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Abstract

This paper formulates proportional representation in a parliamental election as a multi-prize contest

among political parties. In particular, we analyze the performance of commonly-used list rule, and

investigate what the optimal list rule is when candidates di¤er in their abilities to contribute. We show

that, in order to maximize the aggregated e¤ort exerted by the party candidates, each party should assign

the highest ability candidates to the middle of the list, while the top priority rankings and low priority

rankings should be assigned to lower ability candidates under the optimal list rule. Then, we turn to the

optimal mechanism. When individual e¤ort cost function is not too convex and the complemantarities of

individual e¤orts are not too strong, we show that the optimal monotonic mechanism is the optimal list

rule. Additional interesting observations are that under the same conditions, (i) if the optimal list rule

gives the highest ability candidate rank k, then the optimal (nonmonotonic) rule also selects her as the

winner if and only if the party wins k seats or more, and (ii) the optimal rule selects the lowest ability

candidate to the parliament if only one seat is won, unless the party is very small.

�Preliminary and Incomplete. We thank Dimitar Simeonov, Utku Unver, Bumin Yenmez, Huseyin Yildirim for their
comments.
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1 Introduction

There are countries of which parliament seats are allocated proportionally by the number of votes each party

collected. Each party announces a list of candidates with a priority order (a list rule), who compete as a

team with other party candidates. Obvious questions that come up in our mind are: Is a list rule a desirable

way to allocate prizes to the team members�e¤orts to collect votes for the party? If so, what is the best way

for a party to order heterogeneous ability candidates in its list rule?

Crutzen and Sahuguet (2017) and Crutzen, Flamand, and Sahuguet (2017) are the �rst to analyze the

incentive structure of the list rule in a parliamental election, or more generally in a contest between teams

that compete for multiple indivisible prizes. They set up a multi-prize contest model with a CES team-e¤ort

aggregator function, and compare di¤erent electoral systems and di¤erent intra-team prize allocation rules.

Their main analyses are on ex ante symmetric two party case with homogeneous candidates. In this paper,

we extend this basic model, allowing for heterogeneous abilities of candidates in order to see the performance

of the list rule and how a party leader should allocate heterogenous candidates on the priority list. More

generally, this paper analyzes competition by the parties by employing a party-optimal rule that maximize

the party�s winning probability given other parties�e¤ort levels.

We �rst show that there is an electoral equilibrium in multi-party proportional representation with list

rules for any priority list for each party. Then, we analyze the equilibrium system of equations. A party that

exert more aggregate e¤ort than another party in equilibrium achieves a higher winning probability, having

higher expected number of winning seats in the parliament. We also show that a rule change to improve a

party�s aggregate e¤ort increases the party�s winning probability, if each party�s aggregate e¤ort is stable

in equilibrium (although it is not necessary). This justi�es that a party�s behavior to choose its assignment

rule to maximize its aggregate e¤ort given other parties�aggregate e¤orts as given. With this result, we

concentrate on each party�s selection of optimal assignment rule including list rules.

We analyze the party-optimal rule for each party. Imposing a natural single-crossigness assumption on

the probabilities of number of winning seats, we characterize party-optimal rules. When individual e¤ort
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cost function is not too convex and the complementarities of individual e¤orts are not too strong, we show

that the optimal mechanism is deterministic: i.e., when any k seats are won by a party, then the party

assigns the seats to a certain size-k subset of candidates. We provide an algorithm to calculate the optimal

mechanism in this case (weaker complementarity and not too convex cost function). The optimal rule assigns

the highest ability candidate to about probability one half to get a parliamnet seat. This is to encourage

highest ability person to exert more e¤ort for the party. Note that the optimal (e¤ort-maximizing) rule is

not necessarily monotonic� even if a candidate could go to the parliament in the case that the party gets k

seats, it does not mean that the same candidate can go to the parliament in the case of k + 1 seats are won

by the party. If the expected number of winning seats exceeds one, the lowest ability candidate may go to

the parliament when only one seat is won in the realized state, exerting no e¤ort. Then, we impose a natural

monotonicity requirement on the mechanism (if a candidate goes to the parliament when k seats are won,

then she will go to the paliament when more than k seats are won). This monotonicity requirement assures

that all candidates exert e¤ort totheir parties. We show that the optimal monotonic rule is the optimal list

rule, which assigns the highest ability candidate in the middle of the list. The lowest ability candidates are

assigned to the top or the bottom of the optimal list rule which maximizes the aggregate e¤ort exerted by all

candidates. When individual cost function is rather convex and the complementarities of individual e¤orts

are strong, the probabilities of candidates�going to the parliament are ranked by their abilities.

To be completed.

1.1 Related Literature

(*)To be completed. Include references in the above two papers.

2 The Model

There are J parties (teams) that are competing for n parliament seats (indivisible prizes). Each party j

has n candidates who di¤er in their abilities (e¤ectiveness) in contributing to her party by making e¤ort.
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Candidate i in party j has ability aij and she decides how much e¤ort eij to contribute to her party j. Party

j�s winning number of seats is a random variable through a Tullock-style contest among J parties based on

the ratios of parties�e¤orts Ejs. In our basic model, we assume that seat allocation is determined through

"winning probability" of each party j:

pj =
Ej

E1 + :::+ EJ
;

and we assume that pj solely explain the number of seats party j wins as a random variable. mbut later this

assumption will be weakened to �rst-order stochastic dominance with single-crossingness when we analyze

e¤ort-maximizing intra-seat allocation rule. Each party�s e¤ort aggregator function is assumed to be a CES

function

Ej =

 
nX
i=1

aije
1��
ij

! 1
1��

;

where aij > 0 represents member ij�s ability in making e¤ort eij for all i = 1; :::; n and party j = 1; 2; :::; J .

Each candidate i�s individual e¤ort cost is speci�ed as 1
� eij . The following relationship holds regarding

candidate i�s e¤ort and party j�s aggregate e¤ort:

@Ej
@ehj

= ahj

 
nX
i=1

aije
1��
hj

! �
1��

e��hj = ahjE
�
j e

��
hj

Each party decides how it allocates winning number of seats among its candidates. One rule that is

often used in a parliament election is a list rule: party announces the priority ordering of its candidates, and

depending on the number of seats it wins, the highest priority candidates go to the parliament. In the basic

model, we analyze this list rule, then later we investigate what the optimal rules are.

