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Abstract
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is non-empty and, generically, finite. Pairs of players are shown to have jointly profitable
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player updates with some regularity.

Keywords: Networks, Learning, Public goods, Potential games.

JEL classification: C72, D74, D83, D85, H41.

∗This project is financed by the Centre for Human Enhancement and Learning.
†Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

E-mail: p.bayer@maastrichtuniversity.nl
‡Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

E-mail: p.herings@maastrichtuniversity.nl
§Department of Economics, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands.

E-mail: r.peeters@maastrichtuniversity.nl.
¶Department of Data Science and Knowledge Engineering, Maastricht University, P.O. Box 616, 6200 MD

Maastricht, The Netherlands. E-mail: f.thuijsman@maastrichtuniversity.nl.

1



1 Introduction

The theory of learning is of fundamental importance in game theory. With most of the focus

in the non-cooperative game theory literature being devoted to the study of equilibria – vari-

ous concepts, characterization of the equilibrium set, properties, refinements – it is critical to

understand how equilibrium is reached. However, the main concepts of equilibrium theory, and

in particular, the concept of Nash equilibrium, have proven difficult to validate, especially in

one-shot games. To quote Fudenberg and Levine (1998): “One traditional explanation of equi-

librium is that it results from analysis and introspection by the players in a situation where the

rules of the game, the rationality of the players, and the players’ payoff functions are common

knowledge. Both conceptually and empirically, these theories have many problems.” One of the

main goals of learning in game theory is to provide such a motivation. For one-shot games this is

typically achieved by interpreting the equilibrium points as results of a series of updates by the

players acting in a recurrent setting of that game. These updates are made in response to ob-

served moves by their opponents, with various assumptions on rationality. Ideally, as the players

discover more about the game and about their opponents, their collective decisions should, in

time, resemble equilibrium play. As such, the learning literature focuses mainly on the stability

and convergence properties of various learning processes.

The class of games in which we frame our analysis is the class of weighted network games.

This class of games corresponds to the private provision of local public goods games introduced by

Bramoullé and Kranton (2007) for undirected graphs and generalized by Bramoullé et al. (2014)

for weighted networks. For a comprehensive overview of related models see sections 3 and 4 of

Jackson and Zenou (2014). The main practical reason this class of games is worth studying,

is its wide range of applications in various subfields of economic theory, including R&D within

interlinked firms (König et al., 2014), crime within a social network (Ballester et al., 2006),

and peer effects with spatial interactions (Blume et al., 2010). Further applications include

pollution models as in Leontief (1970) as well as defense expenditures within an international

community as studied by Sandler and Hartley (1995) and Sandler and Hartley (2007). Networks

offer a simple way to model complex interactions between many decision makers. The simplest

network models are undirected graphs, in which a link between a pair of players indicates a

direct interaction. Since players may be indirectly affected by the neighbors of their neighbors,

and so on, each interaction may be relevant for each player, resulting in a profoundly rich model.

In weighted networks, interaction weights with arbitrary values, either positive or negative, are

used to characterize the way that pairs of interacting players influence each other.
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The parameters of a weighted network game are the weighted network itself, describing the

interactions between the players, a vector of targets that describes the players’ needs, and a

vector of upper bounds representing the players’ highest possible activity levels. Each player has

a concave benefit function of the weighted aggregate activity and a linear cost function of his

own activity. We show that the set of Nash equilibria of weighted network games is non-empty

and generically finite. Additionally, we show that under quite general conditions pairs of players

can jointly improve their payoffs, so Nash equilibria are not strong. We also give conditions such

that they are not Pareto efficient.

We study a class of learning processes with the following features. The players update their

decisions at discrete points in time, maximizing their payoffs for a single period. The updates

determine the status quo of the next period. At any given period, only one player is allowed

to update, the actions of every other player remain the same. This class of learning processes

includes e.g. the improvement paths of Monderer and Shapley (1996).

Weighted network games are generalized aggregative games (Dubey et al., 2006) as well as

best-response potential games (Voorneveld, 2000), but may not belong to the class of ordinal

potential games (Monderer and Shapley, 1996). Since weighted network games generally do

not have an ordinal potential, better-response dynamics may not converge, and we show the

possibility of non-convergence by an example.

Our main results concern the properties of adaptive learning processes centered around the

best responses. We find that convergence to the set of Nash equilibria requires two conditions:

(1) each update has to take the player closer to his contemporary best response, and (2) with

some regularity, every player must have the possibility to update. Furthermore, we show that

such processes converge to a Nash equilibrium point, if (3) the set of Nash equilibria is finite.

The first and second conditions concern the players, and may be interpreted as assumptions

of cautiousness and activity, respectively. The third condition concerns the parameters of the

weighted network game, and is generically satisfied, as mentioned above. The main significance

of our results is in the fact that convergence of the learning process to a Nash equilibrium can

be achieved with relatively weak assumptions on the behavior of the players.

To our knowledge, our paper is the first to consider discrete-time learning processes in the

setting of weighted network games. Bramoullé et al. (2014) and Bervoets and Faure (2016) study

best-response dynamics in continuous time. Bervoets et al. (2016) considers a two-stage stochas-

tic learning process with experimenting players that converges with probability one. Eskin et

al. (2012) considers a similar game of incomplete information played on a graph.

The paper proceeds as follows. Section 2 introduces weighted network games. Section 3
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contains the characterization of the set of Nash equilibria and its welfare properties. In Section

4 we explore the convergence properties of learning processes centered around the best response.

Section 5 concludes.

2 Weighted network games

Let I = {1, . . . , n} denote the set of players with n ≥ 2. The action set of player i ∈ I is

Xi = [0, xi] for xi > 0. Let xi ∈ Xi denote player i’s action. The action profile of all players is

denoted by x = (xj)j∈I and the action profile of all players except i by x−i = (xj)j 6=i. Similarly,

X =
∏

i∈I Xi denotes the set of action profiles and X−i =
∏

j∈I\{i}Xj the set of action profiles

for all players other than i.

Definition 2.1. The tuple G = (I,X, (πi)i∈I) is called a weighted network game if for every

i ∈ I the payoff function πi : X → R is given by:

πi(x) = fi

(∑
j∈I

wijxj

)
− cixi,

with cost parameters ci > 0, interaction parameters wij ∈ R, and benefit functions fi : R→ R.

Assumption 2.2. For every i ∈ I, wii = 1, and for every i, j ∈ I, wij = wji. Furthermore, for

every i ∈ I, the benefit function fi is twice continuously differentiable and satisfies the following

properties: (1) f ′i > 0, (2) f ′′i < 0, and (3) there exists ti ∈ R such that f ′i(ti)− ci = 0.

The interpretation is the following. Each player i ∈ I produces a specialized good using a

linear production technology. The costs of producing one unit of the good are equal to ci. The

production of player i is denoted by xi. Each player consumes his own good as well as those

of his neighbors. The total amount of consumption of player i is
∑

j∈I wijxj, the benefit of

consumption is fi(
∑

j∈I wijxj), and the desired amount of consumption, called target value, is

ti. For player i, the parameter wij captures the substitutability of one unit of player j’s good

to his own. If wij > 0, then player j’s production generates positive externalities for player

i. Specifically, if wij = 1, then player i’s enjoyment of player j’s good equals that of his own

good. If wij ∈ (0, 1), then player i derives less benefits from player j’s good than from his

own. If wij ∈ (1,∞), then player i enjoys the good of player j more than that of his own.

Negative values of wij indicate that player j’s production has negative external effects on player

i’s benefits, with wij ∈ (0,−1), wij = −1, and wij ∈ (−1,−∞) indicating that the negative

effects are smaller, equal, or greater in magnitude than the positive effects of equal amounts of

the own good. The assumption wii = 1 is a normalization. The symmetry assumption wij = wji
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for i, j ∈ I is also made in previous studies like Dubey et al. (2006), Bramoullé and Kranton

(2007), and Bramoullé et al. (2014). The asymmetric case wij 6= wji is relatively unexplored in

the local public good setting, and hence an interesting direction for future research (see Bourlès

et al. (2017) for a model of transfers with asymmetric interactions).

