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Abstract

I study strategic experimentation, with one player initially being better informed
about the state of nature than the other. Players are otherwise symmetric, and observe
past experimentation decisions and outcomes. I construct an equilibrium in which a
mutual encouragement effect arises: as the public information becomes discouraging,
the informed player’s high effort continuously brings in good news, encouraging the
uninformed player to experiment; in return, the uninformed player’s experimentation
pattern yields an increasing reward, encouraging the informed player to experiment.
Due to this effect, players’ total effort can increase over time, and the uninformed player
may grow increasingly optimistic, despite the discouraging public information. More-
over, creating information asymmetry improves total welfare if the informed player’s
initial signal is sufficiently precise.

1 Introduction

Experimentation is an important mechanism through which agents discover new ideas and
learn their value, thereby promoting technological change, and driving economic growth.1

In many environments, agents learn both from their own and from others’ experiments.

∗I am deeply indebted to Thomas Mariotti (thesis advisor), Johannes Hörner, and Jacques Crémer for their
support, encouragement, and guidance. I am also very grateful to S. Nageeb Ali, Alessandro Bonatti, Daniel
Garret, Bruno Jullien, François Salanié, Takuro Yamashita for their insightful comments. Special thanks to
Ricardo Alonso, Sarah Auster, Catherine Bobtcheff, Bruno Biais, Luc Bridet, Françoise Forges, Bertrand
Gobillard, Renato Gomes, Srihari Govindan, Christian Hellwig, Yukio Koriyama, Yves Le Yaouanq, Marco
Ottaviani, Harry Di Pei, Patrick Rey, Andrew Rhodes, Jean Tirole, Yuichi Yamamoto, and TSE seminar
participants.
†Bocconi University, Department of Decision Sciences and IGIER, miaomiao.dong@unibocconi.it.
1Endogenous technological change is a key driver of economic growth, as argued by endogenous growth

theory (Romer, 1990; Aghion and Howitt, 1992). On the role of experimentation in the discovery and
selection of new ideas, see Romer (1994, page 12), Nelson and Winter (1994, Chapter 11).
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For example, farmers learn from their own and others’ experiences whether a new fertilizer
improves yield (Foster and Rosenzweig, 1995; Conley and Udry, 2010); physicians learn
through their own and others’ prescriptions the efficacy of a new drug after it is approved
by the FDA (Coleman, Katz and Menzel, 1957; Iyengar, Van den Bulte and Valente, 2011);
firms in a strategic alliance learn from one another whether their newly developed product
has a high demand.

The information generated from experimentation is a public good. A free-riding problem
naturally arises: agents experiment less than if they acted cooperatively. This free-riding
problem has been studied by Bolton and Harris (1999), Keller, Rady and Cripps (2005), and
formed the basis of a large literature.2

I introduce initial information asymmetry to these environments. My motivation is
twofold. First, information asymmetry is empirically relevant: some agent (a well educated
farmer, a specialist physician, the designer of a new product) may have better information
about the value of experimentation initially. The action of such a “leader” may signal useful
information thereby influencing the incentive of the less-informed “follower.” Second, induc-
ing information asymmetry — for instance, by hiding information from some agents — can
be a tool to curb free riding.

This agenda motivates the following questions. How does initial asymmetric informa-
tion affect agents’ experimentation behavior? Does it mitigate or exacerbate free-riding?
Can it be welfare-improving to induce information asymmetry in an otherwise symmetric
environment?

The central contribution of this paper is to show that initial information asymmetry qual-
itatively changes agents’ experimentation behavior — unlike in the symmetric information
setting, agents can increase experimentation even after a history of unsuccessful experiments
(that is, experiments that do not lead to any breakthrough). The key mechanism is a novel
mutual encouragement effect: a better-informed player — the leader — signals good news
through persistent high (experimentation) effort, encouraging an uninformed player — the
follower — to experiment; the follower follows his lead, and increases her effort over time,
encouraging the leader to persevere. Thanks to this mutual encouragement effect, inducing
information asymmetry mitigates free-riding and can improve total welfare.

This paper builds on the two-player version of the exponential-bandit model (Keller,
Rady and Cripps, 2005). At each point in time, each player must divide a unit of resource
between a safe project with known payoffs and a risky project of unknown quality. Learning
is conclusive: only good risky projects deliver payoffs (breakthroughs), governed by a Poisson
process. Players observe past experimentation decisions and payoffs. I add one source of
information asymmetry: at date 0, one player, called the informed player (he), privately
observes a binary noisy signal. He thus becomes either an optimistic type whose posterior
belief is higher than the uninformed player’s (she), or a pessimistic type.

With asymmetric information, a public history carries two components of information.

2The free-riding problem has also been well documented empirically; Foster and Rosenzweig (1995) find
that during the adoption of high-yielding seed varieties associated with the Green Revolution in India,
farmers do not fully incorporate the village returns to learning in making adoption decisions.
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The first component is the information generated from the experimentation technology, rep-
resented by the informed player’s beliefs. This component is “passive,” as it depends only
on the public history. The second component is the private information that the informed
player reveals to the uninformed player, represented by the uninformed player’s belief about
the informed player being the optimistic type, called his reputation. This component is
“strategic,” as it depends also on the informed player’s strategies.

I construct a Markov perfect equilibrium (MPE) using these two components of informa-
tion as state variables. During a gradual revelation phase of this equilibrium, the pessimistic
type mixes between mimicking the optimistic type’s high effort and revealing himself such
that, as long as he keeps mimicking, his reputation gradually increases. This rising reputation
induced by the informed player’s persistent high effort (the strategic component) counter-
balances the pessimism induced by the absence of a breakthrough (the passive component),
and encourages the uninformed player to increase her effort over time.3

This rising effort dynamics of the uninformed player occurs when the pessimistic type’s
belief is such that neither player would experiment if his signal were public. Intuitively,
during the gradual revelation phase, the pessimistic type has to be indifferent between mim-
icking the optimistic type so as to be willing to convince the uninformed player to exert
effort, and revealing himself, thereby inducing both players to stop experimentation. The
marginal value of both players’ efforts to the pessimistic type is dropping over time due
to the absence of a breakthrough; for him to be indifferent, the uninformed player has to
accelerate her information production to reward the pessimistic type’s persistence.

The joint behavior pattern during the gradual revelation phase — the informed player
maintaining high effort and the uninformed player increasing her effort despite the absence of
a breakthrough — admits the following intuitive interpretation. Leaders motivates followers
through role modeling: a leader articulates an appealing vision, which may or may not be
reachable; however, as the leader sees further and more accurately than his follower,4 his
putting in long hours during setbacks gradually convinces the follower of his optimism about
the vision, and hence motivates the follower to work harder. That leaders enhance followers’
commitment to their visions through role modeling is a recurring theme in both modern
leadership theories5 and leadership guidelines in popular management books.6

The constructed MPE exists if the initial signal of the informed player is precise enough,
and the fraction of the pessimistic type is not too low. If the prior belief is not too low,
then the distribution of the equilibrium paths of the constructed MPE is unique among the
MPEs that satisfy (1) players playing the symmetric MPE after the informed player reveals

3The uninformed player may even become increasingly optimistic about the risky project before a break-
through occurs, another novel qualitative impact of information asymmetry.

4See for instance, page 2 of March and Weil (2009).
5Examples are charismatic leadership theory, transformational leadership theory (Bass and Bass, 2009;

Yukl, 2010), and authentic leadership theory (Gardner et al., 2005; Avolio and Gardner, 2005).
6For instance, Yukl (2010) gives the following guidelines “for leaders seeking to inspire followers and

enhance their self-confidence and commitments to the mission”: articulate a clear and appealing vision;
explain how the vision can be attained; act confident and optimistic; express confidence in followers; use
dramatic, symbolic actions to emphasize key values; and lead by example (role modeling). See page 290–293.
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his type (on path); (2) a criterion in the spirit of D1.
The mutual encouragement effect leads to interesting welfare implications. Suppose a

social planner (she), who cares about total welfare, observes the informed player’s private
signal. Would she hide it from the uninformed player? I find that, if the signal is precise
enough, she would hide it. Intuitively, in such cases, the optimistic type, being still opti-
mistic before revealing his type, has little to learn, and thus suffers little from asymmetric
information. The pessimistic type and the uninformed player, on the other hand, benefit
significantly from the mutual encouragement effect. As a result, asymmetric information
improves total welfare.

Drawing from this welfare implication, a policy maker aiming at promoting new tech-
nology adoption may find it desirable to target certain individuals first by giving them
relevant information or training. Companies promoting new experience goods might find it
profitable to target some consumers, say early adopters, or experts; indeed, pharmaceutical
companies spend huge amounts of money targeting marketing activities at “opinion leaders,”
for instance, by giving them detailed information about their new drugs, a process called
detailing (Nair, Manchanda and Bhatia, 2010).

2 Literature Review

Strategic experimentation in a (non-competitive) team environment was first introduced
by Bolton and Harris (1999), in a two-armed Brownian bandit model. They analyze how
an encouragement effect — a player’s future effort encourages another player to experiment
now — interacts with the free-riding effect and shapes (Markov) equilibrium experimentation
strategies. Keller, Rady and Cripps (2005) propose the exponential bandit model to analyze
the experimentation problem. Notably, they find that in (Markov) equilibrium, there is no
encouragement effect, in the sense that players acquire the same amount of information in
total as a single player does.7 In both papers, players are symmetrically informed. This paper
shows that, by introducing initial asymmetric information, a new mutual encouragement
effect arises, leading to qualitatively different behavioral and belief dynamics.8

This paper is closely related to the recent experimentation literature that explores pri-
vate learning. Bonatti and Hörner (2011) study moral hazard in teams within an exponential
bandit framework. They find that players procrastinate (in the unique symmetric equilib-
rium) and that perfect monitoring on actions exacerbates the procrastination problem (in
the symmetric MPE). This paper points out one advantage of perfect monitoring: signaling

7This encouragement effect does occur in MPEs with infinite switching. However, an MPE with infinite
switching fails to be a limit equilibrium of discrete-time games as the length of a period shrinks to 0.

Note that the encouragement effect defined by Keller, Rady and Cripps (2005) differs from that defined
by Bolton and Harris (1999): the former is an equilibrium property and the latter concerns best responses.
This paper follows the former definition.

8In Bolton and Harris (1999), higher future efforts by other players increase a player’s continuation
value, thereby encouraging the player to experiment to collect the continuation value. In my paper, a
higher reputation of the informed player increases both the uninformed player’s instantaneous payoff and
her continuation value, thereby encouraging her to experiment.
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by the informed player can push both players to work harder than under symmetric informa-
tion. Building on Bonatti and Hörner (2011), Guo and Roesler (2016) study a collaboration
problem with hidden experimentation efforts but with public and irreversible exit decisions.
In their model, players may privately learn the quality of their joint project over time if it
is bad. As there are payoff externalities, a player who learns that the project is bad still
stays in the game, delaying the abandonment of socially inefficient projects. Their paper is
the closest to my paper in that both papers study signaling in experimentation problems.
However, signaling plays different roles. In my paper, signaling is through experimentation
effort and pushes the players to acquire more useful information. In their paper, signaling is
through maintaining in the game and makes players pursue bad projects for too long.

Private learning is also examined in environment where experimentation decisions are
observable but players may privately learn the quality of risky projects over time. Heidhues,
Rady and Strack (2015) analyze a discrete-time version of the exponential bandit model
but with private payoffs and cheap talk. They find that if the common prior is sufficiently
optimistic, then the cooperative solution can be implemented (by reverting to an equilibrium
which is outcome equivalent with the symmetric MPE under symmetric information once a
deviation occurs). Das (2017) studies a winner-takes-all contest where efforts and payoffs are
public but players may privately learns the true state over time if it is good. In both papers,
equilibrium effort strategies are cutoff strategies. Therefore, the joint behavior pattern in
this paper does not occur in theirs.

The question of whether hiding information from some agent(s) can improve welfare
is related to information design on experimentation. Halac, Kartik and Liu (2017) study
information design in contests for experimentation, in which both experimentation decisions
and experimentation outcomes are private. They find that a “hidden equal-sharing” contest
can outperform a “public winner-takes-all contest.” The mechanisms are different. In their
paper, signaling does not play a role. In my paper, it is a driving force behind the mutual
encouragement effect.

More broadly, that asymmetric information may improve total welfare also relates to the
leadership literature. Hermalin (1998) and Komai, Stegeman and Hermalin (2007) analyze a
static model of moral hazard in team, in which the leader who knows the state of the world
signals to the followers the value of their joint project by working hard, thereby partially
overcoming the free-riding problem. Different from them, this paper focuses on a dynamic
model, aiming at explaining the dynamic provision of informational public goods, which
cannot be analyzed in their static setup. Moreover, the welfare implications are different:
when the informed player knows the risky project is good but does not know it is bad,
creating information asymmetry improves welfare in my setup (with purely informational
externalities), whereas it may not be so in their setup (with purely payoff externalities).

Finally, in this paper, ignorance gives the uninformed player some commitment power to
reward the informed player’s good behavior and to punish his bad behavior. This point is
similar to (Crémer, 1995) in the contracting literature and to (Carrillo and Mariotti, 2000)
in the self-control literature. Crémer (1995) finds that, a principal unable to commit not
to renegotiate a contract is better off with an arm’s length relationship because it gives her
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commitment power to punish an agent’s poor performance. Carrillo and Mariotti (2000)
find that a time-inconsistent decision maker may forgo free useful information, in fear that
her future selves would not be able to commit to the optimal consumption plan she makes
today, after observing the information.

3 The Model

Time is continuous, indexed by t ∈ [0,∞). There are two players. Each player is endowed
with one unit of a divisible resource per unit of time, and must divide it between a safe project
and a risky project. A safe project delivers a known return; the return of a risky project
depends on its quality θ, unknown and common to both players, with θ = g referring to a
good project, and θ = b to a bad one. If a player allocates a fraction at ∈ [0, 1] of resource to
the risky project over a time interval [t, t+dt], and hence (1−at) to the safe project, then the
player receives (1− at)sdt from the safe project, and a lump-sum payoff h with probability
atλ1{θ=g}dt from the risky project, where λ > 0. That is, a bad risky project delivers zero
payoffs whereas a good risky project delivers lump-sum payoffs, called breakthroughs, that
arrive at a Poisson rate. Learning is thus conclusive: a single breakthrough perfectly reveals
good quality. At any time t, players observe all past experimentation decisions and payoffs.9

Both players prefer a good risky project to a safe project, and a safe project to a bad risky
project: λh > s > 0. They discount future payoffs with a common discount rate r > 0.

Initially, players assign a common prior probability q0 on the risky projects being good.
At time 0, one player, called the informed player (player I, he), receives a favorable signal
s+ with probability ρθ, and an unfavorable signal s− with probability 1− ρθ. The favorable
signal s+ is more likely to occur to a good risky project than to a bad risky project: 1 > ρg >
ρb ≥ 0. By Bayes’ rule, after receiving signal s+, I adjusts his belief upward to some q+

0 ,
strictly higher than the uninformed player’s (player U , she) posterior q0, thereby becoming
an optimistic type; otherwise, he adjusts his belief downward to some q−0 < q0, thereby
becoming a pessimistic type. The parameters q0, ρg, and ρb are common knowledge.10 The
initial information asymmetry is the only divergence from the two-player version of the
canonical exponential-bandit model of Keller, Rady and Cripps (2005).

Remark. [A joint project interpretation.] Because a breakthrough publicly reveals good
quality and there is no payoff externality, the game essentially ends once a breakthrough
occurs. It then becomes a dominant strategy for a player to use the risky project forever,
bringing a discounted payoff λh/r. Note also that the player who receives the first break-
through enjoys an additional payoff h relative to the other player. Therefore, the model
admits the following joint project interpretation: instead of working on two risky projects of

9Specifically, if we use (aIs, a
U
s ) to denote player I’s and player U ’s efforts taken at time s, then right

before players take actions at time t, they observe the effort history before t, (aIs, a
U
s )s<t, and the payoff

history before t.
10Such initial information asymmetry arises for instance if I is an incumbent, U is a new entrant who is

not sure of how long I has been experimenting before time 0.
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the same quality, the two players work on one joint risky project; a breakthrough occurs to
the risky project with the same probability as in our model, bringing a lump-sum payoff λh/r
to each player, and an additional intrinsic satisfaction h to the first player who experiences
the breakthrough; the project is completed once a breakthrough arrives.

3.1 The cooperative solution

If players act cooperatively to maximize their joint surplus, the informed player would
reveal his signal truthfully to the uninformed player.11 Therefore, from time 0 on, both
players would share a common posterior belief qt, which continuously decreases over time as
long as players experiment and no breakthrough has arrived. Both players adopt a cutoff
strategy: experimenting if qt is higher than a cutoff q∗2 ∈ (0, 1), defined by

r(λq∗2h− s) + 2λq∗2(λh− s) = 0, (1)

and stopping otherwise. On the left-hand side, the first term is the flow marginal benefit
of experimentation at the cooperative cutoff q∗2 (relative to the safe return; in the sequel,
all return is relative to the safe return if not mentioned), and the second term the marginal
option value of information to both players. Equation (1) says at the optimal cutoff, the
total marginal benefit of experimentation is 0 (a smooth pasting condition).

For future use, we also introduce the single-player solution, a similar cutoff strategy with
cutoff q∗1, where q∗1 is determined by equation (1) with the number 2 being replaced by 1.
Since the option value of information to two players is twice as much as that to a single
player (at the same belief) whereas the flow benefit is the same, a two-player team in the
cooperative solution acquire more information than does a single player: q∗2 < q∗1. Intuitively,
the more valuable the information, the more information player(s) should acquire.

4 Beliefs and the Equilibrium Concept

Following the experimentation literature with symmetric information (for instance, Bolton
and Harris, 1999; Keller, Rady and Cripps, 2005), we focus on Markov perfect equilibrium
(MPE). Different from them, there is no single state variable for the solution concept, be-
cause players do not share a common posterior belief. Now a public history carries two
components of information. The first is the information obtained from the experimentation
technology, depending only on the public history, independent of players’ equilibrium strate-
gies, hence is called “passive.” This component of information can be represented by how the
informed player updates his beliefs. The other component is the informed player’s private
information revealed through his actions, depending also on his equilibrium strategies and
hence is called “strategic.” This component of information can be represented by how the

11He can do so by playing some action for an infinitesimal amount of time. An alternative way to implement
the cooperative solution is for the uninformed player to match the action of the informed player, and for the
informed player to stop experimenting once his belief reaches the cutoff q∗2 specified below.
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uninformed player updates her belief about the informed player being the optimistic type.
Based on this observation, we define state variables. Strategies, belief systems, and equilibria
are defined afterward.

4.1 The state variables

The passive component—the background belief. Consider an outsider who knows
the model except that he mistakenly believes that neither player has observed the initial
signal of the informed player’s. Assume that he starts with the same prior belief p0 ≡ q0 and
observes the same public histories as our players do. Denote his posterior belief at time t by
pt, and call it the background belief.12

Of course, this background belief differs from I’s posterior belief. But if after a public
history, the outsider is told of I’s private signal, he would then adjust his belief to exactly
I’s. That is, after a public history, if the background belief is p, type s+’s posterior belief
must be qqq+(p) given by Bayes rule,

qqq+(p) =
pρg

pρg + (1− p)ρb
, (2)

and type s−’s must be qqq−(p) given by

qqq−(p) =
p(1− ρg)

p(1− ρg) + (1− p)(1− ρb)
. (3)

Equations (2) and (3) imply that the background belief p and the signals of the informed
player, s− and s+, are sufficient to track the informed player’s posterior beliefs. To track U ’s
belief about the risky project, we still need the strategic component of information.

The strategic component—I’s reputation: the probability U assigns to I being
type s+, denoted by µ. Together with the background belief, I’s reputation determines U ’s
posterior belief about the risky project by

qqqU(p, µ) ≡ µqqq+(p) + (1− µ)qqq−(p), (4)

and hence directly affects U ’s instantaneous payoff. As U ’s incentives are affected by I’s
strategies, which are type dependent, U ’s belief about I’s types is necessary to compute U ’s
continuation payoffs.

In sum, the background belief, p, and I’s reputation, µ, are sufficient to represent the
two components of information and are thus used as state variables.

