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Abstract

We study an optimal pricing problem for an intermediary through which transac-

tions between a monopoly and the consumers take place and consumers receive in-

formation about the commodity. The intermediary can provide information to the

consumers and charge the monopoly accordingly. We characterize the optimal menus

and show that a menu consisting of (garbled) upper censorship that displays negative

targeting feature is optimal and that surplus reduces comparing to a benchmark where

the monopoly has control of the information technology.
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1 Introduction

When making purchasing decisions, consumer’s information about the commodity plays a

central role, which in turns affects profits of a producer or a seller that can be generated
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by the sale. How well a consumer is informed about the quality of commodities and what

kinds of information does a consumer posses greatly affects how much profit a producer

can make by selling these commodities. Moreover, due to rapid development of information

technology in the past few decades, the channels and platforms through which consumers

receive information about commodities have been widely expanded. However, under many

real-world contexts, the channel and platforms through which consumers receive informa-

tion are neither owned by the producer nor the consumers themselves. Instead, it is often

the case that a centralized third party owns the technology and the platform so that it

has the ability to provide various information to the consumers of different commodities.

For instance, Online platforms such as eBay or Amazon have a well-publicized website on

which the commodities are presented to the consumers and different information about the

commodities are provided to the consumers via photos, certificates, and descriptions of the

product. Or, television broadcasters such as QVC have well-known broadcasting channels

through which the sellers can present their products on the programs and during which

the information about the commodity can be presented. Likewise, advertising agencies help

sellers design advertisements and use them to publicize the commodities and inform the po-

tential consumers. In these scenarios, the third party who owns the technology or platform

for information provision are often not involved directly in the trade between the consumers

and the producers, nor does it have direct interests in the profit that the producers can

make (e.g. The third party often do not own shares of the seller’s firm). Instead, such third

party only has interests in monetary payments made by the producers. In other words, the

owner of the information technology or platform often does not care about the outcome of

the trade, rather, it wishes to “sell” such technology or platform—by designing different

outlays and contents that contains different information about the commodity and charge

prices accordingly—to the producers who seek to maximize profit by selling a commodity to

consumers. In the era of vast development of informational technology and computational

abilities, it is then of great importance to understand the incentives for such platform or

information technology owners and how would such centralized informational intermediary,

together with the flexibility of the information they can convey, affect the market. In this

article, our main goal is to understand the incentive for such informational intermediary.
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Specifically, we examine the optimal way for such intermediary to price and “sell” to the

producers its technology or platform and the ways to convey information to the consumers.

Furthermore, we investigate the impact on welfare of such information provision process that

is concentrated to an intermediary which is separated from the producers and consumers.

To fix ideas, consider a simple parameterized model that illustrates why information

conveyed to the consumer is crucial in determining seller’s profit and why selling such infor-

mation technology would be profitable for a intermediary. Suppose that a seller is trying to

sell an indivisible good to a buyer. The buyer’s valuation of the good is v ∈ [0, v̄], for some

v̄ ≥ 3. Consider a seller with cost c ∈ [0, 1] who does not know the exact value of v but

only that v is drawn from a uniform distribution on [0, v̄]. If the buyer knows exactly the

value of v, then the seller will choose a posted price that solves maxv∈[0,v̄](v − c)(1 − v/v̄),

which gives profit of ((v̄ − c)/2)2. On the other hand, if the buyer knows nothing but the

fact that the valuation is drawn from a uniform distribution, any seller with cost less than

or equal to the expectation of v, v̄/2 will set of price at v̄/2 and the seller with cost greater

than v̄/2 will not sell at all. As such, the seller’s profit is ((v̄ − 2c)/2)+. Notice that with

different costs, the seller would prefer different information that the buyer has. For sellers

whose costs are low, they will prefer the buyer to be not informed than to be fully informed

about v, whereas for sellers whose costs are high, they will prefer otherwise. Therefore, as

an intermediary who has the technology to provide the buyer different information, it could

then benefit from setting up a menu of different information that is going to be provided to

the buyer and charge the seller with different prices.

As a preview of our main result, a corollary of our analysis (Theorem 1) suggests that

if the sellers are uniformly distributed in terms of their costs, the following menu will be

optimal: There is a continuum of items in this menu, each of them is indexed by a cutoff

k ∈ [0, 2]. For each item indexed by k, the intermediary provides information to the buyer

so that the buyer perfectly learns about v whenever it is below k and learns nothing else

whenever it is above k and charges a price a + b(1 − k2/4), where a, b > 0 are constants

that depend only on v̄. More generally, we show that an upper censorship menu—menu

consisting of items that perfectly inform the buyer when the value is below a certain cutoff

and nothing else when it is above the cutoff with a price that depend on the level of the
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cutoff—is optimal under an assumption on the distribution that requires the information

rent of seller to be relatively small comparing to that of the buyer under full information,

to which uniform distributions introduced above is an example. Furthermore, we also show

that in general (Theorem 2), without additional assumption on the distribution of valuation

and costs, a garbled upper censorship menu that resembles upper censorship menus, except

that information the buyer gets when the valuation is below the cutoff is possibly garbled

and that the largest cutoff in the menu becomes lower. Such optimal menus reflects two

interesting features. First, it involves non-linear pricing and contains infinitely many items

in the menu. As it is the information structure that is sold by the intermediary, a constant

per-unit price cannot be well-defined. Furthermore, even if we can index the items in this

menu by a one dimensional variable k, the price depends on k in a non-linear way in general.

Second, any element in this optimal menu displays a negative targeting feature that has been

discussed and documented in the advertising literature (see, for example Pancras & Sudhir

(2007) and Blake, Nosko & Tadelis (2013)). That is, in order to implement the upper (or

garbled upper) censorship, the intermediary will provide detailed information to the buyer

when his value is low and inform him perfectly (or give relatively more information) while the

information provided to high-value buyer is relatively coarse. This optimal menu prescribes

the intermediary to adopt (garbled) upper censorship that display negative targeting and the

scope of targeting is determined by the cutoff of each items. For items with higher cutoff, the

buyer receives more information in the sense of Blackwell order and the scope of targeting

is larger.

The rest of this paper is structured as follows: In the next section, we summarize the

related literature and mark the connections and differences between the literature and our

paper. In section 3, we present the model and some preliminary analyses. In section 4, we

provide characterizations of optimal menus under the baseline model. Section 5 includes an

extension in which we allow the intermediary to also contract on publicity of the advertise-

ment. Section 6 concludes.



5

2 Related Literature

This paper is related to several branches of literature in interplay between monopolistic

pricing and information structure, selling information, and Bayesian persuasion. In the

monopolistic pricing literature, Lewis & Sappington (1994) also examines how the change in

consumer’s information affects a monopolist’s profit. They show that for a given monopolist

with a constant production cost, the buyer having either full information or no information

is optimal for the monopolist. Our model distinct from theirs in two major aspects. First, we

examine how a third party would price information structures for a monopolist to purchase,

instead of examining optimal information structure from a monopolist’s perspective directly.

Second, although the setting of Lewis & Sappington (1994) is close to a benchmark of

our model in which the monopolist can choose information structure that the buyer has

directly, we maintain an assumption that the commodity is indivisible so that buyers have

0-1 demand while the consumer’s demand in their model can be more general. On the

other hand, Lewis and Sappington (1994) restrict the information structures to vary within

a one-dimensional family by assuming a particular disclosure rule, whereas our model allows

full flexibility of the choice of information structure. Johnson & Myatt (2006) also studies

how change in the distribution of buyers’ valuation, which is equivalent to the information

that buyer has in our model, affects a monopolist’s profit. In particular, they show that

when the distributions are ordered by the rotational ordering, the monopolist will prefer

two extremes of the order. Using the language of buyers’ information, this result is similar

to Lewis & Sappington (1994) in that it implies that under a particular one dimensional

(and hence, totally-ordered) family of information structures, a monopolist will either prefer

the most informative one or the least informative one. Again, our model differs from theirs

in that we focus on a third party’s optimal menu and that we allow complete flexibility in

providing information structures. Recent developments, on the other hand, have adopted

flexible information structures. Bergemann, Brooks & Morris (2015) characterizes all the

possible surplus division that can arise by giving the monopolist different information about

the buyer’s valuation. Roesler & Szentesz (2017) examines the buyer-optimal information

structure when facing a monopoly.



6

There are several works that also study a problem of pricing information. Bergemann

& Bonatti (2011) studies a pricing problem of a data provider who can provide information

about the match value for a seller whose profit from trade depends on the match value of

each consumer and the amount of investments the seller makes in each consumer. Although

having a similar title, the model Horner & Skrzypacz (2016) is about disclosing an agent’s

private information to a decision maker who can choose whether to hire the agent to make

the decision. The sell of information in their model is endogenous in the sense that it is

through transfers that induces to agent to take proper tests to reveal their information in

a selected equilibrium in their dynamic setting. Bergemann, Bonatti and Smolin (2018)

studies an optimal menu for a data provider to sell experiments to a decision maker who has

a private estimate about the state. Our model differs from the theirs in that our intermediary

sells information to affect the information of the buyer to the seller, which affects the seller’s

value function on different information indirectly, whereas the model in Bergemann, Bonattil

and Smolin (2018) focuses on selling information structure to a decision maker whose value

function depends on the information she purchases directly.

Furthermore, our screening framework of selling information structure is analogous to

standard monopolistic screening problems as in Mussa & Rosen (1978), Myerson (1981) and

Maskin & Riely (1984). The screening problem in our model is more complicated in that it is

essentially a mixture of adverse selection and moral hazard problem from the intermediary’s

perspective. Also, our assumption about the intermediary’s ability to commit to a menu

and the characterization of information structure follows from the the Bayesian persuasion

literature, as Kamenica & Gentzkow (2011), Gentzkow & Kamenica (2016).

3 Model

There is a buyer (he), a seller (she) and an information intermediary (it). The seller is selling

an indivisible object to the buyer. The buyer has quasi-linear preference with valuation

v ∈ [0, v̄], for some v̄ ∈ R+. The buyer does not know about his valuation á priori. Rather,

he has to learn about his valuation, which follows a common prior F , through the information

provided by the intermediary. More precisely, the intermediary has the technology to design



7

(and commit to) information structures in order to inform the buyer. After privately learning

about the valuation, the seller then interacts with the buyer by designing selling mechanisms

to maximize profit. The seller has private information about her constant marginal cost of

production c ∈ [0, c̄], for some c̄ ∈ R+. This private cost is drawn from a common prior G. As

such, the intermediary can “sell” the information technology to the seller by posting a menu

of information structures and the associated payments. We assume that the intermediary has

no direct interest in the allocation of the object but only revenue. Moreover, we also assume

that the seller becomes visible to the buyer only if she uses the intermediary’s technology.

That is, if the seller does not buy from any item in the menu that the intermediary provides,

she will then not be able to interact with the buyer and thus will always receive zero profit.

To sum up, the timing of the model is described as below:

1. Nature draws valuation v ∼ F and cost c ∼ G.

2. The intermediary posts a menu of information structures and payments to the seller.

3. The seller chooses whether and what item to buy from the menu posted by the inter-

mediary.

4. Based on the selected item (if any), the seller pays the payment to the intermediary

and the intermediary implements the information structure.

5. The buyer receives private signals from the information structure implemented by the

intermediary (if any) and update beliefs about his valuation.

6. The seller (if possible) then designs selling mechanism to sell the object. When the

buyer is indifferent, he breaks ties in favor of seller.1

Since the buyer has quasi-linear preference, the interim expected value is the only payoff

relevant statistic for a given information structure. As such, the marginal distribution of the

interim expected value conveys all the payoff-relevant aspect of a given information structure.

1Notice that from a subgame-perfection perspective, such tie-breaking rule is a result rather than an

assumption, since only breaking tie in favor of the seller can the equilibrium exists.
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As in Gentzkow & Kamenica (2016),2 we may represent the information structures by the

collection of CDFs of which the prior F is a mean preserving spread. That is, the collection

of information structures can be represented by the set

HF :=

{
H : [0, v̄]→ [0, 1]

∣∣∣∣ ∫ x

0

H(z)dz ≤
∫ x

0

F (z)dz, ∀x ∈ [0, v̄]∫ v̄

0

H(x)dx = v̄ − EF [v], H is a CDF

}
.

On the other hand, by quasi-linearity of the buyer’s preference again, given any information

structure H ∈ HF , since the interim expected value follows the distribution H, it is well-

known that posted price mechanisms always achieves the maximal profit for the seller with

any cost c ∈ [0, c̄]. Thus, given any information structure H ∈ HF , when the buyer is

provided (private) information according to H, the seller’s profit maximization problem can

be reduced to3

max
x∈[0,v̄]

(x− c)(1−H(x−)).

Finally, by the standard revelation principle arguments, it is without loss to restrict the

intermediary to post direct menus that are incentive compatible and individually rational:

Menus that ask the seller to report her private cost c and assign an information structure

Hc ∈ HF , an amount of payment t(c) ∈ R and a publicizing policy—decisions of whether to

make the buyer aware of the seller, denoted by α(c) ∈ {0, 1}—to each report in a way that the

seller will always participate and report truthfully. Formally, the intermediary posts incentive

compatible and individually rational direct menu that takes form of (Hc, t(c), α(c))c∈[0,c̄] such

that Hc ∈ HF , t(c) ∈ R and α(c) ∈ {0, 1} for all c ∈ [0, c̄] and that

α(c) · max
x∈[0,v̄]

(x− c)(1−Hc(x−))− t(c) ≥ max

{
α(c′) · max

x∈[0,v̄]
(x− c)(1−Hc′(x−))− t(c′), 0

}
.

for all c, c′ ∈ [0, c̄], to maximize expected revenue

EG[t(c)] =

∫ c̄

0

t(c)G(dc).

2Similar characterizations appear in many recent developments in the literature of mechanism and infor-

mation design, see for instance Neeman (2003), Bergenamm and Pesendorfer (2007), Shi (2012), Roseler &

Szentes (2017), Kolotilin et al. (2017), Bergemann, Brooks and Morris (2017a), Du (2017), Dworczak and

Martini (2017), Brooks and Du (2018).
3As conventional, H(x−) := limδ↓0H(x − δ) is the left-limit of H at x. The left limit is taken since the

buyer breaks ties in favor of the seller and thus always buys when the price is equal to his expeted value.
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Before proceeding in characterizing the incentive compatible and individually rational

menus, we first observe that given a menu (Hc, t(c), α(c))c∈[0,c̄], for a seller with cost c, when

the implemented information structure is Hc′ and the publicizing decision is α(c′), the seller

has profit

Π(c, c′) := α(c′) · max
x∈[0,c̄]

(x− c)(1−Hc′(x−))

and thus, if a seller with cost c reports her cost to be c′, the net profit is given by

V (c, c′) := Π(c, c′)− t(c′),

which resembles the payoff functions as in standard screening problem (see, for example,

Mussa & Rosen (1978), Myerson (1981), Maskin & Riley (1984)) with agents that have

quasi-linear preference. However, in this model, a complication arises as the function Π is

endogenous—it is derived from an optimization problem of the seller and depends on the

information structure through a seller’s optimal pricing strategy. In other words, from the

intermediary’s perspective, our model is in fact a mixture of screening—inducing the seller

to report truthfully and moral hazard—inducing the seller to set prices in a desirable way.

Nevertheless, as the object is indivisible, the cost of production affects seller’s profit in an

affine fashion. This gives the problem enough of structure so that the standard envelope

characterization can be modified to accommodate our setting. This is given by the following

Lemma.

Lemma 1. Suppose that a menu (Hc, t(c), α(c))c∈[0,c̄] is incentive compatible and individually

rational. Then for any selection

x(c, c′) ∈ α(c′) · argmax
x∈[0,v̄]

(x− c)(1−Hc′(x−)),

1. t(c) = t(c̄) + α(c) ·maxx∈[0,v̄](x− c)(1−Hc(x−))−
∫ c̄
c
α(z)(1−Hz(x(z, z)−))dz.

2. t(c̄) ≤ 0.

3. The function c 7→ α(c)(1−Hc(x(c, c)−)) is nonincreasing.

4.
∫ c′
c

[α(z)(1−Hz(x(z, z)−))− α(c′)(1−Hc′(x(z, c′)−)))]dz ≥ 0 for any c′, c ∈ [0, c̄].4

4As conventional, for a, b ∈ R, b < a and any measurable function f , we define∫ b

a

f(x)dx := −
∫ a

b

f(x)dx.
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Conversely, suppose that for a menu (Hc, t(c), α(c))c∈[0,c̄], there exists a selection

x(c, c′) ∈ argmax
x∈[0,v̄]

α(c′)(x− c)(1−Hc′(x−))

satisfying:

1. t(c) = α(c) ·maxx∈[0,v̄](x− c)(1−Hc(x−))−
∫ c̄
c
α(z)(1−Hz(x(z, z)−))dz.

2.
∫ c′
c

[α(z)(1−Hz(x(z, z)−))− α(c′)(1−Hc′(x(z, c′)−)))]dz ≥ 0 for any c′, c ∈ [0, c̄].

Then (Hc, t(c), α(c))c∈[0,c̄] is incentive compatible and individually rational.