The consumption benefit is strictly increasing in xi and concave by properties (1) and (2)

of the benefit function. The marginal benefits equal the marginal costs of production at the

target value ti by property (3). Note that since the target value ti can be above or below values

achievable by using action profiles in X, property (3) of the benefit function is without loss of

generality.

Example 2.3. Let I = {1, 2} be a set of two countries that have to decide on the level of their

defense expenditures. We take Xi = [0, Zi], where Zi denotes the GDP of Country i ∈ I, and

W =

(
1 w12

w12 1

)
.

The increasing, concave functions f1 and f2 indicate the countries’ benefits from defense. Let

ti = 0.01Zi, indicating that both countries have a target value for defense expenditure of 1% of

their GDP. This is the amount they would spend on defense if the other nation spends nothing.

If w12 = 0, then neither country benefits from the other’s defense expenditure, nor are they

threatened by it. This may indicate neutrality or a significant geographical distance. If w12 > 0,

the two nations are allies, and the game becomes a game of strategic substitutes. In this case both

nations benefit from the other’s defense spending and therefore, national defense expenditures

are likely to be lower than 1% of GDP. If w12 < 0, the two nations are hostile to each other, and

the game is a game of strategic complements. In this case the nations are hurt or threatened by

the other’s defense spending and hence, defense expenditures will likely exceed 1% of GDP.

In case w12 = 1, Example 2.3 results in the 2-player pure public good model of defense expendi-

ture between allies, while 0 < w12 < 1 gives the symmetric version of the limited substitutability

public good model of defense expenditure between allies, developed by Sandler and Hartley

(2001). They do not consider the case w12 < 0. In the subsequent section, we discuss how the

set of Nash equilibria of this particular game depends on the parameters t1, t2, and w12 in more

detail.

Our setup allows the modeling of more intricate relationships between players, as illustrated

by the following example.
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Example 2.4. Let I = {1, 2, 3} be a set of three countries deciding on the level of their defense

expenditures, Xi = [0, Zi], and

W =

 1 −1 1
−1 1 1
1 1 1

 ,

and t = (0.03Z1, 0.03Z2, 0.01Z3). In this example, Countries 1 and 2 are rivals, but both of them

are friendly to Country 3. An example of this type of relationship may be that of Israel, Saudi

Arabia, and the U.S. since the 2000s.

Example 2.4 and similar examples that feature intransitive relationships between countries can-

not be modeled in the spirit of Sandler and Hartley (2001). Our setup therefore reflects more

closely the possible intricacies of diplomatic relationships, and can be used to model any system

of alliances and threats, provided that the relationship between any two nations is symmetric.

Games with strategic substitutes and complements are of great relevance in the economic

literature. The game of Example 2.3 can be interpreted as a game where two firms choose their

output to maximize their profits, with the parameter w12 deciding whether their products are net

substitutes or net complements. An interaction matrix similar to Example 2.4’s may describe the

relationship between two competitor firms producing substitute goods, e.g. plane manufacturers

Airbus and Boeing, and a third firm producing a complementary good, e.g. a kerosene supplier

Exxon Mobil. Other such examples include gaming consoles, XBox and Playstation with a game

developer EA Sports, or tea companies Lipton and Twinings with a sugar company Südzucker.

Weighted network games provide a framework to model any type of relationship structure with

any number of companies.

We denote the set of weighted network games satisfying Assumption 2.2 by G. Weighted

network games in G are described by (i) the vector of upper bounds x ∈ Rn
++ characterizing the

players’ action spaces, (ii) a weighted network, which is a matrix W = (wij)i,j∈I capturing the

nature of the interactions between the players, and (iii) a vector of targets t ∈ Rn describing

levels where marginal benefits are equal to marginal costs of the players. Since wii = 1 for every

i ∈ I and wij = wji for every i, j ∈ I, the number of free parameters in W is n(n − 1)/2. Let

w ∈ Rn(n−1)/2 denote the column vector of the upper triangular elements of W . We define the

set of parameters P = Rn
++ × Rn(n−1)/2 × Rn. Then, for (x,w, t) ∈ P, let G(x,w, t) be the set

of weighted network games in G with upper bounds x, interaction parameters w, and targets

t. A weighted network game in such a set is characterized by the benefit functions fi and cost

parameters ci.

For the benefit functions fi, the properties in Assumption 2.2 imply that for every x−i ∈ X−i,
πi(xi, x−i) has a unique global maximizer in Xi. For player i ∈ I, let bi : X → Xi denote his
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best-response function, i.e. bi(x) = argmax xi∈Xi
πi(xi, x−i) for every x ∈ X. We now show that

for a fixed configuration (x,w, t) ∈ P , all games in G(x,w, t) are best-response equivalent, which

implies that all games in G(x,w, t) have the same set of Nash equilibria.

Lemma 2.5. Let (x,w, t) ∈ P and let G ∈ G(x,w, t) be a weighted network game. For every

i ∈ I and x ∈ X it holds that

bi(x) =


0 if ti −

∑
j 6=iwijxj < 0,

ti −
∑

j 6=iwijxj if ti −
∑

j 6=iwijxj ∈ [0, xi],

xi if ti −
∑

j 6=iwijxj > xi.

(1)

Proof. By differentiation of the payoff function we get

∂πi(xi, x−i)

∂xi
= f ′i(

∑
j∈I

wijxj)− ci.

The first order condition of unconstrained maximization is satisfied if f ′i(
∑

j∈I wijxj) − ci = 0.

Using property (3) of fi this is satisfied if
∑

j∈I wijxj = ti.

If ti −
∑

j 6=iwijxj ∈ [0, xi], then it follows that bi(x) = ti −
∑

j 6=iwijxj. Note that the second

order condition of maximization is satisfied due to the concavity of fi, and, therefore, of πi.

If ti −
∑

j 6=iwijxj < 0, then for every xi ∈ Xi it holds that ti <
∑

j∈I wijxj. Invoking

properties (2) and (3) of fi, for every xi ∈ Xi we have f ′i(
∑

j∈I wijxj) < ci, meaning that

∂πi(xi, x−i)/∂xi is uniformly negative. Therefore, πi is maximized for the lowest possible value

of xi, so bi(x) = 0.

Similarly, if ti −
∑

j 6=iwijxj > xi, then for every xi ∈ Xi it holds that ti >
∑

j∈I wijxj.

Properties (2) and (3) of fi guarantee that for every xi ∈ Xi we have f ′i(
∑

j∈I wijxj) > ci, and

that ∂πi(xi, x−i)/∂xi is uniformly positive. Therefore, πi is maximized for the highest possible

value of xi, so bi(x) = xi. This concludes the proof. �

It is useful to define a player’s unconstrained best response, the contribution level they would

choose if instead of [0, xi], their set of available actions were equal to R. For player i ∈ I and

action profile x ∈ X, let b̂i(x) = ti −
∑

j 6=iwijxj denote this value. Clearly, b̂i(x) 6= bi(x)

implies that ti −
∑

j 6=iwijxj 6∈ [0, xi] and therefore the actual best response is on the boundary:

bi(x) ∈ {0, xi}.
For i ∈ I, we define the numbers bi and bi by bi = minx−i∈X−i

(ti −
∑

j 6=iwijxj) and bi =

maxx−i∈X−i
(ti−

∑
j 6=iwijxj). Since the set X−i is compact, both bi and bi are well-defined. It is

easily seen that the unconstrained best response of player i always belongs to the interval [bi, bi].
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Lemma 2.5 shows that for every player i ∈ I and every action profile x ∈ X such that

bi(x) ∈ (0, xi), ceteris paribus changing a player j’s action by ∆xj changes player i’s best

response by −wij∆xj.

3 Nash equilibria

Since the paper’s main focus is on the convergence of adaptive learning processes to the set of

Nash equilibria, as a precursor we characterize the relevant properties of this set.