3 A Party�s Probability of Winning k Seats

Let parties�winning probability vector be p = (p1; :::; pJ), and consider the probability of party j = 1�s

winning k1 seats. Let Pj = (P kj )
n
k=0 2 �n+1 be probability distribution of party j�s number of winning

seats: i.e., P kj is the probability of party j�s winning k seats with
Pn

k=0 P
k
j = 1. Assuming that seat
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allocation is determined by i.i.d., we have

P k1 = V C(n; k1)p
k1
1

�
"
n�k1X
k2=0

C(n� k1; k2)pk22
n�k1�k2X
k3=0

C(n� k1 � k2; k3)pk33 � :::

�
n�k1�:::�kr�2X

kJ�1=0

C(n� k1 � :::� kJ�2; kJ�1)pkJ�1J�1 p
n�k1�:::�kJ�2�kJ�1
J

35

First note that (pi + pj)
k
=
Pk

`=0 C(k; `)p
`
ip
k�`
j for any k. Setting k = n� k1 � :::� kJ�2, we have

n�k1�����kJ�2X
kJ�1=0

C(n� k1 � :::� kJ�2; kJ�1)pkJ�1J�1 p
n�k1�:::�kJ�2�kJ�1
J = (pJ�1 + pJ)

n�k1�:::�kJ�2

Repeatedly applying this, we have

P k11 = C(n; k1)p
k1
1 (p2 + :::+ pJ)

n�k1

= C(n; k1)p
k1
1 (1� p1)

n�k1

Thus, the probability of party j�s winning k seats is:

P kj = C(n; k)p
k
j (1� pj)

n�k
:

Note that

dP kj
dpj

= C(n; k)pkj (1� pj)
n�k

�
k

pj
� n� k
1� pj

�
= C(n; k)pk�1j (1� pj)n�k�1 (k � npj)

That is, the probability of party j�s winning k seats decreases with an increase in pj for k < k� = bnpjc+1,

and increases for k � k�.
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We will employ a slightly more general setup than i.i.d. random winning seat assumption. We let

Pj = (P
k
j )
n
k=0 2 �n+1 be functions of pj only: P kj = P kj (pj) for all k = 0; :::; n. This probability distribution

should naturally satisfy the �rst order stochastic dominance property:

First-Order Stochastic Dominance (FOSD). For all j = 1; :::; J , all pj 2 (0; 1), and all m = 1; :::; n,Pn
k=m

@Pk

@pj
> 0 holds.

In addition to this, we may impose the following plausible condition that is satis�ed in i.i.d. case

(k�(pj) = bnpjc+ 1).

Single-Crossingness on Winning Probabilities. For all j = 1; ::; J , and all pj 2 (0; 1), Pj = P (pj) =

(P k(pj))
n
k=0 2 �n+1 satis�es the following condition: there is k�(pj) 2 f1; :::; n � 1g such that (i) @Pk

@pj
� 0

for all k = 0; :::; k�(pj)� 1, and (ii) @P
k

@pj
> 0 for all k = k�(pj); :::; n.

Under this Single-Crossingness condition, we will analyze each party�s choice of rules of assigning seats

to its candidates, including list rules.

4 General Seat Allocation Rule and List Rule

A list rule is a simple and commonly used rule in proportional representation parliament elections in many

coutries. Party j�s candidates�names are listed with priority order, and if party j wins k seats then the top k

candidates on the list go to the parliament. That is, the mth candidate on the list will go to the parliament

with probability
Pn

k=m P
k
j (pj).

We can analyze each party�s e¤ort-maximizing rules by using a more general framework. A general

(stochastic) seat allocation rule is a list of functions (qk)nk=1 such that q
k : S(k) ! [0; 1] such that

S(k) � fS � Nj : jSj = kg and
P

S2S(k) q(S) = 1 for all k = 1; :::; n. A general seat allocation rule assigns

probabilities to which subset of k candidates go to the parliament when k seats are won in the election.
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When a general allocation rule is used, the member i of team j has the following bene�t function

Bij = V
nX
k=1

X
S2Si(k)

q(S)P k(pj);

where Si(k) = fS 2 Si(k) : i 2 Sg.

Let (l1; l2; :::; ln) be the list of priority ordering of candidates�names for a list rule. Then, for each k, let

Sk = fl1; :::; lkg 2 S(k) and let qk(Sk) = 1 and qk(S) = 0 for all S 2 S(k)nfSkg, and all k = 1; :::; n. Thus,

any list rule can be represented as a general seat assignment rule.

Taking the derivative of Bij with respect to eij , we obtain,

@Bij
@eij

= V

nX
k=1

X
S2Si(k)

q(S)
dP k

dpj

E�j

(E�j + Ej)
2

@Ej
@eij

= V
nX
k=1

X
S2Si(k)

q(S)
dP k

dpj
(1� pj)

pj
Ej

@Ej
@eij

=
V

eij

eij
Ej

@Ej
@eij

nX
k=1

X
S2Si(k)

q(S)
dP k

dpj
(1� pj) pj

=
aijV

eij

�
eij
Ej

�1�� nX
k=1

X
S2Si(k)

q(S)
dP k

dpj
(1� pj) pj

Thus, the �rst order condition assuming an interior solution is

@Bij
@eij

� e��1ij =
aijV

eij

�
eij
Ej

�1�� nX
k=1

0@ X
S2Si(k)

q(S)

1A dP k

dpj
(1� pj) pj � e��1ij = 0

or

aijV

�
1

Ej

�1�� nX
k=1

0@ X
S2Si(k)

q(S)

1A dP k

dpj
(1� pj) pj = e�+��1ij

or

eij =

24aijV � 1

Ej

�1�� nX
k=1

0@ X
S2Si(k)

q(S)

1A dP k

dpj
(1� pj) pj

35 1
�+��1

Note that this solution makes sense only when
Pn

k=1

�P
S2Si(k) q(S)

�
dPk

dpj
(1� pj) pj > 0. Otherwise, eij = 0
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must hold. Thus, formally, we can write

eij =

24aijV � 1

Ej

�1��
max

8<:
nX
k=1

0@ X
S2Si(k)

q(S)

1A dP k

dpj
(1� pj) pj ; 0

9=;
35 1

�+��1

Ej =

 
nX
h=1

ahje
1��
hj

! 1
1��

=

0B@ nX
i=1

aij

24aijV � 1

Ej

�1��
max

8<:
nX
k=1

0@ X
S2Si(k)

q(S)