The proof of Lemma 1 can be found in the Appendix. Lemma 1 is similar to standard

envelope characterization of inventive compatibility, where the induced probability of trade

for a given information structure and publicizing decision is, α(c′)(1 − Hc′(x(c, c′)−)), is

analogous to the role of “allocation” in standard problems. However, since the intermediary

is facing a mixture problem rather than a one-dimensional screening problem, local incentive

constraints will not be sufficient for global incentive compatibility in general, even with

monotonicity of the (on path) probability of trade, as the possibility of double deviations

complicates the incentive constraints. As a result, the characterization in Lemma 1 involves

a family of inequalities that rules out all incentives to misreport, with or without double

deviations, rather than a compact monotonicity condition as in standard screening problems.

By Lemma 1, for any incentive compatible menu (Hc, t(c), α(c))c∈[0,c̄], by Fubini’s theo-

rem, expected revenue can then be written as:

t(c̄) +

∫ c̄

0

α(c)

(
max
x∈[0,v̄]

(x− c)(1−Hc(x−))− (1−Hc(x(c, c)−))
G(c)

g(c)

)
G(dc),

where x(c, c) is a selection of argmaxx∈[0,v̄](x − c)(1 − Hc(x−)). Lemma 1 and individual

rationality then implies that optimal menus can be found by solving the problem:

sup
{Hc}⊂HF , α:[0,c̄]→{0,1}

∫ c̄

0

α(c)

(
max
x∈[0,v̄]

(x− c)(1−Hc(x−))− (1−Hc(x(c, c)−))
G(c)

g(c)

)
G(dc)

s.t.

∫ c′

c

[α(z)(1−Hz(x(z, z)−))− α(c′)(1−Hc′(x(z, c′)−)]dz ≥ 0, ∀c, c′ ∈ [0, c̄], (1)

where x(z, c′) is the largest element in argmaxx∈[0,v̄](x− z)(1−Hc′(x−)) for all z, c′ ∈ [0, c̄].

In the next section, we aim to solve the problem defined in (1) and derive the optimal

menu for the intermediary.
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4 Optimal Menu for the Intermediary

In this section, we will find an optimal menu that solves (1) and discuss the implications. To

facilitate the derivation and stress the main intuition, we maintain regularity assumptions in

this section. Specifically, we assume that both F and G are absolutely continuous and admit

densities f and g, respectively. Furthermore, the virtual valuation under the prior F , φ(v) :=

v − 1−F (v)
f(v)

, is strictly increasing and the virtual cost given by G, ψ(c) := min{c+ G(c)
g(c)

, v̄} is

also strictly increasing whenever ψ(c) < v̄.5

As in standard screening problems, if we can find a family of information structures

{Hc} and a publicizing policy α that maximizes the integrand of the objective function

in (1) pointwisely for all c ∈ [0, c̄] and find a transfer t : [0, c̄] → R such that the menu

(Hc, t(c), α(c))c∈[0,c̄] is incentive compatible and individually rational, then the problem is

solved. However, due to the double deviation concerns noted above, such approach might not

be valid, as the pointwise maximization solution might not be incentive compatible. In this

case, a more subtle approach will be needed. Specifically, as the main reason for the failure

of pointwise maximization approach is that local incentive constraints with monotonicity are

not sufficient—due to the possibility of double deviations, we need to keep track of all the

global incentive constraints and the double deviation constraints when solving the problem.

In what follows, we will use the duality approach to characterize the solution.6 Below, we

will first solve the problem for the intermediary under an additional assumption on the

distributions F and G so that pointwise maximization approach is valid and characterize the

solution, and then we will solve the problem generally by using duality approach.

4.1 Optimality of Upper Censorship Menu

Below, we first show that under an additional assumption about the distributions F and G,

the solution for the intermediary’s problem takes a simple form—an upper censorship menu

5The regularity assumption can be relaxed and the solution we provide below will not be affected quali-

tatively. Detailed discussions can be found in the Online Appendix.
6Using duality approach to solve mechanism design problems when local incentive constraints are not

sufficient aligns with the recent development in the literature, see Bergemann, Brooks and Morris (2017b),

where the approach is implicitly applied and Carroll & Segel (2017) with explicit application.
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maximizes the intermediary’s revenue. An upper censorship menu has a simple structure:

For each reported cost c, the intermediary will provide an information structure so that

whenever the buyer’s value is below a certain cutoff, he learns exactly his value whereas

when the buyer’s value is above the cutoff, he learns nothing else than the value being above

the cutoff. We will show that under an assumption that requires the seller’s virtual cost

not to be too high relative to the buyer’s virtual valuation under full information, an upper

censorship menu with cutoffs given by the virtual cost, ψ(c), is optimal.

Specifically, we assume that for any c ∈ [0, c̄], φ(ψ(c)) ≤ c. That is, the virtual cost of

seller with cost c is below the optimal monopolist price for this seller when the buyer has

full information and define an upper censorship menu as follows:

Definition 1. Let ψ̃ : [0, c̄] → [0, v̄] be a nondecreasing function. Fix any c ∈ [0, c̄]. An

information structure H ∈ HF is an upper censorship with cutoff ψ̃(c) if

H(x) =


F (x), if x ∈ [0, ψ̃(c))

F (ψ̃(c)), if x ∈ [ψ̃(c),EF [v|v > ψ̃(c)])

1, if x ∈ [EF [v|v > ψ̃(c)], v̄].

, ∀x ∈ [0, v̄].

Moreover, we say that a menu (Hc, t(c), α(c))c∈[0,c̄] is an upper censorship menu with cutoff

ψ̃ if for all c ∈ [0, c̄], Hc is an upper censorship with cutoff ψ̃(c) whenever α(c) = 1.

Our first result can then be formally stated as follows:

Theorem 1. Suppose that φ(ψ(c)) ≤ c for all c ∈ [0, c̄]. For each c ∈ [0, c̄], let Hc
u be an

upper censorship with cutoff ψ(c), let αu(c) = 1 and let

tu(c) := (v(c)− c)(1− F (ψ(c)))−
∫ c̄

c

(1− F (ψ(z)))dz,

where v(c) := EF [v|v > ψ(c)]. Then (Hc
u, tu(c), αu(c))c∈[0,c̄] is incentive compatible, individ-

ually rational and maximizes the intermediary’s revenue among all the inventive compatible

and individually rational menus.

Formal proof of Theorem 1 can be found in the Appendix. We provide a graphical

illustration below. First notice that the set of available information structures for the inter-

mediary can be represented by a family of convex functions the are majorized by the function
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x 7→
∫ v̄
x

(1−F (z))dz and majorizes the function x 7→ (EF [v]−x)+, and share the same values

at the end points, as illustrated in Figure 1, in which we plot the integral, from x to v̄, as

a function of x, of the prior F as the blue curve, the degenerate distribution F0 that puts

probability 1 on EF [v] has the green curve and a generic H ∈ HF as the red curve. Second,

consider any H ∈ HF , fix a c ∈ [0, c̄] and consider a seller with cost ψ(c). For simplicity,

assume that H is continuous and that argmaxx∈[0,v̄](x− ψ(c))(1−H(x)) is a singleton and

is denoted by x∗. Then the buyer’s surplus is
∫ v̄
x∗

(1 − H(x))dx and the seller’s profit is

(x∗ − ψ(c))(1−H(x∗)). These two quantities can be easily represented on the graph intro-

duced above, as illustrated in Figure 2. In general, for any information structure H ∈ HF

and any x∗ ∈ argmaxx∈[0,v̄](x−ψ(c))(1−H(x−)), the buyer’s surplus is exactly the value of

the convex function associated with H at x∗ and the seller’s profit is the difference between

the height of the intersection of the vertical line x = ψ(c) and the tangent line segment that

is tangent to the convex function associated with H at x∗ and the height of buyer’s surplus.7

∫ v̄
x

(1− Ξ(z))dz

v̄
x

0

EF [v]

Ξ = H

Ξ = F

Ξ = F0

Figure 1: Feasible Set HF .

With this graphical representation, it is then convenient to solve the intermediary’s prob-

7We thank Doron Ravid for suggesting this graphical representation.
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lem (1) by the following procedure. Consider the integrad of the objective in (1) for any

fixed H ∈ HF . Take any xH(c) ∈ argmaxx∈[0,v̄](x− c)(1−H(x−)), we then notice that:

max
x∈[0,v̄]

(x− c)(1−H(x−))− (1−H(xH(c)−))
G(c)

g(c)

≤ max
x∈[0,v̄]

(x− ψ(c))(1−H(x−)). (2)

That is, for any c ∈ [0, c̄], whenever α(c) = 1, the integrand of the objective in (1) is

bounded from above by the maximized profit of a hypothetical seller with cost ψ(c) instead

of c. As such, if we can find a family of information structures {Hc}c∈[0,c̄] that maximizes the

optimal profit of this hypothetical seller, maxx∈[0,v̄](x− ψ(c))(1−Hc(x−)), for all c ∈ [0, c̄],

and gives a nonnegative value, together with a transfer t : [0, c̄] → R such that the menu

(Hc, t(c), α(c))c∈[0,c̄] with α ≡ 1, is incentive compatible and individually rational, then it

must be a solution of the intermediary’s problem (1), as it attains an upper bound of its

relaxed problem.

∫ v̄
x

(1− Ξ(z))dz

v̄
x

0

EF [v]

ψ(c) x∗

(x∗ − ψ(c))(1−H(x∗−))

∫ v̄
x∗

(1−H(z))dz

Figure 2: Representing Seller’s Profit.

We will now argue that the upper censorship menu with cutoff ψ(c) indeed satisfies the

criteria above. First, fix any c ∈ [0, c̄] and suppose that a seller’s cost is ψ(c). Take any
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information structure H ∈ HF and any x∗ ∈ argmaxx∈[0,v̄](x−ψ(c))(1−H(x−)). Consider an

alternative information structure that garbles H: Inform the buyer nothing but whether his

expected value given by H is above the original price x∗, as illustrated by the transition from

the doted curve to the red curve in Figure 3. Under this information structure, every buyer

value that would have bought at x∗ under the information structure H will still buy at price

x∗. However, all the buyers will then have valuation EH [v|v > x∗] conditional on buying,

meaning that the seller can set a higher price to extract surplus. In fact, the optimal price

for the seller under this garbled information structure is exactly EH [v|v > x∗], which allows

the seller to extract all the expected surplus under the original information structure H. As

such, to maximize the seller’s optimal profit, it is without loss to search across information

structures that has only two realizations. However, across those information structures, the

largest surplus that can be extracted is
∫ v̄
ψ(c)

(1−F (x))dx ≥ 0, the total expected surplus when

the seller’s cost is ψ(c). This is achieved by an information structure that discloses whether

the buyer’s value is above the cutoff ψ(c), as illustrated by the green curve in Figure 3.

Although the information structure that discloses whether the buyer’s value is above a cutoff

∫ v̄
x

(1− Ξ(z))dz

v̄
x

0

EF [v]

ψ(c) x∗ EF [v|v > ψ(c)]

∫ v̄
ψ(c)

(1− F (z))dz

Figure 3: Upper-bound on Revenue.
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ψ(c) maximizes optimal profit of the hypothetical seller, maxx∈[0,v̄](x − ψ(c))(1 − Hc(x−)),

pointwisely, it may fail to be incentive compatible due to two reasons. First, the seller

with costs c may not be willing to set the same optimal price as the hypothetical seller

with cost ψ(c). Second, the seller may have incentive to misreport. The intermediary may

address the first issue by further giving the buyer all the information about his valuation

whenever his value is below the cutoff ψ(c) so that the information structure becomes an

upper censorship with cutoff ψ(c). Due to the assumption φ(ψ(c)) ≤ c, the seller with cost

c would never optimally set prices at any point below ψ(c), as ψ(c) is below the optimal

monopolist price under full information and the monopolist’s profit function is single-peaked

due to regularity. Therefore, for the seller with cost c, her optimal monopoly price under

this information structure must coincide with the hypothetical seller with cost ψ(c), namely

v(c). This shows that the upper censorship is able to incentivize the seller to set prices in a

desirable way so that the pointwise upper bound in (2) can be attained. Finally, for incentive

compatibility, using the assumption φ(ψ(c)) ≤ c again, it can be verified that the inequality

given by Lemma 1 is satisfied for all c, c′. Together, this shows that an upper censorship

menu with cutoff ψ is optimal.

To better understand the implication of Theorem 1, we may consider a benchmark in

which the seller has full control of the technology to provide information for the buyer to

learn about his valuation. In this case, previous arguments imply that the seller with cost

c ∈ [0, c̄] would prefer an upper censorship with cutoff c, as such information structure

concentrates all the posterior expected value that are profitable for the seller (i.e. whenever

v > c) to a singleton E[v|v > c] so that the seller can extract all the expected surplus by

setting a price at E[v|v > c] and obtain profit (E[v|v > c]− c)(1− F (c)).

Being implicit in the statement of Theorem 1, under this optimal upper censorship, a

seller with any cost c ∈ [0, c̄] would not only be willing to report truthfully and then face a

buyer with distribution of posterior given by Hc
u, but would also optimally set a price at the

highest possible posterior valuation v(c). As such, for seller with cost c ∈ [0, c̄], profit from

selling the object to the buyer is (v(c) − c)(1 − F (ψ(c))). By comparing the intermediary-

optimal information structure and the seller-optimal information structure, we can then see

that the upper censorship is in fact the seller-optimal information structure had her cost c
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been replaced by her virtual cost ψ(c). Intuitively, the optimal upper censorship given in

Theorem 1 is chosen so that the seller with cost c is treated as if she has the technology to

provide information to the buyers and has cost ψ(c) and then internalizes all the information

rents for having private cost when making pricing decisions. By providing such information

structure, together with a properly designed transfer rule to extract profits from the seller,

the menu (Hc
u, tu(c), αu(c))c∈[0,c̄] will then be optimal. In other words, the upper censorship

menu given in Theorem 1 grants the technology of providing information to the seller but

with an adjustment of cost to incorporate information rents and then extract the sellers

surplus via a transfer that is paid up-front.

Although the solution to the intermediary’s revenue maximization problem given above

is in terms of direct menu, there is a more interpretable menu that implements this solution.

Consider a menu that contains a continuum of items, each of these items contains two

components: an information structure that will be given to the buyer if selected and a “price”

for such information structure. These items are indexed by a one-dimensional parameter

k ∈ [0, ψ(c̄)]. For each k, the information structure Hk ∈ HF is an upper censorship with

cutoff k so that the buyer learns precisely his valuation when it is below k and nothing else

when it is above k. On the other hand, the price for this information structure is8

tk = (EF [v|v > k]− ψ−1(k))(1− F (k))−
∫ c̄

ψ−1(k)

(1− F (ψ(z)))dz.

Together, the menu (Hk, tk)k∈[0,ψ(c̄)] implements the upper censorship menu given in Theo-

rem 1, as a seller with cost c ∈ [0, c̄] will self-select herself to purchase the item indexed by

k = ψ(c) and yields the same outcome. Notice that when F and G are specialized to uniform

distributions on [0, v̄] and [0, 1], respectively, for some v̄ ≥ 3, the menu (Hk, tk)k∈[0,ψ(c̄)] is

exactly the one presented in the introduction.

In addition to being easy to interpret, such upper censorship menu has another strength—

it is in fact easy to implement in many real world contexts. An upper censorship can

be understood as an information structure that gives the consumer detailed information

about the commodity up to a certain level, beyond which the consumer will only have a

8Notice that under the assumption φ(ψ(c)) ≤ c for all c ∈ [0, c̄], ψ(c) < v̄ for all c ∈ [0, c̄] and hence, by

regularity, ψ−1 : [0, v̄]→ [0, c̄] is well defined.
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coarse estimate. Now consider an example of selling objects whose contents are unclear á

priori on an Online platform such as Amazon—for instance, textbooks. A commonly used

disclosure policy under this context is to provide “previews” of these objects. For example,

using the “Look Inside Program”, Amazon provides book previews on the website and often

allow the consumers to read selected pages and the table of contents of a book. Since such

previews are limited, a consumer cannot learn about the object completely but only receive

partial information about his valuation for the object. Moreover, in these contexts, it is

relatively easy for the consumer to learn that the object has low value to him whereas only

a coarse estimation can be formed when the value is higher. For instance, a consumer who

is looking for graduate-level real analysis textbooks will learn precisely that a textbook for

undergraduate real analysis is not suitable for him by simply looking at the table of content.

On the other hand, even after previewing the table of content and several pages of a well-

written, self-contained graduate-level real analysis book, such consumer can still not figure

out the precise value of this book to him but rather has a coarse estimation. The nature of

such contexts allow the intermediary to implement upper censorship information structure

in a simple way: By determining the size or time frame of the preview, it effectively pins

down a cutoff of an upper censorship—the larger/longer the preview the higher the cutoff.

According to the discussions above, once an upper censorship is determined, the price for

such information structure can then be computed.

4.2 Optimal Menu with General Distributions

Although the assumption φ(ψ(c)) ≤ c guarantees optimality of a simple upper censorship

menu, this assumption may not be satisfied for many reasonable applications. Qualitatively,

it requires the information rent of the seller to be sufficiently small comparing to the infor-

mation rent of the buyer under the prior, which, under regularity, is equivalent to requiring

that the seller’s virtual cost ψ(c) is always below her optimal monopoly price when facing a

fully-informed buyer. However, there are reasonable scenarios in which the seller’s informa-

tion rent is considerably high relative to the buyer’s information rent under full information,

such as cases when the prior distribution has low variances. To complete the analysis, we

will now solve for the optimal menu without any assumptions on the distributions F and G
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other than regularity.

