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Abstract

Within the last decade, kidney exchange has become a mainstream paradigm to increase the

number of transplants. However, compatible pairs do not participate, and the full benefits from

exchange can be realized only if they do. In this paper, we propose a new scheme, incentivizing

participation of compatible pairs in exchange via insurance for a future renal failure in the

patient. Efficiency and equity analyses of this scheme are conducted and compared with that

of living-donor exchange in a new dynamic continuum model of kidney transplantation. We

also calibrate the model with data from the US and quantify our predictions.
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1 Introduction

The National Organ Transplant Act (NOTA) of 1984 called for an Organ Procurement and Trans-

plantation Network (OPTN) to be created and run by a private, nonprofit organization under federal

contract. The federal Final Rule provides a regulatory framework for the structure and operation

of the OPTN: the primary goal of the OPTN is “to increase and ensure the effectiveness, efficiency,

and equity of organ sharing in the national system of organ allocation,” and “to increase the sup-

ply of donated organs available for transplantation” (Duda, 2005). As in most resource-allocation

problems, tension often emerges between the dual objectives of efficiency and equity in the context

of organ transplantation.

This paper’s ultimate objective is the introduction and advocacy of a new organ-allocation policy

that has strong potential not only to increase the supply of organs available for transplantation (thus

increasing the efficiency of the organ-allocation system), but also to decrease its inequity. To our

knowledge, the proposed policy is the first to enhance both the efficiency and equity of the system.

To introduce our policy proposal, it will be helpful to explain two other contributions of the paper.

We introduce a new and analytically tractable dynamic large-market model of organ transplantation

that can be used to analyze the efficiency and equity implications of various technologies and

policies.1 Unlike former models that focus on a single organ-allocation technology (such as deceased-

donor organ allocation or living-donor organ exchange), our model can be used to analyze the

impact of various technologies and policies that are often used together and interact with each

other. Another contribution is a formal analysis of the efficiency and equity implications of the

following three primary organ-transplantation technologies: deceased-donor transplantation, living-

donor transplantation, and living-donor organ exchange.

With the introduction of each of these technologies, the supply of donated organs available

for transplantation potentially increases. Thus, each innovation potentially increases the efficiency

of the organ-allocation system. However, for organs that require blood-type compatibility, the

introduction of living-donor transplantation can potentially increase the inequity between various

patient groups. That has been happening in the US for the case of kidneys. Similarly, living-

donor organ exchange can further increase the inequity between certain patient groups. There

is an intuitive explanation for this phenomenon: It is much harder for blood-type O patients

to benefit from live donation or living-donor organ exchange than patients of other blood types.

That is because, in the absence of other complications, while an O patient needs a O kidney for

transplantation, a patient of blood-type A or B can receive a transplant from either a same-blood-

type donor or an O donor, and a patient of blood-type AB can receive a transplant from any

blood-type donor.

Using our model, we analyze the impact of each new technology on the number of patients of

various groups who receive a transplant and characterize the average waiting time for those patients

1While traditional matching models mostly focus on discrete settings, the use of large-market and continuum
models had become increasingly common over the last decade, especially in the context of market design applications.
These models include Kojima and Pathak (2009), Che and Kojima (2010), Lee (2011), Azevedo and Budish (2012),
Azevedo and Leshno (2016), Kojima, Pathak, and Roth (2013), Liu and Pycia (2013), Ashlagi and Roth (2014).
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who are fortunate enough to receive one. Our results support the empirical observation that while

living-donor transplantation and living-donor organ exchange both enhance the overall welfare of

the patient population, they are potentially detrimental to equity across patients of different blood

types.

To introduce our policy proposal, it will be helpful to give some background on the current

status of living-donor organ exchange. This practice is in its infancy, with a handful of exchanges

in the world. Moreover, it currently accounts for about three percent of US kidney transplants.

Transplants from kidney exchanges only increased in the last decade, benefiting from a successful

collaboration between economists and members of the transplantation community. Building on

existing practices in kidney transplantation, Roth, Sönmez, and Ünver (2004, 2005b, 2007) formu-

lated kidney exchange as a market-design problem and analyzed how an efficient and incentive-

compatible system of exchanges might be organized and what its welfare implications might be.2

Kidney-exchange research in the last decade revealed that the following four elements are especially

important in the design and implementation of a successful kidney exchange program:

1. organization and optimization of the exchange,

2. utilization of gains from larger exchanges,

3. integration of good samaritan donors to exchange via kidney chains, and

4. inclusion of compatible pairs.

Of these four elements, the first three have been largely embraced by the transplantation community

and successfully utilized by several kidney-exchange programs, but the success of the last element

has, so far, been limited. For kidney exchange to realize its full promise, it is important to address

the failure to include compatible pairs in exchange pools.

We introduce an incentive program that will encourage participation of compatible pairs. On the

one hand, countless O patients with non-O donors are waiting for a potential exchange, and, on the

other hand, many O donors donate directly to their non-O recipients. These non-O recipients thus

use up kidneys that are more sought after. That is why inclusion of compatible pairs in exchange is

so critical. How can compatible pairs be incentivized to participate in kidney exchange? A natural

possibility is offering cash incentives, but cash incentives are currently taboo in much of the world.

What we propose instead is the following incentive program:

New Policy Proposal : If an O donor with a compatible non-O patient (or if an AB patient with

a compatible non-AB donor) participate in kidney exchange, even though they do not need to, then

the patient is given priority in the deceased-donor queue in case he needs another kidney in the

future.

Under our proposed incentive scheme, participation of compatible pairs is incentivized with

“insurance” for a potential future renal failure. This insurance is of value to patients because trans-

planted kidneys last well below 20 years on average, and about 15 percent of kidney transplants are

repeat transplants. Our policy proposal might receive wider acceptance in the medical community

than cash incentives because such priority is already given to living donors: If a previous living

2See Segev et al. (2005) as a study in the medical literature, which advocated adoption of some of these techniques
by the medical profession.
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donor needs a kidney transplant in the future, she is prioritized in the deceased donor-queue. If

adopted, our incentive scheme might confer a major advantage on the US national kidney exchange

program run by the United Network for Organ Sharing (UNOS), since UNOS is also in charge

of the deceased-donor queue. It would not be unrealistic to expect the national kidney exchange

program to thrive under this new policy. Using our model, we analyze the impact of the introduc-

tion of our incentive scheme on the welfare of the patient population and analytically show that

it increases the welfare of all patient groups. Moreover, for realistic parameters, it also decreases

inequity across patients of different blood types. Besides general analysis of this policy, we quantify

these welfare and equity gains numerically by plugging in kidney transplant data statistics as our

model parameters.3

In organ transplantation, equity among different blood types emerges as an important policy

objective. This is an indirect way of increasing equity among different ethnic groups, since different

ethnic groups have different blood-type distributions. For example, B patients have to wait longer

for kidney transplants. Blood-type B is more common in African-American and Asian minorities

than in white populations. As a result, policies are being adopted that increase the access of B

patients to organs. For example, some subtype A patients can feasibly donate to B and O patients.

New policies make sure that B patients can receive such A subtype deceased-donor kidneys, while O

patients are not offered such a policy.4 Kidney exchange policies have also been tailored according

to their impact on blood-type equity. An example is “indirect exchange,” in which a blood-type

incompatible patient-donor pair, such as O patient-A donor, donates to an A patient on the queue

to receive priority on the blood-type O waiting list for the next deceased donor. Ethical criticism of

this policy (for example, see Ross and Woodle, 2000; Ross, 2006) for its potential negative impact

on O deceased-donor waiting times is one of the main reasons why it is not commonly practiced.

Dynamic kidney exchange has recently been an active area of research. Ünver (2010) considers

a discrete dynamic market with a reduced state space and characterizes optimal policies under

different exchange-size constraints using dynamic programming tools. Our two-way exchange policy

is a continuum variant of the optimal two-way policy in that paper. Thus, our continuum model can

be seen as a limit version of such a model. Some more recent papers inspect near-optimal dynamic

policies in markets with more complicated state spaces. For example, Anderson et al. (2017) show

that a greedy matching is near optimal asymptotically as the probability of compatibility decreases

between a donor and a patient (i.e., a thin market assumption, unlike ours). They also show

that the larger exchange cycles/chains are, the higher the asymptotic gains. On the other hand,

Akbarpour, Li, and Oveis-Gharan (2017) study a dynamic market in which agents expire after a

certain time. In such a market, they show that waiting and greedily matching the agents just before

they expire is near-optimal under similar assumptions to the previous paper. These papers do not

consider blood-type compatibility and inspect only near-optimal policies under the current exchange

3In an earlier draft of this paper, Sönmez and Ünver (2015), we also considered a model where patients can be
listed in multiple exchange programs, and show that at equilibrium the national program that adopts our incentive
program emerges as the only major program.