To reduce the burden of notation, denote the expected arrival rate of breakthroughs per
unit of effort for type s+, type s−, and U at state (p, µ), by λI+(p), λI−(p), and λU(p, µ),
respectively, which are equal to the corresponding posterior beliefs about the risky project
multiplied by the arrival rate of breakthroughs of a good risky project λ.

12Appendix A gives a formal definition of the background belief.

8



Remark. Singling out this passive background belief from a public history is not only tech-
nically convenient, but also empirically relevant. We interpret the outsider that we introduce
to define the background belief as an econometrician who mistakenly believes that players are
symmetrically informed. He therefore misspecifies the true asymmetric information model
as a symmetric information model. We will discuss the empirical consequences of such a
misspecification later.

4.2 Strategies and belief systems

Players’ strategies are Markov. A pure strategy for U is a mapping from the state space
into the effort space, aU : [0, 1]2 → [0, 1], with aU(p, µ) denoting U ’s effort level at state
(p, µ). Type s+’s and type s−’s pure strategies are similarly defined and denoted by aI+

and aI− respectively. We are interested in equilibria in which both U and type s+ play
pure strategies, and type s− plays a pure strategy after his type is revealed (on path). In
such equilibria, a mixed strategy for type s− is a mixture over his pure strategies, and can
be defined based on Aumann (1964).13 Abusing notations, we still use aI− to denote the
pessimistic type’s strategy.

A belief system is denoted by µ(s+|·), which associates to each public history, a probability
that U assigns to I being type s+. We require the belief system to satisfies Bayes’ rule
whenever possible.

4.3 Equilibrium

Given a Markov strategy profile (aI−, aI+, aU) and a belief system µ(s+|·), the expected
average payoff to type sl, l ∈ {+,−}, at time 0 is

El
aI−,aI+,aU ,µ(s+|·)

[∫ ∞
0

re−rt
((

1− aIlt
)
s+ aIlt λhθ

)
dt

]
,

which is equal to

El
aI−,aI+,aU ,µ(s+|·)

[∫ ∞
0

re−rt
((

1− aIlt
)
s+ aIlt λ

Il(pt)h
)
dt

]
, (5)

by the law of iterated expectations, where El
(aI−,aI+,aU ,µ(s+|·) refers to type s−’s expectation

under the probability distribution induced by the strategy profile (aI−, aI+, aU) and the belief
system µ(s+|·).

13Specifically, let aI+ denote a pure strategy for the optimistic type, and aI−(·, 0) a pure strategy for the
pessimistic type after he reveals his type. A mixed strategy for the type s− is implemented as follows: at
the start of the game, type s− draws a number from the uniform distributed on [0, 1]; if r is realized, then
type s− plays aI+ as long as the background belief is strictly higher than p̂(r), and plays aI−(·, 0) otherwise,
where p̂ : [0, 1]→ [0, 1] is a decreasing function that assigns to each realization from the uniform distribution
a cutoff background belief at which type s− reveals himself.

9



Similarly, the expected average payoff of player U at time 0 is

EaI−,aI+,aU ,µ(s+|·)

[∫ ∞
0

re−rt
((

1− aUt
)
s+ aUt λ

U(pt, µt)h
)
dt

]
,

where EaI−,aI+,aU ,µ(s+|·) refers to U ’s expectation under the probability distribution induced
by the strategy profile (aI−, aI+, aU) and the belief system µ(s+|·).

A strategy profile (aI−, aI+, aU) and a belief system µ (s+|·) is an MPE if given the other
player’s strategy and the belief system, a player finds it optimal to play her equilibrium
strategy, and if the belief system satisfies Bayes rule whenever possible.

4.4 The evolution of the state variables

Given an action path (aIt , a
U
t )t≥0 (on or off the equilibrium path), before a breakthrough

occurs, the background belief process (pt)t≥0 evolves according to

dpt = −pt(1− pt)(aIt + aUt )λdt, (6)

by Bayes’ rule.14

The evolution of a reputation process (µt)t≥0 depends on the equilibrium prescription.
Fix a candidate equilibrium (aI+, aI−, aU ;µ(s+|·)). We focus on how µt evolves along the
path such that no breakthrough has occurred and I has been taking type s+’s (prescribed)
effort.15

If the equilibrium involves pooling from time 0 to time T , then U ’s belief about the risky
project coincides with the background belief over the time interval [0, T ]. As a result, I’s
reputation µt at background belief pt for t ∈ [0, T ] is equal to

µµµo(pt) ≡ ptρg + (1− pt)ρb, (7)

where the mapping µµµo : [0, 1] → [0, 1] is called a pooling path. Since p0 = q0, µµµo (q0) is I’s
reputation at time 0. Note that during pooling, I’s reputation µt decreases as pt decreases
over time. Intuitively, since signal s+ is more likely to occur to a good risky project, as U
becomes more and more pessimistic about the risky project being good, so does she about
s+ having occurred.

Once the equilibrium diverges from pooling, I’s reputation µt would differ from µµµo(pt).
A candidate equilibrium (aI+, aI−, aU ;µ(s+|·)) induces a distribution over the set of histories

14To see this, suppose at background belief pt, players take efforts (aIt , a
U
t ) during a dt duration of time.

Then in the absence of a breakthrough, the background belief at t+ dt, pt+dt, satisfies

pt+dt =
pt(1− (aIt + aUt )λdt)

pt(1− (aIt + aUt )λdt) + (1− pt)

by Bayes rule. Therefore, the belief change in this time interval, dpt ≡ pt+dt − pt, is given by equation (6).
15Once I takes an action different from type s+’s on the equilibrium path, then his reputation will stay

at 0; once a breakthrough occurs, his reputation ceases to matter.

10



such that no breakthrough has occurred before type s−’s revelation, which consists of histories
such that either “type s− has revealed himself (by stopping mimicking type s+)” or “type
s− has not revealed himself and no breakthrough has arrived.” This distribution further
induces a cumulative distribution function (CDF) Y : [0,∞)→ [0, 1] over the time at which
type s− reveals himself, where Yt denotes the probability that type s− has revealed himself
before or at time t conditional on no breakthrough having occurred before his revelation. 16

By Bayes’ rule, I’s reputation µt satisfies

µt =
µµµo(pt)

µµµo(pt) + [1− µµµo(pt)] (1− Yt)
. (8)

Written in its differential form, the reputation process (µt)t≥0 evolves according to

dµt
µt(1− µt)

=
dµµµo(pt)

µµµo(pt) (1− µµµo (pt))
+

dYt
1− Yt

, (9)

where dYt
1−Yt denotes the probability that type s− reveals himself during the time interval

[t, t+ dt), conditional on no breakthrough having occurred and I having been taking type s+’s
effort.

4.5 The continuation game under after revelation

I focus on the equilibria such that after I’s type is revealed (on path), players play
the unique symmetric MPE under symmetric information as the continuation equilibrium.
Keller, Rady and Cripps (2005) characterize this equilibrium: players exert effort 1 when
they are sufficiently optimistic (when their posterior belief is above a threshold qS); they
exert effort 0 when they are sufficiently pessimistic (when their posterior belief is below the
single-player cutoff q∗1); and they exert interior effort when in between. Denote this MPE by
aS : [0, 1]→ [0, 1] whose argument is players’ true posterior belief.

Two features will change qualitatively in the asymmetric information framework. First,
there is no encouragement effect: players acquire the same amount of information as a single

16There are three types of time-t public histories (on path): (1) histories such that a breakthrough has
occurred and I has been taking type s+’s (prescribed) action, (2) the history such that no breakthrough
has occurred and I has been taking type s+’s action, and (3) histories such that I has stopped taking type
s+’s action. Fix the candidate equilibrium. Conditional on a history being either the second or the third
type, if I is the optimistic type then the second type history occurs with probability 1, whereas if I is the
pessimistic type then the second type history occurs with probability 1− Yt and the third type occurs with
probability Yt.

We now show how Yt is determined by the candidate equilibrium. According to type s−’s mixed strategy
induced by the randomization device in Footnote 13, if the random number r is such that pt is below the
threshold p̂(r), then type s− must stop mimicking type s+ before or at t, resulting in a time-t history of the
third type; otherwise, if r is such that pt is strictly above p̂(r), then type s− must continue mimicking type
s+ at least until t (because the background beliefs before time t is higher than pt, which is strictly higher
than p̂(r)), resulting in a time-t history is of the second type. Therefore, Yt by definition is equal to the
probability that r is below p̂−1(pt), which is equal to p̂−1(pt) (as r is uniformly distributed).
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player does, as they stop experimentation at the single-player cutoff belief q∗1. Second, effort
monotonically decreases over time in the absence of a breakthrough.

Figure 1 translates this equilibrium in the language of the background belief. The dashed
curve corresponds to the continuation equilibrium following type s−’s revelation, where the
cutoff pS−1 is such that players are willing to switch from effort 1 to interior efforts: qqq−(pS−1 ) =
qS, and p∗−1 is such that players’ posterior belief is at the single-player cutoff: qqq−(p∗−1 ) = q∗1.
The solid curve corresponds to the continuation equilibrium following type s+’s revelation,
with the two cutoffs similarly defined. To avoid redundancy, whenever no confusion arises, we
call p∗−1 type s−’s single-player cutoff (background belief), p∗−2 ≡ (qqq−)

−1
(q∗2) his cooperative

cutoff, and pS+ type s+’s switching cutoff.

4.6 The odds ratio

A crucial factor driving the momentum of the mutual encouragement effect is the belief

difference between I’s two types, naturally measured by qqq+(p)
1−qqq+(p)

/ qqq−(p)
1−qqq−(p)

. By Bayes rule

(equations (2) and (3)), this ratio is also equal to an odds ratio O defined by

O ≡ ρg/(1− ρg)
ρb/(1− ρb)

, (10)

the ratio of the odds of signal s+ occurring to a good project to the odds of it occurring to
a bad project. Therefore, the odds ratio O measures both the belief difference between I’s
two types and the informativeness of I’s private signal.

The following assumption greatly eases the exposition of the mutual encouragement effect.
Section 8 discusses what happens if this assumption does not hold.

Assumption 1. The odds ratio O is greater than or equal to OS ≡ qS

1−qS /
q∗2

1−q∗2
.

Under Assumption 1, when type s−’s posterior belief is at the cooperative cutoff q∗2, type
s+’s would be weakly greater than the switching cutoff qS (after the same public history).
It means the belief difference between I’s two types is large, so that after the players with
public information s− find it optimal to stop experimenting when playing cooperatively, the
players with public information s+ still experiment with full resource for at least some time
(when playing the symmetric MPE). The parameters in Figure 1 satisfy this assumption,
because at the background belief p∗−2 (type s−’s cooperative cutoff), players with public
information s+ are still willing to exert effort 1.

5 MPE with Gradual Revelation

This section constructs the MPE of interest. We first highlight its main structure and
elaborate the equilibrium behavior dynamics and belief dynamics. Detailed equilibrium
construction is postponed to the last subsection and equilibrium uniqueness to the Section
8.
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aS(qqq−(p))

aS(qqq+(p))

p∗+1 pS−p∗−2pS+ p∗−1
p

a

0 1

1

Figure 1: The symmetric MPE as functions of the background belief

Recall that we focus on equilibria such that, after I’s type is revealed (on path), the
players play the symmetric MPE aS (defined in Section §4.5). In the sequel, by type s−
revealing himself, we mean that he plays this equilibrium strategy, and immediately after
this, U follows suit. All equilibrium descriptions are conditioned on no breakthrough having
occurred.

The equilibrium has three phases.

1. When type s− is sufficiently optimistic — over background beliefs (pgr, 1), pgr to be
determined — the equilibrium involves pooling, during which, both players exert effort
1. As a result, I’s reputation gradually decreases over time (along the pooling path
µµµo). The eroding reputation path is illustrated by the dash-dot line over the interval
(pgr, 1] in Figure 2: as time passes by, I’s reputation decreases along this line from
right to left until p reaches pgr.

2. When type s−’s belief is intermediate — over background beliefs (p∗−2 , pgr] — the
equilibrium involves gradual revelation, during which, type s+ still exerts effort 1,
whereas type s− mixes between mimicking type s+ and revealing himself, such that
as long as he keeps mimicking, his reputation gradually increases, along a gradual
revelation path µ̂̂µ̂µ : [p∗−2 , pgr] → [0, 1]. This rising reputation path is illustrated by the
solid curve in Figure 2: as time passes by, I’s reputation increases along this line from
right to left.

3. When type s− is sufficiently pessimistic — over background beliefs (0, p∗−2 ] — the equi-
librium involves separation, during which, type s+ plays the symmetric MPE strategy
under symmetric information s+, whereas type s− stops experimenting immediately.
Referring to Figure 2, if I stops experimentation, the state variables jump on the line

13



µµµo(p)

pgr

aI+ = aS(qqq+(·))
aI− = 0
aU(·, 1) = aS(qqq+(·))
aU(·, 0) = 0


aI+ = 1

aI− = 1

aU = 1

aI+ = 1
aI− : mixes 1 & aS(qqq−(·))


aI+ = 1

aI− : mixes 1 & aS(qqq−(·))
aU ∈ (0, 1)

µ̂̂µ̂µ(p)

p∗−2
p

µ

ρb

ρg

0 1

1

Pooling
Gradual

RevelationSeparation

Figure 2: An MPE with gradual revelation

µ = 0 and then cease to move; otherwise, the state variables jump on the line µ = 1
and move along it from right to left until experimentation ends.17

Call this equilibrium an MPE with gradual revelation. Figure 3 illustrates how phase tran-
sitions occur. If the prior belief q0 (which, recall, is equal to p0) lies in the pooling region
(pgr, 1), say at the closed circle on the solid part of µµµo, then the equilibrium begins with the
pooling phase, during which, the state variables move from right to left along the pooling
path µµµo until the background belief reaches pgr. After this, the gradual revelation begins,
during which, the state variable move along the gradual revelation path µ̂̂µ̂µ until the back-
ground belief reaches p∗−2 . After this follows the separation phase. The solid arrowed curve
illustrates how the state variables evolve over time, conditional on no breakthrough and I
having been playing type s+’s effort.

If the prior belief q0 lies in the gradual revelation region (p∗−2 , pgr], say at the open circle
on the dashed part of µµµo, then type s− reveals with some probability such that upon non-
revealing, the state variables immediately jump up on the curve µ̂̂µ̂µ. The gradual revelation
phase then begins and the equilibrium dynamics is the same as in the previous case. The
dashed arrowed curve illustrates how the state variables evolve over time conditional on no
breakthrough and I having been playing type s+’s effort.

We are ready to present the first main result of the paper — the qualitative features of
the behavior dynamics and belief dynamics.

17Of course, the state variables stop moving when the background belief reaches p∗+1 , below which, even
type s+ stops experimenting.
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µµµo(p)

pgr

µ̂̂µ̂µ(p)

pS−p∗−2
p

µ

1− ρb

1− ρg

0 1

1

Pooling
Gradual

RevelationSeparation

p∗+1

t

Figure 3: An MPE with gradual revelation: two paths of the state variables

Proposition 1. During the gradual revelation phase of the MPE with gradual revelation, as
long as no breakthrough has arrived and I has been playing type s+’s effort, then over time,

1. U ’s effort gradually increases, when the background belief is between type s−’s cooper-
ative cutoff p∗−2 and his single-player cutoff p∗−1 ;

2. I’s reputation gradually rises;

3. U ’s belief about the risky project is either increasing or U-shaped, if the informativeness
of I’s initial signal is intermediate (that is, if the odds ratio O is not too high but still
satisfies Assumption 1)

We have illustrated the rising reputation in Figure 3. In Figure 4, the arrowed curve
displays the uninformed player’s effort path conditional on her facing an optimistic type:
U increases her effort over time when the background belief is between p∗−1 and p∗−2 . We
postpone discussing U ’s decreasing effort (over time) during the gradual revelation phase
until Section 5.4.1.

Figure 5 and Figure 6 contrast two distinct paths of U ’s belief about the risky project’s
quality. In Figure 5, U ’s belief decreases over time before the separation phase occurs; this
typically occurs in an environment with a high odds ratio. In Figure 6, U ’s belief is U -
shaped before the separation phase occurs; this typically occurs in an environment with an
intermediate odds ratio.
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Figure 4: The uninformed player’s effort

Compared with the symmetric MPE under symmetric information, two features of the
current equilibrium stand in sharp contrast.

First, the uninformed player can increase effort, and become more optimistic about the
risky project over time, despite the absence of a breakthrough. She does so because I’s high
effort continually brings in good news, compensating for the absence of a breakthrough, and
encouraging her to experiment.

Second, the pessimistic type experiments beyond the single-player cutoff, until the coop-
erative cutoff, with positive probability. He does so because the uninformed player responds
to his hard work by also working hard, thereby producing more information over time, en-
couraging him to experiment at beliefs he would not if were he alone or were his signal
public.

We therefore have identified a mutual encouragement effect : I’s rising reputation com-
pensates the dropping background belief, encouraging U to experiment; U ’s increasing effort
compensates type s−’s growing pessimism, encouraging him to persevere. Driven by this
effect, the joint behavior pattern — the informed player keeps exerting high effort and the
uninformed player increases effort, despite the absence of a breakthrough — does not occur
in any MPE that is a limit MPE of the symmetric information discrete-time games.18 This

18To be specific, it does not occur in any MPE that is a limit MPE of a discretization of the continuous-
time experimentation game. Hörner, Klein and Rady (2014) (in Lemma 1) show that in any perfect Bayesian
equilibrium (hence MPE) of such discrete time game, players do not experiment when their posterior is below
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Figure 5: U ’s growing pessimism before separation (a large odds ratio)

p∗−2
p0 1

1

q+

qU

q−

Pooling
Gradual

RevelationSeparation

t

Figure 6: U ’s growing optimism before separation (an intermediate odds ratio)
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pattern leads to qualitatively different empirical predictions, which we will discuss in Section
7.

The above discussion highlights two requirements for the mutual encouragement effect to
arise. First, it is able to counterbalance the deterioration of the background belief. This is
guaranteed by Assumption 1, which ensures that a perfect reputation brings in sufficiently
good news to encourage U to experiment (fixing the continuation equilibrium). Second, it
is needed to counterbalance the deterioration of the background belief, which occurs if the
fraction of type s+ is not too high, guaranteed by:

Assumption 2. Signal s+ is not too likely to occur: ρg ≤ s
(r+λ)h+λh−s .

With these two assumptions, the mutual encouragement effect can arise, so does the
constructed MPE:

Proposition 2. Under Assumption 1 and 2, an MPE with gradual revelation exists.

If Assumption 2 is not satisfied, then the gradual revelation phase can be empty, that is,
the pooling phase lasts until the background belief reaches p∗−2 .

We now elaborate on the intuitions behind Proposition 1.

5.1 The informed player’s rising reputation

During the gradual revelation phase, I’s rising reputation counterbalances the declining
background belief, maintaining U ’s indifference about experimentation, thereby incentivizing
her to take interior effort. To see this, consider the following two main elements that drive
U ’s experimentation incentives.19

1. U ’s instantaneous marginal benefit of experimentation, which depends only on her
belief about the risky project. The higher her belief, the higher her willingness to
experiment.

2. U ’s continuation marginal benefit of experimentation, which depends on her expected
continuation value. The higher her expected continuation value, the higher her incen-
tive to speed up experimentation so as to enjoy it earlier.

Suppose instead I’s reputation does not increase in the absence of a breakthrough. Then
as time passes by, U becomes more pessimistic and hence her instantaneous marginal benefit
decreases. Moreover, with both of her ex post continuation values decreasing, together with
I’s dropping reputation, so is her expected continuation value. Consequently, if at some point
in time she is indifferent about experimentation, she would strictly prefer not to experiment
afterward.

the single-player cutoff. Using this result, we can show that in any limit MPE, total effort cannot strictly
decrease in players’ posterior.

19I’s current effort also affects U ’s experimentation incentive, due to the strategic substitutability of
players’ current effort decisions, as in the symmetric information game. This element is absent here because
I’s current effort is 1 with probability 1.
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Therefore, for U to be indifferent, I’s reputation must rise over time. Indeed, during this
phase, the incentive-enhancing effect of I’s rising reputation (driven by the strategic compo-
nent) exactly balances out the incentive-dampening effect of the deteriorating background
belief (driven by the passive component), maintaining U ’s willingness to take the effort in
Figure 4 — in particular, to increase her effort when the background belief is between (type
s−’s single-player cutoff) p∗−1 and (type s−’s cooperative cutoff) p∗−2 .