As a preview of the result, the optimal menu in this general case has a similar structure.

Specifically, recall that with φ(ψ(c)) ≤ c for all c ∈ [0, c̄], the upper censorship menu with

cutoff ψ has several critical features: 1) It publicizes the seller’s object regardless of the

reported cost c ∈ [0, c̄]. 2) Given any reported c ∈ [0, c̄], it fully informs the buyer when his

valuation is below the cutoff ψ(c) and nothing else when his valuation is above the cutoff. 3)

For seller with any cost c ∈ [0, c̄], the optimal monopoly price under this upper censorship is

the buyer’s expected value given that it is above the cutoff ψ(c) and 4) truthfully reporting

is optimal for the seller. The solution we characterize in this general environment displays

similar features. In particular, for 1), it also publicizes the seller’s object for all the reports

except for a right tail on the interval [0, c̄]. For 2) it also gives no further information to

the buyer when his valuation is above a certain cutoff. However, the cutoff level may not

be ψ(c) and when the buyer’s valuation is below the cutoff, the information that he receives

might be garbled rather than his true value. Furthermore, both feature 3) and feature 4)

are preserved.

More formally, the solution in the general environment has the following properties:

Definition 2. Let ψ̃ : [0, c̄] → [0, v̄] be a nondecreasing function. Fix any c ∈ [0, c̄]. An

information structure H ∈ HF is a garbled upper censorship with cutoff ψ̃(c) if

H(x) =

 F (ψ̃(c)), if x ∈ [ψ̃(c),EF [v|v > ψ̃(c)])

1, if x ∈ [EF [v|v > ψ̃(c)], v̄].
, ∀x ∈ [ψ̃(c), v̄]

and ∫ ψ̃(c)

0

H(x)dx =

∫ ψ̃(c)

0

F (x)dx.

Furthermore, a garbled upper censorship with cutoff ψ̃(c) is said to be responsive if

EF [v|v > ψ̃(c)] ∈ argmax
x∈[0,v̄]

(x− c)(1−H(x−)).

Also, a menu (Hc, t(c), α(c))c∈[0,c̄] is called a responsive garbled upper censorship menu with

cutoff ψ̃ if Hc is a responsive garbled upper censorship with cutoff ψ̃(c) for all c ∈ [0, c̄]

whenever α(c) = 1.
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Using this formal definition, the above description for the optimal menu means that a

responsive upper censorship menu with cutoff ψ̃ is optimal, for some nondecreasing function

ψ̃ : [0, c̄]→ [0, v̄]. Indeed, as Lemma 2 in the Appendix shows, one of the responsive garbled

upper censorship menus must be optimal for the intermediary. It then remains to describe

the cutoff function and the publicizing policy that gives an optimal menu. Before stating

the formal result, we first examine how the intermediary’s problem (1) depend on the choice

of cutoff and how to understand the incentive constraints and responsiveness.

First, notice that by Lemma 1, for any incentive compatible menu (Hc, t(c), α(c))c∈[0,c̄],

the function c 7→ α(c)(1−Hc(x(c, c)−)) must be nonincreasing. As such, whenever α(c) = 0

for some c ∈ [0, c̄), it must be that α(c′)(1−Hc′(x(c′, c′))) = 0 for all c′ ∈ [c, c̄]. Therefore, (1)

can be rewritten as choosing an upper bound of the reported costs to which the intermediary

will publicize their product. That is, (1) can be written as:

sup
{Hc}⊂HF , cα∈[0,c̄]

∫ cα

0

(
max
x∈[0,v̄]

(x− c)(1−Hc(x−))− (1−Hc(x(c, c)−))
G(c)

g(c)

)
G(dc)

s.t.

∫ c′

c

[Hc′(x(z, c′)−)−Hz(x(z, z)−))]dz ≥ 0, ∀c, c′ ∈ [0, cα], (3)

Hc(x(c, c)−) < 1, ∀c ∈ [0, cα).

As a result, the intermediary’s problem can be solved separately: First, fix a cα ∈ [0, c̄]

and choose a cutoff function ψ̃ such that there exists a family of garbled upper censorship

{Hc}c∈[0,cα] with cutoffs ψ̃ that maximizes the objective of (3) subject to being responsive

and incentive compatible. Then select an optimal cα.

To understand the incentive compatibility and responsiveness constraints, in Figure 4

below, we fix a nondecreasing function ψ̃ and plot the CDF of an upper censorship with cutoff

ψ̃(c) ∈ (0, v̄) as the blue curve, where the jump point is given by ṽ(c) := EF [v|v > ψ̃(c)].

This upper censorship is clearly a garbled upper censorship. For it to be responsive, a seller

with cost c has to be willing to set the price at ṽ(c). One way to understand this constraint

is through the following graphical approach. Let π̃(c) := (ṽ(c) − c)(1 − F (ψ̃(c))) be the

seller’s profit when setting a price at ṽ(c). For the price ṽ(c) to be optimal under the upper
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censorship menu, it has to be that

(x− c)(1− F (x)) ≤ π̃(c) ⇐⇒ F (x) ≥
(

1− π̃(c)

(x− c)+

)+

, ∀x ∈ [0, ψ̃(c)].

That is, the CDF F has to be above the CDF of a Pareto distribution with parameters π̃(c)

and c for all x ∈ [0, ψ̃(c)], as illustrated by the green curve in Figure 4. If, on the other hand,

the Pareto CDF is above F , as illustrated by the red curve in Figure 4, then setting a price

at ṽ(c) would not be optimal under the upper censorship for the seller with cost c. In fact,

the graphs of Pareto distributions can be regarded as iso-profit curves for the seller and the

direction of increment is toward the button-right corner. Responsiveness is then equivalent

to requiring that the graph of the CDF of an information structure must be always above

the graph of the Pareto CDF with parameters π̃ and c on [0, ψ̃(c)].

Hc(x)

v̄
x

0

1

ṽ(c)ψ̃(c)

Figure 4: Upper Censorship with Cutoff ψ̃(c).

With the observation above, we then know that for any information structure H to be

a responsive garbled upper censorship with cutoff ψ̃(c) ∈ [0, v̄], it must be that: 1) The

graph of H is always above the graph of the Pareto CDF with parameters π̃(c) and c. 2)

The conditional CDF F (x|x ≤ ψ̃(c)) is a mean preserving spread of H(x|x ≤ ψ̃(c)). As
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such, a necessary condition for a garbled upper censorship menu (Hc, t(c), α(c))c∈[0,c̄] with

cutoff ψ̃ to be responsive and incentive compatible is that whenerver α(c) = 1, the Pareto

CDF (1 − π̃(c)/(x − c)+)+ satisfies the second-order stochastic dominance constraint at

x = P (ψ̃(c), c), where, due to regularity, this Pareto CDF crosses with F at at most two

points other than zero and P (ψ̃(c), c) denotes the largest crossing point. That is: For all

c ∈ [0, c̄] such that α(c) = 1,∫ P (ψ̃(c),c)

0

(
1− π̃(c)

(x− c)+

)+

dx ≤
∫ P (ψ̃(c),c)

0

F (x)dx. (4)

Since if not, for the garbled upper censorship H to be responsive, as observed above, it must

be that H(x) ≥ (1− π̃(c)/(x− c)+)+ for all x ∈ [0, ψ̃(c)] and thus∫ ψ̃(c)

0

H(x)dx ≥
∫ ψ̃(c)

0

(
1− π̃(c)

(x− c)+

)+

dx >

∫ ψ̃(c)

0

F (x)dx,

so that F cannot be a mean preserving spread of H.

Ξ(x)

v̄
x

0

1

ṽ(c)P (ψ̃(c), c)

Ξ(x) = F (x)

Ξ(x) = Hc(x)

Ξ(x) =
(

1− π(c′)
(x−c′)+

)+

Figure 5: Necessary Condition for Responsiveness.

However, (4) is not sufficient for a garbled upper censorship menu (Hc, t(c),1[0,cα](c))c∈[0,c̄]

with cutoff ψ̃ to be responsive and incentive compatible at the same time, due to the possi-

bility of double deviations. To see this, fix any cα ∈ [0, c̄], suppose that Hz is responsive for
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all z ∈ [0, cα] and that (4) holds with equality for some c ∈ (0, cα]. Then the only possible

way for Hc to be responsive is that Hc(x) = (1− π̃(c)/(x− c)+)+ for all x ∈ [0, P (ψ̃(c), c)].

As such, for any c′ ∈ [0, c), the associated Pareto distribution (i.e. the iso-profit curve for the

seller with cost c′ at the price ṽ(c), (1− π̃(c′)/(x− c′)+)+) is always above Hc, as illustrated

in Figure 5, where the red curve represents the iso-profit curve (1 − π̃(c′)/(x − c′)+)+ and

the green curve represents such Hc. This implies that whenever the seller’s cost is below c,

she would optimally set a price at π̃(c) + c, which gives Hc((π̃(c) + c)−) = 0. Consequently,

if the seller’s cost is c′ and she misreports to be of cost c, the deviation gain is∫ c

c′
[F (ψ̃(z))−Hc((π̃(c) + c)−)]dz =

∫ c

c′
F (ψ̃(z))dz > 0

and thus there exits no transfers t : [0, c̄] → R such that the menu (Hc, t(c),1[0,cα](c))c∈[0,v̄]

is incentive compatible.

This problem occurs because (4) only accounts for the incentives for a truth-telling seller

to set prices correctly so that the garbled upper censorship Hc could be responsive, but fail

to account the misreporting seller to set prices in a desirable way and thus creates incentives

for misreporting. The following menu, however, accounts for both by adjusting the cost for

which we plot the iso-profit curves. Fix any nondecreasing function ψ̃ : [0, c̄]→ [0, v̄] and fix

cα ∈ [0, c̄] For each c ∈ [0, cα], let

k̃(c) := c− 1

F (ψ̃(c))

∫ c

0

F (ψ̃(z))dz

and construct the Pareto iso-profit curve for seller with cost k̃(c) when she sets a price at

ṽ(c). That is, the CDF (1− π̃(k̃(c))/(x− k̃(c))+)+. Again, by regularity of F , this iso-profit

curve crosses with F at at most two points other than zero, as illustrated by the green curve

in Figure 6. Now if∫ P (ψ̃(c),k̃(c))

0

(
1− π̃(k̃(c))

(x− k̃(c))+

)+

dx =

∫ P (ψ̃(c),k̃(c))

0

F (x)dx,

we may then take Hc(x) = (1 − π̃(k̃(c)))/(x − k̃(c))+)+ for all x ∈ [0, P (ψ̃(c), k̃(c))) and

Hc(x) = F (x) for any x ∈ [P (ψ̃(c), k̃(c)), ψ̃(c)]. Then clearly, as the iso-profit curve of setting

price at ṽ(c) for the seller with cost c > k̃(c) is below Hc, Hc is responsive, Furthermore,

since the iso-profit curve crosses with F at two points other than zero, F is indeed a mean
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preserving spread of Hc. Finally, notice that for seller with any cost c′ ∈ (k̃(c), c], optimal

monopoly price under Hc is ṽ(c), whereas for seller with cost c′ ∈ [0, k̃(c)), trade occurs with

probability one given the optimal monopoly price under Hc. Therefore, by construction of

k̃, for any c′ ∈ [0, c], the deviation gain from misreporting to be of cost c is∫ c

c′
F (ψ̃(z))dz − (c−max{c′, k̃(c)})F (ψ̃(c)) ≤

∫ c

0

F (ψ̃(z))dz − (c− k̃(c))F (ψ̃(c)) = 0.

On the other hand, for any cost c′ ∈ (c, cα], setting price at ṽ(c) is always optimal and

therefore deviation gain is ∫ c′

c

[F (ψ̃(c))− F (ψ̃(z))]dz ≤ 0,

which then ensures that there is no incentive for any other costs c′ to misreport to be of cost

c.

In fact, even if∫ P (ψ̃(c),k̃(c))

0

(
1− π̃(k̃(c))

(x− k̃(c))+

)+

dx <

∫ P (ψ̃(c),k̃(c))

0

F (x)dx,

an “ironing” procedure as illustrated by the red curve in Figure 6 can be applied and yields

another feasible information structure Hc that is responsive and gives non-positive deviation

gain for any cost c′ to misreport to be of cost c.9 Together, as long as∫ P (ψ̃(c),k̃(c))

0

(
1− π̃(k̃(c))

(x− k̃(c))+

)+

dx ≤
∫ P (ψ̃(c),k̃(c))

0

F (x)dx,

for all c ∈ [0, cα], we can construct an incentive compatible, individually rational and re-

sponsive menu (Hc, t(c),1[0,cα](c))c∈[0,c̄] with cutoff ψ̃.

In fact, by selecting a proper cutoff function ψ̃ and a proper upper bound cα, the menu

constructed above will be optimal for the intermediary. To construct such function. We first

notice that as c increases,∫ P (ψ̃(c),k̃(c))

0

(
1− π̃(k̃(c))

(x− k̃(c))+

)+

dx−
∫ P (ψ̃(c),k̃(c))

0

F (x)dx

9Formally, we find the convex hull of the minimum between the integral of prior F and such Pareto

distribution and take the smallest sub-differential pointwisely. See the last two steps of the proof of Theorem 2

in the Appendix.
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also increases. As such, if we define

c∗ := sup

{
c ∈ [0, c̄]

∣∣∣∣ ∫ P (ψ(c),k(c))

0

(
1− π(k(c))

(x− k(c))+

)+

dx ≤
∫ P (ψ(c),k(c))

0

F (x)dx

}
,

where

k(c) := c− 1

F (ψ(c))

∫ c

0

F (ψ(z))dz

and

π(c) := (v(c)− c)(1− F (ψ(c))),

for all c ∈ [0, c̄], then∫ P (ψ(c),k(c))

0

(
1− π(k(c))

(x− k(c))+

)+

dx ≤
∫ P (ψ(c),k(c))

0

F (x)dx

if and only if c ∈ [0, c∗]. Now let ψ∗(c) := min{ψ(c), ψ(c∗)}, and define

ĉ := sup {c ∈ [0, c̄]|EF [v|v > ψ(c∗)] ≥ ψ(c)} ,

the cutoff ψ∗ and the publicizing policy 1[0,ĉ] are then in fact optimal, which is stated in the

following Theorem.

Theorem 2. For each c ∈ [0, c̄], let

αgu(c) := 1[0,ĉ](c)

and let

tgu(c) := (v∗(c)− c)(1− F (ψ∗(c)))−
∫ c̄

c

(1− F (ψ∗(z)))dz,

where v∗(c) := EF [v|v > ψ∗(c)]. Then there exists a family of information structures

{Hc
gu}c∈[0,c̄] ⊂ HF such that (Hc

gu, tgu(c), αgu(c))c∈[0,c̄] is an incentive compatible, individually

rational and responsive garbled upper censorship menu with cutoff ψ∗ that maximizes the

intermediary’s revenue among all the inventive compatible and individually rational menus.

Formal proof of Theorem 2 can be found in the Appendix. We sketch the steps and stress

the intuition here. As noted above, the main difficulty of the proof is the possibility of double

deviation and hence local incentive constraint fails to imply global incentive constraints. We

address this problem by examine the dual. Specifically, we first characterize the incentive
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Ξ(x)

v̄
x

0

1

ṽ(c)

Ξ(x) = F (x)

P (ψ̃(c), k̃(c))

Ξ(x) =
(

1− π̃(k̃(c))

(x−k̃(c))+

)+

Figure 6: Optimal Responsive Garbled upper Censorship.

compatible, individually rational and responsive garbled upper censorship menus for any

fixed upper bound cα by a family of inequalities and further identify the critical ones that

must be binding under any optimal menu. As such, for each fixed cα, the intermediary’s

problem (3) then becomes a constraint maximization problem, to which we can write a dual

problem. Then, we find the Lagrange multipliers under which the garbled upper censorship

constructed above, together with the associated transfer induced by Lemma 1, is a solution

of the dual problem and is incentive compatible and individually rational as well. By weak

duality, we are then ensured that such menu is indeed optimal for a fixed cα. Finally, we

note that the optimal information structure and transfer does not depend on the selected

cα. As such, it then suffices to show that setting cα = ĉ is indeed optimal.