We first show that a weighted network game from Definition 2.1 satisfying Assumption 2.2

is a best-response potential game (Voorneveld, 2000). A game with set of players I, action

space X, and payoff functions (πi)i∈I is a best-response potential game if there exists a function

φ : X → R such that for every i ∈ I and every x ∈ X it holds that

argmax
xi∈Xi

πi(xi, x−i) = argmax
xi∈Xi

φ(xi, x−i). (2)

We call φ the best-response potential of game (I,X, π).

Proposition 3.1. Every weighted network game G ∈ G(x,w, t) with (x,w, t) ∈ P is a best-

response potential game with potential function φ : X → R defined by

φ(x) = x>t− 1
2
x>Wx, x ∈ X.

Proof. We show that for every x ∈ X and every i ∈ I it holds that

argmax
xi∈Xi

πi(xi, x−i) = argmax
xi∈Xi

φ(xi, x−i).

The left-hand side of the equality above equals bi(x). For the right-hand side, notice that x>W

is the row vector of consumption levels of each player, x>W = (
∑

j∈I w1jxj, . . . ,
∑

j∈I wnjxj),

using the fact that W is symmetric. Multiplication by x gives

x>Wx = x1
∑
j∈I

w1jxj + · · ·+ xn
∑
j∈I

wnjxj.

Differentiating φ(xi, x−i) by xi leads to

∂φ(xi, x−i)

∂xi
= ti − 1

2

(
2xi +

∑
j 6=i

wijxj +
∑
j 6=i

wjixj

)
= ti −

∑
i∈I

wijxj,

where the last equality uses the symmetry of W .
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Setting the derivative of φ with respect to xi equal to zero gives the extreme point xi =

ti −
∑

j 6=iwijxj, and as long as ti −
∑

j 6=iwijxj ∈ [0, xi], it is the unique maximum, since the

second derivative is −wii = −1.

If ti−
∑

j 6=iwijxj < 0, then, since xi ≥ 0, the first derivative of φ with respect to xi is uniformly

negative on [0, xi] hence the unique maximum is achieved for the minimal contribution, xi = 0.

Similarly, if ti −
∑

j 6=iwijxj > xi, then the first derivative is uniformly positive, meaning

that, in [0, xi], the unique maximum is achieved for the maximal contribution, xi = xi. �

For games with continuous action sets, the existence of a best-response potential is of particular

interest. Jensen (2010) and Ewerhart (2017) study this question and its implications in the class

of aggregative games, and contest games, respectively. It is a pivotal step in our analysis as well,

for the best-response potential guarantees that the set of Nash equilibria is non-empty and has

strong implications on the convergence properties of best-response dynamics.

In addition, for network games on unweighted graphs, Bervoets and Faure (2016) show the

following property:

sgn
(∂πi(xi, x−i)

∂xi

)
= sgn

(∂φ(xi, x−i)

∂xi

)
.

This property can be easily generalized for weighted network games. Games that satisfy this

property are called locally ordinal potential games. In Section 4 we show that weighted network

games do not belong to the class of ordinal potential games (Monderer and Shapley, 1996) as

they admit better-response cycles (Example 4.5).

We now turn to the characterization of Nash equilibria. We first show existence. For

(x,w, t) ∈ P, let X∗(x,w, t) denote the set of Nash equilibria of a game in G(x,w, t).

Proposition 3.2. For every (x,w, t) ∈ P, it holds that X∗(x,w, t) 6= ∅.

Proof. Let b : X → X be the function such that its component i ∈ I is equal to bi, the best-

response function of player i. Since X is non-empty, compact, and convex, and b is continuous,

the existence of x∗ such that b(x∗) = x∗ is guaranteed by Brouwer’s fixed-point theorem. �

Proposition 3.2 states that each weighted network game has a Nash equilibrium. Note that this

does not hold in case the action space is unbounded, as negative interaction parameters may

cause an infinite increase of best replies. This is illustrated in the following example.

Example 3.3. Consider the 2-player weighted network game of Example 2.3 with w12 = −1.

Then, the unconstrained best responses are

b̂1(x) = x2 + t1
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and

b̂2(x) = x1 + t2.

In this example, the only Nash equilibrium is x∗ = x. If the strategy sets were unbounded, no

Nash equilibrium would exist.

Since the games we study are best-response potential games (Proposition 3.1), we can char-

acterize the set of Nash equilibria as the solution set of the constrained optimization of the

best-response potential.

Proposition 3.4. Let some (x,w, t) ∈ P be given. It holds that x∗ ∈ X∗(x,w, t) if and only if x∗

satisfies the Karush-Kuhn-Tucker (KKT) conditions, i.e. for every i ∈ I, there exist λi, µi ∈ R+

such that
ti −

∑
j∈I wijx

∗
j + λi − µi = 0,

x∗i ≥ 0, xi ≥ x∗i ,

λix
∗
i = 0, µi(xi − x∗i ) = 0.

Proof. Since every game in G(x,w, t) is a best-response potential game with potential function

φ, every Nash equilibrium satisfies the stated KKT conditions.

Since, for every i ∈ I, for every x ∈ X, it holds that

∂2φ(x)

∂x2i
= −1 < 0,

every point satisfying the KKT conditions yields a Nash equilibrium. �

Our version of this result aligns with Lemma 1 of Bramoullé et al. (2014), formulated for networks

with all weights equal to 0 or 1. In section VI they mention the generalization for weighted

networks and refer to the best-response potential as the exact potential of the linar-quadratic

model of Ballester et al. (2006).

In what follows we derive conditions for the interaction matrix and the vector of targets

that guarantee the equilibrium set to be finite. For (x,w, t) ∈ P, let Ξ(x,w, t) denote the set of

solutions (x, λ, µ) to the KKT conditions of Proposition 3.4. For H ⊆ I, let

ΞH(x,w, t) = {(x, λ, µ) ∈ Ξ(x,w, t) : ∀i ∈ H, λi = µi = 0, and ∀i ∈ I \H,max{λi, µi} > 0}.

In words, ΞH(x,w, t) denotes the set of solutions to the KKT conditions of Proposition 3.4 such

that for every player in H neither complementarity condition is binding and for every player

outside H exactly one complementarity condition is binding. Note that both complementarity

conditions cannot be binding simultaneously.
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The set X∗H(x,w, t) is obtained by taking the projection of ΞH(x,w, t) to the set of action

profiles X, X∗H(x,w, t) = projX ΞH(x,w, t), where projX is the projection mapping to X. If

x∗ ∈ X∗H(x,w, t), then x∗ ∈ X∗(x,w, t) and for every i ∈ I \H we have x∗i ∈ {0, xi}. It follows

that X∗(x,w, t) =
⋃
H⊆I X

∗
H(x,w, t). Then, clearly, the set of Nash equilibria X∗(x,w, t) is finite

if and only if for every H ⊆ I, X∗H(x,w, t) is finite.

Let bounds x ∈ Rn
++, interaction parameters w ∈ Rn(n−1), and a set H ⊆ I be given. The

set of target vectors for which X∗H(x,w, t) is infinite is denoted by

TH = {t ∈ Rn : |X∗H(x,w, t)| =∞}.

The set TH denotes its closure. Further, let

T = {t ∈ Rn : |X∗(x,w, t)| =∞}

denote the set of target vectors that yield infinitely many Nash equilibria and let T denote the

closure of T .

Lemma 3.5. For every x ∈ Rn
++, for every w ∈ Rn(n−1)/2, for every H ⊆ I, the set TH has

Lebesgue measure zero.

Proof. Let some x ∈ Rn
++, some w ∈ Rn(n−1)/2, and some H ⊆ I be given.

First consider the case H = ∅. Then, for every t ∈ Rn it holds that X∗∅ (x,w, t) ⊆
∏

i∈I{0, xi},
meaning that for every t ∈ Rn we have |X∗∅ (x,w, t)| <∞. It follows that T∅ = T ∅ = ∅.

Now consider the case H 6= ∅. We show that there exists a set UH ⊂ Rn of Lebesgue measure

zero such that TH ⊆ UH .

For every t ∈ Rn, for every x∗ ∈ X∗H(x,w, t), we have that

x∗i ∈ {0, xi}, i ∈ I \H,

ti −
∑

j∈H wijx
∗
j −

∑
j∈I\H wijx

∗
j = 0, i ∈ H.