1A dP k

dpj
(1� pj) pj ; 0

9=;
35

1��
�+��1

1CA
1

1��

= E
�(1��)
�+��1
j V

1
�+��1

0B@ nX
i=1

a
�

�+��1
ij

24max
8<:

nX
k=1

0@ X
S2Si(k)

q(S)

1A dP k

dpj
(1� pj) pj ; 0

9=;
35

1��
�+��1

1CA
1

1��

or

E
�

�+��1
j = V

1
�+��1

0B@ nX
i=1

a
�

�+��1
ij

24max
8<:

nX
k=1

0@ X
S2Si(k)

qk(S)

1A dP k

dpj
(1� pj) pj ; 0

9=;
35

1��
�+��1

1CA
1

1��

or

Ej =

8>><>>:V
0B@ nX
i=1

a
�

�+��1
ij

24max
8<:

nX
k=1

0@ X
S2Si(k)

qk(S)

1A dP k

dpj
(1� pj) pj ; 0

9=;
35

1��
�+��1

1CA
�+��1
1��

9>>=>>;
1
�

=

8><>:V
0@ nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

;

where rki =
P

S2Si(k) q
k(S) 2 [0; 1] is the probability of candidate i goes to the parliament when party j wins

k seats, and �k(pj) = dPk

dpj
(1� pj) pj which denotes the impact of increasing pj (or aggregate e¤ort Ej)

on the probability of winning k seats. Since when k seats are won, k party j candidates need to go to the

parliament,
Pn

i=1 r
k
i = k must hold for all k = 1; :::; n. To summarize the analysis, we have the following

Lemma.
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Lemma 1. Suppose that party j uses generalized assignment rule q = (qk)nk=1. Then, candidate i makes a

positive e¤ort if and only if
Pn

k=1 r
k
i �

k(pj) > 0. The resulting equilibrium aggregate e¤ort by party j is

Ej =

8><>:V
0@ nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

5 Equilibrium Analysis

Here, we will investigate how competition by the parties work. In particular, what each party tries to

maximize when parties are competing for the number of seats in the parliament. Since we assume that

(P k(pj))
n
k=1 is �rst-order stochastically dominated by (P

k(p0j))
n
k=1 for p

0
j > pj , each party j should try to

maximize pj . Since pj =
Ej

E1+:::+EJ
, it seems to make sense for party j to choose rule q = (qk)nk=1 in order

to maximize Ej given E�j . However, p = (p1; :::; pj ; :::; pJ) is actually determined in the interactions with

other parties in equilibrium, and it is important to check our intuitive approach makes sense.1

In this section, we start with existence of equilibrium. It is easy to observe that Ej depends only on pj

� nothing else (Ej = Ej(pj)). Thus, we can use the following �xed-point mapping to prove the existence of

equilibrium. Let p = (p1; :::; pJ) and

fj(p) =
Ej(pj)PJ
k=1Ek(pk)

for all j = 1; :::; J . Then f(p) = (f1(p); :::; fJ(p)) is a �xed point mapping from simplex�J �
n
p 2 RJ+ :

PJ
k=1 pk = 1

o
to itself, which is a continuous function. By Brouwer�s �xed point theorem, there exists a �xed point

p� = f(p�).

Theorem 1 (Existence Theorem). There exists an equilibrium for any pro�le of list rule a = (aj)
J
j=1,

where aj = (aj1; :::; ajn).

Let �ij = a
�

�+��1
ij . The following result is an immedidate consequence of equilibrium condition.

1 In the general equilibrium framework (in trade theory), we see cases of transfer paradox and immiserizing growth occurring.
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Proposition 1 (Winning Probability Ranking). In every equilibrium, the winning probabilities of

parties j and h satisfy the following:

pj R ph ()
nX
i=1

�ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

R
nX
i=1

�ih

"
max

(
nX
k=1

rki �
k(ph); 0

)# 1��
�+��1

In order to see how a party�s rule choice a¤ects equilibrium probability of winning, we analyze how

equilibrium probability distribution responds to an increase in a party member�s ability. Then, party j�s

aggregated e¤ort is written as

Ej =

8><>:V
0@ nX
i=1

�ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

;

An equilibrium is described by the following system of equations:2

0BBBBBBBBBBBBBB@

p1

...

pj

...

pJ

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

E1(p1)
E1(p1)+E�1(p�1)

...

Ej(pj)
Ej(pj)+E�j(p�j)

...

EJ (pJ )
EJ (pJ )+E�J (p�J )

1CCCCCCCCCCCCCCA
We will consider a comparative static exercise of increasing �ij . We drop the last equation from the system

2This analysis is valid for any prize allocation rule and for any functional form of the e¤ort aggregator function.
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since
PJ

j=1 pj = 1. Totally di¤erentiating the system, we obtain

0BBBBBBBBBBBBBB@

dp1

...

dpj

...

dpJ�1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBB@

@E1
@p1

E � E1
@E1
@p1

E2 � � � �
E1

@Ej
@pj

E2 � � � �
E1

@EJ�1
@pJ�1
E2

...
. . .

...
...

�Ej
@E1
@p1

E2 � � �
@Ej
@pj

E �
Ej

@Ej
@pj

E2 � � � �
Ej

@EJ�1
@pJ�1
E2

...
...

. . .
...

�EJ�1
@E1
@p1

E2 � � � �
EJ�1

@Ej
@pj

E2 � � �
@EJ�1
@pJ�1
E �

EJ�1
@EJ�1
@pJ�1
E2

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

dp1

...

dpj

...

dpJ�1

1CCCCCCCCCCCCCCA
+

0BBBBBBBBBBBBBBBBBBBBBB@

0

...

0

@Ej
@�ij

0

...

0

1CCCCCCCCCCCCCCCCCCCCCCA

d�ij

Since
@Ej
@pj

E �
Ej

@Ej
@pj

E2 = 1
E
@Ej
@pj

� pj
E
@Ej
@pj
, we have

0BBBBBBBBBBBBBB@

1� 1
E
@E1
@p1

+ p1
E
@E1
@p1

� � � p1
E
@Ej
@pj

� � � p1
E
@EJ�1
@pr�1

...
. . .

...
...

pj
E
@E1
@p1

� � � 1� 1
E
@Ej
@pj

+
pj
E
@Ej
@pj

� � � pj
E
@EJ�1
@pJ�1

...
...