Qualitatively, the optimal garbled upper censorship {Hc
gu}c∈[0,c̄] is based on the Pareto

distribution with parameters π(k(c)) and k(c), possibly with some “ironing” procedures to

ensure mean-preserving spread property. Under a particular garbled upper censorship Hc
gu,

different costs of the seller are grouped into two classes, one that will optimally set prices

at v∗(c) as the truthfully-reporting type, while the others will set a price that gives zero
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Figure 7: Optimality of Pareto-shape Garbling.

probability of trade. The reason for using this Pareto-shape garbling can be seen below:

Fix any nondecreasing function ψ̃ : [0, c̄] → [0, v̄] and consider any incentive compatible,

individually rational and responsive garbled upper censorship menu (Hc, t(c),1[0,cα](c))c∈[0,c̄]

with cutoff ψ̃. Recall that for any c ∈ [0, cα], a family of Pareto-shaped distributions represent

the iso-profit curves for each costs c′ ∈ [0, c] and must be everywhere below a CDF. As

illustrated in Figure 7, where we take Hc ≡ F on [0, ψ̃(c)] ,the distribution Hc must be

above the upper envelope of a family of Pareto distributions. Indeed, each dotted curve

in Figure 7 represents a Pareto distribution induced by a particular cost and the tangent

point represents the optimal monopoly price for the seller with a given cost. Furthermore,

notice that since ṽ(c) > ψ̃(c), there exists some k̂(c) ∈ [0, c) such that for all sellers with cost

c′ ∈ [k̂(c), c], setting price at ṽ(c) as the truthfully-reporting type c does is optimal. Whenever

such cutoff type k̂(c) is positive, some mis-reporting types would set prices differently and

thus monotonocity of ψ̃ would not be sufficient for global incentive compatibility. Such

cutoff type k̂(c) must induce a Pareto distribution that crosses (ṽ(c), F (ψ̃(c))) and tangents

to the distribution Hc at some lower points, as illustrated by the red curve in Figure 7.
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Clearly, since Hc ∈ HF , the Pareto distribution induced by k̂(c) must satisfy the second

order stochastic dominance constraint but with∫ P (ψ̃(c),k̂(c))

0

(
1− π̃(k̂(c))

(x− k̂(c))+

)+

dx <

∫ P (ψ̃(c),k̂(c))

0

F (x)dx. (5)

Therefore, we may reduce the cutoff cost k̂(c) so that (5) holds with equality. Notice that

by reducing k̂(c) locally, the first order effect on deviation gain for any type c′ ∈ [0, k̂(c)] is

Hc(x(k̂(c), c))− F (ψ̃(c)) < 0

and thus incentive compatibility can still be preserved by reducing the cutoff k̂(c). As a

result, any incentive compatible, individually rational and responsive garbled upper censor-

ship menu (Hc, t(c),1[0,cα](c))c∈[0,c̄] induces another Pareto-shaped garbled upper censorship

menu with the same cutoff ψ̃. Moreover, since under any responsive menu with cutoff ψ̃, the

objective for the intermediary in (1) is∫ cα

0

(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc),

which only depends on the cutoff ψ̃ and the upper bound of publicizing cα. This illustrates

the reason why Pareto-shaped garbling as described above can be optimal.10

Another way to understand the optimal garbled upper censorship menu in Theorem 2

is through the cutoff function ψ∗. In Figure 8, we plot the virtual cost ψ (blue curve)

and the cutoff function ψ∗ (red curve). Notice that if we drop the incentive constraints for

truthfully-reporting costs and consider only the pricing constraint for responsiveness. In

this case, (4) is in fact both necessary and sufficient for existence of a responsive garbled

upper censorship with cutoff ψ̃. This relation pins down a largest possible cutoff function

below ψ that can be supported by a responsive garbled upper censorship menu, denoted by

ψ̂ and illustrated by the green curve in Figure 8. Since the objective for the intermediary

10When examining the dual problem, there is a more convenient way to establish optimality of Pareto-

shaped garbling by observing that the objective in the dual problem is a convex functional on family of

uniformly bounded increasing functions, which ensures that one of the extreme points must be optimal. Un-

der a our characterization, such extreme points correspond to Pareto-shape garbling. See detailed discussions

in the Appendix.
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Figure 8: Cutoff Functions.

depends only on the cutoff function under responsive garbled upper censorship menus, the

cutoff function ψ̂ and a proper publicizing policy would then be optimal when ignoring

the truthfully-reporting constraints. To incorporate the truthfully-reporting constraints, we

must further reduce ψ̂ to rule out mis-reporting incentives. Since the definition of function

k gives binding incentive constraints for the lowest type 0, it is the “cheapest” way, in the

sense that least adjustment for ψ̂ is needed, to accommodate truthfully-reporting constraints

among all the Pareto-shape garblings. This then gives the cutoff function ψ∗. Notice that at

c∗, the Pareto iso-profit curve (1− π(k(c∗))/(x− k(c∗))+)+ agrees with the distribution Hc∗
gu

on [0, ψ(c∗)], meaning that the constraint for responsiveness is binding at c∗. Furthermore,

for any fixed cα ∈ [c∗, c̄], under the menu (Hc
gu, tgu(c),1[0,cα](c))c∈[0,c̄], type 0 is indifferent

between truthfully reporting and reporting to be of any cost c ∈ [c∗, cα]. However, since there

is no distortion at the bottom under the menu (Hc
gu, tgu(c),1[0,cα](c))c∈[0,c̄], the intermediary

cannot further improve by relaxing the incentive constraint for type 0 in order to gain more

for type c∗, which suggests optimality of the garbled upper censorship with cutoff ψ∗ for

each fixed cα. Finally, since for any cα, the expected revenue of the intermediary under the
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menu (Hc
gu, tgu(c),1[0,cα](c))c∈[0,c̄] is∫ cα

0

(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)

and is maximized by setting cα = ĉ, the menu (Hc
gu, tgu(c), αgu(c))c∈[0,c̄] is indeed optimal.

Notice that from the payoff perspective, the only difference between the optimal upper

censorship menu in Theorem 1 and the optimal garbled upper censorship menu in Theorem 2

is when the seller’s realized cost c is above the threshold c∗. It is straightforward to show

that when φ(ψ(c)) ≤ c for all c ∈ [0, c̄], c∗ = ĉ = c̄ and therefore ψ ≡ ψ∗ and αgu ≡ 1 on

[0, c̄], meaning that the two menus give the same revenue when the condition in Theorem 1

is satisfied. On the other hand, when c∗ < c̄, the optimal garbled upper censorship menu in

Theorem 2 will give all the sellers with cost between c∗ and ĉ the same information structure

at the same price, which reflects a bundling property of this optimal menu and rule out all

the sellers with costs above ĉ. The intuition is that, when the virtual costs of the seller is too

high, granting information rents to these sellers will be too costly since there is not enough

of leverage to create profit from the sell via manipulating the buyer’s information. The

intermediary would then have to sacrifice the additional gains from trade for high-virtual

cost sellers to avoid paying too much information rent.

4.3 Welfare Analysis and Comparative Statics

We end this section by providing some welfare analysis and comparative statics. For sim-

plicity, we focus on the case when the condition of Theorem 1 holds. Analyses with general

regular distributions have qualitatively similar implications and can be found in the Online

Appendix. To begin with, assume that F and G satisfy the condition φ(ψ(c)) ≤ c for all

c ∈ [0, c̄] so that the upper censorship menu with cutoff ψ is optimal. By Theorem 1, the

total surplus generated by the sell is

(v(c)− c)(1− F (ψ(c))) =

∫ v̄

ψ(c)

(1− F (x))dx+ (ψ(c)− c)(1− F (ψ(c))).

With the probability of trade being (1−F (ψ(c))), for all c ∈ [0, c̄]. Comparing this with the

benchmark case in which the seller has the technology to provide information to the buyer,

where the optimal information structure, as noted above, gives total surplus generated by
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trade

(EF [v|v > c]− c)(1− F (c)) =

∫ v̄

c

(1− F (x))dx

and a probability of trade 1− F (c), we have the following observation:

Proposition 1 (Welfare Comparison). Suppose that φ(ψ(c)) ≤ c. Then the expected total

surplus generated by trade and the probability of efficient trade are larger when the seller

has control of the information technology than when the intermediary has control of the

information technology.

In brief, Proposition 1 shows that when the seller does not have the technology to provide

information to the buyer directly but has to do so by interacting with a intermediary who has

this technology, since the seller has private information about production cost, the ownership

of such information technology matters. Indeed, when the seller has to buy such information

technology from the intermediary, due to the presence of incomplete information, the seller

would demand information rent from the intermediary and total surplus will be reduced since

the intermediary has to provide information structures so that the seller would be willing to

internalize her information rent when making pricing decisions.

Finally, we examine how the shifts of the distribution of valuation and the distribution of

production cost affects the intermediary’s revenue and the total surplus generated by trade.

Specifically, take any two pairs of distributions F1, G1 and F2, G2 such that φi(ψj(c)) ≤ c,

for all c ∈ [0, c̄], all i, j ∈ {1, 2}, where φi, ψi are the induced virtual value and virtual cost of

Fi, Gi, respectively, for all i ∈ {1, 2}. The previous observation then gives us the following

comparative statics analysis:

Proposition 2 (Comparative Statics).

1. Suppose that F1 first order stochastic dominates F2. That is, F1 ≤ F2. Then the total

surplus, the intermediary’s revenue and seller’s expected net profit under (F1, Gi) are

larger than those under (F2, Gi), i ∈ {1, 2}.

2. Suppose that F1 is a mean preserving spread of F2. Then intermediary revenue under

(F1, Gi) is larger than that under (F2, Gi), i ∈ {1, 2}.
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3. Suppose that G2 dominates G1 in the hazard rate order. That is g1/G1 ≥ g2/G2. Then

the total surplus, the intermediary’s revenue and the seller’s expected revenue are larger

under (Fi, G1) than those under (Fi, G2), i ∈ {1, 2}.

To summarize, when the buyer’s value becomes higher, in the sense of first order stochastic

dominance, it becomes easier for the intermediary to generate trade surplus by providing

proper information to the buyer and therefore total surplus, the intermediary’s revenue and

the seller’s net profit all increase. When the distribution of valuation becomes more spread-

out, in the sense of mean preserving spread, the informational tools for the intermediary

becomes more flexible and therefore revenue increases. Finally, when the seller’s cost shifts

in hazard rate order, causing a reduction of information rent and the costs, in the sense of

first order stochastic dominance, the seller retains less information rent and the distortion

on information structure for her to internalize pricing decision reduces. These two factors

jointly increase total surplus and intermediary’s revenue as well. Furthermore, although the

reduction of information rent and reduction of production has opposite effects on the seller’s

net profit, Proposition 2 shows that the gain in total surplus offsets the loss of information

rent of the seller and hence also increases seller’s expected net profit.

5 Extension: Contracting Publicity

In the baseline model analyzed above, we assumed that the buyer becomes aware of the

seller’s object only through the intermediary’s technology so that the seller gets zero profit if

she does not buy from any of the items in the menu that the intermediary offers. This often

occurs in situations where the seller does not have significant publicity on the market and the

intermediary owns a platform that is well known to the buyer, on which the seller’s object

can be presented. For instance, when a seller wants to sell an object on Online platforms

such as Amazon, or when a seller wants to advertise her object through television programs

such as QVC. However, in such scenarios, it is reasonable to argue that the intermediary—

owning a platform that can not only provide information, but can also publicize the seller’s

object—can also screen the seller on the extensive margin by controlling how public it can

make the seller’s object be to the buyer, in addition to the intensive margin by providing
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different information to the buyer, as modeled above. In this section, we introduce this

extra leverage to the intermediary. Specifically, we consider two extensions of the baseline

model provided above. In the first extension, we allow the intermediary’s menu to contain

not only information structures that will be use to inform the buyer but also the level

of publicity the seller’s object is going to receive, which we refer as non-discriminatory

publicizing. In the second extension, we further allow the intermediary to publicize the

seller’s object discriminatorily by “targeting” different buyers as well, which we refer as

discriminatory publicizing.

5.1 Non-discriminatory Publicizing

For non-discriminatory publicizing, we allow the intermediary to also control the publicity of

the seller’s product to all the buyers. As such, in the associated direct menu, the publicizing

policy α becomes a function with range on the interval [0, 1], where α(c) stands for the

probability that the buyer will be aware of the seller’s object when the reported cost is c.

Comparing to the baseline model, the only difference is that α can now take any values in

[0, 1]. Thus, except that α has different range, characterization of incentive compatible and

individually rational menus is the same as Lemma 1 and hence the revenue maximization

problem (1) will be modified as:

sup
{Hc}⊂HF , α:[0,c̄]→[0,1]

∫ c̄

0

α(c)

(
max
x∈[0,v̄]

(x− c)(1−Hc(x−))− (1−Hc(x(c, c)−))
G(c)

g(c)

)
G(dc)

s.t.

∫ c′

c

[α(z)(1−Hz(x(z, z)−))− α(c′)(1−Hc′(x(z, c′)−)]dz ≥ 0, ∀c, c′ ∈ [0, c̄], (6)

It is rather straightforward to see that under the assumption of Theorem 1, φ(ψ(c)) ≤ c

for all c ∈ [0, c̄], the upper censorship menu with cutoff ψ as in Theorem 1, together with an

always-publicizing policy αu ≡ 1 maintains to be optimal. To see this, analogous to (2), we

have that for any information structure H ∈ HF , any selection xH(c) ∈ argmaxx∈[0,v̄](x −

c)(1−H(x−)) and any publicizing policy α,

α(c)

[
max
x∈[0,v̄]

(x− c)(1−H(x−))− (1−H(xH(c)−))
G(c)

g(c)

]
≤ max

x∈[0,v̄]
(x− ψ(c))(1−H(x−)). (7)
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As the upper censorship menu maximizes the optimal profit for the hypothetical seller with

cost ψ(c), by (7), the revenue given by the upper censorship menu with cutoff ψ and publi-

cizing policy αu ≡ 1 attains an upper bound of the seller’s revenue. As this menu is incentive

compatible and individually rational by arguments above and by Lemma 1, it also solves

the intermediary’s problem. As such, whenever the upper censorship menu with cutoff ψ is

incentive compatible and individually rational, fully-publicizing upper censorship menu with

cutoff ψ is optimal.

On the other hand, when we do not have the assumption φ(ψ(c)) ≤ c for all c ∈ [0, c̄],

the fully-publicized upper censorship menu with cutoff ψ will not be incentive compatible, as

noted in the previous section. To understand the optimal menu in the general case, we first

notice that optimality of responsive garbled upper censorship menus established by Lemma 2

is still valid when we allow the publicizing policy to take interior values. Furthermore,

similar to the baseline model, by incentive compatibility, the set of seller’s costs under which

probability of sell is zero must be an interval [cα, c̄] for some cα ∈ [0, c̄]. Thus, given any

publicizing policy α : [0, c̄] → [0, 1], under any responsive garbled upper censorship with

cutoff ψ̃, the intermediary’s expected revenue can be written as:∫ cα

0

α(c)(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc). (8)

Therefore, as in the proof of Theorem 2, the intermediary’s problem can now be represented

by a constraint maximization problem. In fact, the Lagrange multipliers constructed in the

proof of Theorem 2 also warrants the garbled upper censorship menu (Hc
gu, tgu(c),1[0,ĉ](c))c∈[0,c̄].

Using the same argument as in the proof of Theorem 2, we can then conclude that the menu

(Hc
gu, tgu(c),1[0,ĉ](c))c∈[0,c̄] is still optimal and the intermediary’s maximized revenue is the

same as the baseline model where it cannot control the level of publicity.

5.2 Discriminatory Publicizing

On the other hand, for discriminatory publicizing, we allow the intermediary to not only

control the publicity, but also decide which consumers are going to be aware of the object. For

the ease of exposition, we interpret the baseline model to be with a continuum of consumers,

whose distribution of valuation is F and each consumer does not know their valuation but
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knows the distribution for the whole economy. With this interpretation, discriminatory

publicizing can be thought of as a technology that allows the intermediary to track down

a consumer’s true value and decides to whom to show a particular commodity—which has

become possible thanks to the computational technology and availability of consumers’ data

including browsing histories and cookies. More formally, this means that the intermediary

can select any arbitrary subset of consumers A to be aware of the object while all the other

consumers remains ignorant. A compact way to model such selection is through the prior

distribution F . Notice that when a consumer is not informed about the existence of the

object, from the seller’s perspective, it is equivalent to say that such consumer has zero

value. As such, a discriminatory publicizing policy can be described by a (measurable)

targeting set A ⊆ [0, v̄]. Indeed, let µF be the probability measure associated with the CDF

F . If the intermediary targets the group of consumers A, the prior distribution of valuations

effectively becomes:

µA = µF |A + δ{0} · µF ([0, v̄]\A).

That is, the consumers who are not in the target set A are all treated as having zero

valuation. For any targeting set A, let FA be the CDF associated with µA. By the same

arguments as in the baseline model, together with an additional requirement that whoever

is not targeted cannot receive any information, the collection of information structures can

then be characterized by the set

HA := {H ∈ HFA|H(0) = FA(0)}.

As such, for any c ∈ [0, c̄], an item of a direct menu consists of three components: A

targeting set Ac ∈ B([0, v̄]); an information structure Hc ∈ HAc , and a transfer t(c) ∈ R

and the intermediary’s problem is to find and incentive compatible and individually rational

direct menu (Ac, Hc, t(c))c∈[0,c̄] to maximize revenue.

As in the baseline model, incentive compatible and individually rational menus can be

characterized by the envelope arguments, which allows us to determine the transfer t up to

a constant once the targeting sets {Ac} and the information structures {Hc} are specified.

Therefore, by Fubini’s theorem, the intermediary’s revenue maximization problem can be
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written as:

sup
{Ac}⊂B([0,v̄]), {Hc}⊂HAc

∫ c̄

0

(
max
x∈[0,v̄]

(x− c)(1−Hc(x−))− (1−Hc(x(c, c)−))
G(c)

g(c)

)
G(dc)

s.t.