4See page 83 of OPTN kidney allocation guidelines retrieved from
https://optn.transplant.hrsa.gov/media/1200/optn policies.pdf#nameddest=Policy 08 on 06/05/2017.
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paradigms. We propose a new policy paradigm for compatible pairs, do not seek out necessarily

time-optimal allocation policies, and take first-in-first-out structure of the deceased donor queue

as given. Another recent paper to study dynamic markets, albeit outside of the organ allocation

context, is Baccara, Lee, and Yariv (2016). This paper finds and compares optimal centralized and

decentralized matching policies as a function of thickness of the market when arriving agents have

heterogeneous but common preferences, unlike our paper.5

The idea of including compatible pairs in exchange is not new and was initially proposed by Ross

and Woodle (2000). This idea was further explored by Roth, Sönmez, and Ünver (2004, 2005a),

Sönmez and Ünver (2014), and Nicolò and Rodŕıguez-Álvarez (2017) in market-design settings.

Although the medical community initially concluded this idea should not be pursued because of

ethical reasons, they later became proponents of it (for example, see Veatch, 2006, Kranenburg

et al., 2006, Gentry et al., 2007, Ratner et al., 2010, Steinberg, 2011, and Ferrari et al., 2017). The

proof of concept involving exchanges with compatible pairs is documented in Ratner et al. (2010).

This study also reports the results of a survey conducted among compatible patient-donor pairs.

The pairs’ attitudes toward exchange were largely positive, especially if the patient benefits from

the exchange in some form. From a medical ethics perspective, Veatch (2006) and Steinberg (2011)

also advocated for incentives. The literature explored providing incentives through exchanging

the donor of a compatible pair with a younger or genetically closer donor (see Roth, Sönmez,

and Ünver, 2004, Ferrari et al., 2017, and Nicolò and Rodŕıguez-Álvarez, 2017). Such schemes

can incentivize only a limited number of compatible pairs. Moreover, they induce uncertain and

prolonged waiting times for compatible pairs, as their eventual participation will be determined by

the characteristics of incompatible pairs currently available in a given pool. This can deter willing

and suitable compatible pairs from participating in exchange pool in the first place. Our proposal

is the first one that we are aware of that can globally and ex ante provide incentives to compatible

pairs using tools that are already acceptable within the transplantation community.6

2 A Dynamic Model of Transplant Patients

We consider a comprehensive, dynamic kidney-transplantation model in which the deceased-donor

queue, live donation, and living-donor exchange can be incorporated. To this end, we use a

continuum-flow model where the cardinality of patients and donors who arrive at the same time are

measured through a one-dimensional Lebesgue measure. We refer to this cardinality per unit time

5In the computer science literature, adaptive dynamic kidney exchange models that use non-parametric regres-
sion techniques on past data to determine optimal policy for the future have been also introduced. An important
forerunner of this approach is Dickerson, Procaccia, and Sandholm (2012).

6Indeed, after the initial draft of our paper became available, Veale et al. (2017) reported three uses of a variant
of our intertemporal insurance scheme, leading to 25 transplants through chain exchanges. This scheme is utilized
as follows: The old live donor paired with a patient, who will likely need a kidney transplant in the future, initiates
a chain of exchanges now by donating to an incompatible pair. In return, this patient receives a guaranteed priority
in the deceased-donor queue if her kidney indeed fails in the future. The donor has a short donation window due
to her old age, and the insurance scheme helps other pairs to receive transplants through chain exchanges now, in
addition to insuring the potential patient originally paired with the donor.
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as measure.

Consider patients who need a particular organ transplant. Each patient is represented by his

blood type X ∈ T = {A,B,AB,O}. Suppose pX refers to the probability of having the X blood

type in the population distribution. We refer to the arrival measures of patients or donors as inflow

rates. We assume that πX is the inflow rate of new X patients. Hence, πXdt is the two-dimensional

Lebesgue measure of patients who enter in a small time interval dt. By a slight abuse of terminology,

throughout the paper we refer to the two-dimensional Lebesgue measure of agent sets, such as πXdt,

as mass.

Suppose that in the population of new patients, the expected lifetime while living with the disease

is distributed with a strictly increasing differentiable distribution function F (·) on the interval [0, T ].

Therefore, the probability density function is well defined and positive in (0, T ). In addition, the

measure of X patients who are alive after t years is given by πX [1− F (t)].

In the long run, when a transplantation option is not present, the total mass of X patients is∫ T
0
πX [1− F (t)]dt.

2.1 Organ Transplantation

The best remedy for organ failure is transplantation. A donor must be both blood- and tissue-type

compatible with the patient before her organ(s) can be transplanted. O donors are blood-type

compatible with all patients. A donors are blood-type compatible with type A and AB patients,

and type B donors are blood-type compatible with B and AB patients. On the other hand, AB

donors are blood-type compatible only with AB patients. Blood-type compatibility is formally

defined through a partial order . over blood types, such that X .Y means that X donors are blood-

type compatible with Y patients. Blood type distribution among US ethnic groups is reported in

Table 1.7 In general, O blood type is the most common, while AB is the rarest; A is observed more

commonly than B, while their rates vary substantially across ethic groups: B has a strong presence

among Asian- and African-American groups, while this is not the case for white Americans.

Blood Types Pop. %

O A B AB — (1992)

African American 49% 27% 20% 4% 12.4%

Asian American 40% 28% 27% 5% 3.3%

Native American 79% 16% 4% 1% 0.8%

White American 45% 40% 11% 4% 83.4%

US all 45.6 % 37.8% 12.6% 4%

Table 1: Blood-Type Distribution in the US.

Once a donor is deemed blood-type compatible with a patient, she also has to be tissue-type

compatible with the patient. Tissue-type compatibility requires that the patient’s body has no

7Retrieved from http://bloodbook.com on 03/18/2013. The US general population is constructed using the
ethnicity distribution and could be slightly different from the general distributions reported in other sources.
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pre-formed antibodies against the donor’s DNA. We assume that each donor has a tissue type.

There are k distinct tissue types. The probability that a donor is of tissue type i is mi,k > 0,

so
∑

imi,k = 1. Let θi,k be the tissue rejection probability between any patient and a donor

of tissue type i. If a patient is tissue-type compatible with a type i donor, then the patient is

tissue-type compatible with all donors of tissue type i. In our analysis, we take the limit as k →∞
and make some assumptions about how the market grows (see Appendix C). These assumptions

are satisfied for a range of parameters. However, for the ease of exposition in the main text, we

assume that θi,k = θ for every i in the limit as k →∞ and that mi,k decays proportionally to 1/k,

that is mi,k = Θ(1/k). More explicitly, for every donor type i, there exist constants ci1 > 0, ci2 > 0,

and k0 ∈ N such that, ci1
1
k
≤ mi,k ≤ ci2

1
k

for every k > k0. In the more general case, we can assume

that the expected tissue rejection probability in the limit is θ.

A common source of donation across organs is deceased donors. The deceased-donor queue is

governed by a central entity in most countries. For example, in the US, for all organ types, UNOS

is the federal contractor that is in charge of the queue. We assume throughout the paper that any

patient enrolled in the queue remains in the queue until he receives a transplant or he dies.

We assume that patients prefer earlier compatible transplants, and we assume that they are

indifferent among compatible deceased donors. Thus, when a patient is offered a compatible trans-

plant, the best option for her is to take it.

We denote the inflow rate of the X deceased donors as δX < πX per unit time. Across blood

types, the ratio δX/πX need not be constant. For example, it is well known that among minority

communities organ failure is more prominent than among the white American population, even

though deceased-donation rates are not that significantly different. As the blood-type distribution

of minorities is different from that of white Americans, the ratio δX/πX is not constant across

blood types in the US: while a very high percentage of the donors, live or deceased, are white, the

patient rate of white Americans is much lower than their donation rate for kidneys and is higher

only for lungs. On the other hand, for kidneys and hearts, the patient rate of African-Americans is

higher than their donation rate; while for kidneys and livers, the patient rate of Asian-Americans is

higher than their donation rate.8 Although these rates are distorted by many other factors such as

live-donation possibilities, we can conclude that the ratio δB/πB is lower than that for other blood

types.