5.2 The uninformed player’s increasing effort

When the background belief is between the pessimistic type’s single-player cutoff p∗−1 and
his cooperative cutoff p∗−2 , U ’s increasing effort compensates his growing pessimism, keeping
him indifferent between mimicking type s+ (by continuing experimenting) and revealing
himself (by stopping experimenting). As a result, he is willing both to experiment beyond
his single-player cutoff, and to stop so that mimicking type s+ indeed continually carries
encouraging news.

Specifically, by revealing himself, he induces both players to stop experimenting as the
background belief is below his single-player cutoff; he thereby receives zero relative to the
safe return. By continuing mimicking type s+ for a dt duration of time, he receives an instan-
taneous benefit, r

(
λI− (p)h− s

)
dt, which is decreasing with the absence of a breakthrough,

and a continuation benefit, an upward jump of his continuation value in case a breakthrough
arrives, λh − s, with probability

(
1 + aU

)
λI− (p) dt.20 For him to be indifferent, the two

options must give him the same payoff. That is, U ’s effort must satisfy

aU (p, µ̂̂µ̂µ (p)) =
r(s− λI− (p)h)

λI− (p) (λh− s)
− 1, for p ∈ [p∗−2 ,min{p∗−1 , pgr}]. (11)

which increases over time, as the background belief deteriorates. Intuitively, since effort be-
comes less and less valuable to type s− due to the absence of a breakthrough, U must produce
more information — that is, to increase her effort — to reward type s−’s perseverance.

We thus call this sub-phase of the gradual revelation phase the “rewarding sub-phase.”
Note that in Figure 4 that aU = 0 at p = p∗−1 . This is because, p∗−1 being type s−’s single-
player cutoff, U does not need to provide any extra reward for him to experiment. Note also
that aU = 1 at p = p∗−2 . This is because, p∗−2 being his cooperative cutoff, U needs to respond
one for one to type s−’s (reputation-building) effort, so that type s− indirectly internalizes
the social benefit of his effort.21 The gradual revelation phase ends at p∗−2 because U reaches
the budget limit that she can reward I’s hard working. U ’s effort in the other sub-phase of
the gradual revelation phase, that is, when p is in (p∗−1 , pgr), is left to the final subsection.

20In case no breakthrough arrives, type s−’s continuation value stays at the safe return s and hence he
receives no continuation benefit after this event.

21Conditional on signal s− being realized, since players are symmetric, I’s benefit from (the information
produced by) U ’s effort is exactly equal to U ’s benefit from I’s effort. Therefore, by rewarding I’s effort
with (the same amount of) U ’s effort, it is as if adding to I’s incentive U ’s benefit from I’s effort, thereby
making I internalize the social benefit of his effort.
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5.3 U ’s growing optimism about the risky project

How much encouraging information should the informed player reveal to the uninformed
player so as to maintain her experimentation incentive? It depends on how informative I’s
private signal is:

Lemma 1. There exists Õ ∈ (OS,∞) such that, during the pooling phase and the grad-
ual revelation phase of the MPE constructed, the uninformed player’s belief about the risky
project’s quality

1. strictly decreases over time, if the odds ratio is sufficiently high, that is, if O ∈ [Õ,∞);

2. is U-shaped — it first decreases over time, and then after reaching some point in the
gradual revelation region, it begins to increase — if odds ratio is intermediate, that is,
if O ∈ [OS, Õ).

U ’s growing optimism in Proposition 1 follows from the second case. We here give an
intuition for why near the end of the gradual revelation phase, U becomes increasingly
pessimistic over time if I’s private signal is sufficiently informative (O ∈ [Õ,∞)), and in-
creasingly optimistic if it is intermediately informative (O ∈ [OS, Õ)).

For ease of illustration, we decompose U ’s marginal benefit of experimentation (see Sec-
tion §5.1) into the following three parts: (1) her instantaneous marginal benefit, (2) her
option value of the information generated from the experimentation technology — the pas-
sive component, and (3) her option value of the information revealed by I’s action — the
strategic component. The first two parts, combined together, depend only on U ’s belief
about the risky project’s quality qU and changes in the same direction as qU changes. The
third part depends on the spread of the informed player’s private information, measured by
the spread of the informed player’s beliefs q− and q+; the bigger spread, the more useful I’s
private information to U , and hence the higher her experimentation incentive.

A drop in q− widens the spread between q− and q+. This means that if µ were to change in
such a way that the uninformed player’s belief were to increase, then the uninformed player’s
continuation marginal benefit of experimentation must also increase. On the contrary, a drop
in q+ shrinks the spread between q− and q+. This means that if µ were to change in such
a way that the uninformed player’s belief were to decrease, then her continuation marginal
benefit of experimentation must also decrease.22

When the odds ratio is sufficiently large, during the gradual revelation phase, the opti-
mistic type’s belief q+ is close to 1 and hence barely decreases over time (by Bayes rule).
As a result, the effect of the dropping q− (due to the lack of a breakthrough) dominates.
From the above analysis, if U ’s belief about the risky project does not decrease over time,
then her total marginal benefit of experimentation would strictly increase, and consequently
she would not be indifferent about experimentation, which could not occur in an MPE with
gradual revelation.

22Appendix C.3.3 gives a detailed illustration.
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When the odds ratio is intermediate (greater than and close to aS), U is willing to
experiment only if I is sufficiently likely to be type s+, that is, only if I’s reputation µ is
close to 1.23 As a result, the dropping q− ceases to matter as its impact is weighted by
1−µ, and the effect of the dropping q+ dominates. If U ’s belief about the risky project does
not increase over time, then her total marginal benefit of experimentation would be strictly
decreasing, which could not occur in an MPE with gradual revelation.

We have completed the (sketch of) proof of Proposition 1.

5.4 Detailed equilibrium construction

This subsection studies the following questions. First, what necessary conditions should
U ’s effort aU during the gradual revelation phase and the gradual revelation path µ̂̂µ̂µ satisfy
if the MPE with gradual revelation is an equilibrium? Second, if aU and µ̂̂µ̂µ indeed satisfy
these conditions, is the MPE with gradual revelation indeed an equilibrium? To reduce the
burden of notations, we omit the arguments (p, µ̂̂µ̂µ(p)) of the continuation value functions
W I+, W I−, and WU , and of the pure effort strategies aI+ and aU , whenever no confusion
arises.

5.4.1 Necessary conditions for equilibrium construction

(1) U ’s effort function aU for p ∈ (p∗−1 , pgr). At any state (p, µ̂̂µ̂µ(p)) during gradual reve-
lation, type s− faces two options: mimicking type s+ (by exerting effort aI+) and revealing
himself.

If he mimics, he will receive continuation value W I− (p, µ̂̂µ̂µ (p)), which satisfies the Hamil-
ton–Jacobi–Bellman (HJB) equation:

r
(
W I− − s

)
= aI+

[
r
(
λI− (p)h− s

)
− λp (1− p) dW

I−

dp
+ λI− (p)

(
λh−W I−)]

+aU
[
−λp (1− p) dW

I−

dp
+ λI− (p)

(
λh−W I−)] . (12)

This equation says, type s−’s flow continuation value — the left-hand side, must be equal
to the sum of his instantaneous benefit r

[
aI+

(
λI− (p)h− s

)]
and the value of information.

The latter consists of two parts: in case a breakthrough arrives, occurring at a rate of(
aI+ + aU

)
λI− (p), his continuation value increases by (λh−W I−); in case no breakthrough

arrives, his continuation value changes at a rate of dW I−

dp
dpt
dt

= −dW I−

dp

(
aI+ + aU

)
λp (1− p).

If he does not mimic, then players will play the symmetric MPE (with signal s− public),
whereby type s− receives a continuation value wS (qqq− (p)). Note that a player is indifferent
between experimenting and not experimenting when the background belief is in (p∗−1 , pgr]
(because pgr < pS−), meaning that type s− would obtain the same continuation value by

23See the discussion of Lemma 3 in the last subsection for further explanation.
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exerting effort aI+ instead of aS given that U plays aS. Therefore, wS (qqq− (p)) satisfies
(omitting the argument qqq− (p)):

r
(
wS − s

)
= aI+

[
r
(
λI− (p)h− s

)
− λp (1− p) dw

S

dp
+ λI− (p)

(
λh− wS

)]
+aS

[
−λp (1− p) dw

S

dp
+ λI− (p)

(
λh− wS

)]
. (13)

Since type s− is indifferent between these two options, we have W I− (p, µ̂̂µ̂µ (p)) = wS (qqq− (p)).
This equality, together with equations (12) and (13), and the fact that information is valuable
(that is, the terms in the square brackets on the second line of equation (12) is positive),
imply that

aU (p, µ̂̂µ̂µ (p)) = aS
(
qqq− (p)

)
, p ∈ (p∗−1 , pgr].

That is, U exerts the same level of effort whether the informed player continues exerting high
effort aI+ or not. Intuitively, since type s− is willing to take type s+’s effort aI+ even after
losing his reputation, mimicking type s+ is costless and hence he should not be rewarded for
doing so. We thus call (p∗−1 , pgr] the non-responding region of the gradual revelation phase.

The non-responding region is empty if pgr ≤ p∗−1 . For a given odds ratio, if the informed
player is likely to be type s+, that is, if ρb is high, then U is willing to experiment even at
low background beliefs, implying a short gradual revelation phase and hence a low pgr, and
consequently, an empty non-responding region. It can be shown that for each odds ratio
satisfying Assumption 1, there is a threshold of ρb below which, the non-responding region
exists, and above which, it does not.

Lemma 2 summarizes U ’s effort during the non-responding region and the rewarding region.

Lemma 2. If the MPE with gradual revelation is an equilibrium, then along the gradual
revelation path µ̂̂µ̂µ,

• over the rewarding region (p∗−2 ,min{p∗−1 , pgr}], U ’s effort satisfies equation (11), and
hence is strictly increasing over time.

• over the non-responding region (min{p∗−1 , pgr}, pgr] (if nonempty), U ’s effort equals the
symmetric MPE effort under public information s−, and hence is strictly decreasing
over time.

Referring to Figure 4 again, U ’s effort is decreasing over time over the non-responding region
(p∗−1 , pgr),

24 and increasing over the rewarding region (p∗−2 , p∗−1 ).

24Note although U reduces her effort, and hence remains indifferent about experimentation in both this
non-responding region of the asymmetric information game and in the symmetric information benchmark, she
does so out of different reasons: in the former, she is indifferent because I’s rising reputation compensates
the absence of breakthrough , whereas in the latter, I’s dropping effort compensates the absence of a
breakthrough (due to the substitutability of players’ current effort decisions).

22



(2) The gradual revelation path µ̂̂µ̂µ. According to Lemma 2, U ’s effort is interior, mean-
ing that she is indifferent about experimentation during the gradual revelation phase. This
incentive condition pins down µ̂̂µ̂µ. To show this, we need to analyze the value of information
to U , in particular, the rate at which I reveals his private information to U .

Equation (9) links to each (differentiable) gradual revelation path µ̂̂µ̂µ a CDF Y over the times
at which type s− stops mimicking type s+’s effort, conditional on either no breakthrough
having occurred or type s− having revealed himself. Specifically, suppose the time-t state
(pt, µt) is (p, µ̂̂µ̂µ(p)), and that during the time interval [t, t+ dt], I’s effort is aI+ and U ’s is a.
Then between time t and t+ dt, type s− reveals himself at a rate of

dYt/dt

1− Yt
=

(
µ̂̂µ̂µp (p)

µ̂̂µ̂µ (p) (1− µ̂̂µ̂µ (p))
−

µµµop(p)

µµµo(p) (1− µµµo (p))

)
dpt
dt

=

(
µµµop(p)

µµµo(p) (1− µµµo (p))
− µ̂̂µ̂µp (p)

µ̂̂µ̂µ (p) (1− µ̂̂µ̂µ (p))

)
(aI+ + a)p(1− p)λ, (14)

where µ̂̂µ̂µp denotes the derivative of µ̂̂µ̂µ. Note that U ’s effort a affects type s−’s revealing rate:
the higher her effort, the quicker negative information (i.e., no breakthrough) accumulates,
and hence the higher rate at which type s− needs to reveal himself so that non-revealing
brings encouraging information fast enough.

The value of information to U consists of three parts:

• in case a breakthrough arrives, which occurs at a rate of (aI+ + a)λU , U ’s continuation
value jumps by (λh−WU);

• in case no breakthrough arrives and I continues exerting effort aI+, U ’s continuation
value changes at a rate of dWU

dp
dpt
dt

;

• in case no breakthrough arrives and I stops exerting effort aI+, which occurs at a rate
of (1− µt) dYt/dt

1−Yt , U ’s continuation value drops by |WU (p, 0)−WU (p, µ̂̂µ̂µ(p)) |.

Summing up and applying equation (14), the value of information to U is thus (aI+ +
a)A(p, µ̂̂µ̂µ(p)), where A(p, µ̂̂µ̂µ(p)) denotes U ’s continuation marginal benefit of experimentation
(omitting the arguments (p, µ̂̂µ̂µ(p))):

A ≡ (1− µ̂̂µ̂µ (p))

(
µµµop(p)

µµµo(p) (1− µµµo (p))
− µ̂̂µ̂µp (p)

µ̂̂µ̂µ (p) (1− µ̂̂µ̂µ (p))

)
p(1− p)λ

(
WU (p, 0)−WU

)
−λp (1− p) dW

U

dp
+ λU

(
λh−WU

)
(15)

Using the fact that type s+’s effort is 1 during gradual revelation, U ’s continuation value
function WU satisfies the HJB equation:

r
(
WU − s

)
= max

a∈[0,1]
a
[
r
(
λUh− s

)
+ A

]
+ A. (16)
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For U to be indifferent, her marginal benefit must be 0:

r
(
λUh− s

)
+ A = 0. (17)

Equations (16) and (17) imply that U ’s continuation value function is given by

WU − s = s− λUh. (18)

U ’s indifference condition (17) and her continuation value function (18) give an ODE that
the gradual revelation path µ̂̂µ̂µ must satisfy:

µ̂̂µ̂µp(p) = g(p, µ̂̂µ̂µ(p)), p ∈ (p∗−2 , pgr), (19)

where the formula of g is given in Appendix C.1.3 due to its complexity.

The following lemma characterizes the gradual revelation path µ̂̂µ̂µ.

Lemma 3. If the MPE with gradual revelation is an equilibrium, then the gradual revelation
path µ̂̂µ̂µ is the unique solution to the first order ODE problem defined by equation (19), with
the initial value condition

µ̂̂µ̂µ(p) =
s− λI− (p)h

wS (qqq+ (p))− s+ λI+ (p)h− λI− (p)h
, p = p∗−2 , (20)

and the boundary pgr being the smallest p satisfying

µ̂̂µ̂µ (pgr) = µµµo(pgr). (21)

The initial value condition comes from the value matching condition of WU at p∗−2 :

s− λUh = µ̂̂µ̂µ(p)
(
wS
(
qqq+ (p)

)
− s
)
, p = p∗−2 , (22)

where the left-hand side is U ’s continuation value (18) at the end of gradual revelation p∗−2
and the right-hand side U ’s expected continuation value at the beginning of separation: with
probability µ̂̂µ̂µ(p∗−2 ), U faces type s+ and hence achieves a continuation value wS

(
qqq+
(
p∗−2
))
−s,

and with the complementary probability, U faces type s− and experimentation ends.

Finally, the gradual revelation path µ̂̂µ̂µ must lie above the pooling path µµµo and intersects
at the right boundary of gradual revelation pgr. This condition pins down pgr as in the
proposition.

5.4.2 Sufficient conditions for equilibrium construction and existence

The previous subsection shows that players’ (on-path) behaviors in an MPE with gradual
revelation are necessarily characterized by Lemma 2 and Lemma 3. This subsection shows
that these are also sufficient conditions for equilibrium existence. Proposition 2 follows from
Lemma 4.
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Lemma 4. Under Assumptions 1 and 2, an MPE with gradual revelation can be sustained
as an equilibrium, if during gradual revelation, the uninformed player’s effort is as in Lemma
2, and the gradual revelation path µ̂̂µ̂µ is the unique solution to the ODE problem defined by
(19), (20), and (21).

For example, an MPE with gradual revelation characterized by Lemma 2 and Lemma 3
is an equilibrium, if the belief system and type s+’s strategy are specified as follows.

(1) The belief system. Low effort completely depletes reputation: if I takes an effort strictly
lower than type s+’s equilibrium effort, he will be taken as type s−. The belief updating rule
for aI = aI+(p, µ) is pinned down by Bayes’ rule.

(2) Type s+’s strategy. Type s+ plays the symmetric MPE strategy under symmetric in-
formation as long as his reputation is strictly positive; otherwise he plays the single-player
solution. With Assumption 1, the strategy implies he always exerts effort 1 before the
separation phase occurs, hence is consistent with our equilibrium prescription.

6 Welfare Analysis

Does inducing information asymmetry, by hiding information from one player, improves
welfare? To answer this question, I compare players’ ex ante total welfare at the common
prior belief q0 (which, recall, is equal to the initial background belief p0) in the MPE with
gradual revelation:

WU(q0,µµµ
o(q0)) + µµµo(q0)W I+(q0,µµµ

o(q0)) + (1− µµµo(q0))W I−(q0,µµµ
o(q0)), (23)

and that in the symmetric MPE of the symmetric information game in which the informed
player’s private information is made public:

2µµµo(q0)wS(qqq+(q0)) + 2(1− µµµo(q0))wS(qqq−(q0)). (24)

Asymmetric information is said to improve welfare if the former is greater than the latter,
and deteriorate welfare if the former is smaller than the latter.

Thanks to the mutual encouragement effect, asymmetric information creates a benefit:
in case I holds signal s−, players experiment more than in the symmetric information bench-
mark. Asymmetric information may also incur a cost: in case I holds signal s+, then during
the gradual revelation phase, U experiments less than in the symmetric information bench-
mark. However, if the informed player’s private signal is informative enough, the benefit
outweighs the cost, as stated in the following proposition.

Proposition 3. If the odds ratio is high enough, that is, O ∈ [1 + 2λ
r
,∞), then asymmetric

information improves welfare, and strictly so if the common prior belief q0 in the gradual
revelation region or the pooling region (p∗−2 , 1).
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Interested readers may refer to Proposition 4 at the end of this section for a detailed
welfare characterization when the odds ratio is intermediate. Asymmetric information does
not affect welfare if the prior belief q0 lies in the separation region. This is why in Proposition
3 asymmetric information strictly improves welfare only if q0 is not in the separation region.

We now elaborate on the intuition behind Proposition 3. Compared with symmetric
information, in the asymmetric information game, type s+ exerts the same level of effort,
type s− more effort; U exerts less effort than in the symmetric MPE when s+ is public, and
more when s− is public. At the interim stage (right after I learns his type),

(i) type s+ suffers from asymmetric information because he does not learn as much as he
learns from U ’s experimentation in the symmetric benchmark due to U ’s lower effort, except
when ρb = 0. When ρb = 0 (or, a is infinity), type s+ knows that the risky project is good
and hence does not need to learn from U .

(ii) Type s− (weakly) benefits from asymmetric information because he always has the
option to reveal himself by exerting some low effort, whereby he guarantees himself the same
payoff as in the symmetric information benchmark.

(iii) U benefits from asymmetric information. U always has the option of matching her effort
to I’s. Doing so, in case I holds signal s+, both players would experiment as in the symmetric
information setup with s+ public, whereby U achieves the same ex post continuation value
as under symmetric information. In case I holds signal s−, both players would experiment
more than in the symmetric information setup with s− public, but still less than in the
cooperative solution; as a result, U achieves a strictly greater continuation value than under
symmetric information. Therefore, under asymmetric information, by taking this effort-
matching option, U can guarantee herself a higher interim value (in the MPE with gradual
revelation) than in the symmetric benchmark.