∫ c′

c

[(1−Hz(x(z, z)−))− (1−Hc′(x(z, c′)−)]dz ≥ 0, ∀c, c′ ∈ [0, c̄]. (9)

With the additional leverage on the publicizing policy, it is clear that the intermediary

can do better.11 Below, we argue that the intermediary’s maximized revenue is exactly

the expected revenue given by the upper censorship menu with cutoff ψ, even when the

assumption φ(ψ(c)) ≤ c for all c ∈ [0, c̄] fails. Indeed, first notice that since for any targeted

set A ∈ B([0, v̄]), we must have∫ x

0

FA(z)dz ≤
∫ x

0

F (z)dz,∀x ∈ [0, v̄].

Using the same arguments as in the proof of Theorem 1, a pointwise upper bound of the

integrand of the objective in (9) is (v(c)− ψ(c))(1− F (ψ(c))) and therefore

R∗ :=

∫ c̄

0

(v(c)− ψ(c))(1− F (ψ(c)))G(dc)

is an upper bound on the intermediary’s revenue. It then suffices to show that there ex-

ists an incentive compatible, individually rational menu (Ac, Hc, t(c))c∈[0,c̄] such that the

intermediary’s expected menu attains R∗.

To see this, for any c ∈ [0, c̄], take Ac∗ := [ψ(c), v̄) and let

Hc
∗(x) :=

 F (ψ(c)), if x ∈ [0, v(c))

1, if x ∈ [v(c), v̄]
.

Then Hc ∈ HAc for all c ∈ [0, c̄]. Moreover, any seller with costs c′ ∈ [0, v(c)], including

c′ = c, will optimally set the price at v(c) and any seller with cost c′ ∈ (v(c), c̄] will not sell

the object. Together, this implies that Hc(x(c, c)−) = F (ψ(c)) for all c ∈ [0, c̄] and that∫ c′

c

[(1−Hz
∗ (x(z, z)−))− (1−Hc′

∗ (x(z, c′)−)]dz ≥ 0,

11To see this, notice that if one take Ac = [0, v̄], such targeting set will then correspond to the publicizing

policy α(c) = 1 in the baseline model, whereas α(c) = 0 can also be replicated by taking Ac = ∅.
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for all c, c′ ∈ [0, c̄]. As such, there exists a transfer t∗ such that the menu (Ac∗, H
c
∗, t
∗(c))c∈[0,c̄]

is incentive compatible and individually rational, with expected revenue∫ c̄

0

t∗(c)G(dc) = R∗.

The solution constructed above can be implemented by a rather simple menu as fol-

lows. Consider a menu contains a continuum of items, each of them is indexed by k ∈

[0,min{ψ(c̄), v̄}]. For each k, the targeted set is [k, v̄]. That is, only the consumers with

valuation above k can see the object. Furthermore, all these consumers receive the same

signal, so that their information about their valuation will be nothing but being above k.

Finally, the price for this item is

tk = (EF [v|v ≥ k]− ψ−1(k))(1− F (k))−
∫ c̄

ψ−1(k)

(1− F (ψ(z)))dz.

In other words, such menu exhibits positive targeting on the extensive margin and no tar-

geting on the intensive margin. Comparing to the optimal menu in the baseline model that

exhibits negative targeting on the intensive margin, items in this optimal menu also provides

very coarse information to the buyers whose valuation is above the cutoff. However, instead

of providing very detailed information to the buyers with lower valuation, when discrimina-

tory publicizing is feasible, the intermediary will exclude these buyers by not targeting at

them at all, which leads to positive targeting.

6 Conclusion

We studied an optimal pricing problem for an informational intermediary to sell information

structures that informs the consumers of a monopolist. We found that the optimal menu

displays an upper censorship feature consisting of information structures that discloses all—

or a partially garbled, in general—information to the buyer when the valuation is low and

no information when the valuation is high, which displays a negative targeting feature. Such

menu contains a continuum of items that prescribes the range of consumer values that will

be given full (or partially garbled, in general) information and prices for each information

structure. A welfare analysis suggests that total surplus generated by the sell reduces com-

paring to a benchmark where the monopolist can disclose information themselves, due to the
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presence of incomplete information of production cost. We also show that both the inter-

mediary’s revenue and the monopolist’s net profit increases when either the distribution of

valuation shifts up in the sense of first order stochastic dominance or when the distribution of

costs shifts up in the sense of hazard rate dominance. Moreover, the intermediary’s revenue

increases when the distribution of valuation becomes more dispersed. Finally, we extend our

result to a situation when the intermediary can also contract on how well the monopolist

is going to be perceived by the consumers. If the publicizing policy is non-discriminatory,

the results in the baseline model carries over. On the other hand, if the intermediary is

allowed to publicize the seller’s commodity discriminatorily, then a menu that consists of

positive targeting on the extensive margin, and provide no information to those who are

targeted is shown to be optimal. Throughout the analyses, the outside option of the seller

has been assumed to be zero, meaning that the seller must sell the commodity through the

intermediary. Different specification of outside options, for instance, facing a buyer who has

no information, could be analogously considered. This could be a topic for future research.

Although our model is a revenue maximizing problem of an informational intermedi-

ary who owns the technology to publicize a commodity and provide information to the

consumers, the techniques that we developed in this framework—the characterization of in-

ventive compatible menu, the pointwise maximization approach and the duality approach

that solves for optimal menu—are applicable to a broader class of setting where the inter-

mediary might have different objectives and the outside options of the buyer of information

structures might be different, including regulatory policies on information disclosure of new

products (e.g. financial products or drugs) that a government can implement to improve

social welfare. These can also be topics for future studies.
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Appendix

A. Proof of Lemma 1.

Proof of Lemma 1. For necessity, consider any incentive compatible and individually rational menu

(Hc, t(c), α(c))c∈[0,c̄]. Let

Π(c, c′) := max
x∈[0,v̄]

α(c′)(x− c)(1−Hc′(x−))

be the seller’s expected profit under the information structure Hc′ ∈ HF , publicizing policy α(c′) ∈

{0, 1} and cost c. By the envelope theorem (Milgrom & Segal, 2002), since the function

c 7→ α(c′)(x− c)(1−Hc′(x−))

is absolutely continuous with value uniformly bounded by−c̄ and v̄ for any fixed x ∈ [0, v̄], c′ ∈ [0, c̄],

Π(·, c′) is absolutely continuous for all c′ ∈ [0, c̄] and its derivative exists and equals to

Π1(c, c′) = −α(c′)(1−Hc′(x(c, c′)−)) (10)

for any selection x(c, c′) ∈ argmaxx∈[0,v̄] α(c′)(x−c)(1−Hc′(x−)), for (Lebesgue) almost all c ∈ [0, c̄].

Now let

V (c, c′) := Π(c, c′)− t(c′)

be the seller’s profit net of transfer if the cost is c and the (mis)report c′. Incentive compatibility

then implies

V ∗(c) := V (c, c) = max
c′∈[0,c̄]

V (c, c′).

Since Π(·, c′) is absolutely continuous and uniformly bounded by −c̄ and v̄, by the envelope theorem

again,

V ∗(c) = V (c̄)−
∫ c̄

c
Π1(z, z)dz = V (c̄) +

∫ c̄

c
(1−Hz(x(z, z)−))dz.

Rearranging, we have:

t(c) = t(c̄) + α(c) · max
x∈[0,v̄]

(x− c)(1−Hc(x−))−
∫ c̄

c
(1−Hz(x(z, z)−))dz,

which established assertion 1.

Furthermore, since V ∗ is nonincreasing, individual rationality implies that −t(c̄) = V ∗(c̄) ≥ 0,

which established assertion 2.
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In addition, by assertion 1, for any c, c′ ∈ [0, c̄],∫ c′

c
[α(z)(1−Hz(x(z, z)−))− α(c′)(1−Hc′(x(z, c′)))]dz

=

∫ c′

c
α(z)(1−Hz(x(z, z)−))dz −

∫ c′

c
Π1(z, c′)dz

=

∫ c′

c
α(z)(1−Hz(x(z, z)−))dz − (Π(c, c′)−Π(c′, c′)) (11)

=

∫ c̄

c
α(z)(1−Hz(x(z, z)−))dz − (Π(c, c′)−Π(c′, c′))−

∫ c̄

c′
α(z)(1−Hz(x(z, z)−))dz

=V (c, c)− V (c, c′)

≥0,

where the first equality follows from (10), the second equality follows from the fundamental theorem

of calculus and the last equality follows from assertion 1. This establishes assertion 3.

Finally, notice that for all c′ ∈ [0, c̄], Π(·, c′) is a pointwise supremun of a family of affine

functions ans this is convex. Therefore, V ∗ is also convex as it is a pointwise supremum of a family

of convex functions. Together, its subgradient −(1−Hc(x(c, c)−) is nondecreasing in c. This proves

assertion 4.

Conversely, take any menu (Hc, t(c), α(c))c∈[0,c̄] and any selection x(c, c′) ∈ argmaxx∈[0,c̄] α(c′)(x−

c)(1 − Hc′(x−)) that satisfy conditions 1 and 2. Again, let Π(c, c′) := maxx∈[0,v̄] α(c′)(x − c)(1 −

Hc′(x−)) and let V (c, c′) := Π(c, c′)−t(c′). By condition 1 and 2, (10) and (11), for any c, c′ ∈ [0, c̄],

V (c, c)− V (c, c′) =

∫ c′

c
[α(z)(1−Hz(x(z, z)−))− α(c′)(1−Hc′(x(z, c′)−)]dz ≥ 0,

where the inequality follows from condition 2. This completes the proof. �

B. Proofs of Main Results

B1. Proof of Theorem 1

Proof of Theorem 1. We first construct an upper bound of the intermediary’s revenue given by (1),

denoted by R∗ and then show that the proposed upper censorship menu (Hc
u, tu(c), αu(c))c∈[0,c̄]

is incentive compatible, individually rational and attains the upper bound R∗. First recall that

given any incentive compatible and individually menu (Hc, t(c), α(c))c∈[0,c̄]. Lemma 1 gives the

intermediary’s revenue as:

t(c̄) +

∫ c̄

0
α(c)

(
(x(c, c)− c)(1−Hc(x(c, c)−))− (1−Hc(x(c, c)−))

G(c)

g(c)

)
G(dc),
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where for each c ∈ [0, c̄], x(c, c) is the largest selection of argmaxx∈[0,v̄](x − c)(1 −Hc(x−)). Then

for each c ∈ [0, c̄],

α(c)

(
(x(c, c)− c)(1−Hc(x(c, c)−))− (1−Hc(x(c, c)−))

G(c)

g(c)

)
≤ max

x∈[0,v̄]
(x− ψ(c))(1−Hc(x−)).

and thus for any incentive compatible and individually rational menu (Hc, t(c), α(c))c∈[0,c̄], the

intermediary’s revenue is bounded from above by∫ c̄

0
max
x∈[0,v̄]

(x− ψ(c))(1−Hc(x−))G(dc).

On the other hand, since Hc ∈ HF for all c ∈ [0, c̄], for any x̃(c, c) ∈ argmaxx∈[0,v̄](x − ψ(c))(1 −

Hc(x−)),

max
x∈[0,v̄]

(x− ψ(c))(1−Hc(x−))

≤(x̃(c, c)− ψ(c))(1−Hc(x̃(c, c)−)) +

∫ v̄

x̃(c,c)
(1−Hc(z))dz

≤
∫ v̄

ψ(c)
(1−Hc(z))dz

≤
∫ v̄

ψ(c)
(1− F (z))dz

=(EF [v|v > ψ(c)]− ψ(c))(1− F (ψ(c))),

where second inequality follows from monotonicity of Hc, the third inequality follows from the

fact that F is a mean-preserving spread of Hc and the last equality follows from integration

by parts. Together, we have that for any incentive compatible and individually rational menu

(Hc, t(c), α(c))c∈[0,c̄],

R∗ :=

∫ c̄

0
(v(c)− ψ(c))(1− F (ψ(c)))G(dc)

≥
∫ c̄

0
max
x∈[0,v̄]

(x− ψ(c))(1−Hc(x−))G(dc).

≥
∫ c̄

0
α(c)

(
(x(c, c)− c)(1−Hc(x(c, c)−))− (1−Hc(x(c, c)−))

G(c)

g(c)

)
G(dc)

and therefore the intermediary’s revenue given by any incentive compatible and individually rational

menu (Hc, t(c), α(c))c∈[0,c̄] must be no greater than R∗.

Now notice that under the upper censorship menu (Hc
u, tu(c), αu(c))c∈[0,c̄], if each truthful-

reporting seller whose cost is c ∈ [0, c̄] sets price optimally at v(c), then for all c ∈ [0, c̄],

max
x∈[0,c̄]

(x− c)(1−Hc
u(x−)) = (v(c)− ψ(c))(1− F (ψ(c))). (12)
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Therefore, it suffices to show that (12) holds for the upper censorship menu (Hc
u, tu(c), α(c))c∈[0,c̄]

and that this menu is incentive compatible and individually rational, as this would imply that the

menu (Hc
u, tu(c), αu(c))c∈[0,c̄] is feasible and attains the upper bound R∗ of problem (1).

Indeed, first notice that φ(ψ(c)) ≤ c for all c ∈ [0, c̄] is equivalent to:

ψ(c) ≤ xF (c), ∀c ∈ [0, c̄],

where xF (c) is the unique element of argmaxx∈[0,v̄](x − c)(1 − F (x)). Take and fix any c ∈ [0, c̄],

under the upper censorship Hc
u, for a seller with cost c, setting price at any x ∈ [0, ψ(c)] gives profit

(x− c)(1− F (x)) ≤ (ψ(c)− c)(1− F (ψ(c))),

since the function x 7→ (x− c)(1−F (x)) is single-peaked by regularity and since x ≤ ψ(c) ≤ xF (c).

Furthermore, setting any prices in [ψ(c), v(c)) must be worse than setting price at v(c) since Hc
u

is a constant on (ψ(c), v(c)). Finally, for any x ∈ (v(c), v̄], the seller gets zero profit by setting a

price at x. Together, for the truthfully-reporting seller with cost c, setting price at v(c) is indeed

optimal.

Moreover, for any c, c′ ∈ [0, c̄], if c′ ≤ c,∫ c

c′
[(1−Hc

u(x(z, z)−))− (1−Hc
u(x(z, c)−))]dz

=

∫ c

c̃
[F (ψ(c))− F (ψ(z))]dz +

∫ c̃

0
[F (xF (z))− F (ψ(z))]dz ≥ 0,

for some c̃ ∈ [0, c], where the inequality follows from monotonocity of ψ and that xF (c) ≥ ψ(c) for

all c ∈ [0, c̄]. On the other hand, if c′ ∈ (c, v(c)), then for any z ∈ [c, c′], Hc
u(x(z, c)−) = F (ψ(c)) ≤

F (ψ(z)) by construction of Hu
c and by monotonocity of ψ. As such,∫ c

c′
[(1−Hc

u(x(z, z)−))− (1−Hc
u(x(z, c)−))]dz =

∫ c′

c
[F (ψ(z))− F (ψ(c))]dz ≥ 0.

Finally, if c′ > v(c), optimal price under Hc
u gives zero profit and thus deviation gain must be

negative. Together with Lemma 1, the upper censorship menu (Hc
u, tu(c), αu(c))c∈[0,c̄] is indeed

incentive compatible and individually rational. This completes the proof. �

B2. Proof of Theorem 2

Before stating the formal proof of Theorem 2, we first outline each step and sketch the structure

of the proof. First, we will show that to maximize the expected revenue by choosing among all
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the possible incentive compatible and individually rational menu, it is without loss to restrict

attention to incentive compatible, individually rational and responsive garbled upper censorship

menus. This will be done by Lemma 2. Second, we develop a characterization for incentive

compatible, individually rational and responsive garbled upper censorship menus that allows us to

represent them by a family of inequalities so that the intermediary’s problem can then be expressed

as a constraint optimization problem. This will be done by Lemma 3 and Lemma 4. Next, we will

then identify a class of critical constraints for the constraint optimization problem just obtained

and show that for any feasible choice in the constraint optimization, two types of constraints must

be met with equality. This is the content of Lemma 5. Finally, we will use the critical constraints to

write down the dual of the constraint optimization problem and find the proper Lagrange multipliers

so that the proposed menu indeed solves the dual problem, which effectively closes the duality gap

and establishes optimality.

Proof of Theorem 2.

Step 1: We first show that it is without loss to restrict attention to the family of incentive

compatible, individually rational and responsive upper censorship menus. This is implied by the

following Lemma.

Lemma 2. For any incentive compatible and individually ration menu (Hc, t(c), α(c))c∈[0,c̄], there

exists a nondecreasing function ψ̃ : [0, c̄] → [0, v̄] and an incentive compatible and individually

rational menu (Ĥc, t̂(c), α̂(c))c∈[0,c̄] such that Ĥc is a responsive garbled upper-censorship with cutoff

ψ̃(c) for all c ∈ [0, c̄] such that α̂(c) = 1 and that∫ c̄

0
t(c)G(dc) ≤

∫ c̄

0
t̂(c)G(dc).