. . .
...

pJ�1
E

@E1
@p1

� � � pJ�1
E

@Ej
@pj

� � � 1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

1CCCCCCCCCCCCCCA

0BBBBBBBBBBBBBB@

dp1

...

dpj

...

dpJ�1

1CCCCCCCCCCCCCCA
=

0BBBBBBBBBBBBBBBBBBBBBB@

0

...

0

@Ej
@�mj

0

...

0

1CCCCCCCCCCCCCCCCCCCCCCA

d�mj

Let �i =
1
E
@Ej
@pj

=
pj
Ej

@Ej
@pj

be party i�s aggregated e¤ort elasticity of its probability of winning. We can prove

the following Proposition.

Lemma 2. Suppose that candidate i�s ability is increased slightly. Then, we have

dpj
d�ij

=

24�1� �j�+ (1� pj) �jPJ�1
i=1; i 6=j

�
(1�pi)�i
1��i

�
35�1 @Ej

@�mj
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where @Ej
@�mj

= A
�
max

�Pn
k=1 r

k
i �

k(pj); 0
	� 1��

�+��1 for A > 0.

This technical lemma provides two important implications when the contents of the bracket is positive.

First, an increase in �ij increases party j�s winning probability as long as she makes positive e¤ort in

equilibrium, which is dictated by the sign of candidate i�s incentive term,
Pn

k=1 r
k
i �

k(pj). Second, the party

can increase Ej by adjusting q = (qk)nk=1 to shift weights
Pn

k=1 r
k
i �

k(pj) from low ability candidates to

high ability candidates. The sign of the contents of the bracket term is assured to be positive (but is not

necessary), if 1 > �j is satis�ed for all j = 1; :::; n. This condition can be considered as (individual) stability

of party j�s e¤ort naturally. If �j exceeds unity, it means that its best response is unstable: an increase in pj

increases pj even more. As a su¢ cient condition, we assume individual stability of each party�s e¤ort, and

assume that each party chooses an assignment rule to maximize Ej given E�j in the rest of the paper.

Proposition 2. Suppose that �j < 1 for all j = 1; :::; J . Then, for any i = 1; :::; n,
dpj
d�ij

> 0 holds if and

only if
Pn

k=1 r
k
i �

k(pj) > 0.

6 Party-Optimal Rules

Party j maximizes its aggregate e¤ort Ej by controlling q : S ! [0; 1] with
P

S2S(k) q(S) = k for all

k = 1; :::; n:

Ej =

8><>:V
0@ nX
i=1

�ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

where rki =
P

S2Si(k) q
k(S) 2 [0; 1] is the probability of candidate i goes to the parliament when party j wins

k seats, and �k(pj) = dPk

dpj
(1� pj) pj which denotes the impact of increasing pj (or aggregate e¤ort Ej)

on the probability of winning k seats. Since when k seats are won, k party j candidates need to go to the

parliament,
Pn

i=1 r
k
i = k must hold for all k = 1; :::; n.In order to solve this maximization problem, it would

be easier to work on an n � n assignment matrix R = (rki )i=1;:::;n; k=1;:::;n instead of mapping q. Then,

the issue is whether or not we can choose an assignment matrix freely as long as
Pn

i=1 r
k
i = k holds for all
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k = 1; :::; n. The following lemma provides a positive answer.

Lemma 3. Any n�n assignment matrix R such that (i) rki 2 [0; 1] for all i; k = 1; :::; n, and (ii)
Pn

i=1 r
k
i = k

for all k = 1; :::; n, can be achieved by some allocation rule q : S ! [0; 1] with
P

S2S(k) q
k(S) = k for all

k = 1; :::; n.

Thus, party j�s maximization problem becomes

max
(rki )

nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

s.t.
nX
i=1

rki = k for all k = 1; :::; n

where �k(pj) = dPk

dpj
(1� pj) pj with �k(pj) � 0 for all k = 0; :::; k� � 1, and �k(pj) > 0 for all k = k�; :::; n

by Single-Crossingness on Winning Probabilities.

Notice that the bracket in the above formula has power 1��
�+��1 . It turns out to be essential whether this

power is more than unity (� < 2 (1� �): a convex function), or less than unity (� > 2 (1� �): a concave

function). We will analyze these two cases separately.

6.1 Convex case: � < 2 (1� �)

In this case, we have the following result.

Lemma 4. Suppose that � � 2 (1� �) holds. For (rki )
n�1
k=1 and (r

k
h)
n�1
k=1 with r

k
i ; r

k
h > 0 for at least

some k and aij � ahj , let ~rki = min
�
rki + r

k
h; 1
	
and ~rkh = rki + r

k
h � ~rki for all k = 1; :::; n � 1. SupposePn

k=1 r
k
i �

k(pj) +
Pn

k=1 r
k
h�

k(pj) > 0. Then, we have

a
�

�+��1
ij

"
nX
k=1

rki �
k(pj)

# 1��
�+��1

+ a
�

�+��1
hj

"
nX
k=1

rkh�
k(pj)

# 1��
�+��1

< a
�

�+��1
ij

"
nX
k=1

~rki �
k(pj)

# 1��
�+��1

+ a
�

�+��1
hj

"
nX
k=1

~rkh�
k(pj)

# 1��
�+��1

13



Thus, it su¢ ces to consider a deterministic assignment matrix R in search for the optimal assignment function

q : S ! [0; 1] with
P

S2S(k) q(S) = k for all k = 1; :::; n.

We will consider deterministic assignment rules, so rki 2 f0; 1g for all i; k = 1; :::; n, since we assume

� � 2 (1� �). Rename candidates by their abilities in a decending order: a1j � a2j � ::: � anj . Since

� � 2 (1� �), we need to �nd an weight function q that assigns the highest of the following sum of weights

to i = 1, and the second highest to i = 2, and so on:

nX
k=1

rik�
k(pj)

in order to maximize Ej (thus, to maximize pj given E�j).

We can describe an assignment rule by the following n � n matrix R such that (i) each row represents

candidate i = 1; 2; :::; n, and each column k represents the number of seats won in the election, (ii) each (i; k)

argument rik is either 1 or 0, representing whether or not candidate i goes to the parliament when k seats

are won, and (iii) for each column k = 1; :::; n, the elements in the kth column sum up to k. In order to

describe the optimal (deterministic) mechanism, we will introduce some notations. Consider k = 1; :::; n be

the number of seats won by party j. For each k = 1; :::; n, party needs to send k candidates to the parliament.