Type s+’s loss from asymmetric information is decreasing in the odds ratio. Intuitively,
the greater the belief difference between I’s types, the more optimistic type s+ is during
the gradual revelation region, and hence the less he needs to learn from U ’s experimenta-
tion, consequently the less he suffers from asymmetric information. Type s− and U ’s gain
from asymmetric information is increasing in the odds ratio. Intuitively, the greater the
belief difference, the less type s− needs to stop experimenting to compensate U during the
gradual revelation region, and hence the higher probability that the two players continue
experimenting over time, implying a greater welfare gain.

At one extreme when the odds ratio O is infinity (that is, if ρb = 0), type s+ does not suffer
from asymmetric information; asymmetric information thus makes a Pareto improvement.
At the other extreme when the odds ratio is equal to OS, U is willing to experiment at
the end of the gradual revelation phase only if she believes I is very likely to be type s+;
as a result, type s+’s loss dominates, and asymmetric information deteriorates welfare (at
least for background belief close to p∗−2 ). By continuity and the monotonicity of the ex post
gains and losses in the odds ratio, there exists a threshold such that, asymmetric information
improves ex ante total welfare universally if the odds ratio is above the threshold, and does
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not if the odds ratio is below the threshold (and if the fraction of the pessimistic type is not
too low so that the gradual revelation phase is not empty).

We are thus done with the main message. We now discuss the welfare impact of asym-
metric information when the informativeness of the informed player’s private signal is in-
termediate, that is, when O ∈ [OS, 1 + 2λ

r
). If the fraction type s− is not too low so that

the gradual revelation phase is not empty, then the pooling phase lasts until the background
belief hits the pessimistic type’s cooperative cutoff p∗−2 . Asymmetric information does not
incur any cost and hence makes a Pareto improvement. We now focus on the parameter
region where the gradual revelation phase is not empty, which is guaranteed by Assumption
2:

Proposition 4. Assume that the odds ratio is intermediate: O ∈ [OS, 1 + 2λ
r
), and that

Assumption 2 is satisfied. Then

1. either asymmetric information deteriorates welfare, and strictly so if the common prior
q0 lies in the gradual revelation region or the pooling region (p∗−2 , 1);

2. or there exists p̃ ∈ (p∗−2 , pS−], such that asymmetric information deteriorates welfare if
the common prior q0 is in (0, p̃), and improves it if q0 is in (p̃, 1).

A sufficient and necessary condition for the second case to occur is ρb being either suffi-
ciently low or sufficiently high. Intuitively, when ρb is sufficiently low, then there is a large
fraction of type s−, implying the two players’ expected gain (occurring only in case I holds
signal s−) is large, relative to their expected loss (occurring only in case I holds signal s+);
when ρb is sufficiently high, then there is a small fraction of type s−, implying a short grad-
ual revelation phase, and hence a small expected loss of the two players (occurring during
gradual revelation), relative to the their expected gain (occurring during pooling).

7 Empirical Implications

• On testing “learning from others’ experimentation.” That players can increase ex-
perimentation over time despite the absence of a breakthrough during the gradual
revelation phase has important implications for empirical work. Take the example of
farmers learning about whether a new seed improves yield. An econometrician un-
aware of the information asymmetry in the environment may reject “farmers learning
from neighbors’ experimentation,” if he or she finds that farmers’ land allocation to
the new seed does not positively correlate with neighbors’ yield. Such a rejection can
be incorrect if information asymmetry is relevant.

This paper implies that, one can amend the previous test by focusing on positive news
of the yield, that is, by testing whether farmers allocate larger land to the new seed
in reaction to neighbors’ yield increase. This is because, with asymmetric informa-
tion, although players react to negative news (the absence of a breakthrough) in an
ambiguous way, they do react to positive news by experimenting more.
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• Divergent learning dynamics of two identical groups of players who receive exactly the
same information. Suppose the non-responding region of the gradual revelation phase
is not empty (pgr > p∗−1 ) and the prior q0 is not too low (q0 > p∗−1 ). Then, conditional
on the informed player being the pessimistic type and the risky project being bad,
with positive probability the pessimistic type reveals himself at a late time (after the
background belief reaches p∗−1 ), after which, experimentation ends immediately; and
with positive probability the pessimistic type reveals himself at an early time (before
the background belief reaches p∗−1 ) and players play the symmetric MPE, in which,
free-riding is so severe that they never abandon the bad projects in finite time (it can
be shown that players’ effort is so low that their posterior belief does not reach the
single-player cutoff in finite time).

Therefore, combining the joint-project interpretation (see page 6), the MPE with grad-
ual revelation predicts that two identical groups of players receiving the same infor-
mation can exhibit divergent learning dynamics. In one group, the leader leads by
example for a long time; as a result, learning is fast, and the joint project is completed
or abandoned in finite time. In another group, the leader leads by example for a short
time; as a result, players free ride, projects are highly inertial with little learning,
and bad projects are not abandoned in finite time. That failing projects of strategic
alliances are highly inertial are well documented in the management literature (for
instance, Doz, 1996).

• On testing strategic experimentation in labs: It is also possible to test the result of this
paper in experiments, by replacing an incumbent player with a new player. Suppose
two symmetric players have stopped experimenting. The model in this paper predicts
that, replacing one player by a third player would have no impact if the third player
observes the whole experimentation history (due to symmetric information). However,
it would restart experimentation if the third player can only observe the part of the
experimentation history after he enters (due to asymmetric information).

• Further empirical predictions. This paper predicts that experienced players experi-
ment more than inexperienced players do and that their experimentation behavior is
less sensitive to unfavorable news25 or other players’ experimentation behavior. These
predictions are in line with the empirical findings of Bandiera and Rasul (2006), and
Conley and Udry (2010). While such predictions are also compatible with models in
which players are myopic and experienced players have more precise information, the
following prediction distinguishes these models from the current model: the experimen-
tation behavior of a player with an inexperienced neighbor is less sensitive to negative
news than that of a player with a neighbor with similar experienced.

25In an exponential bandit model, “no news” is unfavorable news.
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8 Multiplicity of Equilibria

8.1 Equilibrium Uniqueness

Not surprisingly, the asymmetric information game has multiple MPEs, due to the arbi-
trariness of assigning off-equilibrium beliefs in a signaling game, and to the multiplicity
(asymmetric) MPEs even under symmetric information (caused by the strategic substi-
tutability of current effort decisions). To select sensible equilibria, I focus on MPEs that
survive a criterion in the spirit of the D1 criterion, and that players play the symmetric
MPE under symmetric information after the informed player reveals his type on the equilib-
rium path. For simplicity, call the former restriction D1, and the latter restriction SMPE.

Even so, multiplicity is unavoidable when the belief difference between the two types (or,
the odds ratio) is small: during a gradual revelation phase, type s+’s effort can be lower
than 1 and indeterminant, even if he strictly prefers to experiment had he no concern of his
reputation. In such cases, type s+ does not deviate to effort 1 to signal his type, in fear that
doings so would make U to free ride more. However, if the belief difference is large enough,
type s+ does not benefit much from U ’s effort, then D1 can play a role.

Claim 1. There exists Ō, such that if the odds ratio O is greater than Ō and the prior belief
q0 is not low (above p∗−2 ), then the distribution of the equilibrium path of any MPE satisfying
D1 and SMPE coincides with that of the MPE with gradual revelation in Section 5.

The proof is in Appendix D.1. The intuition behind this result is that, under Assumption
??, during a gradual revelation phase, if there is no reputation concerns, then type s+ strictly
prefers to experiment, whereas type s− either strictly prefers not to experiment (over the
rewarding region) or is indifferent (over the non-responding region). Therefore, the reason
that type s+ might choose effort lower than 1 in some MPE must be that effort 1 leads to a
continuation equilibrium in which, U free-rides in the future. To rule out such possibilities,
for a given MPE, we first identify the smallest p (before separation), say p̂, around which
type s+’s equilibrium effort is below 1; we then show that the set of reputations (that is,
continuation equilibria) making type s+ strictly benefits from deviating to effort 1 is strictly
larger than the set of reputations (that is, continuation equilibria) making type s− weakly
benefits from such a deviation. By D1, whenever I deviates to effort 1 over [p̂, p̂ + ε], he
should be taken as type s+. If p̂ is not too low, guaranteed by a high odds ratio, type s+

indeed has a profitable deviation; hence the MPE under consideration cannot survive the
D1 criterion.

8.2 MPEs without Assumption 1

If Assumption 1 does not hold, then there are multiple MPEs satisfying D1, SMPE, and
close to the MPE with gradual revelation constructed in Section 5. Typically, such an MPE
has an additional pooling phase, which occurs between its gradual revelation phase and its
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separation phase.26 That is, an MPE has four phases: pooling when p is high; gradual
revelation when p is moderately high; pooling when p is moderately low;27 and separation
when p is low.

I focus on MPEs with gradual revelation because it delivers new insights, and quali-
tatively different behavior and belief dynamics. Moreover, it is useful to construct other
equilibria. It represents one extreme where, U ’s experimentation incentive is maintained
through the encouraging private information gradually revealed by the informed player. In
another extreme, U ’s experimentation incentive can be maintained by the informed player
gradually reducing his effort (because current effort decisions are strategic substitutes), which
can indeed occur in equilibrium if the odds ratio is small. Between these two extremes, it is
possible to construct hybrid MPEs, in which, U ’s experimentation incentive is maintained
by the two forces combined together.

26I still call the region where both players stop experimenting (that is, for the background beliefs in [0, p∗+1 ])
a separation region, because type s+ could exert a positive effort at t = 0 (right after learning his type) and
reveal his type. Such an action is costless in continuous time.

27This new pooling phase occurs over a subset of [max{p∗−2 , p∗+1 }, pS+). When Assumption 1 does not hold,
a gradual revelation phase may not last until p reaches max{p∗−2 , p∗+1 }. This is because, for gradual revelation
to occur, the uninformed player’s effort must be interior and strictly lower than the optimistic type’s effort;
the former implies that both U ’s effort and the optimistic type’s are lower than the symmetric MPE effort
under symmetric information s+, meaning that the optimistic type has strict incentive to experiment. The
MPE (with the above-mentioned feature) may not satisfy D1, because the optimistic type has a higher
incentive than the pessimistic type to deviate and show that he is indeed a optimistic type, so as to induce
both players to work harder.
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A Background Belief

This section defines the background belief formally.
Denote Ω ≡ {0, 1}×{s+, s−}×ΩN , where ΩN is the set of point process paths. Similarly

denote Ωt ≡ {0, 1}×{s+, s−}×Ωt
N , where Ωt

N is the set of point process paths till time t. Let
σ ({0, 1} × {s+, s−}) be the power set of {0, 1}× {s+, s−}, (FNt )t the filtration generated by
the point process N . Define (Ft)t ≡ σ ({0, 1} × {s+, s−})⊗ (FNt )t and F ≡ F∞. For a given
prior p0, an effort path a ≡ (aIt , a

U
t )t≥0 induces a distribution Pa,p0 over the filtered space

(Ω,F , (Ft)t≥0), satisfying for each (θ, sl, N
t) ∈ Ωt where N t denoting the experimentation

outcome history such that no breakthrough has arrived till time t,28

Pa,p0(θ, sl, N
t) = Pa,p0(sl, N

t|θ)Pa,p0(θ)
= Pa,p0(sl|θ)Pa,p0(N t|θ)Pa,p0(θ),

where the second inequality is due to the fact that given e and conditional on θ, sl and N t

are independently distributed. Note that Pa,p0(θ) = p0, Pa,p0(sl|θ) does not depend on e and
p0, and Pa,p0(N

t|θ) does not depend on p0.
Given Pa,p0 , the distribution of θ conditional on (sl, N

t), if
∑

θ Pa,p0(sl|θ)Pa,p0(N t|θ)Pa,p0(θ) >
0, is

Pa,p0(θ|sl, N t) =
Pa,p0(sl|θ)Pa,p0(N t|θ)Pa,p0(θ)∑
θ Pa,p0(sl|θ)Pa,p0(N t|θ)Pa,p0(θ)

(25)

In the asymmetric information game, Pa,p0(θ|sl, N t) is the probability that type sl assigns
on the risky project’s quality being θ, after he observes effort history and and that no
breakthrough has occurred up to time t.

(1) We now show that for a given effort path a, this posterior does not depend on whether
he observes sl before N t or after.

Dividing both the numerator and denominator of the right-hand side of equation (25) by∑
θ̃ Pa,p0(sl|θ̃)Pa,p0(θ̃), we have

Pa,p0(θ|sl, N t) =
Pa,p0(N

t|θ)[Pa,p0(sl|θ)Pa,p0(θ)/
∑

θ̃ Pa,p0(sl|θ̃)Pa,p0(θ̃)]∑
θ Pa,p0(N

t|θ)[Pa,p0(sl|θ)Pa,p0(θ)/
∑

θ̃ Pa,p0(sl|θ̃)Pa,p0(θ̃)]

=
Pa,p0(N

t|θ)Pa,p0(θ|sl)∑
θ Pa,p0(N

t|θ)Pa,p0(θ|sl)

The second equality is by Bayes rule. This equality can be interpreted as follows: after
observing the signal sl, a player (or an outsider) with prior p0 updates his or her prior
to Pa,p0(θ|sl) (which is independent of a); then the player observes a path of effort up to
time t, at, an experimentation result history up to time t, N t, and he or she updates belief
according to Bayes rule, using Pa,p0(θ|sl) the new “prior.” This is how the informed player
in the asymmetric information game updates his belief.

28That is, N t refers to the constant function 0[0,t].
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Similarly, dividing both the numerator and denominator of the right-hand side of equation
(25) by

∑
θ̃ Pa,p0(N

t|θ̃)Pa,p0(θ̃), we have

Pa,p0(θ|sl, N t) =
Pa,p0(sl|θ)[Pa,p0(N t|θ)Pa,p0(θ)/

∑
θ̃ Pa,p0(N

t|θ̃)Pa,p0(θ̃)]∑
θ Pa,p0(sl|θ)[Pa,p0(N t|θ)Pa,p0(θ)/

∑
θ̃ Pa,p0(N

t|θ̃)Pa,p0(θ̃)]

=
Pa,p0(sl|θ)Pa,p0(θ|N t)∑
θ Pa,p0(sl|θ)Pa,p0(θ|N t)

. (26)

This equality can be interpreted as follows: after observing a path of effort up to time t, at,
an experimentation result history up to time t, N t, a player (or an outsider) with prior p0

updates his or her prior to Pa,p0(θ|N t); then the player observes the noisy signal sl, and he
or she updates belief according to Bayes rule, using Pa,p0(θ|N t) the new “prior.”

(2) In the asymmetric information game, any two public histories that lead to the same
posterior of type s− must also lead to the same posterior of type s+. This is because on
the right-hand side of equation (26), Pa,p0(sl|θ) is independent of a and p0, if the left-hand
side when sl replaced by s− (which represents type s−’s posterior) is equal to some q−, then
there is a unique value of Pa,p0(θ|N t) satisfying equation (26), denoted as p, and hence a
unique value of the left-hand side of equation (26) when sl replaced by s+ (which represents
type s+’s posterior), denoted as q+. That is, one variable, be it q−, q+, or p, is sufficient to
represent the posteriors of the two types of the informed player. This paper uses p, that is,
Pa,p0(θ|N t), and call it “background belief.”

B Some Best Responses

B.1 U’s best response to a pooling strategy profile of I

The following lemma analyzes U ’s best response, when both types of I are prescribed to
exert effort 1 over an interval of the back ground beliefs, say [p, p̄], in the asymmetric infor-
mation game. Let µµµ(p) denote I’s reputation at the background belief p ∈ [p, p̄], determined
by Bayes rule (equation (8) with Yt being a constant).

Lemma 5. Assume over some interval [p, p̄] both types of I are prescribed to exert effort

1 (by a strategy profile of I). Let ãU : [p, p̄] × [0, 1] → [0, 1] be U ’s best response, and

W̃U : [p, p̄]× [0, 1]→ R her corresponding continuation value function. Then

1. U finds it optimal to use corner solutions, that is, either to exert effort 1, or not to
experiment. At any point of p at which U switches actions, U ’s continuation value
satisfies W̃U(p,µµµ)− s = s− λU(p,µµµ)h.

2. If W̃U(p,µµµ) − s > s − λU(p,µµµ)h, then ãU(p,µµµ) = 1; If W̃U(p,µµµ) − s < s − λU(p,µµµ)h,
then ãU(p,µµµ) = 0; If W̃U(p,µµµ)− s = s− λU(p,µµµ)h, then ãU(p,µµµ) ∈ [0, 1].

3. If moreover U ’s value function satisfies the boundary condition WU(p,µµµ) − s = s −
λU(p,µµµ)h, then she finds it optimal to adopt a cutoff strategy: to exert effort 1 if p ≥ p∗,
and not to experiment otherwise, for some p∗ ∈ [p, p̄].
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4. If on top of the boundary condition in point 3, at p = p is also satisfied

r
(
λU (p,µµµ)h− s

)
+ λp (1− p) dλ

U (p,µµµ)

dp
h+ λU (p,µµµ)

(
λh− s−

(
s− λU (p,µµµ)h

))
≥ 0(27)

then U finds it optimal to exert effort 1 over [p, p̄].

Proof. Point 1. Given I’s strategy profile, U ’s value function W̃U satisfies the following HJB
equation, for p ∈ (p, p̄),

rW̃U (p,µµµ) = max
a∈[0,1]

a

[
r
(
λU (p,µµµ)h− s

)
− λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)]

+

[
−λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)]
+ rs

At any state (p,µµµ) where U is indifferent between experimenting and not experimenting, we
have

r
(
s− λU (p,µµµ)h

)
= −λp (1− p) dW̃

U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)
(28)

and consequently the HJB equation of W̃U reduces to

rW̃U (p,µµµ)− rs = −λp (1− p) dW̃
U (p,µµµ)

dp
+ λU (p,µµµ)

(
λh− W̃U (p,µµµ)

)
The above equations imply that

W̃U(p,µµµ)− s = s− λU(p,µµµ). (29)

Since there is no subinterval of [p, p̄] over which W̃U satisfy equation (28) and (29) simulta-
neously, there is no subinterval of [p, p̄] over which player U strictly prefers an interior level
of experimentation.

Point 2 is obvious with the above analysis.
Point 3. We will show that W̃U(p,µµµ) intersects with s + s − λU(p,µµµ) at most once for

p ∈ (p, p̄). Then combining Point 2, we obtain Point 3.
To show the former, it is sufficient to show that if there is some p̃ ∈ [p, p̄) such that

W̃U(p̃,µµµ) = s + s − λU(p̃,µµµ), and dW̃U (p̃+,µµµ(p̃+))
dp

> −dλU(p,µµµ(p))
dp

, then W̃U(p,µµµ) − s = s −
λU(p,µµµ) for all p ∈ (p̃, p̄). Suppose by contradiction that there is some p̌ ∈ (p̃, p̄) such

that W̃U(p̌,µµµ) − s = s − λU(p̌,µµµ), then we must have dW̃U (p̌−,µµµ(p̌))
dp

< dW̃U (p̃+,µµµ(p̃+))
dp

, and

W̃U(p̌,µµµ) < W̃U(p̃,µµµ) since s− λU(p,µµµ) strictly decreases in p. But these inequalities imply
that equation (28) cannot be satisfied at both p̃ and p̌. A contradiction.

Point 4. Condition (27), together with equation (28) and WU(p,µµµ) − s = s − λU(p,µµµ),

implies that
dW̃U(p+,µµµ(p+))

dp
> −dλU(p,µµµ(p))

dp
, hence by the argument employed to prove Point

3, we conclude that ãU(p,µµµ) = 1 over (p, p̄].
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B.2 Best response in the symmetric information game

In the symmetric information game, a counterpart of Lemma 5, with µµµ replaced by 0, is
valid. More generally, if one player exerts a constant effort over some interval of background
belief, then the other player finds it optimal to use corner solutions over this interval, with
at most two cutoffs. The proof is similar and hence omitted.

C Equilibrium Construction and Analysis

C.1 Characterization of the gradual revelation phase

C.1.1 U ’s strategy (proof of the second case of Lemma 2)

We now derive U ’s strategy during the non-responding region of the gradual revelation
phase (that is, for p ∈ (p∗−1 , pgr), if nonempty), assuming that the equilibrium with gradual
revelation is an equilibrium.