Proof. Let (Hc, t(c), α(c))c∈[0,c̄] be an incentive compatible and individually rational menu. For

each c, z ∈ [0, c̄], denote x(z, c) by the largest element of

argmax
x∈[0,v̄]

α(c)(x− z)(1−Hc(x−))

and let x(c) := x(c, c). Notice that by Lemma 1, the function c 7→ α(c)(1 − Hc(x(c)−)) must be

nonincreasing. Therefore, the set {c ∈ [0, c̄]|α(c)(1 − Hc(x(c)−)) = 0} must be an interval with

supremum c̄ and infimum c0 ∈ [0, c̄]. Notice that this implies α(c) = 1 and Hc(x(c)−) < 1 for all

c ∈ [0, c0].
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Thus, by Lemma 1 and Fubini’s theorem,∫ c̄

0
t(c)G(dc) = t(c̄) +

∫ c0

0
(x(c)− ψ(c))(1−Hc(x(c)−))G(dc)

≤
∫ c0

0
(x(c)− ψ(c))(1−Hc(x(c)−))G(dc). (13)

For any c ∈ [0, c0], let ψ̃(c) := F−1(Hc(x(c)−)). Notice first that by Lemma 1, ψ̃ is nondecreas-

ing. Now define an information structure Ĥc as follows:

Ĥc(x) :=


Hc(x), if x ∈ [0, v(c))

F (ψ̃(c)), if x ∈ [v(c), ṽ(c))

1, if x ∈ [ṽ(c), v̄]

,

where v(c) is uniquely determined by the equation∫ ψ̃(c)

0
F (x)dx =

∫ v(c)

0
Hc(x)dx+ (ψ̃(c)− v(c))F (ψ̃(c))

and

ṽ(c) := EF [v|v > ψ̃(c)].

We claim that ṽ(c) is the largest optimal price for a seller with cost c under the information structure

Ĥc. That is,

ṽ(c) = max

{
argmax
x∈[0,v̄]

(x− c)(1− Ĥc(x−))

}
.

Indeed, any x ∈ (v(c), ṽ(c)) cannot be optimal since the function is strictly increasing on (v(c), ṽ(c)).

Also, any x ∈ (ṽ(c), v̄] cannot be optimal either since it gives zero profit to the seller. Finally, for

any x ∈ [0, v(c)],

(x− c)(1− Ĥc(x−)) = (x− c)(1−Hc(x−))

≤ (x(c)− c)(1−H(x(c)−))

≤ (EHc [v|v > x(c)]− c)(1−H(x(c)−))

≤ (EF [v|v > ψ̃(c)]− c)(1− F (ψ̃(c))),

where the first equality follows from the fact that x ∈ [0, v(c)], the first inequality follows from

optimality of x(c) under Hc and the last inequality follows from the construction of ψ̃ do that

F (ψ̃(c)) = Hc(x(c)−) and that EHc [v|v > x(c)] ≤ EF [v|v > ψ̃(c)], which follows from F (ψ̃(c)) =

Hc(x(c)−) and the fact that Hc ∈ HF .
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For any c ∈ [c0, c̄], select any H ∈ HF and let Ĥc := H. We will now verify that there exists

some transfer t̂ : [0, c̄] → R such that the menu (Ĥc, t̂(c),1[0,c0](c))c∈[0,c̄] is incentive compatible.

By Lemma 1, it suffices to show that for any c′, c ∈ [0, c0] with c′ < c,∫ c

c′
[Ĥc(x̂(z, c)−)− Ĥz(x̂(z, z)−)]dz ≥ 0,

where x̂(z, c) is the largest element of

argmax
x∈[0,v̄]

(x− z)(1− Ĥc(x−)).

Take and fix any c′, c ∈ [0, c0] with c′ < c. Notice that as argued above, since ṽ(c) is the largest

optimal price for a seller with cost c under Ĥc, Ĥc(x̂(c, c)−) = F (ψ̃(c)) = Hc(x(c)) for all c ∈ [0, c0].

On the other hand, notice that by construction of Ĥc, for any z ∈ [c′, c], either x̂(z, c) = ṽ(c) or

x̂(z, c) = x(z, c) ∈ [0, v(c)). In addition, since the original menu (Hc, t(c), α(c))c∈[0,c̄] is incentive

compatible, Lemma 1 implies that∫ c

c′
[Hc(x(z, c)−)−Hz(x(z, z)−)]dz ≥ 0.

Together,∫ c

c′
[Ĥc(x̂(z, c)−)− Ĥz(x̂(z, z)−)]dz =

∫ c

c′
[Ĥc(x̂(z, c)−)− F (ψ̃(z))]dz

≥
∫ c

c′
[Hc(x(z, c)−)− F (ψ̃(z))]dz

=

∫ c

c′
[Hc(x(z, c)−)−Hz(x(z, z)−)]dz

≥ 0,

where the two equalities follows from the constructions of Ĥz and ψ̃ so that Ĥz(x̂(z, z)−) =

F (ψ̃(z)) = Hz(x(z, z)−), the first inequality follows from the observation that Ĥc(ṽ(c)−) = F (ψ̃(c)) ≥

Hc(x) for any x ∈ [0, v(c)).

Finally, since as noted above, F (ψ̃(c)) = Hc(x(c)−) and EHc [v|v > x(c)] ≤ EF [v|v > ψ̃(c)], for

any c ∈ [0, c0], we have:

(x(c)− ψ(c))(1−H(x(c)−)) ≤ (EHc [v|v > x(c)]− ψ(c))(1−H(x(c)−))

≤ (EF [v|v > ψ̃(c)]− ψ(c))(1− F (ψ̃(c))) (14)

= (ṽ(c)− ψ(c))(1− F (ψ̃(c))).
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Together, by Lemma 1, let

t̂(c) := 1[0,c0](c)

[
(ṽ(c)− c)(1− F (ψ̃(c)))−

∫ c̄

c
(1− F (ψ̃(z)))dz

]
.

Then (Ĥc, t̂(c),1[0,c0](c))c∈[0,c̄] is an incentive compatible and individually rational menu, Ĥc is a

responsive garbled upper-censorship with cutoff ψ̃ and∫ c0

0
t̂(c)G(dc) =

∫ c̄

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)

≥
∫ c̄

0
(x(c)− ψ(c))(1−H(x(c)−))G(dc)

≥
∫ c̄

0
t(c)G(dc),

where the last two inequalities follow from (13) and (14). This completes the proof. �

Step 2: We now characterize the family of incentive compatible, individually rational and respon-

sive garbled upper censorship menus by a collection of inequalities. This is the result of Lemma 4.

To show Lemma 4, we first need Lemma 3 to simplify the procedure.

Lemma 3. Fix any c̃ ∈ [0, c̄]. Given any functions p : [0, c̃]→ [0, v̄] and q : [0, c̄]→ [0, 1]. Then

(p(c)− c)(1− q(c)) ≥ (p(c′)− c)(1− q(c′)),∀c, c′ ∈ [0, c̃] (15)

if and only if

1. (p(c)− c)(1− q(c)) = (p(c̃)− c̃)(1− q(c̃)) +
∫ c̃
c (1− q(z))dz for all c ∈ [0, c̃].

2. q is nondecreasing.

Proof. For necessity, consider and pair of functions p, q satisfying (15). Let π(c, c′) := (p(c′) −

c)(1 − q(c′)), for any c, c′ ∈ [0, c̃]. Notice that for each c′ ∈ [0, c̃], the function π(·, c′) is absolutely

continuous and uniformly bounded by −c̃ and v̄. By the envelope theorem, the function

π∗(c) := π(c, c) = max
c′∈[0,c̄]

π(c, c′)

is also absolutely continuous and the derivative exists and equals to −(1 − q(c)) for almost all

c ∈ [0, c̃]. Thus,

(p(c)− c)(1− q(c)) = π∗(c) = π∗(c̃) +

∫ c̃

c
(1− q(z))dz,
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which establishes assertion 1. Moreover, since π(·, c′) is an affine function, π∗ is a pointwise supre-

mum of a family of affine functions and thus is convex. As a result, its derivative, −(1 − q), is

nondecreasing.

For sufficiency, consider a pair of functions p, q satisfying 1 and 2. Then, for any c, c′ ∈ [0, c̃],

(p(c)− c)(1− q(c))− (p(c′)− c)(1− q(c′))

=(p(c)− c)(1− q(c))− (p(c′)− c′)(1− q(c′))− (c′ − c)(1− q(c′))

=

∫ c′

c
(1− q(z))dz − (c′ − c)(1− q(c′))

=

∫ c′

c
(q(c′)− q(z))dz

≥0,

where the second equality follows from 1 and the inequality follows from 2. �

Lemma 4. For any cα ∈ [0, c̄], any nondecreasing function ψ̃ : [0, cα] → [0, v̄], let ṽ(c) :=

EF [v|v > ψ̃(c)], π̃(c) := (ṽ(c) − c)(1 − F (ψ̃(c))),∀c ∈ [0, c̄]. There exists t : [0, c̄] → R, such

that (Hc, t(c),1[0,cα](c))c∈[0,c̄] is an incentive compatible, individually rational and responsive upper

censorship menu with cutoff ψ̃ if and only if there exists q : [0, cα]2 → [0, 1] such that:

1. Hc(ψ̃(c)−) = F (ψ̃(c)),
∫ x

0 [Hc(z)−F (z)]dz ≥ 0, for all x ∈ [0, ψ̃(c)], with equality at x = ψ̃(c),

for all c ∈ [0, cα].

2.
∫ c
c′ [q(z|c)− F (ψ̃(z))] ≥ 0, for all c, c′ ∈ [0, cα] with c′ ≤ c.

3. For any c ∈ [0, cα], x ∈ [0, ψ̃(c)], Hc(x−) ≥ maxc′∈[0,c][1−(π̃(c)+
∫ c
c′(1−q(z|c)dz))/(x−c

′)+]+

with equality if and only if (x − c′)(1 − q(c′|z)) = π̃(c) +
∫ c
c′(1 − q(z|c))dz for some c′ ∈

argmaxc′∈[0,c][1− (π̃(c) +
∫ c
c′(1− q(z|c)dz))/(x− c

′)+]+.

4. q(·|c) is nondecreasing and q(c|c) = F (ψ̃(c)) for all c ∈ [0, cα].

Proof. For necessity, consider any incentive compatible, individually rational and responsive upper

censorship menu (Hc, t(c),1[0,cα](c))c∈[0,c̄] with cutoff ψ̃. Since Hc is an upper censorship, assertion

1 is clearly satisfied.

Since Hc is responsive, for any c ∈ [0, cα],

(x− c)(1−Hc(x−)) ≤ (ṽ(c)− c)(1− F (ψ̃(c))) = π̃(c),∀x ∈ [0, v̄]
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and Hc(x−) = 1 for all x ∈ (ṽ(c), v̄]. Therefore,

ṽ(c) ∈ argmax(x− c)(1−Hc(x−)), ∀c ∈ [0, cα].

On the other hand, for any c′, c ∈ [0, cα] with c′ ≤ c, take any selection

x(c′, c) ∈ argmax
x∈[0,v̄]

(x− c′)(Hc(x−))

and let

p(c′|c) := x(c′, c)

q(c′|c) = Hc(x(c′, c)−).

Since (Hc, t(c),1[0,cα](c))c∈[0,c̄] is incentive compatible, Lemma 1 then ensures that∫ c

c′
[q(z|c)− F (ψ̃(z))]dz =

∫ c

c′
[Hc(x(z, c))− F (ψ̃(z)))]dz ≥ 0,

which establishes assertion 2.

Now notice that as shown above, q(c|c) = F (ψ̃(c)) and (p(c|c) − c)(1 − q(c|c)) = π̃(c) for all

c ∈ [0, cα]. Since x(c′, c) ∈ argmaxx∈[0,cα](x− c′)(Hc(x−)), for any such c, c′ we have

(x− c′)(1−Hc(x−)) ≤ (p(c′|c)− c′)(1− q(c′|c)), ∀x ∈ [0, v̄]. (16)

Rearranging, we have:

Hc(x−) ≥ 1− (p(c′|c)− c′)(1− q(c′|c))
(x− c′)+

,∀x ∈ [0, v̄]. (17)

Notice that the right hand side of (17) does not depend on c′, we thus have

Hc(x−) ≥ max
c′∈[0,c]

[
1− (p(c′|c)− c′)(1− q(c′|c))

(x− c′)+

]+

,∀x ∈ [0, ψ̃(c)],∀c ∈ [0, cα]. (18)

Moreover, by x(c′, c) ∈ argmaxx∈[0,v̄](x − c′)(Hc(x−)) again, for any c′, c′′ ∈ [0, c] and for any

c ∈ [0, cα],

(p(c′|c)− c′)(1− q(c′|c)) ≥ (p(c′′|c)− c′)(1− q(c′′|c)). (19)

By Lemma 3, q̂(·|c) is nondecreasing, which establishes assertion 4.

Furthermore, also by Lemma 3,

(p(c′|c)−c′)(1−q(c′|c)) = (p(c|c)−c)(1−q(c|c))+

∫ c

c′
(1−q(z|c))dz = π̃(c)+

∫ c

c′
(1−q(z|c))dz, (20)
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for any c ∈ [0, cα] and any c′ ∈ [0, c]. Combining (18) and (20), we obtain

Hc(x−) ≤ max
c′∈[0,x]

[
1−

π̃(c) +
∫ c
c′(1− q̂(z|c)

(x− c′)+

]+

,∀x ∈ [0, v̄].

Moreover, by (20), for any c ∈ [0, cα], any x ∈ [0, ψ̃(c)],

(x− c′)(1− q(c′|c)) = π̃(c) +

∫ c

c′
(1− q(z|c))dz

for some c′ ∈ argmaxc′∈[0,c][1−(π̃(c)+
∫ c
c′(1−q(z|c)dz))/(x−c

′)]+, if and only if x = x(c′, c) = p(c′|c)

and

Hc(x−) = max
c′∈[0,c]

[
1− (p(c′|c)− c′)(1− q(c′|c))

(x− c′)+

]+

,

which, together with (19), establishes assertion 3.

Conversely, for sufficiency, take any q : [0, cα]2 → [0, 1] and {Hc}c∈[0,cα] satisfying conditions 1,

2, 3 and 4. Notice that if Hc is not an upper censorship, then for each c ∈ [0, cα], x ∈ [0, v̄], let

Ĥc(x) :=


Hc(x), if x ∈ [0, ψ̃(c))

F (ψ̃(c)), if x ∈ [ψ̃(c), ṽ(c))

1, if x ∈ [ṽ(c), v̄]

.

By assertion 1, Ĥc ∈ HF and is an upper censorship with cutoff ψ̃(c) for all c ∈ [0, cα] and Ĥc ≡ Hc

on [0, ψ̃]. Thus suffices to take Hc as an upper censorship and verify that there exists t : [0, c̄]→ R

such that (Hc, t(c),1[0,cα](c))c∈[0,c̄] is an incentive compatible, individually rational and responsive

menu.

For responsiveness, notice that by assertion 3, for any x ∈ [0, ψ̃(c)],

Hc(x−) ≥ max
c′∈[0,c]

[
1−

π̃(c) +
∫ c
c′(1− q(z|c))dz

(x− c′)+

]+

≥
[
1− π̃(c)

(x− c)+

]+

.

Rearranging, we have:

(x− c)(1−Hc(x−)) ≤ π̃(c) = (ṽ(c)− c)(1−Hc(ṽ(c)−)).

On the other hand, any x ∈ (ṽ(c), v̄] gives zero profit under Ĥc. Thus,

ṽ(c) ∈ argmax
x∈[0,v̄]

(x− c)(1−Hc(x−)), ∀c ∈ [0, cα].

Therefore, {Hc}c∈[0,cα] is indeed responsive.

For incentive compatibility and individual rationality, by Lemma 3, since q(·|c) is increasing

and q(c|c) = F (ψ̃(c)) for all c ∈ [0, cα], there exists p : [0, cα]2 → [0, v̄] such that

(p(c′|c)− c′)(1− q(c′|c)) = π̃(c) +

∫ c

c′
(1− q(z|c))dz,∀c′ ∈ [0, c], c ∈ [0, cα]
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and that

(p(c′|c)− c′)(1− q(c′|c)) ≥ (p(c′′|c)− c′)(1− q(c′′|c)), ∀c′, c′′ ∈ [0, c], c ∈ [0, cα].

As such, for any c ∈ [0, cα], x ∈ [0, ψ̃(c)] and any c′ ∈ [0, c], whenever

Hc(x−) = max
c′∈[0,c]

[
1−

π̃(c) +
∫ c
c′(1− q(z|c))dz

(x− c′)+

]+

, (21)

by assertion 3 and (3), there exists c′ such that Hc(x) = q(c′|c)

(x− c′)(1−Hc(x−)) ≥ π̃(c) +

∫ c

c′′
(1− q(z|c)) = (p(c′′|c)− c′)(1− q(c′′|c)),∀c′′ ∈ [0, c],

for some c′ ∈ [0, cα]. Assertion 3 then implies that whenever (21) holds for some x ∈ [0, ψ̃(c)],

c′ ∈ [0, cα]

(x− c′)(1−Hc(x−)) ≥ (y − c′)(1−Hc(y−))

for any y such that (21) holds for some (possibly distinct) c′′ ∈ [0, c].

