (µ′ − µ?k)) < v (µ?k + α̃ (µ′ − µ?k))

∀α̃ ∈ [α′, 0). Choose some such α and let z̃ = µ?k + α̃ (µ′ − µ?k). Thus, we can write
µ?k =

(
1

1−α̃

)
z̃ +

(
− α̃

1−α̃

)
µ′. Since h is linear, it must therefore satisfy(

1

1− α̃

)
h (z̃) +

(
−̃α

1− α̃

)
h (µ′) = h (µ?k) = v (µ?k) .

However, since v (z̃) > h (z̃) and h (µ′) = v (µ′), we must also have(
1

1− α̃

)
v (z̃) +

(
−̃α

1− α̃

)
v (µ′) > v (µ?k) .

Finally, consider the following two-stage lottery over beliefs. In the first stage, generate
µj according to λKG. Conditional on the posterior µ?k, instead provide the Receiver with
a lottery over posteriors z̃, µ′ with probabilities 1

1−α̃ ,
−α̃
1−α̃ , respectively. Since α̃ < 0, such

a policy satisfies Bayes plausibility and non-negativity. Moreover, the sender’s payoffs
from such a policy are

∑
j 6=k

λ?jv
(
µ?j
)

+ λ?k

((
1

1− α̃

)
v (z̃) +

(
−α̃

1− α̃

)
v (µ′)

)
>

N∑
j=1

λ?jv
(
µ?j
)

– a contradiction to λKG as the solution to (16).
We now argue that, for any two posteriors µ?j , µ?k ∈ M̂1 such that supp

(
µ?j
)
∩

supp (µ?k) 6= ∅, it must be the case that v
(
µ?j
)

= v (µ?k). Suppose not. Then there
exist µ?j , µ?k ∈ M̂1 with supp

(
µ?j
)
∩ supp (µ?k) 6= 0 and for which v

(
µ?j
)
> v (µ?k). Con-

sider the following deviation from λKG: in some state θi ∈ supp
(
µ?j
)
∩ supp (µ?k), increase
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λij := Pr (m = µj | θi) to λ̃ij = λij+dλ, dλ > 0, correspondingly decrease λik to λ̃ik = λik−dλ
and adjust the associated posteriors respectively as follows:

µ̃?j =
λij

λij + dλ
µ?j +

dλ

λij + dλ
1i

µ̃?k =
λik

λik − dλ
µ?k −

dλ

λij + dλ
1i

The policy λ̃ =
((

(λl)l 6=j,k , λ̃j, λ̃k

)
,
(

(µl)l 6=j,k , µ̃
?
j , µ̃

?
k

))
is Bayes Plausible, and satisfies

non-negativity so long as dλ < λik. Moreover, taking derivatives in dλ yields the necessary
FOC for λKG to maximize the objective function (16)

λ?jDv
(
µ?j
)T dµ̃?j

dλ
− λ?kDv (µ?k)

T dµ̃
?
k

dλ
+ v

(
µ?j
)
− v (µ?k) = 0

But since λKG maximizes (17), it satisfies (18) at both µ?j and µ?k, for all feasible dµ.
Thus, Dv (µ?k)

T dµ̃?j
dλ

= Dv (µ?k)
T dµ̃?k

dλ
= 0. Therefore, in order to maximize (16), we must

also have v
(
µ?j
)

= v (µ?k) – a contradiction to v
(
µ?j
)
> v (µ?k).

Thus, we have established that messages in M̂1 can be partitioned into subsets
{sc}M

′

c=1, sc ⊆ M̂1, with the following properties: (i) µ?k, µ?j ∈ sc =⇒ v
(
µ?j
)

= v (µ?k);
(ii) µ?k ∈ sc, µ?j /∈ sc =⇒ supp

(
µ?j
)
∩ supp (µ?k).

By Lemma 2, the concave envelope of v is generically not supported by posteriors with
equal payoffs. Thus, each sc is generically a singleton – providing us with the required
setM1.

Finally, the properties ofM2 follow trivially from the definition ofM2 =M/M1 and
the fact that ∪M1supp

(
µ?j
)

= Θ.
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