Proof. First, W I−(p, 0) satisfies the same HJB equation as equation (12), with the arguments
(p, µ̂̂µ̂µ (p)) in all functions replaced by (p, 0). Since for p ∈ (p∗−1 , pgr), a

I− (p, 0) = aS(qqq− (p)) ∈
(0, 1), the terms in equation (12) that are directly affected by type s−’s effort must be 0:[

r
(
λI− (p)h− s

)
− λp (1− p) dW

I− (p, 0)

dp
+ λI− (p)

(
λh−W I− (p, 0)

)]
= 0.

As λI− (p)h− s < 0 for p ∈ (p∗−1 , pgr), we also have[
−λp (1− p) dW

I− (p, 0)

dp
+ λI− (p)

(
λh−W I− (p, 0)

)]
> 0.

During the gradual revelation phase, type s− is indifferent between revealing and not reveal-
ing, and hence W I− (p, µ̂̂µ̂µ (p)) = W I− (p, 0). This equality, together with both W I− (p, µ̂̂µ̂µ (p))
and W I− (p, 0) satisfying the HJB equation (12), implies that aU (p, µ̂̂µ̂µ (p)) = aU (p, 0) over
(p∗−1 , pgr). Since by construction aU (p, 0) = aS(qqq− (p)), we have aU (p, µ̂̂µ̂µ (p)) = aS(qqq− (p)).
Therefore, the uninformed player’s effort is decreasing over time during the non-rewarding
region.

C.1.2 U ’s HJB equation and experimentation incentive

We here derive heuristically U ’s value function during the gradual revelation phase, equa-
tion (16).

Proof. Suppose at time-t state (pt, µ̂̂µ̂µ(pt)), player U considers the following strategy: ex-
perimenting with resource ã during the time interval [t, t + dt), experimenting with her
equilibrium effort aU(pt, µ̂̂µ̂µ(pt)) during the time interval [t + dt, t + 2dt) if player I does not
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reveal over [t, t + dt), and playing according to the candidate equilibrium strategy at other
states.

The flow continuation value of doing so, r(WU (p, µ̂̂µ̂µ)−s)·2dt, should equal the right-hand
side of equation (16): the expected instantaneous payoff in the 2dt duration of time,

r
(
ã+ aU (p, µ̂̂µ̂µ)

) (
λU (p, µ̂̂µ̂µ)h− s

)
dt,

plus the value of information,

E[W (pt+2dt, µ̂̂µ̂µ (pt+2dt))−W (pt, µ̂̂µ̂µ (pt))],

which can be further decomposed into three parts. The first two parts resembles that in
equation (12), that is, the change in her continuation value in case no breakthrough arrives
and type s− does not reveal his type in [t, t+ 2dt), and the change in her continuation value
in case a breakthrough arrives in [t, t + 2dt), multiplied by the probability of each event
respectively. The third part comes from the possibility that type s− reveals his type in
[t, t + 2dt) in the absence of a breakthrough, an event that would cause her continuation
value to reduce by an amount |WU (p, 0)−WU (p, µ̂̂µ̂µ) |.

It is crucial to note that type s−’s revealing rate over [t, t + dt), denoted as y, does not
depend on U ’s effort level ã over [t, t + dt), while type s−’s revealing rate over [t, t + 2dt),
denoted as ỹ, does. We now analyze the latter effect. Conditional on type s− not revealing
his type in the interval [t, t+ dt), the state at t+ dt before players move, will evolve to

(pt − (1 + ã)λp (1− p) dt, µ̂̂µ̂µ (pt)− µ̂̂µ̂µp (1 + ã)λpt (1− pt) dt) ,

which is below the curve µ̂̂µ̂µ. Therefore, at time t+ dt, according to the equilibrium prescrip-
tion, type s− will reveal with a probability such that the action of non-revealing will push
the state up to the curve µ̂̂µ̂µ again, implying that the new state at t+ 2dt will be(
pt −

(
1 + ã+ 1 + aU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt, µ̂̂µ̂µ

(
pt −

(
1 + ã+ 1 + aU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt

))
.

Ignoring higher order terms of dt, the amount of adjustment in state variable in this 2dt
duration of time equals to(
−
(
1 + ã+ 1 + aU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt,−µ̂̂µ̂µp

(
1 + ã+ 1 + aU (pt, µ̂̂µ̂µ)

)
λpt (1− pt) dt

)
.

Employing equation (14), the amount of adjustment implies that in this 2dt duration of time,
type s− would reveal his type with probability

(y + ỹ)dt =

(
φ (p, µ)− µ̂̂µ̂µp

µ̂̂µ̂µ

)(
1 + ã+ 1 + aU (pt, µ̂̂µ̂µ)

) p (1− p)λ
(1− µ̂̂µ̂µ)

dt.

Rearranging, we obtain

2r(WU (p, µ̂̂µ̂µ)− s) = max
ã∈[0,1]

ã
[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A (p, µ̂̂µ̂µ)

]
+ A(p, µ̂)

+aU (p, µ̂̂µ̂µ)
[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ A(p, µ̂)

]
+ A (p, µ̂̂µ̂µ)
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This equation is the same with equation (16), since aU(p, µ̂) is a solution to the maximization
problem.

During gradual revelation phase, U ’s equilibrium effort is interior (except at p = p∗−1 ).
Therefore, her IC condition (17) must hold.

This IC condition, together with the HJB equation (16), implies that player U ’s value
function also satisfies equation (18).

C.1.3 The gradual revelation path µ̂̂µ̂µ (proof of Lemma 3)

Formula of g.
For simplicity, define two functions B and C by

B (p, µ) =
(
s− λU (p, µ)h

)
−
(
s− λI− (p)h

)
aI− (p, 0) ,

C (p, µ) = r
(
λU (p, µ)h− s

)
+ λp (1− p)λUp (p, µ)h+ λU (p, µ)

(
λh− s−

(
s− λU (p, µ)h

))
,

where B is U ’s continuation value drop caused by type s−’s revelation, and C could be
interpreted as U ’s marginal benefit from experimentation excluding the part obtained from
the private information revealed by I. Then, using U ’s indifference condition (17) and her
value function (18), we have

µ̂̂µ̂µp = g (p, µ̂̂µ̂µ)

≡ −
(

C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

)
µ̂̂µ̂µ, p ∈ (p∗−2 , pgr) (30)

where

φ (p, µ) ≡ (1− µ) (ρg − ρb)
µµµo (p) (1− µµµo (p))

=
(1− µ)

(
λI+ (p)− λI− (p)

)
λp (1− p)

=
λI+ (p)− λU (p, µ)

λp (1− p)
. (31)

Before proving Lemma 3, we derive some preliminary results. We first derive some
convenient formula for for µ̂̂µ̂µp/µ̂̂µ̂µ and for dλU (p, µ̂̂µ̂µ) /dp, which will be used in this section and
the following sections. In Lemma 6, we show that µ̂̂µ̂µ is a strictly decreasing function. Lemma
7 shows that the ODE problem defined by equations (19)-(21) has a unique solution.

We now establish equalities (32) to (35):

−µ̂̂
µ̂µp
µ̂̂µ̂µ

=
dλU (p, µ̂̂µ̂µ)h/dp

B (p, µ̂̂µ̂µ)
+

1

λp (1− p)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λI+ (p)

]
(32)
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−dλ
U (p, µ̂̂µ̂µ)

dp
=

λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λ+ λI− (p)− 1

µ̂̂µ̂µ

(
ρb (1− ρg)
ρg − ρb

λ+ λI− (p)

)]
(33)

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λ+ λI− (p)−
(
λ− λI− (p)

)
λI− (p)

λU (p, µ̂̂µ̂µ)− λI− (p)

]
(34)

=
λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

−
λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ)− λI− (p)

]
. (35)

Combining equations (19) and (31), at p such that µ̂̂µ̂µ(p) 6= 0, we have

−µ̂̂
µ̂µp
µ̂̂µ̂µ

=
C (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)
− φ (p, µ̂̂µ̂µ)

B (p, µ̂̂µ̂µ)

B (p, 0)

=
λUp (p, µ̂̂µ̂µ)h

B (p, 0)
+

B (p, µ̂̂µ̂µ)

λp (1− p)B (p, 0)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+λU (p, µ̂̂µ̂µ)− λI+ (p)

]
(36)

Applying equalities dλU/dp = λUp + λUµ µ̂̂µ̂µp and B (p, 0) = B (p, µ̂̂µ̂µ) + λUµ µ̂̂µ̂µh, we arrive at
equation (32).

We now derive an explicit formula of dλU (p, µ̂̂µ̂µ)h/dp. Before this, we need an explicit

form of
λUp
λUµ µ̂̂µ̂µ

.

By the definition of λI+ (p) and λI− (p), we have

λI+ (p)− λI− (p) =
λp (1− p)

(
ρb
ρg
− ρb

ρg

)
(
p+ (1− p) ρb

ρg

)(
p+ (1− p) ρb

ρg

)
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Expanding λUp , λUµ , and apply the above equation, we have

λUp
λUµ µ̂̂µ̂µ

=
λUp

µ̂̂µ̂µ (λI+ (p)− λI− (p))

=
ρg (1− ρg)

p (1− p) (ρg − ρb)

[
p+ (1− p) ρb

ρg

p+ (1− p) ρb
ρg

ρb
ρg

+

(
1

µ̂̂µ̂µ
− 1

) p+ (1− p) ρb
ρg

p+ (1− p) ρb
ρg

ρb
ρg

]

=
λ

λp (1− p)

[(
ρb (1− ρg)
ρg − ρb

− λI+ (p)

λ

)
+

(
1

µ̂̂µ̂µ
− 1

)(
ρb (1− ρg)
ρg − ρb

+
λI− (p)

λ

)]
=

λ

λp (1− p)

[(
1− λI+ (p)

λ

)
+

1

µ̂̂µ̂µ

ρb (1− ρg)
ρg − ρb

+

(
1

µ̂̂µ̂µ
− 1

)
λI− (p)

λ

]
(37)

Subtracting
λUp
λUµ µ̂̂µ̂µ

+ dλU (p,µ̂̂µ̂µ)h/dp
B(p,µ̂̂µ̂µ)

from both sides of equation (32), and using equation (37),

we have

−dλ
U (p, µ̂̂µ̂µ)

dp

B (p, 0)

λUµ µ̂̂µ̂µB (p, µ̂̂µ̂µ)

=
1

λp (1− p)

[
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+ λU (p, µ̂̂µ̂µ)− λI+ (p)

−λ+ λI+ (p) + λI− (p)− 1

µ̂̂µ̂µ

(
ρb (1− ρg)
ρg − ρb

λ+ λI− (p)

)]

Equation (33) follows from this equation immediately. Using the following equality, which
is obtained after some algebra,

1

µ̂̂µ̂µ

(
ρb (1− ρg)
ρg − ρb

λ+ λI− (p)

)
=

(
λ− λI− (p)

)
λI− (p)

λU (p, µ̂̂µ̂µ)− λI− (p)
,

we obtain equality (34). Rearranging terms, we have equality (35).
Before proving existence of solution to the ODE problem (19)-(21), we will show that

µ̂̂µ̂µ satisfying equation (19) has some a priori bound (if we impose some conditions that are
necessary for the candidate equilibrium to be an equilibrium). Lemma 6 is a useful step
towards this. Also, note that B(pS−, 0) = 0 (since aS ◦ qqq−(pS−) = 1), and B(p, 0) > 0 for
p ∈ [p∗−2 , pS−), hence we will treat the point pS− with care.

Lemma 6. Let α ∈ (p∗−2 , pS−) and µ̂̂µ̂µ|[p∗−2 ,α) be a solution to the ODE problem defined by

(19) restricted over [p∗−2 , α] and the initial condition (20). If µ̂̂µ̂µ ∈ (0, 1) and B (p, µ̂̂µ̂µ) > 0 over
(p∗−2 , α), then µ̂̂µ̂µp < 0 over (p∗−2 , α).

Proof. Define

D (p, µ̂̂µ̂µ) ≡
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

)
B (p, µ̂̂µ̂µ)

+ λU (p, µ̂̂µ̂µ)− λ. (38)
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Note that dλU (p, µ̂̂µ̂µ) /dp ≤ 0, implies µ̂̂µ̂µp < 0. Therefore, if D (p, µ̂̂µ̂µ) > 0 on a Gradual
Revelation path, then Lemma 6 would follow. We now show D (p, µ̂̂µ̂µ) > 0.

Observe that, (i) if dλU (p, µ̂̂µ̂µ) /dp ≤ 0, then D (p, µ̂̂µ̂µ) > 0, from equality (34) and the
definition of D; (ii) if dλU (p, µ̂̂µ̂µ) /dp > 0, then B (p, µ̂̂µ̂µ (p)) strictly decreases as p increases,
and hence D (p, µ̂̂µ̂µ) strictly increases as p increases. Therefore, if we show D (p, µ̂̂µ̂µ) > 0 at
p = p∗−2 , then by continuity of D and the above two observations, we have D (p, µ̂̂µ̂µ) > 0 for
p ∈ [p∗−2 , pgr).

From now till the end of this proof, if not mentioned, p is fixed at p∗−2 . Using the initial
condition (20), at p = p∗−2 , we have

λU (p, µ̂̂µ̂µ) (λh− s)
s− λU (p, µ̂̂µ̂µ)h

=
s
(
λI+ (p)− λI− (p)

)
+ λI− (p)

(
wS (qqq + (p))− s

)
(s− λI− (p)h) (wS (qqq + (p))− s)

(λh− s)

Applying the definition of D, and the fact that aS ◦ qqq−(p) = 0 at p = p∗−2 , we obtain

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
1

s− λI− (p)h

[
s
(
λI+ (p)− λI− (p)

) λh− wS (qqq + (p))

wS (qqq + (p))− s
+ λI− (p)

(
λI+ (p)− λh

)]
Employing the definition of p∗−2 (equation (1)) and of λI−, the above equality becomes

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
−wS (qqq + (p))

(
r + 2λI+ (p)

)
+ (2λ+ r)λI+ (p)h

2 (wS (qqq + (p))− s)
(39)

By Assumption 1, p∗−2 ≥ pS+, we have aS (qqq + (p)) = 1 at p = p∗−2 . Recall wS is the
continuation value function corresponding to the symmetric MPE under symmetric infor-
mation, which is a function of the true posterior, rather than the background belief, that is,
wS(qqq+(p)) = W S+(p) ( with qqq+ defined in equation (3)).

Since in the symmetric MPE in the symmetric information setup, both players experiment
with full resource if their common posterior is above qS, wS satisfies the following HJB
equation for qqq+(p) > qS,

rwS
(
qqq+
)
− rs = r

(
λqqq+h− s

)
− 2λqqq+

(
1− qqq+

)
wSq
(
qqq+
)

+ 2λqqq+
(
λh− wS

(
qqq+
))
,

where the argument of qqq+ is omitted.
Rearranging terms, we have

−wS
(
qqq+
) (
r + 2λqqq+

)
+ (2λ+ r)λqqq+h = 2λqqq+

(
1− qqq+

)
wSq
(
qqq+
)
. (40)

With this equation, equation (39) becomes

D (p, µ̂̂µ̂µ) + λ− λI+ (p) =
λqqq+ (1− qqq+)wSq (qqq+)

(wS (qqq+)− s)
. (41)
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Therefore,

D (p, µ̂̂µ̂µ) =
λqqq+ (1− qqq+)wSq (qqq+)

(wS (qqq+)− s)
−
(
1− qqq+

)
λ

=
(
1− qqq+

)
λ
qqq+wSq (qqq+)−

(
wS (qqq+)− s

)
(wS (qqq+)− s)

(42)

>
(
1− qqq+

)
λ

(qqq+ − q∗1)wSq (qqq+)−
(
wS (qqq+)− s

)
(wS (qqq+)− s)

> 0 (43)

The second-to-last inequality is due to wSq (qqq+) > 0 at p = p∗−2 ; the last inequality is due to
the convexity of wS over [q∗1, 1], and that wS (q∗1) = s.

Lemma 7. If µ̂̂µ̂µ(p∗−2 ) defined by (20) is such that µ̂̂µ̂µ(p∗−2 ) < µµµo(p∗−2 ), then the ODE prob-
lem defined by (19)-(21) has a unique solution µ̂̂µ̂µ. Moreover, the right boundary pgr is in
(p∗−2 , pS−).

Proof. Let ε ∈ (0, pS−) be such that

s− λU
(
pS− − ε,µµµo

(
pS− − ε

))
h = W S− (pS− − ε)− s.

Such an ε exists because both sides of the above equation are continuous in ε, the left-hand
side is strictly greater than the right-hand side at ε = pS−, and strictly smaller than the latter
at ε = 0. As ε > 0, we have aI− (p, 0) < 1 over [p∗−2 , pS−− ε],29 and hence B (p, 0) is bounded
for p ∈ [p∗−2 , pS− − ε]. C(p, µ̂̂µ̂µ), φ(p, µ̂̂µ̂µ), and B(p, µ̂̂µ̂µ) are also bounded for p ∈ [p∗−2 , pS− − ε]
and µ̂̂µ̂µ ∈ [0, 1]. To restrict µ̂̂µ̂µ to take values in [0, 1], define

χ(µ) =


µ, if µ ∈ [0, 1];

0, if µ < 0;

1, if µ > 1.

Existence. Consider the following initial value problem

µ̂̂µ̂µp = −
(

C (p, χ (µ̂̂µ̂µ))

λp (1− p)B (p, 0)
− φ (p, χ (µ̂̂µ̂µ))

B (p, χ (µ̂̂µ̂µ))

B (p, 0)

)
χ (µ̂̂µ̂µ) , p ∈ (p∗−2 , pS− − ε),(44)

with the initial condition (20). µ̂̂µ̂µp as a function of (p, µ̂̂µ̂µ), defined by equation (44), is bounded,
and Lipschitz continuous. According to standard theorems (for example, Picard–Lindelöf
theorem), this initial value problem has a unique solution, denoted as as µ̂̂µ̂µ (with an abuse
of notation). Let pgr ≡ inf{p ∈ [p∗−2 , pS− − ε] | µ̂̂µ̂µ(p) > µµµo(p)}.

We will show at the end of this proof that µ̂̂µ̂µ satisfies

Claim 2. Over the interval (p∗−2 , pgr), we have µ̂̂µ̂µ ∈ (0, 1), and B (p, µ̂̂µ̂µ) > 0.

29Recall that over [p∗−2 , pS−], aI− (p, 0) ≡ aS ◦ qqq−(p), and is strictly increasing from 0 to 1.
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Claim 3. µ̂̂µ̂µ
(
pS− − ε

)
< µµµo

(
pS− − ε

)
.

Claim 2 says that µ̂̂µ̂µ, the unique solution to ODE (44) and (20), satisfies ODE (19) over
[p∗−2 , pgr]. Claim 3, together with µ̂̂µ̂µ

(
p∗−2
)
> µµµo

(
p∗−2
)

and the continuity of µ̂̂µ̂µ and µµµo, implies
that pgr ∈ (p∗−2 , pS− − ε).

Therefore, µ̂̂µ̂µ restricted over [p∗−2 , pgr] is a solution to the ODE problem (19)-(21).
Uniqueness. µ̂̂µ̂µ restricted over [p∗−2 , pgr] is the unique solution to this ODE problem.

Suppose this ODE problem has another solution µ̌̌µ̌µ, and let p̌ ∈ [p∗−2 , pgr] be the infimum of
p such that µ̌̌µ̌µ differs from µ̂̂µ̂µ. Then we have µ̌̌µ̌µ(p̌) = µ̂̂µ̂µ(p̌) ∈ (0, 1), and µ̌̌µ̌µ ∈ (0, 1) over [p̌, p̌+η]
for some small η. Hence µ̌̌µ̌µ|[p̌, p̌ + η] is a solution to the ODE problem (44) restricted over
[p̌, p̌ + η] with the initial value given by µ̌̌µ̌µ(p̌) = µ̂̂µ̂µ(p̌), which contradicted with the latter
having a unique solution.

We now prove the two claims above.