When a transplanted kidney fails, the recipient reenters the deceased-donor queue as if he were

a new patient. We assume that repeat patients’ survival function on the deceased-donor queue is

similar to that of new entrants. We also assume that φd is the steady-state fraction of the previous

recipients whose kidneys fail and who reenter the deceased-donor queue per new deceased-donor

8From the US Department of Health and Human Services - The Office of Minority Health web page for organ
donation https://minorityhealth.hhs.gov/templates/browse.aspx?lvl=3 & lvlid=12 retrieved on 02/25/2013.
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transplant conducted.9,10 Thus, if at steady state an ε measure of the X patients receive a deceased-

donor kidney at each instance, then a φdε measure of previous recipients reenter the queue at each

instance.

2.2 Deceased-Donor Allocation Policies

The deceased-donor organs are allocated by UNOS through the points system of OPTN, which is

a priority mechanism. When a deceased donor arrives, the point total for each compatible patient

is determined. The organ is offered to the patient with the highest point total. If it is rejected

by the patient or his doctor for any reason, then the organ is offered to the next patient, and so

on. In general, different point schemes are used for different organs. Deceased-donor allocation

policies usually differ across organs and across geographic transplant regions, although usually a

centralized mechanism is used in allocation. For example, for kidneys, ABO-identical allocation

policies are applied, while for organs with greater medical urgency, ABO-compatible allocation is

more common. That is, in the ABO-identical (ABO-i) allocation policy, organs of blood-type

X are offered only to X patients.11 On the other hand, in the ABO-compatible (ABO-c) allocation

policy, organs can be offered to any compatible patient. We study the welfare and distributional

consequences of the ABO-i policy here. The welfare and distributional consequences of the ABO-c

policy are investigated in a companion paper (Sönmez and Ünver, 2015).

Given ABO-i policy, the waiting time of a patient is often the most significant contributor to

the patient’s points in deceased-donor allocation. Therefore, we model deceased donor allocation

using first-in-first-out (FIFO from now on) matching technology.12

9 Fraction φd is formally calculated as follows: Suppose a measure ε of patients receive transplants at steady state
at each instance. If the patient’s life with a healthy graft ends, two things could be the reason: either the patient dies,
or the patient stays alive but his graft fails. Of the patients who leave the status of “living with a healthy kidney,”
let h1(t) be the fraction that die t years after the transplant and h2(t) be the fraction whose kidneys fail t years
after the transplant. Thus, we assume that a random patient’s expected lifetime with a healthy kidney is distributed

with a differentiable distribution function H(·) in some interval [0, S] such that dH(t)
dt ≡ h(t) ≡ h1(t) + h2(t) where

t refers to the years that have passed since the transplant. We assume that this distribution is independent of how
long the patient initially waited in the queue to receive his previous transplant. Then the inflow rate of patients

reentering the deceased donor queue is given by
∫ S

0
εh2(t)dt = ε

∫ S

0
h2(t)dt. We set φd =

∫ S

0
h2(t)d(t). Observe that

φd <
∫ S

0
h(t)d(t) = 1.

10For simplicity, we assume that φd is constant, although it may possibly change as the age distribution of the
patients receiving transplants in the deceased-donor queue changes, i.e., it may be a function of the waiting time.

11 In the event that no X patient is available, then the organ is offered to a compatible patient. However, this is the
application in the US. On the other hand, Eurotransplant uses full ABO - compatible scheme, and UK Transplant
permits O organs to be transplanted to B patients, especially for kidneys (cf. Canadian Council of Transplantation
documentation for “Deceased donor allocation in US, Europe, Australia, and New Zealand” released in October
2006).

12OPTN recently switched to a new deceased-donor kidney allocation scheme that uses a quality-based allocation
scheme for 20 percent of all allocations, while 80 percent of all allocations continue to be done through its previous
FIFO-type policy.
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2.3 Living-Donor Transplantation

Live donation is common for kidneys. In 2011, 34 percent of all kidney transplants in the US were

from living donors.

We refer to a living donor as a paired donor. We assume that each patient has at most one

paired donor and that a λ ∈ [0, 1] fraction of incoming patients have a paired donor. We also assume

that the blood types of the patient and the donor are independent and uncorrelated.We refer to a

patient with a paired donor as a paired patient and a patient without a paired donor as a single

patient. The patient and his paired donor are represented as a pair. The blood types of the pair,

X −Y ∈ T ×T , X being the patient’s and Y being the donor’s blood type, determine the type of

the pair.

If the paired donor of a patient is both blood- and tissue-type compatible, we refer to the

pair as a compatible pair, and otherwise as an incompatible pair. Given a paired patient, the

probability that his paired donor is blood type X is assumed to be the probability of having X in

the population, which is pX .

Consistent with donation rates throughout the world, in the rest of the paper we assume the

following:

Assumption 1 There is a shortage of deceased-donor organs, even if paired patients are removed

from the patient pool, i.e., (1− λ)πX + φdδX ≥ δX for all X ∈ T .

We assume that patients prefer earlier compatible transplants to later ones, regardless of the

kind of donor, deceased or living. Also we assume that they are indifferent among compatible

organs from living donors (as well as deceased donors). We do not need to model whether they

prefer deceased-donor transplants or living-donor transplants. For kidneys, typically living donors

are preferred.

As a result, deceased-donor kidneys are transplanted as soon as they become available using

FIFO matching technology in which the measure of donated kidneys is equal to the measure of

patients receiving transplants. Therefore, in any state, we still keep track of the measure of (X, t)

pairs where X is the blood type and t is the number of years spent waiting after being diagnosed.

However, when live donation or exchange is a possibility, we also keep track of the measure of

(X − Y, t) where X is the blood type of the patient, Y is the blood type of the donor, and t is the

number of years spent waiting after being diagnosed.

A state is formally defined through the measure of (X − Y, t) and (X, t) pairs. We say that the

patient population under a given policy of transplantation is at a steady state when the measures

of all (X−Y, t) and (X, t) pairs are constant through time, i.e., the state does not change over time.

Transplanted organs from living donors can also fail, as in the case of transplants from deceased

donors. Like before, we assume that reentering patients have the same survival function 1 − F

as new patients. However, it is well known that living-donor grafts survive longer than deceased

donor grafts. We assume that φl ≤ φd is the fraction of live-donation recipients reentering the

deceased-donor queue per each living-donor organ transplant at steady state. We further assume

9



that the reentrants (who received a graft previously from either a deceased donor or a living donor)

are single (and no longer paired) upon reentry.

3 Living-Donor Exchange

In this section, we analyze the effect of having a living-donor exchange program on waiting times of

different patient groups. In practice, a paired donor usually donates directly to her paired patient,

and the patient leaves the pool before he ever enters the deceased-donor queue. For the incompatible

pairs, we assume that a living-donor exchange program operates in parallel with the deceased-donor

queue: Incompatible pairs are listed in the exchange program. While waiting for a deceased-donor

organ in the queue, patients also wait for an exchange with another incompatible pair.

Formally, a two-way exchange matches two pairs, where the patient of the first pair is com-

patible with the donor of the second pair and the patient of the second pair is compatible with

the donor of the first pair. We refer to such pairs as mutually compatible pairs.13 Any such

exchange is conducted between pairs that preserve the measure. For example, if we are conducting

exchange between A-B pairs and B-A pairs then the measures of A-B and B-A pairs are the same.

We also say that if the donor of the first pair is blood-type compatible with the patient of the

second pair and vice versa, then these pairs are mutually blood-type compatible. We refer to

the queue of pairs in the exchange program as the exchange pool. An exchange matching is a

set of exchanges between mutually compatible pairs such that each pair is matched in at most one

exchange. For a given pair type X − Y , we refer to Y −X as its reciprocal type.

Note that far fewer incompatible A-O patient-donor pairs exist in an exchange pool than O-A

pairs. The reason is that A-O pairs are incompatible only if there is tissue incompatibility between

the A patient and O donor, while O-A pairs are always incompatible. Based on this observation,

we make the following assumption.

Assumption 2 For any incompatible pair type X−Y such that X 6= Y and X.Y , its inflow rate to

the exchange pool is not less than the inflow rate of its reciprocal type Y −X, i.e., θpXπY ≤ pY πX .14

To give an idea of how easily this assumption is satisfied, recall that for kidneys, we have

θ ≈ 0.1. For all organs with exchange programs, this inequality holds with a good deal of slack for

all populations.

Another assumption concerns the prevalence of A-B and B-A types. This assumption is made

for notational convenience; symmetric versions of our results hold if the inequality in the assumption

is reversed.

13We can also think of exchanges that can match more than two pairs, such as three-way, four-way, etc. For
simplicity, we focus on two-way exchanges in our analysis. However, our results can easily be extended to cover
larger exchange sizes as in Roth, Sönmez, and Ünver (2007). Any size of exchange greater than four does not change
the results as reported in that paper.