Let WH = (wij)i,j∈H denote the submatrix of W that we obtain by removing every row and every

column whose index is not contained in H. Further, let WH,−H = (wij)i∈H,j∈I\H , tH = (ti)i∈H ,

x∗H = (x∗i )i∈H , and x∗−H = (x∗i )i∈I\H . Now, the previous system of equations can be written in

matrix form as

WHx
∗
H = tH −WH,−Hx

∗
−H . (3)

Therefore, by the Rouché-Capelli theorem, |X∗H(x,w, t)| = ∞ implies rank(WH) < |H|. So

TH = TH = ∅ whenever rank(WH) = |H|. Consider the case where rank(WH) < |H|. For

y ∈
∏

i∈I\H{0, xi}, let Uy
H be the set of target vectors t such that tH −WH,−Hy belongs to the
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span of WH . Notice that Uy
H is an (n− |H|+ rank(WH))-dimensional vector space and therefore

a closed set of Lebesgue measure zero. Let UH =
⋃
y∈

∏
i∈I{0,xi}

Uy
H . Since UH is a union of finitely

many closed sets of Lebesgue measure zero, it is also closed and is of Lebesgue measure zero.

Notice that t ∈ Rn \ UH implies that t ∈ Rn \ TH , since for every t ∈ Rn \ UH the system

WHx
∗
H = tH −WH,−Hx

∗
−H

has no solutions in x∗H . It follows that TH ⊆ UH . Furthermore, since UH is closed, we also have

TH ⊆ UH . �

We prove Lemma 3.5 for the closure of the set TH , which implies that the set of target vectors

with infinitely many Nash equilibria is not only small in a measure theoretic sense, but also in

a topological sense.

The intuition behind Lemma 3.5 is that for a fixed subset of players, the set of interior Nash

equilibria corresponds to the solution set of a linear system which, generically, has only one

solution. The case of infinitely many solutions, and hence, the possibility of infinitely many

Nash equilibria obtains only if the rank of the interaction matrix is not full and the target vector

belongs to a vector space parallel to the span of the interaction matrix, which is only the case

for a set of target vectors of Lebesgue measure zero.

As an illustation of Lemma 3.5 for the case where all targets are very large or very small,

i.e. for every i ∈ I we have ti > maxx∈X
∑

j∈I wijxj or ti < minx∈X
∑

j∈I wijxj, the set of Nash

equilibria is a subset of the corners of the strategy space X, i.e. X∗(x,w, t) ⊆
∏

i∈I{0, xi}, and

is therefore finite.

Lemma 3.6. For every x ∈ Rn
++, for every w ∈ Rn(n−1)/2, the set T has Lebesgue measure zero.

Proof. We show that there exists a set U ⊆ Rn of Lebesgue measure zero such that T ⊆ U .

Let U =
⋃
H⊆I UH . Since U is a union of finitely many sets of Lebesgue measure zero, it has

Lebesgue measure zero. Since T =
⋃
H⊆I TH , and TH ⊆ UH for every H ⊆ I, it also holds that

T ⊆ U . Once again, since U is closed, we have T ⊆ U . �

Corollary 3.7. For every x ∈ Rn
++, for every w ∈ Rn(n−1)/2, for almost every t ∈ Rn, the

weighted network game G ∈ G(x,w, t) has a finite number of Nash equilibria.

The generic finiteness of the set of Nash equilibria is illustrated in the following example.

Example 3.8. Fix parameters x and w12 in a weighted network game with two players. We

have shown in Corollary 3.7 that for almost every t ∈ R2 the set X∗(x,w12, t) is finite. For every
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t ∈ R2, the set X∗∅ (x,w12, t) is trivially finite, and it is easy to see that the sets X∗{1}(x,w12, t)

and X∗{2}(x,w12, t) are finite in the case of two players.

We therefore only check the interior solutions to the KKT problem of this game as defined

in Proposition 3.4, i.e. where all Lagrange parameters λi, µi are zero. In an interior solution

x∗ ∈ X∗{1,2}(x,w12, t), we have b̂1(x
∗) = x∗1 and b̂2(x

∗) = x∗2, therefore

x∗1 = t1 − w12x
∗
2,

x∗2 = t2 − w12x
∗
1.

In case w12 is not equal to 1 or −1, rearranging yields

x∗1 = t1−w12t2
1−(w12)2

,

x∗2 = t2−w12t1
1−(w12)2

.

Therefore, for every w12 ∈ R \ {−1, 1}, we have |X∗{1,2}(x,w12, t)| ≤ 1. Whether or not the set of

interior equilibria is empty depends on whether x∗ is an element of X.

If w12 = −1, it is easy to check that t1 = t2 = 0 yields infinitely many Nash equilibria

x∗ with x∗1 = x∗2. There can also be infinitely many Nash equilibria when t1 + t2 = 0. There

are no interior Nash equilibria for different values of t as then the system of best responses

is inconsistent. Similarly, if w12 = 1 then there can only be infinitely many Nash equilibria if

t1 = t2. Indeed, if x1+x2 > t1, then there are infinitely many Nash equilibria x∗ with x∗1+x∗2 = t1,

if x1 + x2 = t1, then there is a unique interior Nash equilibrium, and if x1 + x2 < t1, then there

are no interior Nash equilibria.

Our result makes use of the generic uniqueness of interior equilibria, but the network structure

allows the existence of a finite number of corner equilibria. Ballester and Calvó-Armengol (2010),

Belhaj et al. (2014) and Allouch (2015) provide results for the uniqueness of Nash equilibrium.

We conclude this section by discussing efficiency properties of the equilibria. We consider

efficiency in the Pareto sense. Other models consider efficiency in terms of minimizing total

efforts/production (Bramoullé and Kranton, 2007; Goyal, 2012), or maximizing total welfare

Helsley (2014). We first show that a pair of players with a non-zero interaction parameter can

always jointly deviate from an interior equilibrium to a better action profile. For a subset of

players H ⊆ I and δ ∈ R, let δH ∈ Rn denote the vector such that δHi = δ for i ∈ H and δHi = 0

for i ∈ I \H.

Proposition 3.9. Let (x,w, t) ∈ P be such that for some i, j ∈ I with i 6= j it holds that

wij 6= 0. Let x∗ ∈ X∗(x,w, t) be a Nash equilibrium of a game G = (I,X, π) ∈ G(x,w, t) such

that x∗i ∈ (0, xi) and x∗j ∈ (0, xj). Then there exists δ ∈ (0,min{x∗i , x∗j , xi − x∗i , xj − x∗j}) such

that πi(x
∗) < πi(x

∗ + sgn(wij)δ
{i,j}) and πj(x

∗) < πj(x
∗ + sgn(wij)δ

{i,j}).
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Proof. We first discuss the case wij > 0.

Since x∗i ∈ (0, xi) and x∗j ∈ (0, xj), it holds that
∑

k∈I wikxk = ti and
∑

k∈I wjkxk = tj.

Hence, for δ > 0 such that x∗i + δ ≤ xi and x∗j + δ ≤ xj, we have

πi(x
∗ + δ{i,j})− πi(x∗)

δ
=
fi(ti + δ(1 + wij))− fi(ti)

δ
− ci.

Since fi is concave, we have

fi(ti + δ) ≤ fi(ti + δ(1 + wij))− δwijf ′i(ti + δ(1 + wij)).

Therefore, we can write

πi(x
∗ + δ{i,j})− πi(x∗)

δ
≥ fi(ti + δ)− fi(ti)

δ
− ci + wijf

′
i(ti + δ(1 + wij)).

Let εi = minx∈X f
′
i(
∑

k∈I wikx
k). Since f ′i is a continuous function, its minimum over the compact

set X is well-defined. Notice that Assumption 2.2 guarantees that εi > 0. Thus,

πi(x
∗ + δ{i,j})− πi(x∗)

δ
≥ fi(ti + δ)− fi(ti)

δ
− ci + wijεi.