Proof of Claim 3. Suppose µ̂̂µ̂µ
(
pS− − ε

)
≥ µµµo

(
pS− − ε

)
, then WU(pS−−ε, µ̂̂µ̂µ(pS−−ε)) defined

by equation (18) is smaller than W S−(pS− − ε) by our choice of ε, then using the equation
that B(p, µ̂̂µ̂µ) = WU(p, µ̂̂µ̂µ) −W S−(p), we have B(pS− − ε, µ̂̂µ̂µ(pS− − ε)) ≤ 0. This contradicts
with Claim 2.

Proof of Claim 2. Suppose by negation that there is some p ∈ [p∗−2 , pgr] such that B (p, µ̂̂µ̂µ) ≤
0; denote the smallest p satisfying this inequality as p̃. Since B (p, µ̂̂µ̂µ) > 0 at p = p∗−2 and B
is continuous, we have p̃ > p∗−2 , and B (p, µ̂̂µ̂µ) > 0 for p ∈ [p∗−2 , p̃).

µ̂̂µ̂µ is strictly decreasing over [p∗−2 , p̃). Because otherwise, there would exist a ˜̃p ∈ (p∗−2 , p̃)
such that µ̂̂µ̂µp(˜̃p) = 0,30 implying that µ̂̂µ̂µ|[p∗−2 , ˜̃p) satisfies ODE (19) when restricted over [p∗−2 , ˜̃p),

and the initial condition (20), and yet it violates Lemma 6, a contradiction. Therefore,
χ(µ̂̂µ̂µ) = µ̂̂µ̂µ for p ∈ [p∗−2 , p̃], hence µ̂̂µ̂µ also satisfies ODE (19). But the function WU defined by
s+s−λU(µ̂̂µ̂µ, p)h (that is, equation (18)) would not satisfy equation (17) (because the left-hand
side>0 for p sufficiently close to p̃), which contradicts with µ̂̂µ̂µ satisfying ODE (19).

Proof of Lemma 3. First, µ̂̂µ̂µ is continuous over (p∗−2 , pgr). Suppose by negation that there
is some p̃ ∈ (p∗−2 , pgr) at which µ̂̂µ̂µ is discontinuous, that is, µ̂̂µ̂µ(p̃+) < µ̂̂µ̂µ(p̃−).31 Since over
a small right neighborhood of p̃, player U is indifferent between experimenting and not
experimenting, we must have WU(p+, µ̂̂µ̂µ(p̃+)) = s + s − λU(p+, µ̂̂µ̂µ(p̃+))h, by equation (18).
Similarly, we have WU(p−, µ̂̂µ̂µ(p̃−)) = s+ s− λU(p−, µ̂̂µ̂µ(p̃−))h. Since λU strictly increases in
its second argument, these two inequalities imply that WU(p+, µ̂̂µ̂µ(p̃+)) > WU(p−, µ̂̂µ̂µ(p̃−)).
But this contradicts with the fact that WU ≥ s, as WU(p−, µ̂̂µ̂µ(p̃−)) is the average between
WU(p+, µ̂̂µ̂µ(p̃+)) and s.

Similarly, µ̂̂µ̂µ is continuous at pgr. The difference between this case and the previous
case is that, over a small right neighborhood of pgr, player U strictly prefers to experiment,

30 ˜̃p > p∗−2 because µ̂̂µ̂µ(p∗−2 ) < 0.
31Note in our candidate equilibrium, µ̂̂µ̂µ is discontinuous if and only if type s− reveals with a lump-sum

probability, hence at any p, µ̂̂µ̂µ can only jump downward.
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and type s− strictly prefers not to reveal. Therefore, by Point 2 of Lemma 5, we have
WU(p+, µ̂̂µ̂µ(p̃+)) ≥ s+ s− λU(p+, µ̂̂µ̂µ(p̃+))h. Continuity of µ̂̂µ̂µ at pgr follows the same logic as
in the previous case.

Finally, we show that µ̂̂µ̂µ does not have singular continuous part. Let µ̃̃µ̃µ be the solution
to the ODE problem (19)-(21), and let W̃U be player U ’s continuation value function cor-
responding to the equilibrium associated with Gradual Revelation path µ̃̃µ̃µ.32 Suppose by
negation there is another Gradual Revelation path µ̌̌µ̌µ (corresponding to another equilibrium
which takes the same feature with the candidate equilibrium) that satisfies equation (19)
almost everywhere, equations (20), and (21), and that µ̃̃µ̃µ(p′) differs from µ̌̌µ̌µ(p′) for some
p′ ∈ (p∗−2 , pgr). Without loss of generality, suppose µ̃̃µ̃µ(p′) > µ̌̌µ̌µ(p′). Let p′′ be the largest p’s
such that p ≤ p′ and that µ̃̃µ̃µ(p) ≥ µ̌̌µ̌µ(p). Existence of p′′ is due to the continuity of µ̃̃µ̃µ and
µ̌̌µ̌µ, and that µ̃̃µ̃µ(p∗−2 ) = µ̌̌µ̌µ(p∗−2 ) (from the initial condition (20)). By the definition of p′′, we

have lim supε↓0
µ̌̌µ̌µ(p′′+ε)−µ̌̌µ̌µ(p′′)

ε
< µ̃̃µ̃µp(p

′′). Let W̌U be U ’s continuation value function of the
equilibrium with Gradual Revelation path µ̌̌µ̌µ. Then µ̃̃µ̃µ(p) > µ̌̌µ̌µ(p) over (p′′, p′) implies that
W̌U(p, µ̌̌µ̌µ) > W̃U(p, µ̃̃µ̃µ). We now show that µ̃̃µ̃µ(p) > µ̌̌µ̌µ(p) over (p′′, p′) and that µ̃̃µ̃µ(p′′) = µ̌̌µ̌µ(p′′)
imply that W̌U(p, µ̌̌µ̌µ) < W̃U(p, µ̃̃µ̃µ) for p ∈ (p′′, p′′ + ε1), if ε1 small enough. A contradiction.

Fix a small ε > 0, we change the strategies of type s− and of player U in the equilibrium
associated with Gradual Revelation path µ̌̌µ̌µ as follows: starting at (p′′ + ε, µ̌̌µ̌µ(p′′ + ε)), type
s− does not reveal his type as long as background belief is in (p′′, p′′ + ε]; at the background
belief p′′, he reveals with a lump-sum probability such that his reputation jumps to µ̌̌µ̌µ(p′′); at
all other states, he plays his equilibrium strategy associated with Gradual Revelation path
µ̌̌µ̌µ. U plays a best response to I’s new strategy (, which is 0 effort). Denote U ’s continuation

value corresponding to this new strategy profile as ˇ̌WU , which will be written as simply a
function of the background p, for ease of notation. As type s− works harder in this new

strategy profile, we have ˇ̌WU ≥ W̌U at p = p′′ + ε.33 At p = p′′, according to the new

prescription, type s− will reveal with probability
Y̌ (0)−Y̌ (ε)

1−Y̌ (ε)
,34where Y̌ solves

µ̌̌µ̌µ(p′′ + η) =
µµµo(p′′ + η)

µµµo(p′′ + η) + [1− µµµo(p′′ + η)]
(
1− Y̌ (η)

) , (45)

for η = 0, ε. That is, Y̌ (ε) is type s−’s cumulative revelation probability giving him a
reputation µ̌̌µ̌µ(p′′ + ε), when the background belief is p′′ + ε. Similarly we can define Y̌ (0),
Ỹ (ε), and Ỹ (0).

Since according to the new strategy of type s−, he will reveal with a lump-sum probability
at p′′, we have

ˇ̌WU(p′′+) =
Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
s+ (1− Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
)W̌U(p′′, µ̌̌µ̌µ(p′′)). (46)

32Need result from the Verification section showing that this is indeed an equilibrium.
33 That is, ˇ̌WU (p′′ + ε) ≥ W̌U (p′′ + ε, µ̌̌µ̌µ(p′′ + ε)).
34 Note with type s−’s new revealing strategy, Y̌ (ε) will be a constant when background belief is in

(p′′, p′′ + ε].
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Let tε denote the time it takes for the background belief to drop from p′′+ ε to p′′. By using
equation (46), and the fact that U ’s best response to I’s pooling strategy over (p′′, p′′ + ε) is
0 effort, we have

ˇ̌WU(p′′ + ε) = (rs+ λUλh)tε + (1− rtε − λU tε)(
Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
s+ (1− Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
)W̌U(p′′)).(47)

(rs + λUλh)tε is the “flow” value of both players’ effort to player U in the tε duration of
time: as U does not experiment, she receives rstε from her own arm; player I experiments
with full resource, hence to player U , good news will arrive with probability λU tε, leading to
a discounted value λh.

Now coming back to the equilibrium with Gradual Revelation Path µ̃̃µ̃µ. Since U is indiffer-
ent between experimenting and not experimenting as long as no revealing and p ∈ (p′′, p′′+ε),
not experimenting is an optimal strategy for U . Hence we have

W̃U(p′′ + ε) = (rs+ λUλh)tε + (1− rtε − λU tε)(
Ỹ (0)− Ỹ (ε)

1− Ỹ (ε)
s+ (1− Ỹ (0)− Ỹ (ε)

1− Ỹ (ε)
)W̃U(p′′) + o(tε),(48)

where we use the fact that during tε duration of time, type s−’s expected effort differs

from 1 with probability Ỹ (0)−Ỹ (ε)

1−Ỹ (ε)
, which is of order tε (since by assumption µ̃̃µ̃µ is absolutely

continuous), causing a difference in U ’s flow payoff during this tε time of second order of tε.
Since µ̃̃µ̃µ(p) > µ̌̌µ̌µ(p) over (p′′, p′), and µ̃̃µ̃µ(p′′) = µ̌̌µ̌µ(p′′), we have Ỹ (0) = Y̌ (0), and Ỹ (ε) >

Y̌ (ε), hence
Ỹ (0)− Ỹ (ε)

1− Ỹ (ε)
<
Y̌ (0)− Y̌ (ε)

1− Y̌ (ε)
.

Recall we also have W̌U(p, µ̌̌µ̌µ) = W̃U(p, µ̃̃µ̃µ) at p = p′′. Therefore, by equations (47) and

(48), we have ˇ̌WU(p′′ + ε) < W̃U(p′′ + ε). As ˇ̌WU(p′′ + ε) ≥ W̌U(p′′ + ε), we also have
W̌U(p′′ + ε) < W̃U(p′′ + ε).

Since this inequality holds for all small ε > 0, we conclude that W̌U(p, µ̌̌µ̌µ) < W̃U(p, µ̃̃µ̃µ) for
p ∈ (p′′, p′′ + ε1), if ε1 small enough.

C.2 Verification (proof of Lemma 4)

As the argument for type s+’s incentive compatibility only depends on whether the stage
is separation or not, we first analyze his incentive. We then check type s−’s and player U ’s
incentive stage by stage, backwardly.

At the separation region (p ≤ p∗−2 ), if the state is (p, 1), type s+ has no incentive to
deviate because both him and the uninformed player play the symmetric MPE with public
information s+. If the state is (p, 0), then the uninformed player does not experiment, hence
it is optimal for type s+ to adopt the individually optimal solution.

Before separation (p > p∗−2 ), type s+’s incentive to follow the prescribed equilibrium
strategy is implied by the following lemma, since in the prescribed equilibrium, there is no
p > p∗−1 such that aI− (p, 0) = 0 and hence no p > p∗−1 such that aI+ (p, 0) = 0.
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Lemma 8. Let a strategy profile (aI+, aI−, aU) and a belief system satisfy the following
conditions: (i) aI+ is pure; (ii) before separation, for any p > p∗−1 such that W I+ (p, 0) =
W I+ (p, µ) and aI+ (p, 0) = 0, we have aI+ (p, µ) = 0; (iii) aU increases in µ; (iv) the belief
system satisfies (??). Then at any state (p, µ) that is not separation, type s+ has no incentive
to deviate to effort lower than aI+ (p, µ).

Proof. Let a strategy profile and a belief system satisfy the conditions in Lemma 8. Before
separation, as long as good news does not arrive and type s− plays aI+, the informed agent’s
reputation at t, when the time-t background belief is at pt, will be µ̃̃µ̃µ(pt) for some function
µ̃̃µ̃µ.

Suppose Lemma 8 does not hold. That is, there is some p′ such that type s+ finds
it optimal to deviate to a lower effort than equilibrium effort. According to condition (iv),
immediately after this deviation type s+’s reputation will be 0, hence the highest continuation
value he can get is W I+ (p′, 0), which is obtained from type s+ playing a best response to
aU(·, 0). Therefore, at p′, W I+ (p′, 0) > W I+ (p′, µ̃̃µ̃µ (p′)). Since W I+ (p, 0) ≤ W I+ (p, µ̃̃µ̃µ (p)) at
the background belief where separation occurs, and both W I+ (p, 0) and W I+ (p, µ̃̃µ̃µ (p)) are
continuous in p, there exists some p′′ ∈ (0, p′) (before separation) such that W I+ (p′′, 0) =

W I+ (p′′, µ̃̃µ̃µ (p′′)), and that dW I+(p′′+,0)
dp

> dW I+(p′′+,µ̃̃µ̃µ(p′′+))
dp

.

Due to condition (iv), that is, a reputation once lost is lost forever, W I+(p, 0) satisfies
the following HJB equation:

rW I+ (p, 0)

= max
a∈[0,1]

a

[
r
(
λI+ (p)h− s

)
− λp (1− p) dW

I+ (p, 0)

dp
+ λI+ (p)

(
λh−W I+ (p, 0)

)]
+aU (p, 0)

[
−λp (1− p) dW

I+ (p, 0)

dp
+ λI+ (p)

(
λh−W I+ (p, 0)

)]
+ rs

W I+(p, µ̃̃µ̃µ) satisfies the following HJB equation:

rW I+ (p, µ̃̃µ̃µ (p))

= aI+ (p, µ̃̃µ̃µ (p))

[
r
(
λI+ (p)h− s

)
− λp (1− p) dW

I+ (p, µ̃̃µ̃µ (p))

dp
+ λI+ (p)

(
λh−W I+ (p, µ̃̃µ̃µ (p))

)]
+aU (p, µ̃̃µ̃µ (p))

[
−λp (1− p) dW

I+ (p, µ̃̃µ̃µ (p))

dp
+ λI+ (p)

(
λh−W I+ (p, µ̃̃µ̃µ (p))

)]
+ rs

If aI+(p′′, 0) > 0, then byW I+ (p′′, 0) = W I+ (p′′, µ̃̃µ̃µ (p′′)), and that dW I+(p′′+,0)
dp

> dW I+(p′′+,µ̃̃µ̃µ(p′′+))
dp

,

we must have aI+(p′′, µ̃̃µ̃µ) = 1. But these inequalities, together with condition (iii), contradict
with the two HJB equations above. Therefore, aI+(p′′, 0) = 0, which implies aI+(p′′, µ̃̃µ̃µ) = 0 by

condition (ii). But again, the inequalities W I+ (p′′, 0) = W I+ (p′′, µ̃̃µ̃µ (p′′)), that dW I+(p′′+,0)
dp

>
dW I+(p′′+,µ̃̃µ̃µ(p′′+))

dp
, and condition (iii), contradict with the two HJB equations above.

We now check type s−’s and U ’s incentive to deviate.
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(1) separation (p ≤ p∗−2 ). The nontrivial sub-case is when p∗+1 < p ≤ p∗−2 , and µ = µµµo(p).

Type s− has no incentive to deviate because, given the updating rule and that player U will
choose the same action as he does (because they will play the symmetric MPE corresponding
to the information revealed by player I’s action), the tradeoff of working or not he faces is
exactly the same with that a two-player team with public information s− faces: in both
cases, working has the same current flow payoff and twice the “capital gain” as working
alone.Since a two-player team finds it optimal to stop if p < p∗−2 , so does player I of type
s−.

The uninformed player has no incentive to deviate because the informed player already
perfectly reveals his type and both play the symmetric MPE in the symmetric information
game thereafter.

(2) Gradual revelation (p∗−2 < p < pgr).

The state is along µ̂̂µ̂µ. Note that given player U ’s equilibrium strategy and the belief system,
whatever deviation that player I plans to employ, the state will be on µ̂̂µ̂µ as long as player I
hasn’t revealed himself. Likewise, given player I’s equilibrium strategy, whatever deviation
that player U uses, the state will be on µ̂̂µ̂µ as long as player I hasn’t revealed himself.

We have shown in the previous step that type s−’s value at (p∗−2 , µ) is at most s. Then
in the interval [p∗−2 ,min{p∗−1 , pgr}], given the construction of f , type s− has no incentive to
deviate, and that W I−(p, µ̂̂µ̂µ(p)) = s. In the interval [min{p∗−1 , pgr}, pgr] (if nonempty), player
U ’s effort along µ̂̂µ̂µ is the same as in the symmetric MPE with public information s−, since
type s− is indifferent between experimenting and not experimenting in the symmetric MPE,
he is also indifferent between experimenting (and hence not revealing) and aS(qqq−(p)) ∈ (0, 1)
(and hence revealing) along µ̂̂µ̂µ in the asymmetric information game.

That the uninformed player has no incentive to deviate along µ̂̂µ̂µ follows from the following
two lemmas.

Lemma 9. Suppose in the candidate equilibrium constructed in Section §??, during gradual
revelation, the uninformed player’s effort is as in equation (??), and that type s−’s revealing
rate y is such that, the associated revealing path µ̂̂µ̂µ is a solution to the ODE problem defined
by (19), (20), and (21). The player U ’s value function during gradual revelation is given by
equation (18).

Proof. By our equilibrium construction, trivially, WU(p∗−2 , µ̂̂µ̂µ(p∗−2 )) satisfies equation (18).
Now suppose that there is some p′ ∈ (p∗−2 , pgr) such that equation (18) does not hold at
p. Without loss of generality, assume WU (p′, µ̂̂µ̂µ) − s > s − λU (p′, µ̂̂µ̂µ)h. Then there must
exist an interval of p, subset of (p∗−2 , pgr), over which WU (p, µ̂̂µ̂µ) − s > s − λU (p, µ̂̂µ̂µ)h, and
dWU (p,µ̂̂µ̂µ)

dp
> −λU (p,µ̂̂µ̂µ)h

dp
. As WU satisfies the HJB equation (16), these two inequalities imply

that WU (p, µ̂̂µ̂µ)− s < s− λU (p, µ̂̂µ̂µ)h for all p in this interval. A contradiction.
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Along µ̂̂µ̂µ, the revealing strategy of type s− guarantees the local incentive of player U , that
is, if µ̂̂µ̂µ is a solution to the ODE problem defined by (19), (20), and (21), and if WU is given
by equation (18) (by Lemma 9), then player U ’s local incentive condition (17) is satisfied.
The following lemma shows that player U does not have a profitable global deviation.

Lemma 10. Suppose the informed player’s strategy and the belief system is as in Section §5,
and that type s−’s revealing rate y is such that, the associated revealing path µ̂̂µ̂µ is a solution
to the ODE problem defined by (19), (20), and (21), then the uninformed player has no
incentive to deviate.

Proof. Suppose player U has some profitable deviation ã starting at some state (p′, µ̂̂µ̂µ(p′)),
p′ ∈ (p∗−2 , pgr), that gives her continuation value W̃U(p′, µ̂̂µ̂µ(p′)) > WU(p′, µ̂̂µ̂µ(p′)). W̃U sat-
isfies the HJB equation (16) with aU replaced by her deviating action. Since W̃U ≤
WU at (p∗−2 , µ̂̂µ̂µ(p∗−2 )), there must exist some p′′ ∈ (p∗−2 , p′) such that W̃U (p′′, µ̂̂µ̂µ (p′′)) >

WU (p′′, µ̂̂µ̂µ (p′′)), and dW̃U (p′′,µ̂̂µ̂µ(p′′))
dp

> dWU (p′′,µ̂̂µ̂µ(p′′))
dp

, but these inequalities, together with the

HJB equation (16), imply that W̃U (p′′, µ̂̂µ̂µ (p′′)) < WU (p′′, µ̂̂µ̂µ (p′′)). A contradiction.

The state is along µµµo. If type s− deviates, whether the deviation starts today or not, he
would either reveals himself, or the state variable jumps on the curve µ̂̂µ̂µ; in both cases, type
s− at most obtains continuation value W S−(p), which is his value of following the equilibrium
strategy. Therefore, he has no incentive to deviate.