14A simple requirement that would make the assumption hold is that the ratio of live donation and patient inflow
rates are similar across blood types; i.e., pX/πX ≈ pY /πY for all blood types X,Y . This would be ensured if live
donation and illness rates are not too different for different blood types in a given population.
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Assumption 3 A-B pairs do not inflow to the exchange pool any slower than B-A pairs, i.e.,

pAπB ≤ pBπA.

Through Assumptions 2 and 3, all incompatible X−Y pairs with Y .X and X−Y = B−A pairs

can be matched immediately with Y −X pairs, as Y −X pairs will always be more in mass than

X − Y pairs in the exchange pool. Observe that the probability of mutual compatibility between

an X − Y pair and a Y −X pair is (1− θ)2 > 0. As a result, all X − Y pairs can be matched with

probability one. Lemmata 4 and 5 in Appendix C formalize this idea.

Using the terminology in Ünver (2010), we classify the pairs into several categories, based on

their desirability in exchange: Overdemanded pair types are ones with a blood type donor who

can donate to her patient’s blood type but is not of the same blood type. These are A − O,B −
O,AB−A,AB−B, and AB−O types. Underdemanded pair types are those with a blood type

donor who cannot feasibly donate to her patient’s blood type, excluding types A-B and B-A. That

is, underdemanded types are reciprocals of overdemanded types, i.e., O−A,O−B,A−AB,B−AB,
and O−AB. Reciprocally demanded pair types are A-B and B-A, as they can be matched with

each other in a donor exchange, if tissue incompatibility does not exist. Finally, self-demanded

pair types are those with the same blood-type donor and patient: O−O,A−A,B−B,AB−AB.

Next, we study how the exchange pool and deceased-donor queue evolve at steady state. Recall

that only incompatible pairs participate in exchange. It turns out that we can conduct optimal

two-way exchanges in an ABO-identical manner as well. More precisely, we can match X −Y pairs

with Y −X pairs as they become available. We show that this is the optimal exchange policy.

Theorem 1 (ABO-identical exchange is optimal) Suppose Assumptions 2 and 3 hold. Then

the exchange policy where an arriving pair is immediately matched with a compatible pair of its

reciprocal type maximizes the measure of exchange transplants of pairs that arrive at that instance.

Moreover, this policy maximizes the mass of pairs who arrive in an interval that can be matched

within that interval. In particular, it matches a larger mass of pairs than the alternative policy of

running the exchange only once at the end of the time interval.

Note that the optimal exchange can also accommodate the FIFO matching technology, where

a pair is matched with one of the longest-waiting mutually compatible pairs. This technology is

important in practice for reasons of fairness, and it can indeed be implemented in the optimal

exchange.

A result that is similar but logically independent from ours was proven in Ünver (2010) for

discrete problems with waiting costs. In our setting, there is no waiting cost per se, but patients

can die while waiting for transplants.

With the availability of exchange, we separate patients into different groups based on their blood

type and donor status as single, paired with a compatible donor, or paired with an incompatible

donor. We can measure the efficiency and equity effects of the proposed policy on these groups.

There are 29 patient groups based on these two criteria.

Since compatible and incompatible pairs that are blood-type compatible receive transplants at

time 0 (under the optimal exchange), we do not distinguish them in our discussion. Therefore, we
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denote each patient group by the pair type X − Y if the patient is paired and by the blood type X

if the patient is single.

Through Theorem 1, we compute the measure of X patients matched through exchange

under the above-described optimal exchange policy in steady state at any instance, denoted as eX

for all X ∈ T :

eO = θpOλπO︸ ︷︷ ︸
O−O pairs

+ θpOλ(πA + πB + πAB)︸ ︷︷ ︸
O−A, O−B, O−AB pairs

,

eA = θpAλπA︸ ︷︷ ︸
A−A pairs

+ θpOλπA︸ ︷︷ ︸
A−O pairs

+ pAλπB︸ ︷︷ ︸
A−B pairs

+ θpAλπAB︸ ︷︷ ︸
A−AB pairs

, (1)

eB = θpBλπB︸ ︷︷ ︸
B−B pairs

+ θpOλπB︸ ︷︷ ︸
B−O pairs

+ pAλπB︸ ︷︷ ︸
B−A pairs

+ θpBλπAB︸ ︷︷ ︸
B−AB pairs

,

eAB = θpABλπAB︸ ︷︷ ︸
AB−AB pairs

+ θ(pO + pA + pB)λπAB︸ ︷︷ ︸
AB−O, AB−A, AB−B pairs

.

Let us explain one of these calculations, say eO, more explicitly. The O-O pairs are matched as

soon as they arrive, so their contribution to this term is their inflow rate θpOλπO: only λ fraction of

the O patients have a donor, which happens with the inflow rate πO, pO is the probability that the

donor has O blood type, and these are multiplied by the probability of tissue rejection probability

θ since compatible pairs do not enter the exchange. The measure of O-A pairs that are matched

is equal to the measure of the A-O pairs, which is equal to θpOλπA, as in the previous calculation.

The contribution of O-B and O-AB pairs can be calculated similarly.

Likewise, let lX = plXλπX be the inflow rate of X patients with compatible donors where plX is

the probability that a random donor is compatible with X patient, which we calculate explicitly

using the primitives of the model in the Appendix. Then lX/πX is the live donation transplant

ratio for X patients, δX/πX is the X deceased donation transplant ratio, and eX/πX is the

blood type X exchange-transplant ratio.

We use these measures to analyze how the availability of exchange affects the waiting times

in the deceased-donor queue. As more patients receive living-donor transplants under exchange

technology, the waiting times of patients improve across all blood types. Some of these pairs are

matched immediately as they enter the pool. These belong to overdemanded or self-demanded

types, or the less abundant reciprocal type, B-A. And some pairs are matched only after waiting

in the pool. As a result, not all of them receive transplants, since some of the paired patients die

while waiting. These pairs belong to underdemanded types or the more abundant reciprocal type,

A-B. They wait in the exchange pool and the deceased-donor queue simultaneously, and either

• are “pooled” with single patients of the same blood type in the deceased-donor queue, so that

simultaneously some of them will receive deceased-donor organs and some will participate in

exchange; or

• wait for less time than their cohort of single patients and participate exclusively in exchange.
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We are ready to state some inequity consequences of exchange. Although all patients benefit

from exchange, O and AB patients benefit the least, and B patients benefit the most under mild

conditions. We use the exchange transplant ratios, { eX
πX
}, for this comparison. In general, trans-

plant ratios reflect the ex-ante probability of a particular blood-type patient receiving living-donor

transplantation under various policies. Thus, they are ex-ante measures of probability of access to

living-donor transplantation for each patient. Making them as close to each other as possible without

sacrificing the total number of transplants would be an inequity-improving endeavor. For example,

an egalitarian welfare function on chances of receiving a transplant under ABO-i constraints would

care about this objective.

When we consider living-donor and exchange-transplant ratios together, { lX+eX
πX
}, we see that

O patients benefit the least, A and B patients benefit more than O, and AB patients benefit the

most. These results hold in a benchmark model where no blood type is more likely to be a live

donor than to get sick, i.e., where live-donation propensities are independent of blood type. Thus,

although B is behind A in its living-donor transplant ratio (provided that pB < pA, as in the general

population in the US and most of the world) the increase from B’s exchange-transplant ratio makes

its living-donor and exchange-transplant ratios level with those of A’s.

Theorem 2 (Living donor exchange and inequity in transplant ratios) Suppose Assump-

tion 1 holds. Consider a benchmark model where the ratio of the living-donation rate to the patient-

inflow rate is the same among blood types, i.e., pX
πX

is the same among all X ∈ T . Then transplant

ratios satisfy:

• For exchange only: eO
πO

= eAB
πAB

< eA
πA
, eB
πB

. If additionally pA > pB, then eA
πA

< eB
πB

.

• For living-donor transplantation and exchange together: lO+eO
πO

< lA+eA
πA

= lB+eB
πB

< lAB+eAB
πAB

.

The intuition behind the first result comes from the fact that A and B have the additional advantage

of exchange from two tissue-type-compatible pairs that are blood-type incompatible, i.e., exchanges

between A-B and B-A pairs. In exchanges including type AB or type O patients, at least one

pair should be tissue-type incompatible, and this pair becomes available for exchange with θ < 1

probability. Additionally, if pA > pB, then πA > πB holds as well in the benchmark model.