Also due to the continuity of f ′i , the term (fi(ti + δ)− fi(ti))/δ − ci converges to zero as δ goes

to zero. Hence, for sufficiently small positive δ, we have πi(x
∗ + δ{i,j}) − πi(x∗) > 0. The same

argument applies to agent j.

The case wij < 0 follows from very similar arguments. �

Proposition 3.9 implies that interior Nash equilibria are not strong Nash equilibria since there

are profitable deviations by coalitions of two linked players. It is then easy to derive the next

proposition, stating that interior Nash equilibria are not Pareto efficient provided that the inter-

action parameters are either all non-negative or all non-positive. See Elliott and Golub (2013)

for a characterization of efficient Nash equilibria in the non-negative case.

Proposition 3.10. Let (x,w, t) ∈ P be such that w ≥ 0 or w ≤ 0 and, for some i, j ∈ I with

i 6= j, it holds that wij 6= 0. Let x∗ ∈ X∗(x,w, t) be a Nash equilibrium of a game G = (I,X, π) ∈
G(x,w, t) such that x∗i ∈ (0, xi) and x∗j ∈ (0, xj). Then there exists δ ∈ (0,min{x∗i , x∗j , xi−x∗i , xj−
x∗j}) such that the action profile x∗ + sgn(wij)δ

{i,j} is a Pareto improvement over x∗.

Proof. We first consider the case where wij > 0. As per Proposition 3.9, there exists δ ∈
(0,min{x∗i , x∗j , xi − x∗i , xj − x∗j}) such that πi(x

∗ + δ{i,j}) > πi(x
∗) and πj(x

∗ + δ{i,j}) > πj(x
∗).

Since w ≥ 0 it follows that for every other player h ∈ I \{i, j} we have fh(
∑

k∈I whkx
∗
k+δ{i,j}) ≥

fh(
∑

k∈I whkx
∗
k), while his own action did not change, and therefore πh(x

∗ + δ{i,j}) ≥ πh(x
∗),

meaning that players i and j increasing their action by δ yields a Pareto improvement.

The case w ≤ 0 follows from similar arguments. �
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Together, Propositions 3.9 and 3.10 characterize some of the most important properties of interior

equilibria: they are neither strong nor efficient.

4 Convergence of learning processes

Within the framework of weighted network games, we consider learning processes where players

update their strategies sequentially. That is, given some initial action profile, one player changes

his action, while that of every other player remains the same. Then, another player makes a

change under similar circumstances, and so on. First, we are interested in the question whether

action profiles chosen by best-responding and better-responding players may cycle. Generally,

the non-existence of best-response cycles is a necessary but not sufficient condition of the con-

vergence of best-response dynamics (Kukushkin, 2015) and therefore this is an important first

step towards our convergence results.

Let N = {1, 2, . . .} denote the set of positive integers and let K = {{1, 2}, {1, 2, 3}, . . .}∪N be

a collection of index sets. For K ∈ K, we denote by K− the set that results from K by leaving

out its highest element. Notice that K− is equal to K if K = N.

Definition 4.1. Let some G ∈ G and K ∈ K be given. A sequence of action profiles (xk)k∈K is

a path in the game G if

1. for each k ∈ K− there exists a player ik such that xk+1
−ik = xk−ik ,

2. there is at least one k ∈ K− such that xk+1 6= xk.

If xk+1
−ik = xk−ik , and xk+1

ik
6= xk

ik
, then we call ik the updating player at period k.

As per Definition 4.1, a path is a sequence where at most one player has changed his contri-

bution between any two successive action profiles, while there are at least two different action

profiles in the sequence.

Definition 4.2. Let some G ∈ G and K ∈ K be given. A path (xk)k∈K is best-response

compatible in game G if for every k ∈ K− it holds that

1. if xk+1 = xk, then there exists ik ∈ I such that xk+1
ik

= xk
ik

= bik(xk),

2. if xk+1
ik
6= xk

ik
, then xk+1

ik
= bik(xk).

Definition 4.3. Let some G ∈ G and K ∈ K be given. A path (xk)k∈K is better-response

compatible in game G if for every k ∈ K− it holds that
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1. if xk+1 = xk, then there exists ik ∈ I such that xk+1
ik

= xk
ik

= bik(xk),

2. if xk+1
ik
6= xk

ik
, then πik(xk+1) > πik(xk).

Definitions 4.2 and 4.3 capture two of the simplest and best-known learning processes. In case

of a best-response compatible path, each updating player moves to his best available option. In

case of a better-response compatible path, updating players are only required to strictly improve

their payoffs. Clearly, a best-response compatible path is also a better-response compatible path.

Definition 4.4. Let some G ∈ G and K = {1, . . . ,m} ∈ K be given. A finite path (xk)k∈K in

the game G is a cycle if x1 = xm.

It is well known that best-response dynamics do not produce cycles in best-response potential

games (Voorneveld, 2000), which includes weighted network games by Proposition 3.1. Better-

response dynamics do not generate cycles in ordinal potential games (Monderer and Shapley,

1996). The following example shows that better-response cycles can occur within weighted

network games.

Example 4.5. Let I = {1, 2}, X1 = X2 = [0, 4], and t1 = t2 = 1. Moreover, let the payoff

functions be given by

π1(x1, x2) = 2
√
x1 + 0.6x2 − x1

and

π2(x1, x2) = 2
√
x2 + 0.6x1 − x2.

It is easy to check that π1 and π2 satisfy the properties laid down in Definition 2.1 and Assump-

tion 2.2 with w12 = 0.6, f1(z) = f2(z) = 2
√
z, and c1 = c2 = 1.

Table 1 presents a sequence of action profiles that constitutes a better-response cycle for this

example.

k xk1 xk2 π1(x
k) π2(x

k)

1 0 0.1 0.49 0.53
2 3 0.1 0.50 2.66
3 3 0 0.46 2.68
4 0.1 0 0.53 0.49
5 0.1 3 2.66 0.50
6 0 3 2.68 0.46
7 0 0.1 0.49 0.53

Table 1: Actions played and payoffs in the better-response cycle in Example 4.5.
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Note that the changes in player 1’s choice of actions between periods 1 and 2 and between

periods 3 and 4, as well as those for player 2 between periods 4 and 5 and between periods 6 and

7 are quite large, given the action space. Columns 5 and 6 of Table 2 present for each period

the distance between the current action and both the best response and the action chosen of the

player updating his action. Notice that in periods 1 and 4, the actions chosen are more than

twice as far away from the current action than the best response is, meaning that the updating

player, despite the increase in payoffs, has moved farther from his optimal decision than he

originally was. We refer to this as extreme overshooting beyond the best response. Our main

interest for the remainder of this section is to show how the extent of overshooting in a process

affects its convergence properties.

k xk1 xk2 bik(xk) |bik(xk)− xk
ik
| |xk+1

ik
− xk

ik
| αk

1 0 0.1 0.94 0.94 3 −2.19
2 3 0.1 0 0.1 0.1 0
3 3 0 1 2 2.9 −0.45
4 0.1 0 0.94 0.94 3 −2.19
5 0.1 3 0 0.1 0.1 0
6 0 3 1 2 2.9 −0.45
7 0 0.1

Table 2: The size of action changes in the better-response cycle of Table 1.

As before, for a path (xk)k∈K , let (ik)k∈K− denote the updating player in period k if there was

a change in the action profile and let it denote any other player if there was not. Furthermore,

for k ∈ K−, let the overshooting coefficient αk ∈ R ∪ {−∞,∞} be defined as

αk =
xk+1
ik
− bik(xk)

xk
ik
− bik(xk)

,

where we take the convention that in case the denominator is 0, αk = −∞ if the numerator is

negative, αk = 0 if the numerator is 0, and αk = +∞ if the numerator is positive. Column 7 of

Table 2 shows the values of αk in the better-response cycle of Example 4.5.

The coefficient αk determines the extent of overshooting of the updating player beyond the

best response. If there is overshooting, then αk is negative. There is no overshooting if αk is

positive. If αk = 0 then the updating player moved to the best response. If αk ∈ {−∞,∞} then

xk
ik

= bik(xk), so the player moved away from a best response. If αk < −1, then the new action

is farther from the best response relative to the action before the update.