(3) pooling (p > pgr). Type s− has no incentive to deviate: on the one hand, player U
works harder when type s− has not revealed himself than when he has revealed already; on the
other, one optimal continuation strategy of type s− after revelation, that is, experimenting
with full resource for p > pgr, is the same with his equilibrium strategy of not revealing;
since type s− benefits from player U ’s effort and he will have the same continuation value
at pgr whether he deviates now or not, he strictly prefers not to deviate.

The uninformed player has no incentive to deviate because according to Point 4 in Lemma 5,
if player U ’s continuation value at pgr is as specified by equation (18), and that C(pgr, µ̂̂µ̂µ(pgr)) >
0, which is shown by step 1 in Lemma 7, then player U finds it optimal to experiment with
full resource for p > pgr. (Here we replace the p in Lemma 5 by pgr.)

C.3 Dynamics

C.3.1 U ’s belief about the risky project (proof of Proposition 1)

Proposition 1 is a result of Lemma 11 and Lemma 12.

Lemma 11. There exists Õ ∈ (1,∞), such that, if O > Õ, then dλU (p, µ̂̂µ̂µ (p)) /dp|p=p∗−2 > 0;

if O < Õ, then dλU (p, µ̂̂µ̂µ (p)) /dp|p=p∗−2 < 0.
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Proof. Let qqq∗+2 : [1,∞) → [0, 1] be defined by qqq∗+2 (O) = 1
1+( 1

q∗2
−1) 1

O

, for O ∈ [1,∞), where

qqq∗+2 (O) refers to type s+’s posterior about the risky project, when type s−’s posterior is q∗2
and the odd ratio is O. Let µ̂̂µ̂µ∗ (O) denote the initial value of µ̂̂µ̂µ at p∗−2 , implied by condition
(20), when the odd ratio is a. (The notations qqq∗+2 and µ̂̂µ̂µ∗ are only used in this proof.)

Using equation (33), (38) (the definition of function D) and (42), we have,
dλU (p+, µ̂̂µ̂µ (p+)) /dp|p=p∗−2 < 0 if and only if at p = p∗−2 ,

λ
(
1− qqq∗+2 (O)

) [wSq (qqq∗+2 (O)
)
qqq∗+2 (O)−

(
wS
(
qqq∗+2 (O)

)
− s
)]

wS
(
qqq∗+2 (O)

)
− s

− λ

µ̂̂µ̂µ∗ (O)

ρg (1− ρb)
ρg − ρb

−
(

1

µ̂̂µ̂µ∗ (O)
− 1

)
λI− (p) > 0. (49)

Define the following functions:

D̂1 (q) ≡ λ (1− q)
(
W S
q (q) q −

(
wS (q)− s

))
wS (q)− s

, (50)

D̂2 (O) ≡ − λ

µ̂̂µ̂µ∗ (O)

1

O − 1
−
(

1

µ̂̂µ̂µ∗ (O)
− 1

)
λq∗2. (51)

Then the left-hand side of inequality (49) equals to

D̂ (O) ≡ D̂1

(
qqq∗+2 (O)

)
+ D̂2 (O) . (52)

We now show that there is a unique Õ ∈ (1,∞), such that D̂ (O) > 0 for O < Õ, and
D̂ (O) < 0 for O > Õ, which completes the proof of Lemma 11. The former statement
follows directly from the two claims below:

Claim 4. D̂ (O) strictly decreases in O.

Claim 5. D̂
(
OS
)
> 0 for the OS such that qqq∗+2

(
OS
)

= qS (or equivalently, p∗−2 = pS+); and

limO→∞ D̂ (O) < 0.

Recall that we construct equilibrium for p∗−2 ≥ pS+, which is equivalent with O ∈ [OS,∞).
By continuity of D̂, Lemma 5 says that there is a threshold Õ such that D̂(O) > 0 for
O ∈ (OS, Õ), and D̂(O) < 0 for O ∈ (Õ,∞).

Proof of Claim 4. If we show D̂1 (q) strictly decreases in q, and D̂2 (O) strictly decreases in
O, then, since qqq∗+2 (O) strictly increases in O, we would have D̂ (O) strictly decreases in O.

(i) D̂1 (q) strictly decreases in q.
Replacing wSq in the expression of D̂1 by equation (40), we have

D̂1 (q) = λ

(
q
((

r
2λ

+ 1
)
λh− s

)
− r

2λ
s

wS (q)− s
−
( r

2λ
+ 1
))

.
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Taking derivative with respect to q and rearranging terms, we have

dD̂1 (q)

dq
= λ

((
r

2λ
+ 1
)
λh− s

) (
wS (q)− s− qwSq (q)

)
+ wSq (q) r

2λ
s

(wS (q)− s)2

= λ

((
r

2λ
+ 1
)
λh− s

) (
wS (q)− s− (q − q∗2)wSq (q)

)
(wS (q)− s)2

< 0,

where the second inequality uses equality
((

r
2λ

+ 1
)
λh− s

)
q∗2 = r

2λ
s; the third uses the

convexity of wS and that wS(q∗2) = s.
(ii) D̂2 (O) strictly decreases in O.
Recall the definition of D̂2, we have

D̂2 (O) = − λ

µ̂̂µ̂µ∗ (O)

q∗2
qqq∗+2 (O)

O

O − 1
+ λq∗2

Taking derivative with respect to O, and using the value of µ̂̂µ̂µ∗ (O) (by equation (20)), we
have

−1

λ

dD̂2 (O)

dO

=
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
+ λhqqq∗+2 (O)−

(
wS
(
qqq∗+2 (O)

)
− s
)
− λh

(
qqq∗+2 (O)− q∗2

)
s− λq∗2h

q∗2(
qqq∗+2 (O)

)2

O

O − 1

dqqq∗+2 (O)

dO

−
wS
(
qqq∗+2 (O)

)
− s+ λh

(
qqq∗+2 (O)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (O)

1

(O − 1)2

=
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
−
(
wS
(
qqq∗+2 (O)

)
− s
)

+ λhq∗2
s− λq∗2h

1

O (O − 1)
(1− q∗2)

−
wS
(
qqq∗+2 (O)

)
− s+ λh

(
qqq∗+2 (O)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (O)

1

(O − 1)2

=
(q − q∗2) (a)wSq

(
qqq∗+2 (O)

)
−
(
wS
(
qqq∗+2 (O)

)
− s
)

+ q∗2w
S
q

(
qqq∗+2 (O)

)
+ λhq∗2

s− λq∗2h
1

O (O − 1)
(1− q∗2)

−
wS
(
qqq∗+2 (O)

)
− s+ λh

(
qqq∗+2 (O)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (O)

1

(O − 1)2

Define D̂3 ≡
(
qqq∗+2 (O)− q∗2

)
wSq
(
qqq∗+2 (O)

)
−
(
wS
(
qqq∗+2 (O)

)
− s
)
. Since O−1

O
(1− q∗2) = 1 −
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q∗2
qqq∗+2 (O)

and D̂3 > 0, we have

−1

λ

dD̂2 (O)

dO

=
D̂3qqq

∗+
2 (O) /q∗2 + qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
+ λhqqq∗+2 (O)

s− λq∗2h
1

O (O − 1)

q∗2 (1− q∗2)

qqq∗+2 (O)

−
wS
(
qqq∗+2 (O)

)
− s+ λh

(
qqq∗+2 (O)− q∗2

)
s− λq∗2h

q∗2
qqq∗+2 (O)

1

(O − 1)2

=
1

s− λq∗2h
q∗2

qqq∗+2 (O)

1

(O − 1)2

[(
D̂3
qqq∗+2 (O)

q∗2
+
(
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
+ λhqqq∗+2 (O)

))(
1− q∗2

qqq∗+2 (O)

)

−
(
wS
(
qqq∗+2 (O)

)
− s+ λh

(
qqq∗+2 (O)− q∗2

)) ]

=
1

s− λq∗2h
q∗2

qqq∗+2 (O)

1

(O − 1)2

[
D̂3
qqq∗+2 (O)

q∗2

(
1− q∗2

qqq∗+2 (O)

)
+ D̂3

]
=

1

s− λq∗2h
1

(O − 1)2 D̂3

> 0

Proof of Claim 5. As O → ∞, we have qqq∗+2 (O) → 1, and limO→∞ µ̂̂µ̂µ
∗ (O) ∈ (0, 1) by the

initial condition. Therefore, as O →∞, we have D̂1 → 0, D̂2 → −
(

limO→∞
1

µ̂̂µ̂µ∗(O)
− 1
)
λq∗2 <

0.
If O is such that qqq∗+2 (O) = qS, then we have µ̂̂µ̂µ∗ (O) = 1 by the initial condition. Therefore

1

λ
D̂
(
qqq∗+2 (O)

)
=

1

λ
D̂1

(
qqq∗+2 (O)

)
− 1

O − 1

=
(
1− qqq∗+2 (O)

) D̂3

wS
(
qqq∗+2 (O)

)
− s

+
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

1− qqq∗+2 (O)

qqq∗+2 (O)
q∗2 −

1

O − 1
.(53)

If we show that

qqq∗+2 (O)wSq
(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

1− qqq∗+2 (O)

qqq∗+2 (O)
q∗2 −

1

O − 1
>

1

O

[
1

O − 1
−
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

1− qqq∗+2 (O)

qqq∗+2 (O)
q∗2

]
,(54)

then we have
qqq∗+2 (O)wSq (qqq∗+2 (O))
wS(qqq∗+2 (O))−s

1−qqq∗+2 (O)

qqq∗+2 (O)
q∗2 − 1

O−1
> 0. This inequality, together with D̂3 > 0

and equation (53), imply D̂ > 0.
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We now show inequality (54). First, by the definition of qqq∗+2 , we have
1−qqq∗+2 (O)

qqq∗+2 (O)
q∗2 =

1
O

(1− q∗2). Then,

qqq∗+2 (O)wSq
(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

1− qqq∗+2 (O)

qqq∗+2 (O)
q∗2 −

1

O − 1

=

((
qqq∗+2 (O)− q∗2

)
wSq
(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

+
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

q∗2
qqq∗+2 (O)

)
1

O
(1− q∗2)− 1

O − 1

=

((
qqq∗+2 (O)− q∗2

)
wSq
(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

+
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

1− qqq∗+2 (O)

qqq∗+2 (O)
q∗2

)
1

O
− 1

O − 1

>

[
1

O − 1
−
qqq∗+2 (O)wSq

(
qqq∗+2 (O)

)
wS
(
qqq∗+2 (O)

)
− s

1− qqq∗+2 (O)

qqq∗+2 (O)
q∗2

]
1

O
.

The last inequality uses
(qqq∗+2 (O)−q∗2)wSq (qqq∗+2 (O))

wS(qqq∗+2 (O))−s
> 1, and 1

O
− 1

O−1
= 1

O(O−1)
.

Lemma 12. For any p ∈ (p∗−2 , pgr) such that dλU (p,µ̂̂µ̂µ)h
dp

= 0, we have d2λU (p,µ̂̂µ̂µ)h
dp2

< 0.

Proof. First, simple algebra gives us equalityB (p, 0) = B (p, µ̂̂µ̂µ)+µ̂̂µ̂µλUµ (p, µ̂̂µ̂µ), and µ̂̂µ̂µλUµ (p, µ̂̂µ̂µ) =
λU (p, µ̂̂µ̂µ)−λI− (p). Recall that qqq− (p) is defined as type s−’s posterior about the risky project
when the background belief is p, and that λI− (p) = qqq− (p)λ.

Suppose there exists some p′ ∈ (p∗−2 , pgr) such that dλU (p,µ̂̂µ̂µ)h
dp

= 0. Taking derivative on

both sides of equality (35) with respect to p, at the p = p′, and applying dλU (p,µ̂̂µ̂µ)h
dp

= 0, we
have

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[
− λ

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− s− s+ λU (p, µ̂̂µ̂µ)h

))
−λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

) dB (p, µ̂̂µ̂µ)

dqqq−

]
Since B (p, µ̂̂µ̂µ) = s+ s− λU (p, µ̂̂µ̂µ)− wS (qqq−), and dλU (p,µ̂̂µ̂µ)h

dp
= 0 at p = p′, we have at p = p′,

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[
− λ

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− wS

(
qqq−
)
−B (p, µ̂̂µ̂µ)

))
+
λU (p, µ̂̂µ̂µ)

(
λ− λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

λqqq−
(
1− qqq−

)
wSq
(
qqq−
) ]
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If p′ ∈ [p∗−2 , p∗−1 ], then wS (qqq−(p′)) = s and hence wSq (qqq−(p′)) = 0. Apply inequality (43)

and the definition of function D, we have −d2λU (p,µ̂̂µ̂µ)
dp2

|p=p′ < 0.

If p′ ∈ (p∗−1 , pgr], (which is possible only if (p∗−1 , pgr] is nonempty,) then by the fact that
aS (qqq−(p′)) ∈ (0, 1) (that is, in the symmetric MPE under symmetric information, a player is
indifferent between experimenting and not experimenting, given that the other player plays
the MPE strategy), we have

λqqq−
(
1− qqq−

)
wSq
(
qqq−
)

= r
(
λqqq−h− s

)
+ λqqq−

(
λh−W S

(
qqq−
))
.

Using this equation to get rid of wS and wSq , we have

−d
2λU (p, µ̂̂µ̂µ)

dp2
B (p, 0)

=
dqqq− (p) /dp

λp (1− p)

[(
λU (p, µ̂̂µ̂µ)

λqqq−
− 1

)
λrs+ λλU (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

+
λU (p, µ̂̂µ̂µ)

(
λqqq− − λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

(
r
(
λqqq−h− s

)
+ λqqq−

(
λh− wS

(
qqq−
))) ]

=
dqqq− (p) /dp

λp (1− p)

[
−λ− λ

U (p, µ̂̂µ̂µ)

1− qqq−

(
λU (p, µ̂̂µ̂µ)

λqqq−
− 1

)
rs

]
(55)

< 0. (56)

The last inequality uses the fact that the right-hand side of equation (35) equals to 0 when
dλU (p, µ̂̂µ̂µ) /dp = 0 (and some algebra).35

C.3.2 The revealing rate of type s−

Lemma 13. In the gradual revelation phase, for p ∈ (p∗−2 , p∗−1 ) such that dλU (p, µ̂̂µ̂µ) /dp < 0,
the revealing rate of the informed player (1− µ̂̂µ̂µ)y (p, µ̂̂µ̂µ) strictly decreases in p.

35 To obtain equality (55), notice that

λU (p, µ̂̂µ̂µ)
(
λqqq− − λU (p, µ̂̂µ̂µ)

)
λqqq− (1− qqq−)

(
r
(
λqqq−h− s

)
+ λqqq−

(
λh− wS

(
qqq−
)))

=

(
λqqq− − λU (p, µ̂̂µ̂µ)

)
(1− qqq−)

(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λU (p, µ̂̂µ̂µ)

(
λh− wS

(
qqq−
)))

+

(
λqqq− − λU (p, µ̂̂µ̂µ)

)2
λqqq− (1− qqq−)

rs

Using the fact that the right-hand side of equation (35) equals to 0 when dλU/dp = 0, the right-hand side
of the equation above equals to

−λλU (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ) +

(
λqqq− − λU (p, µ̂̂µ̂µ)

)2
λqqq− (1− qqq−)

rs.

The equality (55) follows.
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Proof. Applying equation (14) and U ’s indifference condition (17), we have, in gradual rev-
elation phase,

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

aI+ (p, µ̂̂µ̂µ) + aU (p, µ̂̂µ̂µ)

= r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ λp (1− p)hdλU (p, µ̂̂µ̂µ) /dp+ λU (p, µ̂̂µ̂µ)

(
λh− s−

(
s− λU (p, µ̂̂µ̂µ)h

))
(57)

Using equation (35) to replace dλU (p, µ̂̂µ̂µ) /dp, we have

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)B (p, µ̂̂µ̂µ)

aI+ (p, µ̂̂µ̂µ) + aU (p, µ̂̂µ̂µ)

=
(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ 2λU (p, µ̂̂µ̂µ) (λh− s)

) B (p, µ̂̂µ̂µ)

B (p, 0)
(58)

Using equality aI+ (p, µ̂̂µ̂µ) = 1 and rearranging terms, we have

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)B (p, 0) =
(
1 + aU (p, µ̂̂µ̂µ)

) (
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ 2λU (p, µ̂̂µ̂µ) (λh− s)

)
For p ∈ (p∗−2 , p∗−1 ), we have aU = f(p) = r(s−λI−(p)h)

λI−(p)(λh−s) − 1; also, B(p, 0) = s − λI− (p)h.
Therefore,

(1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ) =
r
(
r
(
λU (p, µ̂̂µ̂µ)h− s

)
+ 2λU (p, µ̂̂µ̂µ) (λh− s)

)
λI− (p) (λh− s)

(59)

From this equation, if dλU/dp ≤ 0, then the left-hand side of equation (59), the revealing
intensity, strictly decreases as p increases.

C.3.3 U ’s growing pessimism or growing optimism right before separation

We here give a more detailed argument than in the main text. We do this in three steps.
Step 1. U ’s continuation MB of experimentation equals her flow continuation value. U ’s

continuation value comes from both players’ efforts, with I’s effort contributing only to the
continuation value whereas her own effort also to the flow value:

r(WU − s)︸ ︷︷ ︸
flow continuation value

= aU [r(λUh− s)︸ ︷︷ ︸
flow MB

+continuation MB] + aI [continuation MB].

Since I takes effort 1 with probability 1 at any state of the gradual revelation phase, and
U ’s total MB is 0 due to her indifference about experimentation, we have

r(WU − s)︸ ︷︷ ︸
flow continuation value

= continuation MB.
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Step 2. U ’s continuation value can be approximated (up to first order) by her expected
continuation value if I’s type were public and both players played the symmetric MPE.36 Since
U is indifferent about experimenting and not experimenting during the gradual revelation
phase, we assume that she takes effort 1 during this phase, that is, she matches her effort
with the informed player’s effort. Under this alternative strategy, in case I is of type s+, she
receives the same payoff as in the symmetric MPE (under symmetric information s+). In case
I is of type s−, both players equally share the effort load, which is higher than the single-
player solution and lower than the cooperative solution; hence each player’s continuation
value is between the continuation value corresponding to the symmetric MPE solution and
to the cooperative solution; since both the continuation value and its derivative with respect
to q− coincides under the symmetric MPE solution and the cooperative solution, each player’s
continuation value can be approximated by the symmetric MPE solution, in case I is of type
s−.

Step 3. A drop in q− reduces U ’s flow MB relatively more than it reduces U ’s continuation
MB, whereas a drop in q+ has the reverse effect.

U ’s flow MB is the expectation of her ex post flow MBs, r(λq+h − s) and r(λq−h − s),
which are linear in her ex post posteriors, (that is, I’s posteriors). This means, a mean-
preserving spread (henceforth, MPS) of U ’s belief profile does not change her flow MB.

U ’s continuation MB, as we will show later, equals her flow continuation value r(WU −
s), and can be approximated by the weighted average of her flow continuation values in
the symmetric information benchmark, r(wS(q+) − s) and r(wS(q−) − s), near the end of
the gradual revelation phase. That is, WU − s = µ(wS(q+) − s) + (1 − µ)(wS(q−) − s).
Different from the flow MB function, wS is convex ( from KRC-2005), meaning an MPS of
U ’s belief profile increases her continuation MB. Intuitively, the bigger gap between the ex
post posteriors q+ and q−, the more precise players’ information will be after separation,
hence the lower chance they will use the inferior project, leading to a higher future value to
U , and consequently, a higher incentive for U to accelerate experimentation so as to reap
this future value earlier.