Although A-B and B-A pair types participate in exchanges in equal measures, such exchanges are

percentage-wise more beneficial for B patients, and, thus, B has the highest exchange-transplant

ratio.

However, the exchange technology’s contribution is not sufficient by itself to change the inequity

caused by living-donor transplantation in transplant ratios, as indicated by the second part of the

theorem. In addition, note that the transplant ratios of blood types A and B come very close to

that of blood type AB as a result of the exchange technology. To see this, observe that the added

benefit for AB over A or B of living-donor transplantation and exchange is that AB patients get

direct live donation from AB donors, while A or B patients cannot. As the AB blood type is rare

in the population, the aforementioned transplant ratios are very close.
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4 A New Proposal: Incentivized Exchange

One shortcoming of current living-donor exchange practices is that they utilize almost exclusively

incompatible pairs. As a result, many non-O patients receive transplants from an O donor without

participating in exchange, effectively utilizing type O organs inefficiently. However, if compatible

pairs can be incentivized to participate in exchange, then the lack of balance between reciprocal-

type pairs will be mitigated. One sensible way of incentivizing compatible pairs to participate is to

give their patients priority in the deceased-donor queue if their transplanted graft fails in the future.

This is especially important because it may be harder to find an additional compatible donor when

the patient needs another organ. As noted in the Introduction, living donors are already similarly

incentivized: If a living donor’s organ fails in the future, he will get priority in the deceased-donor

queue. A similar practice of prioritizing not only the donor but also the patient of a compatible

pair may face little resistance in the medical community.

In this section, we analyze the efficiency and equity effects of such an incentive scheme by using

the tools we developed earlier. Thus, when a paired patient with a compatible donor receives a

transplant through exchange and this graft later fails, the FIFO structure of deceased allocation is

altered. In particular, such reentrants, who we refer to as prioritized reentrants, are placed at

the front of the queue. (Not all compatible pairs need to be prioritized in the optimal policy, as we

explain below.) In this section, we analyze the welfare effects of incentivized exchange with respect

to its alternative, regular exchange.

Suppose that a proportion ρ of all compatible pairs takes up the incentivized exchange option.

We will maintain the following assumption for the rest of the paper.

Assumption 4 Compatible pairs may join the exchange pool only if an exchange is immediately

available, and thus exchange does not involve a waiting cost; that is, the inflow rate of any under-

demanded type X−Y (i.e., X .Y and X 6= Y ) and its reciprocal overdemanded type Y −X, satisfy

[ρ(1− θ) + θ]pXπY ≤ pY πX .

This assumption ensures that the inflow rate of any underdemanded type is greater than the

inflow rate of its reciprocal type, who are either incompatible or compatible and willing to use the

incentivized-exchange option. This is a simplification. If this is not the case, the excess inflow

of paired patients with compatible donors will not wait for exchange, but will instead receive

transplants from their donors immediately. As a result, compatible pairs never wait.15

We start with an analogue of Theorem 1.

Theorem 3 Suppose Assumptions 1, 3, and 4 hold. Under incentivized-exchange technology, the

following policy maximizes the measure of exchange transplants for pairs that arrive at that instance:

15This assumption also endogenizes ρ to some degree. In a general equilibrium of this model, ρ would be en-
dogenously maximized to match the maximum possible number of underdemanded pairs through exchange, so that
if a non-participating compatible pair were to try to participate in incentivized exchange, it would not be able to
participate in exchange immediately and have to wait, contradicting equilibrium conditions. Hence, a version of
Assumption 4 would hold endogenously.

14



• for any self-demanded type, immediately match incompatible pairs of this type with each other,

and match each compatible self-demanded type with itself outside of the exchange (so the

patients are not prioritized later if they reenter the deceased-donor queue), and

• for any underdemanded type or type B-A, match the longest waiting pairs of this type with

their reciprocal incompatible or willing compatible pairs whenever feasible.

Moreover, this policy maximizes the mass of pairs that can be matched within any closed time

interval, and, in particular, matches a larger mass of pairs than waiting for the pairs to arrive and

running the exchange once at the end of the time interval.

Before we compare incentivized exchange with regular exchange, let us note two simple obser-

vations of the optimal policy. First, no compatible self-demanded pairs participate in incentivized

exchange (since almost all incompatible self-demanded pairs can be matched with each other).

Therefore, each compatible self-demanded pair will not participate in the incentivized exchange but

will be matched with itself (as noted above). Hence, only compatible overdemanded pairs partic-

ipate. The second observation is that no O reentrants are ever prioritized. This follows from the

first observation and the fact that the only type of compatible pair with O patients is O-O. On the

other hand, compatible overdemanded pairs with A, B, and AB patients participate in exchange.

Therefore, a positive measure of these patients reenters at steady state and gets prioritized.

The following theorem outlines the predictable differences in outcomes between exchange with

incentivized compatible pairs and regular exchange.

Theorem 4 (Incentivized exchange and its efficiency and equity consequences) Suppose

Assumptions 1, 3, and 4 hold. At steady state, under the incentivized-exchange technology, with re-

spect to regular exchange, the following hold:

• A weakly higher measure of patients is matched for each patient group. Furthermore, under-

demanded type pairs are matched with a strictly higher measure.

• For underdemanded types, waiting times strictly decrease. For other pair types with waiting

times of 0 under regular exchange, waiting times do not change. Moreover, if A-B pairs did not

receive deceased-donor transplant under regular exchange, their waiting time does not change.

For single O patients and nonprioritized single A and B patients, waiting times may decrease

or increase. In particular, if some O patients with A, B, and AB live donors receive deceased-

donor transplant under regular exchange, then for single O patients, waiting time decreases. If

the measure of A-AB and B-AB pairs are sufficiently small, then for nonprioritized single A

and B patients, waiting times slightly increase. For nonprioritized AB patients, waiting time

slightly increases.

The proof of this theorem, especially of the second statement, is also of independent interest. It

quantifies the conflicting forces that affect waiting times when we switch from the regular exchange

to the incentivized exchange.
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With real-life parameters, we expect O-A, O-B, and O-AB pairs to receive deceased-donor

transplants under regular exchange. Thus, an implication of Theorem 4 is that the waiting time

for single O patients decreases under incentivized exchange. In theory, if such pairs do not receive

deceased-donor transplants under regular exchange, then incentivized exchange will help only them,

directly or indirectly. As a result, increasing O reentrants will cause the single O patient waiting

time to increase, but only slightly, as it is a function of the steady-state fraction of the previous

recipients from living donors who reenter the deceased-donor queue, φl.

Similarly, as the number of A-AB and B-AB pairs are expected to be sufficiently small in real

life, we expect nonprioritized single A and B patients to wait slightly longer. Indeed, our model

predictions in Section 5 are consistent with these theoretical results, although not all parameters

used in that section are consistent with the theoretical model.

We also inspect the equity consequences of incentivized exchange in terms of transplant ratios.

To this end, we state the marginal measures of transplants (in addition to regular-exchange tech-

nology) due to the compatible pair participation. Let iX denote the additional measure of X ∈ T
patients who receive transplants at each instant. For demonstration, consider the measure of ad-

ditional O patients who receive grafts from donors of compatible pairs. All of these patients are

from underdemanded pairs. In particular, the compatible overdemanded pairs with O donors now

donate to O patients in underdemanded pairs. The measure of compatible A-O pairs who take up

the incentivized exchange option is ρ(1 − θ)pOλπA. Likewise, the measure of compatible B-O and

AB-O pairs who participate are ρ(1 − θ)pOλπB and ρ(1 − θ)pOλπAB, respectively. When we sum

these terms we get iO. Similarly, we calculate iX for all blood types X ∈ T :

iO = ρ(1− θ)pOλ(πA + πB + πAB), iA = ρ(1− θ)pAλπAB, (2)

iB = ρ(1− θ)pBλπAB, iAB = 0.

Thus, iX/πX is the marginal incentivized-exchange transplant ratio for blood type X.

We have the following result under a benchmark assumption:

Theorem 5 (Incentivized exchange and decrease of inequity in transplant ratios) Suppose

Assumption 1 holds and live donation rates are equal among blood types, i.e., pX/πX is the same

among all X ∈ T . Then, at steady state, incentivized exchange benefits O patients the most, followed

by A and B equally, and does not benefit AB patients at all. That is, 0 = iAB
πAB

< iA
πA

= iB
πB

< iO
πO

.

Moreover, overall transplant ratios under incentivized exchange, except deceased-donor transplants,

satisfy
lO + eO + iO

πO
≤ lA + eA + iA

πA
=

lB + eB + iB
πB

≤ lAB + eAB + iAB
πAB

,

where weak inequalities all hold with equality if and only if ρ = 1.