Values of αk in (0, 1) correspond to a better response, while in case αk > 1 the payoff of the

updating player is lower than before. For negative values of αk, the threshold between better
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and worse replies depends on the payoff function. Naturally, the possible values that αk may

take depend on x.

As suggested by Example 4.5, sequences of action profiles that feature extreme overshooting

beyond the best response may cycle. We therefore characterize sequences by their extent of

overshooting.

Definition 4.6. A path (xk)k∈K in a game G ∈ G is α-centered for some α > 0 if for every

k ∈ K− it holds that |αk| < α.

A best-response compatible path is α-centered for every α > 0. Furthermore, for every α > 0

there exist paths that are better-response compatible and α-centered, but are not best-response

compatible. For instance, it is easy to see that every sequence (αk)k∈K− such that for every

k ∈ K−, αk ∈ [0,min{α
2
, 1
2
}], is both α-centered and better-response compatible. The restriction

of being α-centered on a better-response dynamic captures a form of cautiousness by the players,

as they do not engage in updates that take them very far from their optimal choice. For finite

values of α, players do not change their action in an α-centered path if they are at their best

response, as that would imply |αk| =∞.

For the remainder of this paper we mainly consider α-centered paths with α ∈ (0, 1). In these

paths, every updating player moves closer to his current best response.

We define the overshooting coefficient α̂k similar to αk, replacing the best-response function

b with the unconstrained best-response function b̂. For a path of action profiles (xk)k∈K , we

define

α̂k =
xk+1
ik
− b̂ik(xk)

xk
ik
− b̂ik(xk)

, k ∈ K−.

The relationship between αk and α̂k is summarized in the following lemma.

Lemma 4.7. Let (xk)k∈K be a path of action profiles in a game G ∈ G. The following statements

hold for every k ∈ K−:

(i) αk 6= α̂k implies bik(xk) ∈ {0, xik}.

(ii) αk ∈ (0, 1) implies α̂k ∈ (0, 1).

(iii) αk ∈ (−1, 0) implies αk = α̂k.

(iv) αk = 0 implies 0 ≤ α̂k ≤ 1.

(v) α̂k = 1 implies xk+1 = xk.

18



Proof. (i). If bik(xk) ∈ (0, xik), then it holds that bik(xk) = b̂ik(xk) and thus αk = α̂k.

(ii). We only need to consider the case αk 6= α̂k. By (i) we have bik(xk) ∈ {0, xik}. Take the case

bik(xk) = 0. Then it holds that b̂ik(xk) < 0, so xk+1
ik

< xk
ik

due to 0 < αk < 1, and thus

0 < αk =
xk+1
ik

xk
ik

<
xk+1
ik
− b̂ik(xk)

xk
ik
− b̂ik(xk)

= α̂k < 1.

The case bik(xk) = xik follows from similar arguments.

(iii). Since αk ∈ (−1, 0), we have

sgn(xkik − bik(xk)) = − sgn(xk+1
ik
− bik(xk)) 6= 0.

Therefore, it must hold that bik(xk) ∈ (0, xi), otherwise xk+1
ik

would not be in Xik . It follows

that bik(xk) = b̂ik(xk).

(iv). Once again, we only need to discuss the case αk 6= α̂k, so bik(xk) ∈ {0, xik}. Consider the

case bik(xk) = 0. We have that b̂ik(xk) < 0 and xk+1
ik

= 0 since αk = 0. It holds that

0 = αk ≤
−b̂ik(xk)

xk
ik
− b̂ik(xk)

= α̂k ≤ 1.

The case bik(xk) = xik follows from similar arguments.

(v). In case α̂k = 1, we have

xk+1
ik
− b̂ik(xk) = xkik − b̂ik(xk),

so xk+1
ik

= xk
ik
. �

In the following proposition we show the relation between the value of α̂k and changes in the

value of the potential function as defined in Proposition 3.1. This relationship will prove crucial

in our convergence analysis.

Proposition 4.8. Let (xk)k∈K be a path of action profiles in a game G ∈ G such that, for every

k ∈ K−, α̂k ∈ R. Then it holds that

φ(xk+1)− φ(xk) = 1
2
(1− α̂k)(1 + α̂k)(̂bik(xk)− xkik)2, k ∈ K−.

Proof. Using the definition of φ gives

φ(xk+1)− φ(xk) =
∑
i∈I

(xk+1
i − xki )ti − 1

2

∑
i∈I

xk+1
i (

∑
j∈I

wijx
k+1
j ) + 1

2

∑
i∈I

xki (
∑
j∈I

wijx
k
j ).
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Using the symmetry of the interaction matrix W and taking advantage of the fact that xk+1 is

the successor of xk in a path, we substitute xk−ik = xk+1
−ik to get

φ(xk+1)− φ(xk) = (xk+1
ik
− xkik)ti − 1

2
((xk+1

ik
)2 − (xkik)2)− (xk+1

ik
− xkik)

∑
j 6=ik

wikjx
k
j .

Factoring out xk+1
ik
− xk

ik
yields

φ(xk+1)− φ(xk) = (xk+1
ik
− xkik)[(tik − 1

2
(xk+1

ik
+ xkik)−

∑
j 6=ik

wikjx
k
j ].

Substituting b̂ik(xk) = tik −
∑

j 6=ik wikjx
k
j gives

φ(xk+1)− φ(xk) = (xk+1
ik
− xk

ik
)(b̂ik(xk)− 1

2
(xk+1

ik
+ xk

ik
))

= 1
2
(xk+1

ik
− xk

ik
)[̂bik(xk)− xk+1

ik
+ b̂ik(xk)− xk

ik
].

Finally, substituting xk+1
ik

= (1− α̂k )̂bik(xk) + α̂kx
k
ik

and b̂ik(xk)− xk+1
ik

= α̂k (̂bik(xk)− xk
ik

) gives

φ(xk+1)− φ(xk) = 1
2
(1− α̂k)(1 + α̂k)(̂bik(xk)− xkik)2.

�

Proposition 4.8 says that in a path of action profiles, the change of the potential is only deter-

mined by the magnitude of α̂k. Each time the updating player gets closer to his unconstrained

best response by his update, the value of the potential function increases, and each time he gets

further from the unconstrained best response, the value of the potential function decreases. This

property can be exploited to assess the possibility of cycles in the set of α-centered paths.

Proposition 4.9. A game G ∈ G has no 1-centered cycle.

Proof. Suppose that (xk)k∈K is a 1-centered cycle. For every k ∈ K− it holds by Lemma 4.7

that α̂k ∈ (−1, 1] and therefore, by Proposition 4.8, that φ(xk+1)− φ(xk) ≥ 0.

By Definition 4.1, each path has at least one pair of successive action profiles that are

different. Let k′ ∈ K− be such that xk
′+1 6= xk

′
. Since the path (xk)k∈K is 1-centered, Lemma

4.7 implies |α̂k′ | < 1, and therefore, by Proposition 4.8, φ(xk
′+1) − φ(xk

′
) > 0. Together with

the fact that φ(xk+1)− φ(xk) ≥ 0 for every k ∈ K−, we obtain a contradiction to (xk)k∈K being

a 1-centered cycle. �

By Proposition 4.9, if every update moves the updating player closer to his best response,

then better-response cycles cannot exist. This implies the non-existence of best-response cycles.

Notice that the cycle in Example 4.5 is not 1-centered, hence Proposition 4.9 is not applicable.
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Furthermore, notice that for α > 1, cycling is possible in an α-centered path. For example, if

we have i1 = i2 and α1 = α2 = −1, then (x1, x2, x3) constitutes a cycle. This means that α ≤ 1

is a necessary and sufficient condition for the non-existence of α-centered cycles.

Even in 1-centered cycles, a player may get farther away from his best response as a result

of updates by other players, meaning that subsequent updates for any given player are not

necessarily smaller in magnitude than previous ones. Nevertheless, we can show that the distance

between consecutive elements of any α-centered path with α < 1 converges to zero.

Proposition 4.10. Let (xk)k∈N be an α-centered path in a game G ∈ G such that α < 1. Then

it holds that limk→∞ ‖xk+1 − xk‖2 = 0.