A reduction in q− widens the spread between q+ and q− whereas a reduction in q+ narrows
it, resulting in distinct evolution patterns of U ’s flow MB and her continuation MB, if her
total MB were to stay constant. For example, the adjustment — q+ stays constant, q− drops
by dq, and µ rises by dµ to keep U ’s belief about the risky project unchanged — creates an
MPS of U ’s belief profile, whereby it increases her continuation MB without affecting her
flow MB. See Figure 7 for an illustration, in which, qU denotes U ’s (interim) posterior about
the risky project, and q̂− = q− − dq type s−’s posterior after the adjustment; the rise in
her continuation MB due to this MPS is represented by the upward pointing arrow. This
implies, to keep her total MB constant, I’s reputation µ needs to adjust back partially, so
that the newly dropping flow MB neutralizes the rising continuation MB. On the contrary,
the adjustment — q− keeps constant, q+ drops by dq, and µ rises by dµ to keep U ’s belief
unchanged — makes U ’s old belief profile an MPS of this new one, whereby it decreases
her continuation MB, preserving her flow MB. See Figure 8 for an illustration, in which,

36That is, U ’s continuation MB can be approximated by µwS(qqq+(p)) + (1− µ)wS(qqq−(p)).
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qU q+q−q̂− q

wS(q)− s

0 1

rise in U ’s
continuation MB
due to MPS

Figure 7: The rise in U ’s continuation MB due to a mean preserving spread

q̂+ = q+− dq denotes type s+’s posterior after the adjustment; the drop in U ’s continuation
MB due to this MPS is represented by the downward pointing arrow. Thus, to keep her
total MB constant, µ needs to rise further, so that the newly rising flow MB counterpoises
the dropping continuation MB.

C.4 Welfare analysis

C.4.1 Proof of Proposition 1

Depending on the parameters ρb and ρg, both subcases of case 2 can happen: for instance,
consider a < â but sufficiently close to â. If (ρb, ρg) are sufficiently low, player I will start
with a high reputation, implying a short gradual revelation phase, that is, pgr will be close
to p∗−2 . Hence p̃a = pgr, and the first subcase of case 2 occurs. If (ρb, ρg) are sufficiently high,
player I will start with a low reputation, implying a long gradual revelation phase, that is,
pgr will be far from p∗−2 . Hence p̃a < pgr, and the second subcase of case 2 occurs.

To prove Lemma 1, we first derive an HJB equation for ∆W (in Claim 6), and then show
that whenever ∆W = 0 for some p̃ ∈ (p∗−2 , pgr), we must have ∆W > 0 for all p ∈ (p̃, pgr]
(in Claim 7).

Claim 6. During gradual revelation phase, ∆W satisfies HJB equation (??).

We first prove this HJB equation holds and then offers an interpretation of it.

Proof of Claim 6. Rewrite the HJB equations of WU , W I+, W S+, and W S− in the following

54



qU q+q− q̂+ q

wS(q)− s

0 1

drop in U ’s
continuation MB
due to MPS

Figure 8: The drop in U ’s continuation MB due to a mean preserving contraction

way:

r
(
WU (p, µ̂̂µ̂µ)− s

)
= aU (p, µ̂̂µ̂µ) r

[
λU (p, µ̂̂µ̂µ)h− s

]
− (1− µ̂̂µ̂µ) y

(
WU (p, µ̂̂µ̂µ)−WU (p, µ̂̂µ̂µ)

)
+
(
1 + aU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

U (p, µ̂̂µ̂µ)

dp
+ λU (p, µ̂̂µ̂µ)

(
λh− s−

(
WU (p, µ̂̂µ̂µ)− s

))]
.(60)

This is the same with HJB equation (16), except that we collect the two usual optional value
parts together: the change in value if no revealing and no good news arrives, and the change
in value if no revealing and good news arrives.

r
(
W I+ (p, µ̂̂µ̂µ)− s

)
= r

[
λI+ (p)h− s

]
+
(
1 + aU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dW

I+ (p, µ̂̂µ̂µ)

dp
+ λI+ (p)

(
λh− s−

(
W I+ (p, µ̂̂µ̂µ)− s

))]
.(61)
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r
(
wS (qqq + (p))− s

)
= r

[
λI+ (p)h− s

]
+
(
1 + aU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dw

S (qqq + (p))

dp
+ λI+ (p)

(
λh− s−

(
wS (qqq + (p))− s

))]
+
(
1− aU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dw

S (qqq + (p))

dp
+ λI+ (p)

(
λh− s−

(
wS (qqq + (p))− s

))]
= r

[
λI+ (p)h− s

]
+
(
1 + aU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dw

S (qqq + (p))

dp
+ λI+ (p)

(
λh− s−

(
wS (qqq + (p))− s

))]
+

(
1− aU (p, µ̂̂µ̂µ)

)
2

[
wS (qqq + (p))− s−

(
λI+ (p)h− s

)]
. (62)

The first equality is due to the fact that p > pS+, and hence both players experiment with full
resource in the symmetric MPE of the symmetric information game. In the second equality,
we replace the optional value by

[
wS (qqq + (p))− s−

(
λI+ (p)h− s

)]
/2, which is obtained

from the first equality. The term(
1− aU (p, µ̂̂µ̂µ)

) [
wS (qqq + (p))− s−

(
λI+ (p)h− s

)]
can be interpreted as the welfare loss to both players in case player I is type s+, caused by
the lack of effort of player U (in the equilibrium of asymmetric information game, compared
with the symmetric MPE in the symmetric information game).

r
(
wS (qqq − (p))− s

)
= r

[
λI− (p)h− s

]
+
(
1 + aU (p, µ̂̂µ̂µ)

) [
−λp (1− p) dw

S (qqq − (p))

dp
+ λI− (p)

(
λh− s−

(
wS (qqq − (p))− s

))]
.(63)

Writing W S− in this way, we are saying that, in the symmetric information game with public
signal s−, U ’s payoff is obtained by her experimenting with full resource during p ∈ (p∗−2 , pgr)
and her teammate experimenting with resource aU (p, µ̂̂µ̂µ). (Note the role switching between
the players.) We may call this a pseudo-equilibrium (as her teammate does not find it
optimal to play like this). The reason we interpret W S− in this way is because, the sum of
effort will be the same in the equilibrium constructed for the asymmetric information game,
and in this pseudo-equilibrium we just specified in the symmetric information game with
public signal s−. This means that in the asymmetric information game, player U enjoys
an additional flow payoff r

(
1− aU (p, µ̂̂µ̂µ)

) (
s− λI− (p)h

)
due to effort saving in case I has

signal s−, compared with the symmetric information case.
We now combine these four HJB equations to derive an HJB equation of ∆W .
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From equation (23), and replacing µµµo by µ̂̂µ̂µ, we have

d∆W (p, µ̂̂µ̂µ)

dp
=

(
dWU (p, µ̂̂µ̂µ)

dp
+ µ̂̂µ̂µ

dW I+ (p, µ̂̂µ̂µ)

dp
− 2µ̂̂µ̂µ

dwS (qqq + (p))

dp
− (1− µ̂̂µ̂µ)

dwS (qqq − (p))

dp

)
+
µ̂̂µ̂µp
µ̂̂µ̂µ
µ̂̂µ̂µ
(
W I+ (p, µ̂̂µ̂µ)− 2wS (qqq + (p)) + wS (qqq − (p))

)
(64)

=

(
dWU (p, µ̂̂µ̂µ)

dp
+ µ̂̂µ̂µ

dW I+ (p, µ̂̂µ̂µ)

dp
− 2µ̂̂µ̂µ

dwS (qqq + (p))

dp
− (1− µ̂̂µ̂µ)

dwS (qqq − (p))

dp

)
+
µ̂̂µ̂µp
µ̂̂µ̂µ

(
∆W (p, µ̂̂µ̂µ)−WU (p, µ̂̂µ̂µ) + wS (qqq − (p))

)
(65)

Using equation (??), the four HJB equations (60) to (63), we obtain an HJB equation for
∆W (p, µ̂̂µ̂µ), with a term(

dWU (p, µ̂̂µ̂µ)

dp
+ µ̂̂µ̂µ

dW I+ (p, µ̂̂µ̂µ)

dp
− 2µ̂̂µ̂µ

dwS (qqq + (p))

dp
− (1− µ̂̂µ̂µ)

dwS (qqq − (p))

dp

)
.

We then apply equalities (64) and (65) to get rid of this term, and apply equations (14)

and (31) to get rid of µ̂̂µ̂µp
µ̂̂µ̂µ

. Finally, rearranging terms, we would obtain the HJB equation

(??).

We now interpret the HJB equation of ∆W . To derive a tractable HJB equation of ∆W ,
we manipulate the value functions (W S− in particular), so that they have a common com-
ponent 1 + aU (p, µ̂̂µ̂µ) in the optional values. After this manipulation, the effort levels can be
interpreted as: in the equilibrium constructed for the asymmetric information game, total
effort is 1 + aU (p, µ̂̂µ̂µ), and U ’s effort is aU (p, µ̂̂µ̂µ); in the symmetric information game with
public information s+, total effort is 2, and U ’s effort is 1; in the symmetric information
game with public information s−, total effort is 1 + aU (p, µ̂̂µ̂µ), and U ’s effort is 1. There-
fore, in the asymmetric information equilibrium, compared with the symmetric information
benchmark, total effort is reduced by 1−aU (p, µ̂̂µ̂µ) in case player I has signal s−, which causes
a reduction in the sum of optional value

(
1− aU (p, µ̂̂µ̂µ)

) [
wS (qqq + (p))− s−

(
λI+ (p)h− s

)]
(see derivation of HJB equation W S+ in the proof above); also, in the asymmetric infor-
mation equilibrium, U ’s effort is reduced by 1− aU (p, µ̂̂µ̂µ) (for both cases of signals), saving
experimentation cost

(
1− aU (p, µ̂̂µ̂µ)

) [
s− λU (p, µ̂̂µ̂µ)h

]
. Theses two terms are the first line on

the right-hand side of equation (??), resembling the “flow payoff” in a usual HJB equation.
The second line on the right-hand side of equation (??), the usual optional value of keeping
asymmetric information, is easy to explain: in case good news does not arrive and type
s− does not reveal, ∆W changes by d∆W (p,µ̂̂µ̂µ)

dp
dp; with probability

(
1 + aU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ) dt,

good news arrives, and ∆W jumps to 0; with probability (1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ) dt, type s− reveals
his type, and and ∆W jumps to 0 also. In this interpretation, it is important to notice that
in the definition of ∆W , type s−’s welfare gain or loss is cancel out, hence such manipulation
does not affect type s−’s welfare gain or loss.
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Rearranging terms, we have(
1 + aU (p, µ̂̂µ̂µ)

)
λp (1− p) d∆W (p, µ̂̂µ̂µ)

dp

= −
[
r +

(
1 + aU (p, µ̂̂µ̂µ)

)
λU (p, µ̂̂µ̂µ) + (1− µ̂̂µ̂µ) y (p, µ̂̂µ̂µ)

]
∆W (p, µ̂̂µ̂µ)

−
(
1− aU (p, µ̂̂µ̂µ)

)
r
[
µ̂̂µ̂µ
(
wS (qqq + (p))− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
. (66)

We will show that

Claim 7. During gradual revelation phase, if there is some p̃ such that ∆W (p̃, µ̂̂µ̂µ) = 0, and
d∆W (p̃,µ̂̂µ̂µ)

dp
≥ 0, then ∆W (p, µ̂̂µ̂µ) > 0 for all p ∈ (p̃, pgr].

Proof of Claim 7. At ∆W (p, µ̂̂µ̂µ) = 0, by using WU (p, µ̂̂µ̂µ) = s+ s− λU (p, µ̂̂µ̂µ)h, we also have

−
[
µ̂̂µ̂µ
(
wS (qqq + (p))− s−

(
λI+ (p)h− s

))
+ λU (p, µ̂̂µ̂µ)h− s

]
= µ̂̂µ̂µ

(
wS (qqq + (p))−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
+ (1− µ̂̂µ̂µ)

(
wS (qqq − (p))− s

)
(67)

To prove Claim 7, it is sufficient to show that if the right-hand side of equation (67) is
positive at some p̃, then it is positive for all p ∈ (p̃, pgr].

First, d
(
wS (qqq + (p))−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
/dp > 0. This is because, wS (qqq + (p))

and W I+ (p, µ̂̂µ̂µ), when taken as functions of type s+’s posterior qqq+(p), have derivative w.r.t
qqq+(p) in [0, λh]. Hence the derivative of wS (qqq + (p)) −W I+ (p, µ̂̂µ̂µ), when taken as function
qqq+(p), w.r.t. qqq+(p), is in [−λh, λh]. Since the derivative of λI+ (p)h, when taken as function
qqq+(p), w.r.t. qqq+(p), is λh, we have that

(
wS (qqq + (p))−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
, when

taken as function of qqq+(p), has positive derivative w.r.t. qqq+(p). As qqq+(p) strictly increases in p
during gradual revelation phase, we have d

(
wS (qqq + (p))−W I+ (p, µ̂̂µ̂µ) + λI+ (p)h− s

)
/dp >

0
Second, the right-hand side of equation (67) is strictly increasing in p whenever it is 0.

This is because if at p where it is 0, we have
(
wS (qqq + (p))− s−

(
λI+ (p)h− s

))
≤ 0. As µ̂̂µ̂µ

strictly decreases in p by Proposition 1, and W S− strictly increases in p, the right-hand side
of equation (67) is strictly increasing at such p’s.

Therefore, if type s+’s true posterior is above the myopic threshold, then asymmetric
information improves welfare. The intuition is the following. In the gradual revelation
phase, right before separation, U ’s gain (per unit of time) from asymmetric information in
case I holding signal s−, due to the team’s high effort, is

raU(λI−h− s) + (1 + aU)(λh− s),

which, by applying the formula for aU , equals

r(1− aU)(s− λI−h).

The team’s loss (per unit of time) from asymmetric information in case I holding signal s+,
caused by U ’s low effort, is

r(1− aU)[(λI−h− s) + (W S+ − s− (λI+h− s)),
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where the first part in the square bracket is U ’s forgone flow benefit per unit saved effort by
U , and the second part is the team’s forgone optional value per unit saved effort by U .

Hence the team’s net gain from asymmetric information right before separation, equals

r(1− aU)[(s− λUh)− µ(W S+ − s− (λI+h− s)),

which is the difference between U ’s expected flow gain from her saved effort and the loss of the
team’s optional value in case of s+ due to U ’s saved effort. During gradual revelation phase,
U ’s expected flow gain from experimentation also equals the required return r(WU − s),
which, right before separation, comes only from the required return in case the risky project
being good weighted by its probability, rµ(W S+ − s).37 Therefore, the team’s net gain per
unit of U ’s saved effort from asymmetric information equals difference between the required
return in case of s+ and the optional value, which is the flow gain from experimentation in
case of s+ weighted by its probability µ:

rµ(λI+h− s).

C.4.2 Welfare analysis in the pooling phase

Once we know the sign of ∆W (p, µ̂̂µ̂µ) at pgr, we would know the sign of ∆W (p, µ̂̂µ̂µ) at
the pooling Phase, that is, for p ∈ (pgr, 1), because the two have the same sign. The
intuition is simple; since during pooling Phase, both players experiment in the same manner
as in the symmetric MPE of the symmetric information game, hence the material payoff
collected during the pooling Phase is the same as in the symmetric MPE of the symmetric
information game (for the corresponding posteriors), implying that whether asymmetric
information improves welfare depends solely on the continuation value of ∆W (p, µ̂̂µ̂µ) at pgr.

From Lemma 1 and the above argument, we arrive at the following corollary:

Corollary 1. There exists Ô ∈ (OS,∞) such that

1. If O ≥ Ô, then ∆W (p, µ̂̂µ̂µ) > 0 over (p∗−2 , 1).

2. If O < Ô, and

(a) if there exists p̃O ∈ (p∗−2 , pgr) such that ∆W (p̃O, µ̂̂µ̂µ) = 0, then ∆W (p, µ̂̂µ̂µ) < 0 over
(p∗−2 , p̃O), and ∆W (p, µ̂̂µ̂µ) > 0 over (p̃O, 1);

(b) otherwise, ∆W (p, µ̂̂µ̂µ) < 0 over (p∗−2 , 1).

D Other Equilibria

D.1 Proof of Claim 1

Following the discussion right above Claim 1, we have, if a > ā, then I’s continuation
value at p∗−2 is his continuation value in the symmetric MPE with his private information

37This is obtained from the initial condition (20).
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being public: W I+(p, µ) = wS(qqq+(p)), and W I−(p, µ) = wS(qqq−(p)) (= s), at p = p∗−2 , and
µ > 0.

Let µ̂̂µ̂µ : (p∗−2 , pgr) → [0, 1] be the gradual revelation path in the constructed MPE. And
denote U ’s effort during the rewarding region of the gradual revelation path as f(p). Note
that, given an MPE that coincides with the constructed MPE over background beliefs [p∗−2 , p],
if I’s reputation at p is fixed, then type s+ strictly prefers to experiment over [p, p + dp],
whereas type s− strictly prefers not to so over the rewarding region or over the non-responding
region if the uninformed player’s effort is strictly higher than aS(qqq−); over [p, p + dp], the
uninformed player strictly prefers to experiment for µ > µ̂̂µ̂µ, and be willing to experiment at
µ < µ̂̂µ̂µ only if the informed player’s equilibrium effort strictly lower than 1. [Recall again
that players’ current efforts are strategic substitutes; the uninformed player is willing to
experiment at lower beliefs only if the informed player’s effort is lower, before separating].

We will use backward induction to show that, in any MPE, if the equilibrium strategies
over [p∗−2 , p] is the same as in the constructed MPE, then the equilibrium strategy over
[p, p+ dp] in the former MPE will be the same as in the constructed MPE.

Proof. Note that in the constructed MPE, µ̂̂µ̂µ is the borderline such that, if I’s effort is 1,
then U strictly prefers to experiment if the state is above it, and strictly prefers not to if the
state is below it, and is indifferent if the state is on this curve. Hence below this curve, U is
willing to experiment only if I’s effort is lower than 1.

Consider an MPE of the asymmetric information game, and denote the equilibrium effort
strategies of the uninformed player and of type s+ as ãU , ãI+. Let p̃ be the infimum over
[p∗−2 , pgr) such that equilibrium strategies differ from the constructed MPE.

(1) If there is some µ < µ̂̂µ̂µ such that the equilibrium strategies differ from the constructed
MPE over [p̃, p̃+ dp], then let µ̃ be such that the averaged uninformed player’s effort is the
lowest over [p̃, p̃ + dp]. For type s− to mimic type s+, we must have either, ãU/ãI+ ≥ f(p)
over the rewarding region, or ãU ≥ aS(qqq−(p)) over the non-responding region, both requiring
ãI+ < 1 (otherwise U would strictly prefer not to experiment, given that µ is low). If I
takes action ãI+, then at p̃, he will end up at state (p̃, µ̂̂µ̂µ) (since the equilibrium over [p∗−2 , p̃]
coincides with the constructed MPE). Now consider I deviating to effort 1 at reputation µ̃
and over the interval (p̃, p̃+dp). Type s+ strictly benefits from such a deviation as long as he
does not get a perfect bad reputation: he obviously gains if his reputation reaches above µ̂̂µ̂µ; if
he gets a reputation below µ̂̂µ̂µ (but still positive), then at p̃ his reputation immediately jumps
upward to µ̂̂µ̂µ after taking his equilibrium strategy ãI+(= 1), hence he also benefits. But type
s− strictly loses if his reputation does not change (hence jumps upward to µ̂̂µ̂µ after taking
action ãI+(= 1) at p̃). That is, the set of reputation making type s+ strictly benefit from
such a deviation is strictly larger than the set of reputation making type s− weakly benefit
from it. Therefore, by D1, after such a deviation, I should receive a perfect reputation; but
this suggests that type s− strictly prefers to deviate to effort 1 over (p̃, p̃+ dp) at reputation
µ̃.

(2) If the equilibrium strategies differ from the constructed MPE over [p̃, p̃+ dp], only at
reputations µ ≥ µ̂̂µ̂µ, which is possible only if ãI+ < 1 and ãU = 1. Consider I deviating to
effort 1 at such a reputation µ, over the interval (p̂, p̂ + dp). Then type s+ strictly benefits
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from such a deviation as long as he receives a reputation weakly above µ, whereas type s−
strictly loses if he gets a reputation weakly below µ; therefore, the set of reputation making
type s+ strictly benefit from such a deviation is strictly larger than the set of reputation
making type s− weakly benefit from it. By D1, after such a deviation, I should receive a
perfect reputation; but this suggests that type s− strictly prefers to deviate to effort 1 over
(p̃, p̃+ dp) at reputation µ.

Therefore, any MPE satisfying D1 should coincide with the constructed MPE over
[p∗−2 , pgr] (the gradual revelation region); that such MPE coincides with the constructed
MPE over the pooling region follows similar steps.
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