Thus, incentivized exchange reverses – to some degree – the increasing inequity caused by the

previous technologies in waiting times and transplant ratios for O patients. Next, we analyze the

effects of incentivized exchange with some simulations.
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5 Numerical Model Predictions

In this section, we inspect how our proposal, incentivized exchange, affects the efficiency and eq-

uity of transplant policies by calibrating our model with real-life US data statistics as our model

parameters. In our view, these numerical model predictions are important as (1) our theorems (for

example Theorem 4) do not predict an exact direction of change for some waiting times, (2) some

model parameters we took as constant across blood types for simplicity are variable in real life, and

(3) the magnitudes of changes could not be predicted in our theoretical results. These results are

not statistical in nature; instead, they are numerical calibrations of theorems in the main text and

appendices. First, we explain our calibration parameters.

In Table 2, survival rates, 1 − F (t), are listed using US Renal Data System (USRDS) data for

dialysis patients.16 We fit an exponential duration curve (for t measured in years) as

F̂ (t) = 1− âeb̂t (3)

and obtain estimates of â = 0.9427 with a 95 percent confidence interval of (0.8945, 0.9909) and

b̂ = −0.1667 with a 95 percent confidence interval of (−0.1922,−0.1411) using non-linear least

squares.

Data

Time: 3 mo. 1 yr. 2 yr. 3 yr. 5 yr.

On dialysis 0.9215 0.7824 0.6648 0.5694 0.4230

Table 2: Survival rates (1− F (t)) for kidney failures in the US for 2009 entrants.

We use the US OPTN kidney data for the year 2009 (see Table 3).17 We estimate other backbone

parameters, such as inflow rates for blood types, {πX}, from the data in Table 3 using our model

(see Table 4). We also uncover the paired donor rate λ based on unobserved intended live donations

that did not materialize. For example, an O-A pair is not detectable from the data, as the A donor

could not donate to O, and hence, there is no recorded evidence for the existence of such pairs.

We estimate these parameters under two different assumptions on the inflow rate of patients. In

particular, we derive a lower-bound and an upper-bound on inflow rate for each blood type, which

16These 2009 estimates for dialysis patients are reported in the National Kidney Organization 2016 Annual Report
Chapter 6 (retrieved from https://www.usrds.org/2016/download/v2 c06 Mortality 16.pdf on 05/12/2017) vol
2 Table 6.3, obtained from hemodialysis and peritoneal dialysis survival rates and weighted by average 2009-2014
percentages of patients on hemodialysis vs peritoneal dialysis reported in vol 2 Figure 1.2 of Chapter 1 (retrieved
from https://www.usrds.org/2016/download/v2 c01 IncPrev 16.pdf on 05/12/2017).

17Year 2009 is used because this is the latest year for which five-year dialysis survival rates are available as of May,
2017. Data is obtained from OPTN using the “national data” option from http://optn.transplant.hrsa.gov on
05/15/2017. Median years is the norm for reporting time averages, as all patients should exit the queue for mean
calculation, while 50 percent of patients should exit the queue for median. 2003-2004 entrants is the cohort used for
median time for transplant data (using data available on 10/12/2012). Although we assume in our model that inflow
and donor rates, as well as the survival function 1−F do not change over time, these are all growing, at different rates,
due to population characteristics and medical advances in dialysis. To capture the changing underlying parameters,
we repeated the same calculations for different years’ cohorts. We report the results for the latest year for which we
can calibrate. See also Footnote 20.

17



are abbreviated as “Est. Low”/“Est. High”, and use them in our policy experiments. We assume

that no/all pairs that participated in exchange arrived in 2009 for these bounds, respectively.

Data

Blood Types: O A B AB Total

Total Additions to the Queue 16, 323 11, 090 4, 919 1325 33, 657
Living Donation Recipients on Queue 2, 446 2, 016 717 209 6, 388

Total Living Donation Recipients 2, 878 2, 422 844 244 5, 388
Exchange Participants 128 96 58 8 290

Deceased Donation Recipients (σX) 4, 726 3, 818 1, 347 554 10, 442
Reentrants 2, 062 1, 513 580 198 4, 353

Deceased Donors 3, 458 2, 722 850 218 7, 248

Median Years To Transplant (2003-04 Entrants) 5.07 3.31 5.30 2.34

Table 3: Arrivals to and transplants from the kidney deceased-donor queue for 2009 entrants. 7, 248
deceased donors with 10, 442 transplants leads to an average harvest rate of 1.441 kidneys per deceased
donor. Living donor blood types are assumed to come from the distribution in Table 1.

Estimates

Blood Types: O A B AB Total

Deceased Donor Organ Inflow Rate (δX) 4, 982 3, 922 1225 314 10, 442

Reentry Rate (φ) 27.12% 24.26% 26.47% 24.81% 25.86%

Entrant Inflow Rate (πX) (Est. Low) 14, 565 9, 887 4, 408 1, 154 30, 014
(Est. High) 14, 693 9, 983 4, 466 1, 162 30, 304

Paired Donor Rate (λ) (Est. Low) 39.55% 26.87% 30.75% 20.35% 33.34%
(Est. High) 37.15% 25.34% 27.89% 19.44% 31.22%

Normalized Live Donor ( pX
πX/(

∑
Y πY )

) (Est. Low) 0.9398 1.1474 0.8572 1.0427

to Patient Ratio (Est. High) 0.9406 1.1474 0.8543 1.0455

Normalized Deceased Donor (
δX/(

∑
Y δY )

πX/(
∑
Y πY )

) (Est. Low) 0.9832 1.1401 0.7985 0.7823

to Patient Ratio (Est. High) 0.9840 1.1400 0.7958 0.7844

Table 4: Estimates regarding parameters, assuming that our model would have generated the data in Table
3. Deceased-donor numbers are reported for each blood type separately, but not the actual number of grafts
transplanted. Using the empirical fact that on average 1.441 kidneys are harvested from each deceased
donor, we found the number of deceased-donor grafts available for each blood type. “Est. Low”/“Est.
High” reflect the estimates under the assumptions that no/all pairs that participated in exchange arrived
in 2009.

One immediate observation from the estimates in last two rows of Table 4 is that B and AB

blood types get end-stage renal disease more often. Minorities are known to be more prone to kidney

disease. Moreover, B blood protein is more common among minorities such as African-Americans

and Asian-Americans (See Table 1). Thus, this finding is not very surprising (as predicted in Section

2.1). Moreover, when the previous two rows in Table 4 are inspected, we observe that the assumed

donation rates for live donors are more balanced (i.e., closer to 1 for B and AB) than those for

deceased donors. Hence, the constant pX/πX assumption used in Theorems 2, 5, and 8 has some

validity in the US, although it is not perfect.
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We estimate the waiting time for each group of patients by using the formula t̂ = F̂−1(1 −
min{1,∆/Π}). Here, ∆ is the measure of donors/pairs matched with the group of patients inspected,

and Π is the measure of the entry cohort of the group of patients inspected. We implicitly use

Lemmata 3-6 given in Appendix C to conclude that when ∆ < Π, almost all ∆ measure of the

donor/pair group examined in the numerator at time t̂ can be matched with a ∆ measure of the

patient/pair group examined in the denominator (among total measure Π). When Π ≥ ∆, almost

all patients are matched without waiting by the same results, implying t̂ = 0. The fitted F̂ formula

is given in Equation 3. We find each relevant ∆ and Π through our analysis at steady state in

Appendix B.

Deceased-donor allocation is done on a more regional than national basis. Moreover, a graft can

easily go bad if a suitable patient is not found in time. Thus, in practice, it turns out that on many

occasions AB patients benefit and receive transplants from other blood types (the same observation

goes for A and B patients, who receive from O deceased donors more often than necessary). Hence,

in the OPTN guidelines, the ultimate decision is left to the physician, although ABO-i is practiced

first, especially for B and O.18 We refer to this actual allocation policy as de facto deceased

allocation. Since the AB blood type is seen in only 3 − 4 percent of the population, even a few

violations of FIFO cause dramatic decreases in AB patients’ waiting time. Hence, in our policy

discussion we will mostly ignore AB and focus on A, B, and O. We use σX in Table 3 instead of δX

(found in Table 4) for calculating “de facto” predictions.