Proof. We use the fact that xk+1
ik

= (1− α̂k )̂bik(xk) + α̂kx
k
ik

to obtain

‖xk+1 − xk‖22 = (xk+1
ik
− xkik)2 = (1− α̂k)2(̂bik(xk)− xkik)2.

Applying Proposition 4.8 gives

‖xk+1 − xk‖22 = 2
1− α̂k
1 + α̂k

(φ(xk+1)− φ(xk)).

Since the path is α-centered with α < 1, by Lemma 4.7 we have −α < α̂k ≤ 1. It follows that

‖xk+1 − xk‖22 ≤ 2
1 + α

1− α
(φ(xk+1)− φ(xk)). (4)

By Proposition 4.8 we have that the sequence (φ(xk))k∈N is monotonically increasing. Further-

more, since φ is continuous and the set X is compact, the sequence (φ(xk))k∈N is also bounded,

and hence it is convergent, so φ(xk+1)− φ(xk) → 0 as k → ∞. Since the right-hand side of (4)

converges to zero, it follows that ‖xk+1 − xk‖22 → 0 as k →∞. This implies our result. �

Proposition 4.10 follows from the monotonicity, and therefore, the convergence of the values

of the potential function along an α-centered path, by applying Proposition 4.8 to translate

differences in the value of the potential function to distances between action profiles.

With similar tools we can show that the distance between the current action and the best

response to it approaches zero for an updating player.

Proposition 4.11. Let (xk)k∈N be an α-centered path in a game G ∈ G such that α < 1. Then

it holds that limk→∞ |bik(xk)− xk
ik
| = 0.

Proof. Suppose it does not hold that limk→∞ |bik(xk) − xk
ik
| = 0. Then the sequence (ik, xk)k∈N

has a converging subsequence (ik
`
, xk

`
) with limit (i, x) such that |bi(x) − xi| = ε > 0. We

distinguish three cases: (a) b̂i(x) ∈ (0, xi), (b) b̂i(x) ≤ 0, and (c) b̂i(x) ≥ xi.
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Case (a). b̂i(x) ∈ (0, xi).

There is `′ ∈ N such that, for every ` ≥ `′, ik
`

= i, bi(x
k`) ∈ (0, xi), and |bi(xk

`
)− xk`i | ≥ ε/2. It

follows that α̂k` = αk` , so by Proposition 4.8,

φ(xk
`+1)− φ(xk

`

) ≥ 1
2
(1− αk`)(1 + αk`)

1
4
ε2 > 1

2
(1− α)(1 + α)1

4
ε2, ` ≥ `′. (5)

By Proposition 4.8, we have that the sequence (φ(xk))k∈N is monotonically increasing, so the sub-

sequence (φ(xk
`
))`∈N is monotonically increasing, and by (5) it tends to infinity. This contradicts

the fact that the continuous function φ has a maximum on the compact set X.

Case (b). b̂i(x) ≤ 0.

We have that bi(x) = 0 and xi = ε. There is `′ ∈ N such that, for every ` ≥ `′, ik
`

= i,

bi(x
k`) ≤ xk

`

i , and |bi(xk
`
) − xk

`

i | ≥ ε/2. If b̂i(x
k`) ≥ 0, then α̂k` = αk` . Otherwise, we have

b̂i(x
k`) < 0, so bi(x

k`) = 0, and

0 ≤ α̂k` =
xk

`+1
i − b̂i(xk

`
)

xk
`

i − b̂i(xk
`)
≤ xk

`+1
i − bi
xk

`

i − bi
=
αk`x

k`

i − bi
xk

`

i − bi
≤

1
2
αk`ε− bi
1
2
ε− bi

<
1
2
αε− bi
1
2
ε− bi

. (6)

The right-hand side of (6), denoted by β, belongs to (α, 1), so it holds that

−α < α̂k` ≤ β, ` ≥ `′.

By Proposition 4.8, we have that

φ(xk
`+1)− φ(xk

`

) ≥ 1
2
(1− αk`)(1 + αk`)

1
4
ε2 > 1

2
(1− β)(1 + β)1

4
ε2, ` ≥ `′. (7)

By Proposition 4.8, we have that the sequence (φ(xk))k∈N is monotonically increasing, so the sub-

sequence (φ(xk
`
))`∈N is monotonically increasing, and by (7) it tends to infinity. This contradicts

the fact that the continuous function φ has a maximum on the compact set X.

Case (c). b̂i(x) ≥ xi.

We can derive a contradiction along similar lines as in Case (b).

Since all three cases lead to a contradiction, we conclude that limk→∞ |bik(xk)−xk
ik
| = 0. �

Proposition 4.11 shows convergence to the best response for all updating players. In order to

achieve convergence to a Nash equilibrium, we need convergence to the best response for all

players. This can only be achieved if all players update regularly, otherwise nothing guarantees

convergence for a player who, for instance, never updates. We therefore define the notion of

updating in every ` periods, which is going to be the final condition for our main result.

Definition 4.12. Player i ∈ I updates in every ` periods in a path of action profiles (xk)k∈N in

a game G ∈ G if for every k ∈ N there exists k′ ∈ {k, . . . , k+ `−1} such that either [xk
′
i 6= xk

′+1
i ]

or [xk
′
= xk

′+1 and xk
′
i = xk

′+1
i = bi(x

k′)].
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A player satisfies Definition 4.12 if in every length ` segment of the path there is an action profile

at which he updated or there exists a pair of successive action profiles that are identical and the

player is at his best response.

We state a technical lemma.

Lemma 4.13. Let (xk)k∈N be a path of action profiles in a game G ∈ G such that limk→∞ ‖xk+1−
xk‖2 = 0. For every ε > 0, for every ` ∈ N, there exists M ∈ N such that, for every m > M, for

every k ∈ {m, . . . ,m+ `− 1}, we have ‖xk − xm‖2 < ε.

Proof. Let some ε > 0 and some ` ∈ N be given. The statement obviously holds for ` = 1, so

consider the case ` > 1.

For every δ > 0 there exists Mδ ∈ N such that for every m > Mδ we have ‖xm+1− xm‖2 < δ,

since limk→∞ ‖xk+1 − xk‖2 = 0. We take δ = ε/(`− 1) and consider an arbitrary m > Mδ.

Then, by the triangle inequality, for every k ∈ {m, . . . ,m+ `− 1} we can write

‖xk − xm‖2 ≤ ‖xk − xk−1‖2 + · · ·+ ‖xm+1 − xm‖2 < k−m
`−1 ε ≤ ε.

Therefore, Mδ is a suitable candidate for M . �

We are ready to present our main results. First we show that an α-centered path with α < 1 in

which every player updates regularly gets arbitrarily close to the set of Nash equilibria.

Theorem 4.14. Let (x,w, t) ∈ P and let (xk)k∈N be an α-centered path in a game G ∈ G(x,w, t)

such that α < 1. If there is ` ∈ N such that every player updates in every ` periods, then every

cluster point of (xk)k∈N belongs to X∗(x,w, t).

Proof. Since every linear function is Lipschitz continuous, the function bi : X → Xi is Lipschitz

continuous for every i ∈ I. Denote the Lipschitz constant of bi by Li.

Let x be a cluster point of (xk)k∈N. We prove the result by showing that, for every i ∈ I, for

every ε > 0, |bi(x)− xi| < ε.

Let i ∈ I and ε > 0 be given.

Let M1 ∈ N be such that, for every m > M1, for every k ∈ {m, . . . ,m + ` − 1}, we have

‖xk − xm‖2 < ε/(3 + 2Li). Lemma 4.13 guarantees the existence of such an M1.

Let M2 ∈ N be such that for every m > M2 it holds that |bim(xm) − xmim| < ε/(3 + 2Li).

Proposition 4.11 guarantees the existence of such an M2.