Let �(i) = (�1(i); :::; �k(i); :::; �n(i)) be the number of seats available for each case k, and let �(i) be the

number of candidates left to be assigned when candidate i is going to be assigned: i.e., �(i) = n � i + 1.

We will assign seats to candidates in order starting from the highest ability candidate i = 1 in a decending

order. LetM(i) � fk 2 f1; :::; ng : �k(i) > 0g be the set of cases k in which candidate i can be sent to the

parliament, and let L(i) � fk 2 f1; :::; ng : �k(i) = �(i)g be the set of cases k in which candidate i must

be sent to the parliament (for feasibility: if not, k candidates cannot be sent to the parliament when k

seats are won). Denote the e¤ort-maximizing set of cases in which candidate i is sent to the parliament by

�(i) � f1; :::; k; :::; ng. Let �(i+1) = (�1(i+1); :::; �k(i+1); :::; �n(i+1)) be such that �k(i+1) = �k(i)� 1

if k 2 �(i), and �k(i + 1) = �k(i) otherwise. Initially, �(1) = (�1(1); :::; �k(1); :::; �n(1)) = (1; :::; k; :::; n),

�(1) = n, M(1) � f1; :::; ng, and L(1) � fng hold. The optimal set of cases for candidate i to go to the

14



parliament is de�ned by

�(i) = arg max
L(i)�K�M(i)

X
k2K

�j(k)

for i = 1; :::; n. This �(i) gives candidate i the largest aggregate weights
P

k2�(i) �j(k) available for her. The

matrix is completed by setting rik = 1 if and only if k 2 �(i) for all i = 1; :::; n and all k = 1; :::; n.

From Single-Crossingness on Winning Probabilities, it is clear that �(1) = fk�; k� + 1; :::; ng, since this

set collects all positive �k(pj)s without having no negative �k(pj)s. How about �(2)? It is still �(2) =

fk�; k� + 1; :::; ng as long as k� � 2 (�k�(2) � 1), sinceM(2) � f1; :::; ng. We consider two cases: (Case 1)

k� � n+1
2 , and (Case 2) k� > n+1

2 .

(Case 1: k� � n+1
2 ) In this case, we can assign the top k� candidates to fk�; k� + 1; :::; ng = �(1) = ::: =

�(k�). After that, as long as i < n � k� + 2, we assign �(i) = fi; i + 1; :::; ng. When i = n � k� + 2 comes,

we assign �(i) = fk� � 1g [ fi; i+ 1; :::; ng, and for i = n� k� + 3, �(i) = fk� � 2; k� � 1g [ fi; i+ 1; :::; ng,

and so on. When i = n, �(n) = f1; :::; k� � 1g [ fng.

(Case 2: k� > n+1
2 ) In this case, we can only assign the top n � k� candidates to fk�; k� + 1; :::; ng =

�(1) = �(n � k�). Since �k��1(n � k� + 1) = �n(n � k� + 1) = n � (n � k� + 1) + 1 = �(n � k� + 1),

�(n� k� +1) = fk� � 1; k�; :::; ng. Similarly, up to i = n� k� +1, �(i) = fn� i+1; :::; ng is assigned. After

that �(i) = fn� i+ 1; :::; k� � 1g [ fi; :::; ng.

Note that if
P

k2�(i) �j(k) � 0, then eij = 0 holds.

The e¤ort-maximizing rule described by the optimal assignment matrix R has qik = 1 if and only if

k 2 �(i) for all i = 1; :::; n and all k = 1; :::; n. This implies that the highest ability candidate 1 goes to the

parliament if and only if party j wins k� sets or more.

Proposition 3. Suppose � � 2 (1� �). Then, the optimal assignment rule is described by matrix R with

rik = 1 if and only if k 2 �(i) for all i = 1; :::; n and all k = 1; :::; n.

In order to illustrate the optimal assignment rule, we provide an example below.

Example 1. Suppose n = 7. We consider three cases: k� = 3, k� = 5, and k� = 1. The optimal assignment

15



matrix is described by R�3, R
�
7, and R

�
1 in the following:

R�3 =

0BBBBBBBBBBBBBBBBBBBBBB@

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 1 0 0 0 1 1

1 1 0 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA

R�7 =

0BBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 0 1 1 1

0 0 0 1 1 1 1

0 0 1 1 1 1 1

0 1 1 1 0 1 1

1 1 1 1 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA
When k� = 3, the lowest ability candidate 7 goes to the parliament only when party j wins k = 1; 2; 7 seats,

and candidate 6 goes to the parliament when party j wins k = 2; 6; 7 seats. When k� = 5 (party j is a

dominating party), then the highest ability candidates 1, 2, and 3 can go to the parliament only when party

j wins 5 or more seats. This is because the party wants the highest ability candidates work very hard to be

elected.

In contrast, when k� = 1, the optimal assignment matrix exhibits monotonicity� it is in fact the list rule

according to their abilities.

R�1 =

0BBBBBBBBBBBBBBBBBBBBBB@

1 1 1 1 1 1 1

0 1 1 1 1 1 1

0 0 1 1 1 1 1

0 0 0 1 1 1 1

0 0 0 0 1 1 1

0 0 0 0 0 1 1

0 0 0 0 0 0 1

1CCCCCCCCCCCCCCCCCCCCCCA

Corollary 1. Suppose � � 2 (1� �). When k� = 1, the optimal assignment rule is the list rule according

to candidates�abilities.
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Is there any justi�cation to use a list rule from e¤ort-maximization point of view when k� > 1? One

desirable property we may impose on the assignment matrix is monotonicity. A rule described by an as-

signment matrix R is monotonic if and only if rk+1i � rki for all i = 1; :::; n and k = 1; :::; n. As is seen

in Example 1, the optimal assignment matrix R does not necessarily satisfy monotonicity when k� > 1.

However, monotonicity is a very reasonable requirement. A particularly appealing property of a monotonic

rule is that everybody exert a positive e¤ort. This can be seen easily by rewriting
Pn

k=1 r
k
i �

k(pj):

nX
k=1

rki �
k(pj) = r

1
i

nX
k=1

�k(pj) +
�
r2i � r1i

� nX
k=2

�k(pj) + :::+
�
rni � rn�1i

�
�n(pj)

By the �rst order stochastic dominance,
Pn

k=m �
k(pj) > 0 for allm = 1; :::; n. By monotonicity, rki �rk�1i � 0

for all k = 1; :::; n (rk0 = 0). Thus, monotonicity implies:

max

(
nX
k=1

rki �
k(pj); 0

)
=

nX
k=1

rki �
k(pj) > 0

Proposition 4. Under any monotonic rule, every candidate exerts e¤ort.