A second observation in Table 3 is noteworthy. As actual waiting times differ substantially across

blood types, certain blood-type patients appear to be “looking for” paired donors more intensely

than others, and possibly they find donors after they join the pool. In our model, the paired donor

rate λ is constant for all blood types, and a pair is formed (or not) as soon as the patient joins

the queue. However, in the data λ is different across blood types: 19.44 − 20.35 percent for AB,

25.34 − 26.87 percent for A, 27.89 − 30.75 percent for B, and 37.15 − 39.55 percent for O. As we

know, the O blood type is at a disadvantage; it looks like they try hardest to find a compatible

paired donor while waiting in the queue.19 We use these rates for each blood type in what follows.

Next, we discuss our numerical predictions. Table 5 reflects the predicted number of patients

receiving transplants for each blood type. In terms of both the efficiency and equity consequences of

the step-wise changes across the 4 technologies, from deceased-donor transplantation to living-donor

transplantation, from living-donor transplantation to regular exchange, and finally from regular

exchange to incentivized exchange with ρ = 100 percent participation, we observe the following:

O patients are predicted to experience 46.88 percent, 6.84 percent, and 21.90 percent increases

in number of transplants, respectively. These numbers are 47.90 percent, 20.15 percent, and 1.06

percent for B; 49.23 percent, 9.84 percent and 1.21 percent for A (and 36.28 percent, 2.29 percent,

and 0.00 percent for AB), respectively. Thus:

18See page 82 of the OPTN kidney allocation guidelines retrieved from
https://optn.transplant.hrsa.gov/media/1200/optn policies.pdf#nameddest=Policy 08 on 06/05/2017.

19Also cultural issues, such as family composition among different ethnic groups, can play a role in paired-donor
rates. This contributes to the observed disparity. For example, consider the B blood type. Although its waiting time
is as long as O’s or even longer, its patients’ pairing rate is not as high.
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Model Predictions – Est. High:
Patients Receiving Transplants (in numbers)

Blood Types: O A B AB

Total Living Donor Transplants

Living Donor Transplantation 2, 215.67 (15.08%) 1, 878.04 (18.81%) 645.21 (14.45%) 201.00 (17.30%)
Regular Exchange (ρ = 0%) 2, 690.26 (18.31%) 2, 438.08 (24.42%) 1, 046.61 (23.44%) 225.84 (19.44%)

Incentivized Exchange with ρ = 25% 3, 096.31 (21.07%) 2, 457.07 (24.61%) 1, 052.94 (23.58%) 225.84 (19.44%)
Incentivized Exchange with ρ = 50% 3, 502.36 (23.84%) 2, 476.06 (24.80%) 1, 059.27 (23.72%) 225.84 (19.44%)
Incentivized Exchange with ρ = 100% 4, 314.45 (29.36%) 2, 514.05 (25.18%) 1, 071.92 (24.00%) 225.84 (19.44%)

Deceased-Donor Transplants

De Facto Deceased-Donor Allocation 4, 726.00 (32.16%) 3, 815.00 (38.21%) 1, 347.00 (30.16%) 554.00 (47.68%)
ABO-i 4, 981.85 (33.91%) 3, 921.51 (39.28%) 1, 224.57 (27.42%) 314.07 (27.03%)

Table 5: Model predictions for the number of patients estimated to receive transplants under various
policies. The percentages in parentheses are with respect to inflow rates πX . Deceased-donor transplants
are the same for a given allocation method, de facto or ABO-i, for all policies.

• A patients are predicted to experience the highest gain from deceased-donor transplantation

to living-donor transplantation, and AB patients the lowest,

• B patients are predicted to experience the highest gain from living-donor transplantation to

regular exchange, and AB and O patients the lowest, and

• O patients are predicted to experience the highest gain from regular exchange to incentivized

exchange, and AB patients the lowest.

Observe that these estimates are consistent with our earlier predictions, even though our theory does

not assume any heterogeneity among behavioral and medical characteristics of different blood-type

patients and donors, as the data reflect (cf. Theorems 2, 4, 5, and 8).

Model Predictions – Est. High:
Average Time to Transplant (in years)

Blood Types: O A B AB

Deceased-Donor Transplantation

De Facto Deceased-Donor Allocation 6.95 5.95 7.30 4.76
ABO-i 6.66 5.80 7.83 7.88

Living Donor Transplantation

De Facto Deceased-Donor Allocation 4.19 3.29 4.43 2.85
ABO-i 4.07 3.22 4.63 4.25

Regular Exchange (ρ = 0%)

De Facto Deceased-Donor Allocation 3.99 2.95 3.66 2.78
ABO-i 3.87 2.86 3.81 4.07

Model Predictions – Est. High:
Average Time to Transplant (in years)

Blood Types: O A B AB

Incentivized Exchange with ρ = 25%

De Facto Deceased-Donor Allocation 3.80 2.95 3.65 2.81
ABO-i 3.68 2.88 3.81 4.05

Incentivized Exchange with ρ = 50%

De Facto Deceased-Donor Allocation 3.64 2.95 3.64 2.84
ABO-i 3.52 2.90 3.81 4.02

Incentivized Exchange with ρ = 100%

De Facto Deceased-Donor Allocation 3.15 2.93 3.63 2.89
ABO-i 3.05 2.87 3.74 3.94

Table 6: Model predictions reflecting average waiting time to a transplant using the Est. High model
discussed. These are the average waiting-time estimates for all patients who receive transplants, including
those who receive (1) transplants immediately through exchange, direct live donation, or prioritized de-
ceased donation, (2) living-donor transplants through exchange after waiting some time, and (3) deceased-
donor transplants after waiting in the deceased-donor queue under different technologies.

In terms of average waiting times for any transplant (for de facto), we observe that each new

technology decreases the average waiting time for O patients from 6.95 years under deceased-donor
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Model Predictions – Est. High:
Time to Deceased-Donor Transplant

or Median Time to Transplant (in years)

Blood Types: O A B AB

Deceased-Donor Transplantation

De Facto Deceased-Donor Allocation 6.95 5.95 7.30 4.76
ABO-i 6.66 5.80 7.83 7.88

Living Donor Transplantation

De Facto Deceased-Donor Allocation 6.16 4.91 6.55 3.89
ABO-i 5.87 4.76 7.08 6.97

Regular Exchange (ρ = 0%)

De Facto Deceased-Donor Allocation 6.00 4.83 6.01 3.91
ABO-i 5.73 4.68 6.60 7.00

Model Predictions – Est. High:
Time to Nonprioritized Deceased-Donor Transplant

or Median Time to Transplant (in years)

Blood Types: O A B AB

Incentivized Exchange with ρ = 25%

De Facto Deceased-Donor Allocation 5.57 4.90 6.14 4.04
ABO-i 5.32 4.75 6.73 7.23

Incentivized Exchange with ρ = 50%

De Facto Deceased-Donor Allocation 5.22 4.98 6.26 4.17
ABO-i 4.98 4.82 6.87 7.47

Incentivized Exchange with ρ = 100%

De Facto Deceased-Donor Allocation 5.07 5.19 6.65 4.46
ABO-i 4.79 5.03 7.24 7.99

Table 7: Model predictions reflecting waiting times for deceased-donor transplants. These are the waiting
time estimates for patients who receive deceased-donor transplants under different technologies. The
prioritized reentrants are excluded from the calculation for incentivized exchange. These are also the
median waiting times for all types of transplants.

Model Predictions - Est High: Time to Transplant for Blood-Type-Incompatible Pairs
When Compatible Pairs are Prioritized (in years)

% of Comp. Pair Types

Pairs in O−A O−B O−AB A−B A−AB B−A B−AB

ρ = 0% pooled w O pooled w O pooled w O 0 pooled w A 1.99 pooled w B
ρ = 25% pooled w O pooled w O pooled w O 0 pooled w A 1.99 pooled w B
ρ = 50% pooled w O 4.32 pooled w O 0 4.21 1.99 pooled w B
ρ = 100% 3.13 0.79 4.17 0 0.68 1.99 3.02

Table 8: Model predictions reflecting regular and incentivized-exchange waiting times for pairs for trans-
plant. Upon reentry, the patient of a compatible X,−Y pair participating in exchange receives an X
deceased-donor kidney. Here “pooled” means that some X − Y pairs receive deceased-donor transplants
along with single nonprioritized X patients while some other X − Y pairs simultaneously participate in
exchange. Their waiting times are reflected in Table 7 in the columns regarding the X blood type.

transplantation to 4.19 with living-donor transplantation, to 3.99 years with regular exchange.20 It

further falls to 3.80, 3.64, and 3.15 years with incentivized exchange with ρ = 25 percent, ρ = 50

percent, and ρ = 100 percent, respectively. Most importantly, we observe that with increasing

ρ, average waiting time for all blood types decreases, except AB, for which waiting time slightly

increases. In terms of equity, we have the following consequences: Once regular exchange policy

is available, the B patient waiting time is 0.71 years longer than that of A patients, which is our