Let m > max{M1,M2} be such that ‖xm − x‖2 < ε/(3 + 2Li). Such an m must exist, since

x is a cluster point of the sequence (xk)k∈N.
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If player i updates in every ` periods, then there exists k′ ∈ {m, . . . ,m + ` − 1} such that

|bi(xk
′
) − xk′i | < ε/(3 + 2Li), where we use that m > M2. Since m > M1 as well, it holds that

‖xk′−xm‖2 < ε/(3+2Li), and by the choice of m we have ‖x−xm‖2 < ε/(3+2Li). In particular,

it follows that |xk′i − xmi | < ε/(3 + 2Li) and |xmi − xi| < ε/(3 + 2Li). By the triangle inequality

we get

|bi(xk
′
)− xi| ≤ |bi(xk

′
)− xk′i |+ |xk

′

i − xmi |+ |xmi − xi| <
3ε

3 + 2Li
.

Also, ‖x−xm‖2 < ε/(3+2Li) and ‖xm−xk′‖2 < ε/(3+2Li) imply that ‖x−xk′‖2 < 2ε/(3+2Li).

Using the Lipschitz continuity of bi, we get

|bi(x)− bi(xk
′
)| < 2Liε

3 + 2Li
.

Summing up, we have

|bi(x)− xi| ≤ |bi(x)− bi(xk
′
)|+ |bi(xk

′
)− xi| <

2Liε

3 + 2Li
+

3ε

3 + 2Li
= ε.

This concludes the proof. �

Theorem 4.14 combines the results in Propositions 4.8, 4.10, and 4.11. It states that when

players update their actions regularly, an α-centered path with α < 1 will cluster around the set

of Nash equilibria. The strength of Theorem 4.14 is that it holds for every weighted network

game.

As our final result of this paper, we show that in the generic case of a finite set of Nash

equilibria, every infinite α-centered path with α < 1 converges to a Nash equilibrium, provided

that the players update regularly.

Theorem 4.15. Let (x,w, t) ∈ P and let (xk)k∈N be an α-centered path with α < 1 in a game

G ∈ G(x,w, t) such that |X∗(x,w, t)| < ∞. If there is ` ∈ N such that every player updates in

every ` periods, then there exists x∗ ∈ X∗(x,w, t) such that limk→∞ x
k = x∗.

Proof. Let Y denote the non-empty set of cluster points of (xk)k∈N. Theorem 4.14 implies that

every element of Y is a Nash equilibrium. We therefore only have to show that Y is a singleton.

We know that the set Y is finite, since Y ⊆ X∗(x,w, t) and the set X∗(x,w, t) is finite by

assumption.

Let some y ∈ Y be given. Since the set Y is finite, there exists ε > 0 such that for every

x ∈ X \ {y} with ‖x− y‖2 ≤ ε it holds that φ(x)− φ(y) < 0. Take ε > 0 sufficiently small such

that the set

D(y) = {x ∈ X : ε
2
≤ ‖x− y‖2 ≤ ε}
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is non-empty. Since D(y) is also compact, the number φ = maxx∈D(y) φ(x) is well-defined. Note

that φ(y) > φ.

Since φ is continuous and y ∈ Y, we have that limk→∞ φ(xk) = φ(y). So there exists M1 ∈ N
such that for every k > M1 it holds that φ(xk) > φ. Furthermore, since limk→∞ ‖xk+1−xk‖2 = 0

by Proposition 4.10, it holds that there exists M2 ∈ N such that for every k > M2 we have

‖xk+1 − xk‖2 < ε/2.

Let m > max{M1,M2} be such that ‖xm− y‖2 < ε/2. Such an m must exist due to the fact

that y ∈ Y. We argue that for every k > m we have ‖xk − y‖2 < ε/2. Suppose to the contrary

that there exists k > m with ‖xk − y‖2 ≥ ε/2 and let k be the smallest such number. Since

k > M2 and ‖xk−1−y‖2 < ε/2, we have ‖xk−y‖2 < ε, hence xk ∈ D(y) and φ(xk) ≤ φ < φ(xm),

contradicting the fact that the sequence (φ(xk))k∈N is non-decreasing.

We have shown that for every ε > 0 sufficiently small, there exists m ∈ N such that for every

k > m it holds that ‖xk − y‖2 < ε/2. It follows that y is the only cluster point of (xk)k∈N. �

Theorem 4.15 provides sufficient conditions for an α-centered path to converge to a Nash equi-

librium. The conditions are as follows: every player must update regularly, α must be less than

one, and the set of Nash equilibria has to be finite. The latter condition holds generically as

stated in Corollary 3.7.

We conclude this section by an example illustrating the tightness of these sufficient conditions.

Example 4.16. Consider the case with no strategic interaction, w = 0, and interior target

values, for every i ∈ I, 0 < ti < xi. Then a game G ∈ G(x,w, t) has a single Nash equilibrium,

x∗ = t. Since the Nash equilibrium set is finite, Theorem 4.14 applies. It is easy to see that to

achieve convergence to the Nash equilibrium, the α < 1 condition cannot be weakened even in

this simple case.

Letting α = 1 allows for limk→∞ αk = 1, which means that Proposition 4.10 no longer holds.

In this case, the distance to the best reply, which is equal to the target value ti, is no longer

converging to zero. We have no convergence to the Nash equilibrium.

5 Conclusion

In this paper we consider weighted network games, a class of games with a very wide range of

applications, where direct, pairwise player interactions are described by a matrix of weights. We

show that this class of games is a subset of the class of best-response potential games and that

its set of Nash equilibria is generically finite.
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Pairs of linked players can always benefit from jointly deviating in an interior equilibrium.

Two players whose contributions are strategic substitutes of each other can jointly increase their

actions to increase their payoffs, while players whose contributions are strategic complements can

jointly decrease their actions to improve their payoffs. In case all players’ actions are strategic

substitutes or all players’ actions are strategic complements, such deviations lead to Pareto

improvements. Therefore, in general, equilibria are neither strong nor efficient.

We study a large class of better-response learning processes. The convergence properties of

these processes are determined by their centering parameter, which indicates to what extent

players can overshoot their best responses. If players move closer to the best response at each

update, as is the case for best-response dynamics and better-response dynamics with a centering

parameter of one, then the players get arbitrarily close to the set of Nash equilibria and converge

to a single Nash equilibrium whenever the set of Nash equilibria is finite, which is generically

the case. This is due to the fact that the best-response potential function is in every variable

symmetric around the best response of the players, hence moving closer to the best response

increases the value of the potential. In the case of better-response dynamics with unrestricted

overshooting, it is shown that cycles may arise.

The restrictions on overshooting that guarantee convergence to a Nash equilibrium in the

general case are the same as in a trivial game with no strategic interaction. The reason for this is

that the best-response potential function can be shown to increase whenever an updating player

moves closer to his best response, irrespective of the values of the interaction parameters. Our

results hence identify a rich class of learning processes that produce Nash equilibria, including

cautious better-reply dynamics.

Topics that are left unexplored in this paper include asymmetric interaction parameters. In

this case the existence of a best-response potential is no longer guaranteed, and hence, best-

response cycles may occur. Asymmetric interaction is a more general framework that allows the

modeling of a wider range of decision making scenarios. Examples include pollution between two

neighboring cities where one of the cities is upriver, hence it is affected far less by the pollution

of its neighbor than vice versa. Another topic is the issue of inefficiency of equilibria. These

inefficiencies may disappear in different – possibly more centralized – classes of learning processes.

Finally, the beliefs that shape the updates themselves are left unmodeled and unexplored in this

paper. These topics are open for future research.
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Belhaj, M., Bramoullé, Y., and Deröıan, F., 2014. Network games under strategic complemen-

tarities. Games and Economic Behavior, 88, 310-319.

Bervoets, S., Bravo, M., and Faure, M., 2016. Learning and convergence to Nash in games with

continuous action sets. Working paper.

Bervoets, S., Faure, M., 2016. Best-response in pure public good games on networks. Working

paper.

Blume, L.E., Brock, W.A., Durlauf, S.N., and Ioannides, Y.M., 2010. Identification of social

interactions. In Handbook of Social Economics, edited by Jess Benhabib, Alberto Bisin, and

Matthew O. Jackson, 853-964. Amsterdam: North Holland.
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