Under determinic rules, monotonicity requires that if candidate i is sent to parliament when k seats

are won, she will be sent to the parliament if more than k seats are won. Let Z(m) = fm; :::; ng for all

m = 1; :::; n. Order Z(m)s by the value of
P

k2Z(m) �
k(pj) from the highest to the lowest: Z�1 ; Z

�
2 ; :::; Z

�
n.

Each of which is assigned to candidates 1; 2; :::; n, respectively. Denote the �rst element of Z�i by m
�(i).

Then, mapping m� : Nj ! f1; :::; ng is a one-to-one mapping.

Proposition 5. Suppose � � 2 (1� �). Then, the list rule m� : Nj ! f1; :::; ng is the optimal monotonic

assignment rule.

Note that m�(1) = k� and Z�1 = �
�
1. Thus, the top candidate�s assignments are exactly the same in the

optimal deterministic rule and the optimal list rule. Under the single-crossingness, it is easy to see that
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m�(2) is either k� + 1 or k� � 1, and m� orders candidates in such a way that it forms a single-peaked way

at peak m�(1) = k�. If parties�winning seats realizations follow i.i.d. random variables and if a list rule

m : Nj ! f1; :::; ng is used, then we have the following results.

Lemma 5. Suppose that winning seat realization follows i.i.d. Then, we can write party j�s aggregate e¤ort

as follows

Ej(pj) =

24V  pj (1� pj) nX
m=1

�mj!j(m)

!�+��1
1��

35
1
�

where !j(m) =
�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

.

Proposition 6 (Winning Probability and E¤orts in i.i.d. Case). In each party j, each candidate�s

and the aggregated e¤orts are a¤ected by the party�s (expected) winning probability: (i) for eachm = 1; :::; n,

@emj

@pj
R 0 () m R (n+ 1) pj , and (ii) @Ej@pj

R 0 ()
Pn

m=1 �mj!j(m) (m� (n+ 1) pj) R 0.

This proposition says that candidates who are ranked higher than pj (n+ 1) (i.e., m < pj(n + 1))

will reduce their e¤orts as party�s winning probability goes up. In contrast, lower-ranked candidates (i.e.,

m > pj(n+1)) will increase their e¤orts as pj goes up. As a result, the e¤ect of an increase in pj on Ej is a

rather complicated function of pj . In order to maximize the winning probability of party j, the party leader

needs to choose the ordering of candidates very carefully.

Remark. In this section we assumed convex case � < 2(1 � �), and justi�ed deterministic rules including

optimal list rule as the optimal monotonic rule. If we con�ne our attentiion to deterministic rules, which

may be well-justi�ed in a party�s political feasibility constraint, then the optimal list rule is the optimal

deterministic monotonic rule even if � � 2(1� �) holds.
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6.2 Concave Case � > 2 (1� �)

With strong complementarity of team members�e¤orts, the reward should not be concentrated to small set

of members.

Thus, party j�s maximization problem becomes

argmax
(rki )

8><>:V
0@ nX
i=1

a
�

�+��1
ij

"
nX
k=1

rki �
k(pj)

# 1��
�+��1

1A
�+��1
1��

9>=>;
1
�

s.t.
nX
i=1

rki = k for all k = 1; :::; n

or

max
(rki )

nX
i=1

a
�

�+��1
ij

"
nX
k=1

rki �
k(pj)

# 1��
�+��1

s.t.
nX
i=1

rki = k for all k = 1; :::; n

The optimal mechanism is the solution of the above (rather complicated) problem when � > 2 (1� �) holds.

As k increases the set rki will face more strict constraints (when k = n, r
n
i = 1 must hold: every candidate

needs to be sent to the parliament). We know, however, that �k(pj) = dPk

dpj
(1� pj) pj < 0 for all k < k�

and dPk

dpj
(1� pj) pj > 0 for all k > k�, and that what matters is just the weighted sum of the shares in the

bracket in achieving the optimal allocation. Intuitively, there will be a plenty of freedom using rks for low

ks to achieve unequal allocations.

Supposing that the sum of reward �R =
Pn

k=1 k
dPk

dpj
(1� pj) pj can be allocated freely to the candidates

according to their abilities, the optimal allocation is described by solving the following problem.

arg max
(Ri)ni=1

nX
i=1

a
�

�+��1
ij R

1��
�+��1
i s:t:

nX
i=1

Ri = �R =
nX
k=1

k
dP k

dpj
(1� pj) pj

The �rst order conditions generate the optimality conditions:

1� �
� + � � 1a

�
�+��1
ij R

1��
�+��1�1
i =

1� �
� + � � 1a

�
�+��1
hj R

1��
�+��1�1
h
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or

Ri
Rh

=

�
aij
ahj

� �
��2(1��)

for all i; h = 1; :::; n.

Proposition 7. Suppose � > 2 (1� �). Then, whenever feasible, the optimal assignment rule tries to

allocate the chances of candidates to get a seat in the parliament proportionally to candidates� abilities

(with power �
��2(1��) ).

Our Propositions 5 and 7 generate a generalized version of the result in Crutzen, Flamand, and Sahuguet

(2017) as a corollary. When candidates are homogenous, Ri = Rh holds for all i; h = 1; :::; n when � >

2 (1� �). Thus qik = k
n for all i; k = 1; :::; n, which generates the egalitarian rule. We can allow for

asymmetric parties (�j and �j can be party-dependent: thus di¤erent parties can use di¤erent rules) and a

non-i.i.d. probabilistic distribution.

Corollary 2. (Crutzen, Flamand, and Sahuguet, 2017) Suppose that all candidates have the same ability.

Then, if � � 2(1� �) then the optimal monotonic mechanism is the list rule, while if � > 2(1� �) then the

optimal mechanism is the egalitarian rule.

7 Conclusion

To be written.