On the other hand, for any x ∈ [0, ψ̃(c)] such that (21) does not hold, there must be some

c′ ∈ [0, cα] such that

(x− c′)(1−Hc(x−)) < π̃(c) +

∫ c

c′
(1− q(z|c))dz

and therefore

(x− c′)(1−Hc(x−)) < (y − c′)(1−Hc(y−))

for y = p(c′|c). Together, it must be that argmax
x∈[0,ψ̃(c)]

(x − c′)(1 − Hc(x−)) is exactly the set

where (21) holds for some c′ ∈ [0, cα]. Thus, we may take a selection x(c′, c) ∈ argmax
x∈[0,ψ̃(c)]

(x−

c′)(1 −Hc(x−)) such that Hc(x(c′, c)−) = q(c′|c) for all c ∈ [0, cα], c′ ∈ [0, c]. Then, by Lemma 1

and assertion 2, there exists t : [0, c̄]→ R such that (Hc, t(c),1[0,cα](c))c∈[0,c̄] is incentive compatible

and individually rational. �

Step 3: Now, we identify two critical constraints for the intermediary’s problem. Lemma 5,

together with Lemma 4, show that for any incentive compatible, individually rational and responsive

garbled upper censorship menu, two families of equality constraints must be satisfied, which will

later be used in forming the dual problem.
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Lemma 5. For any cα ∈ [0, c̄], any nondecreasing function ψ̃ : [0, cα]→ [0, v̄], any {Hc}c∈[0,c̄] ⊂ HF

and any q : [0, cα]2 → [0, 1] satisfying conditions 1-4 in Lemma 4, there exists some q̂ : [0, cα]2 →

[0, 1] such that q̂(c|c) = F (ψ̃(c)), q̂(·|c) is increasing and∫ ψ̃(c)

0
[Γc
q̂,ψ̃

(x)− F (x)]dx = 0∫ c

0
[q̂(z|c)− F (ψ̃(z))]dz = 0,

where

Γc
q,ψ̃

(x) :=


q(0|c), if x ∈ [0, xq(c))

maxc′∈[0,cα]

[
1− π̃(c)+

∫ c
c′ (1−q(z|c))dz
(x−c′)+

]+
, if x ∈ [xq(c), x̄q(c))

F (ψ̃(c)), if x ∈ [x̄q(c), ψ̃(c)]

,

for any q : [0, cα]2 → [0, 1] with q(·|c) being nondecreasing , any c ∈ [0, cα] and any x ∈ [0, ψ̃(c)],

with

xq(c) :=
1

(1− q(0|c))

[
π̃(c) +

∫ c

0
(1− q(z|c))dz

]
+ c

x̄q(c) :=
1

(1− q(z̄q(c)−|c))

[
π̃(c) +

∫ c

z̄q(c)
(1− q(z|c))dz

]
+ c

z̄q(c) := inf{z ∈ [0, c]|q(z|c) = F (ψ̃(c))}

Proof. Take any ψ̃, {Hc}c∈[0,cα] and q satisfying conditions 1-4 in Lemma 4. Fix any c ∈ [0, cα].

By Lemma 4, we have ∫ ψ̃(c)

0
[Hc(x)− F (x)]dx = 0.

Moreover, since ṽ(c) > ψ̃, we must have z̄q(c) < c and F (ψ̃(c)) = F (ψ̃(c)) > q(z̄q(c)
−|c).

Consider first the case where ∫ c

0
[q(z|c)− F (ψ̃(z))] > 0,

first define zq(c) as the unique z that solves to the equation∫ c

z
q(t|c)dt =

∫ c

0
F (ψ̃(t))dx.

For this zq(c), consider the following construction: Define

q̂(z|c) :=

 0, if z ∈ [0, zq(c))

q(z|c), if z ∈ [zq(c), c]
.
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Notice that we then have ∫ c

0
[q̂(z|c)− F (ψ̃(z))]dz = 0.

If, furthermore, ∫ xq̂(c)

0

[
Hc(x)−

(
1−

π̃(c) +
∫ c

0 (1− q̂(z|c))dz
x

)+
]
dx

≤
∫ ṽ(c)

x̄q(c)

F (ψ̃(c))−

(
1−

π̃(c) +
∫ c
z̄q̂(c)

(1− q̂(z|c))dz
(x− z̄q(c))+

)+
 dx,

then there exists some q0 ∈ [q(z̄q(c)
−|c), F (ψ̃(c))] such that∫ xq̂(c)

0

[
Hc(x)−

(
1−

π̃(c) +
∫ c

0 (1− q̂(z|c))dz
x

)+
]
dx

= (ṽ(c)− x̂)F (ψ̃(c))−
∫ ṽ(c)

x̄q(c)

(
1−

π̃(c) +
∫ c
z̄q̂(c)

(1− q̂(z|c))dz
(x− z̄q̂(c))+

)+

dx,

where

x̂ := − 1

1− q0

[
π̃(c) +

∫ c

z̄q̂

(1− q̂(z|c))dz

]
+ c.

Thus, by possibly redefining q̂(z̄q̂|c) as q0, we then have∫ ψ̃(c)

0
Γc
q̂,ψ̃

(x)dx =

∫ ψ̃(c)

0
Hc(x)dx =

∫ ψ̃(c)

0
F (x)dx.

Furthermore, since the the point z̄q(c) has Lebesgue measure zero, we still have∫ c

0
[q̂(z|c)− F (ψ̃(z))]dz = 0.

On the other hand, if∫ xq̂(c)

0

[
Hc(x)−

(
1−

π̃(c) +
∫ c

0 (1− q̂(z|c))dz
x

)+
]
dx

>

∫ ṽ(c)

x̄q(c)

F (ψ̃(c))−

(
1−

π̃(c) +
∫ c
z̄q̂(c)

(1− q̂(z|c))dz
(x− z̄q(c))+

)+
 dx,

we construct a similar procedure for any x ∈ [xq(c), x̄q(c)]. Specifically, since the mapping

c′ 7→
[
1−

π̃(c) +
∫ c
c′(1− q(z|c))dz

(x− c′)+

]+

is continuous on [0, c], its set of maximizers admits a continuous selection

cq(x) ∈ argmax
c′∈[0,c]

[
1−

π̃(c) +
∫ c
c′(1− q(z|c))dz

(x− c′)+

]+

.
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Observe that for any x ∈ [xq(c), x̄q(c)], cq(x) ≥ zq(c) and therefore there exists qx ≥ 0 such that∫ c

cq(x)
[q(z|c)− F (ψ̃(z))]dz +

∫ cq(x)

0
[qx − F (ψ̃(z))]dz = 0

Now define

qx(z|c) :=

 qx, if z ∈ [0, cq(x))

q(z|c), if z ∈ [cq(x), c]

and let

x̂(x) :=
1

1− qx

[
π̃(c) +

∫ c

cq(x)
(1− qx(z|c))dz

]
.

Then, as long as ∫ x̂(x̄q(c))

0

Hc(x)−

(
1−

π̃(c) +
∫ c
z̄q(c)

(1− qx(z|c))dz
(x− z̄q(c))+

)+
 dx

≤
∫ ṽ(c)

x̄q(c)

F (ψ̃(c))−

(
1−

π̃(c) +
∫ c
z̄q̂(c)

(1− qx(z|c))dz
(x− z̄q(c))+

)+
 dx,

by the intermediate value theorem, since the selection cq is continuous and cq(x̄q(c)) = z̄q(c) by

construction, there must be some x∗ ∈ [xq(c), x̄q(c)] such that

∫ x̂(x∗)

0

Hc(x)−

(
1−

π̃(c) +
∫ c
cq(x∗)

(1− qx(z|c))dz
(x− cq(x∗))+

)+
 dx

=

∫ ṽ(c)

x̄q(c)

F (ψ̃(c))−

(
1−

π̃(c) +
∫ c
z̄q̂(c)

(1− qx(z|c))dz
(x− z̄q(c))+

)+
 dx.

We then have ∫ ψ̃(c)

0
Γc
qx∗ ,ψ̃

(x)dx =

∫ ψ̃(c)

0
Hc(x)dx =

∫ ψ̃(c)

0
F (x)dx.

Therefore, by defining q̂(·|c) ≡ qx∗(·|c), we then have the desired q̂.

Finally, if ∫ x̂(x̄qc)

0

Hc(x)−

(
1−

π̃(c) +
∫ c
z̄q(c)

(1− qx(z|c))dz
(x− z̄q(c))+

)+
 dx

<

∫ ṽ(c)

x̄q(c)

F (ψ̃(c))−

(
1−

π̃(c) +
∫ c
z̄q̂(c)

(1− qx(z|c))dz
(x− z̄q(c))+

)+
 dx,

then there exists x∗ ∈ [0, x̄q(c)] such that

∫ x∗

0
max

qx̄q(c),
(

1−
π̃(c) +

∫ c
z̄q(c)

(1− q(z|c))dz
(x− z̄q(c))+

)+
 dx+ (ṽ(c)− x∗)F (ψ̃(c)) =

∫ ψ̃(c)

0
Hc(x)dx.
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Then, by defining

q̂(z|c) :=

 qx̄q , if z ∈ [0, z̄q(c)]

F (ψ̃(c)), if z ∈ (z̄q(c), c]
,

we then have ∫ ψ̃(c)

0
Γc
q̂,ψ̃

(x)dx =

∫ ψ̃(c)

0
Hc(x)dx =

∫ ψ̃(c)

0
F (x)dx,

as desired.

Finally, if, on the other hand, ∫ c

0
[q(z|c)− F (ψ̃(z))]dz = 0,

then it must be that q(0|c) = 0 since by Lemma 4,∫ c

c′
[q(z|c)− F (ψ̃(z))]dz ≥ 0

and F (ψ̃(0)) = 0. Thus, by selecting a proper q̃ ∈ (0, q(zq(c)
+|c)) and letting q̃(z|c) := q̃ for all

z ∈ [0, zqc] and q̃(z|c) := q(z|c) otherwise, we will have

H̃c(x) ≥ max
c′∈[0,cα]

[
1−

π̃(c) +
∫ c
c′(1− q̃(z|c)))dz
(x− c′)+

]+

,∫ ψ̃(c)

0
H̃(c)dx =

∫ ψ̃(c)

0
Hc(x)dx =

∫ ψ̃(c)

0
F (x)dx

and ∫ c

0
[q̂(z|c)− F (ψ̃(z))]dz > 0,

where

H̃c(x) :=

 q̃, if x ∈ [0, x̃)

Hc(x), if x ∈ [x̃, ψ̃(c)]
,

and

x̃ :=
1

1− q̃

[
π̃(c) +

∫ c

zq(c)
(1− q̃(z|c))dz

]
.

Since the previous arguments hinge only on the property that∫ ψ̃(c)

0
Hc(x)dx =

∫ ψ̃(c)

0
F (x)dx

and that Hc(x) ≥ maxc′∈[0,cα][1 − (π̃(c) +
∫ c
c′(1 − q(z|c))dz)/(x − c

′)+]+ for all x ∈ [0, ψ̃(c)], by

replacing Hc with H̃c, q with q̃ and repeating the procedures, we can then find the desired q̂. �
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Step 4: We now show that for any fixed cα ∈ [0, c̄], the menu induced by the family of information

structure {Hc
gu}c∈[0,cα] ⊂ HF and the publicizing policy 1[0,cα], with Hc

gu being a responsive upper

censorship with cutoff ψ∗(c), is incentive compatible and individually rational and maximized the

intermediary’s revenue among all incentive compatible, individually rational and responsive garbled

upper censorship menu with the same publicizing policy. To this end, first notice that when

cα ∈ [0, c∗], since ψ∗(c) = ψ(c), the proof of Theorem 1 then ensures the desired property. Below

we discuss the case when cα ∈ (c∗, c̄]

By using the characterizations above, we can form a dual for the original problem with a fixed

cα. Fix any Borel measures µ, ν on the measurable space [0, cα] (endowed with the Borel algebra).

Let

D(µ, ν) := sup
ψ̃,q

[ ∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)−

∫ cα

0

(∫ v̄

0
(1− Γc

q,ψ̃
(x))− (1− F (x))

)
dxµ(dc)

−
∫ cα

0

(∫ c

0
[q(z|c)− F (ψ̃(z))]dz

)
ν(dc)

]
, (22)

where the supremum is taken over all nondecreasing function ψ̃ : [0, cα]→ [0, v̄] and all q : [0, cα]2 →

[0, 1] such that q(·|c) is nondecreasing and q(c|c) = F (ψ̃(c)), for all c ∈ [0, cα].

Notice that for any incentive compatible, individually rational and responsive garbled upper

censorship menu (Hc, t(c),1[0,cα](c))c∈[0,c̄] with cutoff ψ̃, the expected revenue for the intermediary

is

R(ψ̃) :=

∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc).

By Lemma 4 and Lemma 5, for any such menu, there exists q
ψ̃,H

: [0, cα]2 → [0, cα] such that

q
ψ̃,H

(·|c) is nondecreasing, q
ψ̃,H

(c|c) = F (ψ̃(c)),∫ v̄

0
[(1− Γc

q
ψ̃,H

,ψ̃
(x))− (1− F (x))] = 0,∫ c

0
[q
ψ̃,H

(z|c)− F (ψ̃(z))]dz = 0,

for all c ∈ [0, cα].
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As such, for any such menu, for any Borel measures µ, ν on [0, cα],

R(ψ̃) =

∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc).

=

∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)−

∫ cα

0

(∫ v̄

0
(1− Γc

q
ψ̃,H

,ψ̃
(x))− (1− F (x))

)
dxµ(dc)

−
∫ cα

0

(∫ c

0
[q
ψ̃,H

(z|c)− F (ψ̃(z))]dz

)
ν(dc)

≤ sup
ψ̃,q

[ ∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)−

∫ cα

0

(∫ v̄

0
(1− Γc

q,ψ̃
(x))− (1− F (x))

)
dxµ(dc)

−
∫ cα

0

(∫ c

0
[q(z|c)− F (ψ̃(z))]dz

)
ν(dc)

]
=D(µ, ν),

and therefore, if R∗ is the supremum of the expected revenue among all possible incentive compat-

ible, individually rational and responsive garbled upper censorship menus with publicizing policy

1[0,cα], we have

R∗ ≤ D(µ, ν).

It then suffices to show that there exists Borel measures µ∗, ν∗ and a function q∗ : [0, cα]2 → [0, 1]

with q∗(·|c) being nondecreasing and q∗(c|c) = F (ψ∗(c)) such that (ψ∗, q∗) solves the dual problem

(22), that ∫ cα

0

(∫ v̄

0
[(1− Γcq∗,ψ∗(x))− (1− F (x))dx

)
µ∗(dc) = 0,∫ cα

0

(∫ c

0
[q∗(z|c)− F (ψ∗(z))]dz

)
ν∗(dc) = 0

for all c ∈ [0, cα] and that there exists an incentive compatible, individually rational and responsive

garbled upper censorship menu with cutoff ψ∗ and publicizing policy 1[0,cα], as this would imply:

R∗ ≤ D(µ∗, ν∗) = R(ψ∗) ≤ R∗.

Together, we will then have

R∗ = R(ψ∗),

as desired.

Indeed, for any Borel measures µ, ν on [0, cα], (22) can be written as:

sup
ψ̃

[ ∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)

+ sup
q

(∫ cα

0

(∫ v̄

0
[Γc
q,ψ̃

(x)− F (x)]dx

)
µ(dc)−

∫ cα

0

(∫ c

0
[q(z|c)− F (ψ̃(z))]dz

)
ν(dc)

)]
.
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Notice that for any fixed ψ̃, the functional

q 7→ Γc
q,ψ̃

is convex, as it is essentially a pointwise supremum of a family of affine functionals. Also, since for

each c ∈ [0, cα], the collection of nondecreasing functions q(·|c) : [0, c] → [0, ψ̃(c)], Q(c), is convex,

for each c ∈ [0, cα], and any fixed nondecreasing function ψ̃ : [0, cα] → [0, v̄], the maximization

problem

max
q(·|c)∈Q(c)

∫ v̄

0
[Γc
q,ψ̃

(x)− F (ψ̃)]dx−
∫ c

0
[q(z|c)− F (ψ̃(z))]dz

has a solution and one of the extreme points of Q(c), which take form of q(z|c) ∈ {0, F (ψ̃(c))} for

all z ∈ [0, c], attains the maximum. Therefore, (22) can be reduced to choosing cutoff points of the

extreme points of Q(c), denoted as k(c), instead of choosing among all nondecreasing functions for

each c ∈ [0, cα]. That is:

D(µ, ν) = sup
ψ̃

[ ∫ cα

0
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))G(dc)

+ sup
k:[0,cα]→[0,cα], k(c)≤c

(∫ cα

0

(∫ v̄

0
[Γc

1{z≥k(c)},ψ̃(x)− F (x)]dx

)
µ(dc)

−
∫ cα

0

(∫ c

0
[F (ψ̃(c))1{z ≥ k(c)} − F (ψ̃(z))]dz

)
ν(dc)

)]
.