Appendix

Here we provide an elementary proof of Lemma 1.
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Proof of Proposition 1. From the formula of Ej(pj),

Ej(pj)
� = V

0@ nX
i=1

a
�

�+��1
ij

"
max

(
nX
k=1

rki �
k(pj); 0

)# 1��
�+��1

1A
�+��1
1��

=

 
JX
k=1

Ek(pk)

!�
p�j

The last equality holds by pj =
Ej

E1+:::+EJ
. This implies that Ej(pj) R Ei(pi) if and only if pj R pi. We

completed the proof.�
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Proof of Proposition 2. Let the matrix in the left-hand side be D. Then, the determinant of D is

jDj =

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 1� 1
E
@Ej
@pj

0 � pj
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

pJ�1
E

@Ej
@pj

pJ�1
E

@EJ�2
@pJ�2

1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

����������������������������

=

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 1� 1
E
@Ej
@pj

0 � pj
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

pJ�1
E

@Ej
@pj

pJ�1
E

@EJ�2
@pJ�2

1� 1
E
@EJ�1
@pJ�1

����������������������������

+

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 1� 1
E
@Ej
@pj

0 � pj
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

pJ�1
E

@Ej
@pj

pJ�1
E

@EJ�2
@pJ�2

pJ�1
E

@EJ�1
@pJ�1

����������������������������
=

J�1Y
i=1

�
1� 1

E

@Ei
@pi

�
+
J�1Y
i=1

�
1� 1

E

@Ei
@pi

� J�1X
i=1

pi
E
@Ei
@pi

1� 1
E
@Ei
@pi

=
J�1Y
i=1

(1� �i)
J�1X
j=1

�
1 +

pj�j
1� �j

�
;
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where �i =
1
E
@Ej
@pj

=
pj
Ej

@Ej
@pj

is ith party�s aggregated e¤ort elasticity of its probability of winning. If we

impose stability on equilibrium, then it is natural to assume �i 2 (0; 1) for all i = 1; :::; J . Thus, under

stability, jDj > 0 is assured. Now, we can conduct a comparative static analysis:

dpj
d�mj

=
1

jDj

��������������������

1� 1
E
@E1
@p1

+ p1
E
@E1
@p1

� � � 0 � � � p1
E
@EJ�1
@pJ�1

...
. . .

...
...

pj
E
@E1
@p1

� � � @Ej
@�mj

� � � pj
E
@EJ�1
@pJ�1

...
...

. . .
...

pJ�1
E

@E1
@p1

� � � 0 � � � 1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

��������������������

=
1

jDj

����������������������������

1� 1
E
@E1
@p1

0 0 0 � p1
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
0 1� 1

E
@E2
@p2

0 0 � p2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
...

. . .
...

...
...

pj
E
@EJ�1
@pJ�1

pj
E
@EJ�1
@pJ�1

@Ej
@�mj

pj
E
@EJ�1
@pJ�1

pj
E
@EJ�1
@pJ�1

...
...

. . .
...

...

0 0 � � � 0 � � � 1� 1
E
@EJ�2
@pJ�2

�pJ�2
pJ�1

�
1� 1

E
@EJ�1
@pJ�1

�
pJ�1
E

@E1
@p1

pJ�1
E

@E2
@p2

0 pJ�1
E

@EJ�2
@pJ�2

1� 1
E
@EJ�1
@pJ�1

+ pJ�1
E

@EJ�1
@pJ�1

����������������������������
=

@Ej
@�mj

jDj

J�1Y
i=1;i 6=j

(1� �i)
J�1X

i=1;i 6=j

�
1 +

pi�i
1� �i

�
> 0
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Thus, by Cramer�s rule, we have

dpj
d�mj

=

QJ�1
i=1; i 6=j (1� �i)

PJ�1
i=1; i 6=j

�
1 + pi�i

1��i

�
@Ej
@�mjQJ�1

i=1 (1� �i)
PJ�1

i=1

�
1 + pi�i

1��i

�
=

PJ�1
i=1

�
1 + pi�i

1��i

�
� 1� pj�j

1��j�
1� �j

�PJ�1
i=1

�
1 + pi�i

1��i

� � @Ej
@�mj

=

QJ�1
i=1; i 6=j (1� �i)

PJ�1
i=1; i 6=j

�
1 + pi�i

1��i

�
QJ�1
i=1 (1� �i)

hPJ�1
i=1; i 6=j

�
1 + pi�i

1��i

�
+ 1 +

pj�j
1��j

i � @Ej
@�mj

=
1�

1� �j
� �
1 +

1+
pj�j
1��jPJ�1

i=1; i6=j

�
1+

pi�i
1��i

�� �
@Ej
@�mj

=

24�1� �j�+ (1� pj) �jPJ�1
i=1; i 6=j

�
(1�pi)�i
1��i

�
35�1 � @Ej

@�mj

Note that for all m = 1; :::; n and all j = 1; :::; J , we have

@Ej
@�mj

=
� + � � 1
� (1� �) Ej �

!j(m)Pn
m0=1 �m0j!j(m0)

> 0:

Thus, we obtained natural comparative static results.�

Proof of Lemma 3. We will prove the statement by induction. Our induction hypothesis is:

When the number of candidates is m, for any k = 1; :::;m � 1, and any element r 2 A(k;m),

there is qk : S(k;m) ! [0; 1] with
P

S2S(k;m) q(S) = 1 such that ri =
P

S2Si(k;m) q
k(S) for all

i = 1; :::;m. Then, when the number of candidates is m + 1, for and k = 1; :::;m, and any

element r 2 A(k;m+ 1), there is qk : S(k;m+ 1)! [0; 1] with
P

S2S(k;m+1) q(S) = 1 such that

ri =
P

S2Si(k;m+1) q
k(S) for all i = 1; :::;m+ 1.

First note that for any m, if k = 1 or k = m�1, for any element r 2 A(k;m), there is qk : S(k;m)! [0; 1]

with
P

S2S(k;m) q(S) = 1 such that ri =
P

S2Si(k;m) q
k(S) for all i = 1; :::;m. This is because if k = 1, each
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coalition is a singleton, and if k = m� 1, then each coalition excludes only one candidate. Second note that

when m = 3, the statement is correct by the �rst argument.

Now, we will start the induction argument. We suppose that when population is m, if for any k =

1; :::;m � 1, and any element r 2 A(k;m), there is qk : S(k;m) ! [0; 1] with
P

S2S(k;m) q(S) = 1 such

that ri =
P

S2Si(k;m) q
k(S) for all i = 1; :::;m. Consider population m + 1 and k = 2; :::;m � 1. Pick �r =

(�r1; :::�rm; �rm+1) 2 A(k;m + 1). Let (rk�11 ; :::; rk�1m ) = k�1
�mh=1�rh

(�r1; :::�rm) and (rk1 ; :::; r
k
m) =

k
�mh=1�rh

(�r1; :::�rm).