Notice that by definition of Γc
1{z≥k(c)},ψ̃

, fix any ψ̃ and k,

∫ v̄

0
[Γc

1{z≥k(c)},ψ̃(x)− F (x)]dx ≥
∫ P (ψ̃(c),k(c))

0
[γ(x, ψ̃(c), k(c))− F (x)]dx,

where

γ(x, ψ̃(c), k(c)) :=

(
1− (ṽ(c)− k(c))(1− F (ψ̃(c)))

(x− k(c))+

)+

,∀x ∈ [0, ψ̃(c)]

and

P (ψ̃(c), k(c)) :=

 max Φ−1
k(c)((ṽ(c)− k(c))(1− F (ψ̃(c)))), if Φ−1

k(c)((ṽ(c)− k(c))(1− F (ψ̃(c)))) 6= ∅

0, if Φ−1
k(c)((ṽ(c)− k(c))(1− F (ψ̃(c)))) = ∅

,

with Φz(x) := (x− z)(1− F (x)) being the profit function of a seller with a cost z ∈ [0, cα].

Now fix Borel measures µ, ν on [0, cα] that are absolutely continuous with respect to the
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Lebesgue measure with densities m,n, respectively, and consider an auxiliary problem:

D′(µ, ν) := sup
ψ̃,k

[ ∫ cα

0

(
(ṽ(c)− ψ(c))(1− F (ψ̃(c)))g(c)

−

(∫ P (ψ̃(c),k(c))

0
[(1− γ(x, ψ̃(c), k(c)))− (1− F (x))]dx

)
m(c) (23)

−
(

(c− k(c))F (ψ̃(c))−
∫ c

0
F (ψ̃(z))dz

)
n(c)

)
dc

]
.

Notice that for any fixed ψ̃, (23) is a (concave) pointwise maximization problem of choosing k(c) ≤ c,

whereas for any fixed k, (23) is a (concave) variational problem.12 As such, for ψ∗, k∗ to be optimal

under the Borel measures µ, ν, it is equivalent to that k∗(c) solves the pointwise first order condition

given ψ∗

m(c)

∫ P (ψ∗(c),k∗(c))

0
γ3(x, ψ∗(c), k∗(c))dx = −F (ψ∗(c))n(c)

⇐⇒ m(c) = − F (ψ∗(c))∫ P (ψ∗(c),k∗(c))
0 γ3(x, ψ∗(c), k∗(c))dx

n(c), (24)

whenever P (ψ∗(c), k∗(c)) > 0 and that ψ∗ solves the Euler-Largrange equation given k∗:

n(c) =
d

dc

[
(ψ(c)− ψ∗(c))g(c) +m(c)

∫ P (ψ∗(c),k∗(c))

0
γ2(x, ψ∗(c), k∗(c))dx− (c− k∗(c))n(c)

]
,

(25)

for (Lebesgue) almost all c ∈ [0, cα].

Substituting (24) into (25) and integrating both sides with the fact that ψ∗(0) = 0, we then

have:

N(c) :=

∫ c

0
n(z)dz = (ψ(c)− ψ∗(c))g(c) + Ω∗(c)n(c), (26)

where

Ω∗(c) := −
∫ P (ψ∗(c),k∗(c))

0 γ2(x, ψ∗(c), k∗(c))dxF (ψ∗(c))∫ P (ψ∗(c),k∗(c))
0 γ3(x, ψ∗(c), k∗(c))dxf(ψ∗(c))

− (c− k∗(c))

claim 1: Ω∗ is strictly decreasing on [c∗, cα] and Ω∗(c) ≥ 0 for all c ∈ [c∗, cα].

12This can be seen by observing that (ṽ(c)− ψ(c))(1− F (ψ̃(c))) =
∫ v̄
ψ̃(c)

(1− F (x))dx− (ψ(c)− ψ̃(c))(1−

F (ψ̃(c))), (ṽ(c)− k(c))(1−F (ψ̃(c))) =
∫ v̄
ψ̃(c)

(1−F (x))dx+ (ψ̃(c)− k(c))(1−F (ψ̃(c))) and by letting η(c) :=

1

F (ψ̃(c))

∫ c
0
F (ψ̃(z))dz.



61

Notice that (26) is a first order linear differential equation and therefore the initial value problem

with N(c∗) = 0 has a unique solution

N∗(c) = ζ(c)

(∫ c

c∗
ζ(z)

(ψ(z)− ψ(c∗))

g(z)
dz

)
,

where

ζ(c) := exp

(∫ c

0

1

Ω∗(c)

)
, ∀c ∈ [0, cα].

It can be verified that N∗ is increasing and therefore is indeed a CDF of a Borel measure with

density n∗. As such, let

m∗(c) := − F (ψ∗(c))∫ P (ψ∗(c),k∗(c))
0 γ3(x, ψ∗(c), k∗(c))dx

n∗(c), ∀c ∈ [0, cα],

and let µ∗, ν∗ be the Borel measures induced by m∗ and n∗. Notice that supp(µ∗) = supp(ν∗) =

[c∗, cα] and that ψ∗, k∗ solves the auxiliary problem (23). Moreover, by construction, for any

c ∈ [c∗, cα],∫ v̄

0
[Γc1{z≥k∗(c)},ψ∗(x)− F (x)]dx = 0 =

∫ P (ψ∗(c),k∗(c))

0
[γ(x, ψ∗(c), k(c))− F (x)]dx

and therefore,

D′(µ∗, ν∗) = D(µ∗, ν∗).

Furthermore, let q∗(z|c) := 1{z ≥ k∗(c)}. Then (ψ∗, q∗) indeed solves the dual problem (22)

and ∫ cα

0

(∫ v̄

0
[(1− Γcq∗,ψ∗(x))− (1− F (x))]dx

)
µ∗(dc) = 0,∫ cα

0

(∫ c

0
[q∗(z|c)− F (ψ∗(z))]dz

)
ν∗(dc) = 0

for all c ∈ [0, cα].

Finally, for any c ∈ [0, cα], any x ∈ [0, v̄], let

Ĥc(x) :=



[
1− (v∗(c)−k∗(c))(1−F (ψ∗(ψ(c)))

(x−k∗(c))+

]+
, if x ∈ [0, P (ψ∗(c), k∗(c)))

F (x), if x ∈ [P (ψ∗(c), k∗(c)), ψ∗(c))

F (ψ∗(c)), if x ∈ [ψ∗(c), v∗(c))

1, if x ∈ [v∗(c), v̄]

,

where v∗(c) := EF [v|v ≥ ψ∗(c)]. On the other hand, for any H ∈ HF denote the integral of H by

IH(x) :=
∫ v̄
x (1−H(z))dz for all x ∈ [0, v̄]. Now let

Icgu(x) := conv

(
min{IF (x), I

Ĥc(x)}
)
.
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By construction, for all c ∈ [0, cα] Icgu is convex and thus its subdifferential, ∂Icgu(x), is nonempty

for all x ∈ [0, v̄]. Finally, let

Hc
gu(x) := inf ∂Icgu(x), ∀x ∈ [0, v̄], c ∈ [0, cα].

It can be verified that Hc
gu ∈ HF for all c ∈ [0, cα] and that {Hc

gu}c∈[0,cα] satisfies the sufficient

conditions 1 and 2 in Lemma 1. Then by Lemma 4 and Lemma 1, there exists a transfer tgu :

[0, cα] → R such that (Hc
gu, tgu(c),1[0,cα](c))c∈[0,cα] is indeed an incentive compatible, individually

rational and responsive upper censorship menu with cutoff ψ∗, as desired.

Step 5: Finally, it remains to find cα that maximizes∫ cα

0
(v∗(c)− ψ(c))(1− F (ψ∗(c)))G(dc).

By definition of ĉ and by monotonocity of ψ, and thus of ψ∗,

(v∗(c)− ψ(c))(1− F (ψ∗(c))) ≥ 0 ⇐⇒ c ≤ ĉ.

Since G has full support, the function

cα →
∫ cα

0
(v∗(c)− ψ(c))(1− F (ψ∗(c)))G(dc)

is indeed maximized at ĉ. This completes the proof. �

C. Proofs for Welfare Analysis and Comparative Statics

Proof of Proposition 1. Notice that for each c ∈ [0, c̄], probability of efficient trade is the probability

of the event that trade occurs when the buyer’s value is greater than the seller’s cost. Since ψ(c) > c

for all c ∈ [0, c̄], ∫ c̄

0
(1− F (c))G(dc) >

∫ c̄

0
(1− F (ψ(c)))G(dc),

which implies that the probability of efficient trade is larger when the seller has control of the

information technology.
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On the other hand, since ψ is increasing and ψ(c) > c for all c ∈ [0, c̄],∫ v̄

ψ(c)
(1− F (x))dx+ (ψ(c)− c)(1− F (ψ(c)))

<

∫ v̄

ψ(c)
(1− F (x))dx+

∫ ψ(c)

c
(1− F (x))dx

=

∫ v̄

c
(1− F (x))dx,

for all c ∈ [0, c̄]. Thus,∫ c̄

0
(v(c)− c)(1− F (ψ(c)))G(dc) <

∫ c̄

0
(EF [v|v > c]− c)(1− F (c))G(dc).

This completes the proof. �

Proof of Proposition 2. For 1., notice that the intermediary’s revenue is given by∫ c̄

0
(v(c)− ψ(c))(1− F (ψ(c)))G(dc),

and total surplus is ∫ c̄

0
(v(c)− c)(1− F (ψ(c)))G(dc),

and the seller’s expected net profit is∫ c̄

0

(∫ c̄

c
(1− F (ψ(z)))dz

)
G(dc)

for any distributions F,G satisfying φ(ψ(c)) ≤ c for all c ∈ [0, c̄]. As such for any i ∈ {1, 2},

(v1(c)− ψi(c))(1− F1(ψi(c))) =

∫ v̄

ψi(c)
(1− F1(x))dx

≥
∫ v̄

ψi(c)
(1− F2(x))dx = (v1(c)− ψi(c))(1− F1(ψi(c))),

and

(v1(c)− c)(1− F1(ψi(c))) =

∫ v̄

ψi(c)
(1− F1(x))dx+ (ψi(c)− c)(1− F1(ψi(c)))

≥(v1(c)− c)(1− F2(ψi(c))) =

∫ v̄

ψi(c)
(1− F2(x))dx+ (ψi(c)− c)(1− F2(ψi(c))),

and also ∫ c̄

c
(1− F1(ψi(z)))dz ≥

∫ c̄

c
(1− F2(ψi(z)))dz,

for all c ∈ [0, c̄] and therefore∫ c̄

0
(v1(c)− ψi(c))(1− F1(ψi(c)))Gi(dc) ≥

∫ c̄

0
(v2(c)− ψi(c))(1− F2(ψi(c)))Gi(dc)
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and ∫ c̄

0
(v1(c)− c)(1− F1(ψi(c)))G(dc) ≥

∫ c̄

0
(v2(c)− c)(1− F2(ψi(c)))G(dc),

and also ∫ c̄

0

(∫ c̄

c
(1− F1(ψi(z)))dz

)
G(dc) ≥

∫ c̄

0

(∫ c̄

c
(1− F2(ψi(z)))dz

)
G(dc),

for any i ∈ {1, 2}.

For 2., notice that by using integration by parts, for all c ∈ [0, c̄], i, j ∈ {1, 2},∫ v̄

ψi(c)
(1− Fj(x))dx =

∫ v̄

0
1{x ≥ ψi(c)}(1− Fj(x))dx =

∫ v̄

0
(x− ψi(c))+Fj(dx).

Therefore, since the function x 7→ (x− ψ(c))+ is convex and since F1 is a mean preserving spread

of F2, for any i ∈ {1, 2}, ∫ c̄

0
(v1(c)− ψi(c))(1− F1(ψi(c)))Gi(dc)

=

∫ c̄

0

(∫ v̄

0
(x− ψi(c))+F1(dx)

)
≥
∫ c̄

0

(∫ v̄

0
(x− ψi(c))+F1(dx)

)
=

∫ c̄

0
(v2(c)− ψi(c))(1− F2(ψi(c)))Gi(dc)

For 3., first notice that the hazard rate dominance implies that ψ1 ≤ ψ2 and that

G1(c) = exp

(
−
∫ c̄

c

1

ψ1(z)
dz

)
≥ exp

(
−
∫ c̄

c

1

ψ2(z)
dz

)
= G2(c).

That is, G2 first order stochastic dominates G1. As such, for each i ∈ {1, 2},∫ c̄

0
(v1(c)− ψ1(c))(1− Fi(ψ1(c)))G1(dc)

=

∫ c̄

0

(∫ v̄

ψ1(c)
(1− Fi(x))dx

)
G1(dc)

≥
∫ c̄

0

(∫ v̄

ψ2(c)
(1− Fi(x))dx

)
G1(dc)

≥
∫ c̄

0

(∫ v̄

ψ2(c)
(1− Fi(x))dx

)
G2(dc)

=

∫ c̄

0
(v2(c)− ψ2(c))(1− Fi(ψ1(c)))G2(dc),
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where the first inequality follows from ψ1 ≤ ψ2 and the second inequality follows from the fact that

G2 first order stochastic dominates G1 and that ψ2 is increasing. Similarly, for each i ∈ {1, 2},∫ c̄

0
(v1(c)− c)(1− Fi(ψ1(c)))G1(dc)

=

∫ c̄

0

(∫ v̄

ψ1(c)
(1− Fi(x))dx+ (ψ1(c)− c)(1− F (ψ1(c)))

)
G1(dc)

≥
∫ c̄

0

(∫ v̄

ψ2(c)
(1− Fi(x))dx+ (ψ2(c)− c)(1− F (ψ2(c)))

)
G1(dc)

≥
∫ c̄

0

(∫ v̄

ψ2(c)
(1− Fi(x))dx+ (ψ2(c)− c)(1− F (ψ2(c)))

)
G1(dc)

=

∫ c̄

0
(v2(c)− c)(1− Fi(ψ2(c)))G2(dc).

Finally, for the same reasons,∫ c̄

0

(∫ c̄

c
(1− Fi(ψ1(z)))dz

)
G1(dc) ≥

∫ c̄

0

(∫ c̄

c
(1− Fi(ψ2(z)))dz

)
G2(dc)

This completes that proof. �

D. Proof of Claim

Proof of Claim 1. Take a sequence of strictly increasing and differentiable functions ψn such that

{ψn} → ψ∗ pointwisely. For each n ∈ N, let

kn(c) := c− 1

F (ψn(c))

∫ c

0
F (ψn(z))dz

πn(c) :=

∫ v̄

ψn(c)
(1− F (x))dx+ (ψn(c)− kn(c))(1− F (ψn(c))),

and let

k∗(c) := c− 1

F (ψ∗(c))

∫ c

0
F (ψ∗(z))dz

π∗(c) :=

∫ v̄

ψ∗(c)
(1− F (x))dx+ (ψ∗(c)− k∗(c))(1− F (ψ∗(c))),

for all c ∈ [0, c̄]. Notice that since {ψn} → ψ∗ pointwisely, by the dominated convergence theorem,

{πn} → {π∗} pointwisely as well and (ψn(c) − kn(c)) ≥ 0 for all c ∈ [0, c̄] for n large enough. As

such, for n large enough,

π′n(c) = −(ψn(c)− kn(c))(1− F (ψn(c)))− (1− F (ψn(c)))

F (ψn(c))2

∫ c

0
F (ψn(z))dz < 0, ∀c ∈ [0, c̄]
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This then implies that for n large enough,

d

dc

[∫ P (ψn(c),kn(c))

0
[(1− γ(x, ψn(c), kn(c))− (1− F (x))]dx

]
≤ 0, ∀c ∈ [0, c̄].

Therefore,

0 ≥ d

dc

[∫ P (ψn(c),kn(c))

0
[(1− γ(x, ψn(c), kn(c)))− (1− F (x))]dx

]

=f(ψn(c))ψ′n(c)

[
− 1

f(ψn(c))

∫ P (ψn(c),kn(c))

0
γ2(x, ψn(c), kn(c))dx

−
∫ P (ψn(c),kn(c))

0
γ3(x, ψn(c), kn(c))dx

∫ c
0 F (ψn(z))dz

F (ψn(c))2

]
=f(ψn(c))ψ′n(c)

[
−
∫ P (ψn(c),kn(c))

0 γ2(x, ψn(c), kn(c))dxF (ψn(c))∫ P (ψn(c),kn(c))
0 γ3(x, ψn(c), kn(c))dxf(ψn(c))

− (c− kn(c))

]

×
∫ P (ψn(c),kn(c))

0 γ3(x, ψn(c), kn(c))dx

F (ψn(c))
,

for all c ∈ [0, c̄], n ∈ N. Furthermore, direct calculation shows that∫ P (ψn(c),kn(c))
0 γ3(x, ψn(c), kn(c))dx

F (ψn(c))
< 0, ∀c ∈ [0, c̄], n ∈ N.

Together, since f(ψn(c))ψ′n(c) > 0 for all c ∈ [0, c̄] and n ∈ N, for n large enough,

Ωn(c) := −
∫ P (ψn(c),kn(c))

0 γ2(x, ψn(c), kn(c))dxF (ψn(c))∫ P (ψn(c),kn(c))
0 γ3(x, ψn(c), kn(c))dxf(ψn(c))

− (c− kn(c)) ≥ 0,

for all c ∈ [0, c̄]. Finally, by the dominance convergence theorem, {Ωn} → Ω∗ pointwisely and

therefore

Ω∗(c) ≥ 0, ∀c ∈ [0, c̄].

Direct computation then shows that Ω∗ is strictly decreasing on [c∗, c̄]. This completes the proof. �
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