By the induction hypothesis, there are qk�1 : S(k � 1;m)! [0; 1] with
P

S2S(k�1;m) q
k�1(S) = 1 such that

(rk�11 ; :::; rk�1m ) =
P

S2Si(k�1;m) q
k�1(S) for all i = 1; :::;m, and qk : S(k;m)! [0; 1] with

P
S2S(k;m) q

k(S) =

1 such that (rk1 ; :::; r
k
m) =

P
S2Si(k;m) q

k(S) for all i = 1; :::;m. Take qk�1, and add candidate m+1 to every

size k � 1 coalition S with qk�1(S) > 0. This new assignment mapping �qk�1 : S(k;m + 1) ! [0; 1] withP
S2S(k;m+1) q

k�1(S) = 1 satis�es (rk�11 ; :::; rk�1m ; 1) =
P

S2Si(k;m+1) �q
k�1(S) for all i = 1; :::;m + 1. Now,

take qk, and apply the same mapping on S(k;m + 1): i.e., candidate m + 1 is never selected. Then, this

new assignment mapping �qk : S(k;m + 1) ! [0; 1] with
P

S2S(k;m+1) q
k(S) = 1 satis�es (rk1 ; :::; r

k
m; 0) =P

S2Si(k;m+1) �q
k(S) for all i = 1; :::;m + 1. Consider a convex combination of �qk�1 : S(k;m + 1) ! [0; 1]

and �qk : S(k;m + 1) ! [0; 1] with weights �rm+1 and 1 � �rm+1, and name it �q : S(k;m + 1) ! [0; 1]. This

mapping achieves �r = (�r1; :::�rm; �rm+1) 2 A(k;m+ 1). Hence, the induction hypothesis is proven.�

Proof of Lemma 4. It is easy to see

nX
k=1

rki �
k(pj) +

nX
k=1

rkh�
k(pj) =

nX
k=1

~rki �
k(pj) +

nX
k=1

~rkh�
k(pj)

Since 1��
�+��1 > 1 (convex function) and aij � ahj , the desired inequality holds.�

Proof of Lemma 5. Under a list rule, the mth candidate�s payo¤ is written as

Bmj � Cmj = V
nX

k=m

C(n; k)pkj (1� pj)
n�k � 1

�
e�mj
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Di¤erentiating the above with respect to emj , we obtain,

@Bmj
@emj

� dCmj
demj

= V
nX

k=m

C(n; k)
h
kpk�1j (1� pj)n�k � (n� k) pkj (1� pj)

n�k�1
i E�j

(E�j + Ej)
2

@Ej
@emj

� e��1mj

= V
nX

k=m

�
n!

(k � 1)! (n� k)!p
k�1
j (1� pj)n�k �

n!

k! (n� k � 1)!p
k
j (1� pj)

n�k�1
�

E�j

(E�j + Ej)
2

@Ej
@emj

� e��1mj

= V mC(n;m)pm�1j (1� pj)n�m
E�j

(E�j + Ej)
2

@Ej
@emj

� e��1mj

= V mC(n;m)pm (1� p)n�m+1 1
Ej
amjE

�
j e

��
mj � e

��1
mj

= V E��1j mC(n;m)pm (1� p)n�m+1 amje��mj � e
��1
mj

= 0

Thus, we have

emj = V
1

�+��1E
��1

�+��1
j

�
mC(n;m)pm (1� p)n�m+1

� 1
�+��1

a
1

�+��1
mj

Since Ej =
�Pn

i=1 aije
1��
ij

� 1
1�� , we have

Ej = V
1

�+��1E
��1

�+��1
j

 
nX

m=1

amj

�
mC(n;m)pm (1� p)n�m+1

� 1��
�+��1

a
1��

�+��1
mj

! 1
1��

= V
1

�+��1E
��1

�+��1
j

 
nX

m=1

a
�

�+��1
mj

�
mC(n;m)pm (1� p)n�m+1

� 1��
�+��1

! 1
1��

Thus, we have

E
�

�+��1
j = V

1
�+��1

 
nX

m=1

�mj

�
mC(n;m)pmj (1� pj)

n�m+1
� 1��
�+��1

! 1
1��
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or

Ej =

24V  nX
m=1

�mj

�
mC(n;m)pmj (1� pj)

n�m+1
� 1��
�+��1

!�+��1
1��

35
1
�

=

24pj(1� pj)V  nX
m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1��

35
1
�

Proof of Proposition 5. First, di¤erentiating emj with respect to pj , we obtain

@emj
@pj

= V
1

�+��1E
��1

�+��1
j

1

� + � � 1

�
mC(n;m)pmj (1� pj)

n�m+1
� 1
�+��1�1

a
1

�+��1
mj

�mC(n;m)pm�1j (1� pj)n�m fm (1� pj)� (n�m+ 1) pjg

The contents of the last brace can be written as m� (n+ 1)pj . Thus, we have a desired result.

Second, di¤erentiating Ej with respect to pj , we obtain

@Ej
@pj

=
1

�
E1��j V

24(1� 2pj) nX
m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1��

+pj(1� pj)
 

nX
m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1�� �1

�
nX

m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1�1

mC(n;m)pm�1j (1� pj)n�m
�
(m� 1) 1

pj
� (n�m) 1

1� pj

�#

=
1

�
E1��j V

24(1� 2pj) nX
m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1��

+

 
nX

m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1�� �1

�
nX

m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

((m� 1) (1� pj)� (n�m) pj)
#
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=
1

�
E1��j V

24(1� 2pj) nX
m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1��

+

 
nX

m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1�� �1

�
nX

m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

(m� 1� (n� 1) pj)
#

=
1

�
E1��j V

24(1� 2pj) nX
m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1��

+

 
nX

m=1

�mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

!�+��1
1��

�

Pn
m=1 �mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1 � (m� 1� (n� 1) pj)Pn

m=1 �mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

3775

=
1

�
E1��j �

E�j
pj (1� pj)

�

Pn
m=1 �mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1 � ((1� 2pj) +m� 1� (n� 1) pj)Pn

m=1 �mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

=
Ej

�pj (1� pj)
�

Pn
m=1 �mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1 � (m� (n+ 1) pj)Pn

m=1 �mj

�
mC(n;m)pm�1j (1� pj)n�m

� 1��
�+��1

The sign of the derivative is dictated by the sign of the last line. The proof is completed.�
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