20 As shown in Table 3, because of the de facto deceased-allocation policy, the actual median waiting time for a
live-donor or deceased-donor transplant for AB is the shortest (2.34 years), while B is the longest, but very close to O
(5.30 versus 5.07 years). Furthermore, A’s waiting time is less than these two blood types (at 3.31 years). Moreover,
our model predictions using the de facto deceased-allocation regime are for averages of 2.85 years for AB, 3.29 years
for A, 4.19 years for O, and 4.43 years for B (Table 6, left pane, middle row for de facto, i.e., under the living
donor transplantation modality) while the medians are 3.89 years for AB, 4.91 for A, 6.16 for O, and 6.55 for B for
2009 entrants. The median transplant is always a deceased-donor transplant in our model, simply because there are
more deceased-donor transplants than live-donor transplants, and living donation never occurs later than deceased
donation. These times are given in Table 7 (left middle row for de facto). We also did the same calculations for the
2003 cohort using both 2003/2009 survival function estimates and obtained the median waiting times as 2.52/3.26
years for AB, 3.25/4.16 for A, 4.13/5.26 for O and 4.87/6.18 for B, respectively. Actual median time for O is closer
to the higher calculation while actual median times for other blood types are closer to the lower calculations.
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reference point. The gap between O and A is 1.03 years on the other hand. These numbers are

0.91 years for B and 1.14 years for O under living-donor transplantation policy. Under incentivized-

exchange policy, O starts to close the gap with A. The difference falls to 0.67 years with ρ = 50

percent and then to 0.22 years with ρ = 100 percent (cf. Theorems 4 and 5).

Both A and B have prioritized reentrants who receive a deceased-donor kidney as soon as they

enter. As a result, the waiting times for nonprioritized deceased donation increase for both A and

B under incentivized exchange (see Table 7’s rows for “de facto allocation”). These are consistent

with our predictions of Theorem 4.

As expected, increasing compatible-pair participation under incentivized exchange decreases

waiting times of underdemanded pair types substantially (see Table 8): as ρ = 100 percent they

no longer receive any deceased-donor transplants but they participate only in exchange with their

reciprocal types.

6 Conclusion

Over the last decade, living-donor organ exchange has emerged as an important transplantation

technology. While the analysis of the efficiency and equity implications of individual technologies

has been an important focus for researchers, doctors, and health care policymakers, there has been

no study to date that assesses the interaction between them and their collective implications. As

the share of transplants from living-donor transplantation and organ exchange increased, a need for

a model that studies the interaction of these technologies as well as their collective implications has

arisen. Our model is a first attempt to fill this gap in the literature. Using this model, we analyze

the welfare and equity implications of existing organ transplantation technologies, shedding light

on the empirical patterns that are observed in practice.

Our final, and perhaps major, contribution is the introduction of a new policy that has the

potential not only to increase overall patient welfare, but also to decrease waiting time inequity

across patients of different blood types. Currently compatible pairs very rarely participate in organ

exchange, and their reluctance to do so results in considerable welfare loss. To incentivize the

participation of compatible pairs in exchange, our policy prioritizes patients of such pairs at the

deceased-donor queue for possible future organ failures of the transplanted organ. This policy

has the potential to decrease inequity across various patient populations while at the same time

increasing the overall welfare.
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Symbol Meaning

pX probability of having blood-type X in the population
πX inflow rate of new blood-type X patients
θ the expected tissue rejection probability
δX inflow rate of blood-type X deceased donors

φd
steady-state fraction of the previous recipients from deceased donors
who reenter the deceased-donor queue

λ fraction of incoming patients with donors

φl
steady-state fraction of the previous recipients from living donors
who reenter the deceased-donor queue

ρ fraction of compatible pairs that take up the incentivized-exchange option
lX rate of X patients receiving direct donation when ρ = 0

(i.e., inflow rate of X patients with compatible donors)
eX rate of X patients matched through exchange when ρ = 0
iX marginal rate of transplants for X patients

under incentivized exchange beyond regular exchange (as a function of ρ)

Table 9: Notation for Main Text

For Online Publicatio n

Appendix A Remaining Proofs

The following lemma is useful in the proof of Theorem 1. Similar results also appear in Roth,

Sönmez, and Ünver (2007) and Ünver (2010), so we skip its proof.

Lemma 1 (Exchange blood-type feasibility) An underdemanded type pair can be matched only

with an overdemanded type pair in an exchange. An overdemanded type pair can be matched with an

overdemanded, underdemanded, reciprocally demanded, or self-demanded type pair. A reciprocally

demanded type pair can be matched with a (reciprocal of its type) reciprocally demanded or overde-

manded type pair. A self-demanded type pair can be matched with a same type or overdemanded

type pair. In particular, the following holds:

• An underdemanded O-A (or O-B) pair can be matched only with a pair from overdemanded

types A-O (or B-O) or AB-O. An underdemanded A-AB (or B-AB) pair can be matched only

with a pair from overdemanded types AB-A (or AB-B) or AB-O. An underdemanded O-AB

pair can be matched only with an overdemanded AB-O pair.

• A reciprocally demanded A-B (or B-A) pair can be matched only with a pair from the other

reciprocally demanded type B-A (or A-B); or overdemanded types B-O (or A-O), AB-A (or

AB-B), or AB-O.

• A self-demanded X − X pair can be matched with a same type pair. Additionally, an O-O

pair can be matched only with a pair from overdemanded types A − O,B − O, or AB-O; an
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A-A (or B-B) pair can be matched only with a pair from overdemanded types AB-A (or AB-

B) or AB-O; and an AB-AB pair can be matched only with a pair from overdemanded types

AB − A,AB −B, or AB-O.

Proof of Theorem 1. Under the proposed policy, by Lemma 6 in Appendix C, all self-demanded

pairs can be matched with their own type pairs as soon as they arrive, and all pairs of type B-A

that have a lower inflow rate than A-B pairs (by Assumption 3) can be matched as soon as they

arrive with their reciprocal-type pairs (Lemma 4 in Appendix C). Hence, under this policy only

A-B pairs will remain in the exchange pool at any point in time. These pairs can only be matched

with overdemanded pairs by Lemma 1, as B-A pairs are already committed to other A-B pairs.

Next consider underdemanded type pairs. These are Y − X type pairs such that Y 6= X and

Y . X. By Assumption 2, we have θpY πX ≤ pXπY . By Lemma 1, they can only be matched with

overdemanded types. Recall that the inflow rate of each Y −X type pair to the exchange pool is

pXλπY . Their reciprocal type X−Y , which is overdemanded, has the inflow rate θpY λπX ≤ pXλπY .

Hence, we can match all such overdemanded pairs X − Y as soon as they enter the pool with their

reciprocal type pairs (by Lemma 5 in Appendix C). As all overdemanded, self-demanded, and type

B-A reciprocally demanded pairs are matched as soon as they arrive, by Lemma 1, the proposed

policy achieves the maximum measure of pairs matched. At steady state, as no incompatible

overdemanded, self-demanded, and B-A type pair waits in the pool, gets immediately matched,

and saves one additional pair, the maximum mass of possible exchanges is also conducted in this

manner in any closed time interval.

On the other hand, if we do not conduct the exchanges immediately whenever they become

available, but only after a closed time interval, then some of the patients of overdemanded, self-

demanded, and B-A type pairs who have arrived earlier will not survive. Hence, when we conduct

the exchanges at the end of the time interval, we will match a strictly smaller mass of possible pairs

than we would have matched under the proposed policy.

Proof of Theorem 2. Consider {eX}X∈T , the overall measures of pairs with X blood type

participating in exchange for each X ∈ T reported in Equation 1. Observe that

eO
πO

=θpOλ+ θpOλ
πA + πB + πAB

πO
= θ(pO + pA + pB + pAB)λ

eA
πA

=θpAλ+ θpOλ+ pAλ
πB
πA

+ θpAλ
πAB
πA

= (θpO + θpA + pB + θpAB)λ

eB
πB

=θpBλ+ θpOλ+ pAλ+ θpBλ
πAB
πB

= (θpO + pA + θpB + θpAB)λ

eAB
πAB

=θ(pAB + pO + pA + pB)λ

where the second equality in each line (except the last) follows from the assumption that pX/πX is

a constant among all X ∈ T . Since θ < 1, we have eO/πO = eAB/πAB < eA/πA, eB/πB. With the

additional assumption pA > pB, we obtain eA/πA < eB/πB.

Now, recall that lX is the flow rate of blood-type X patients with compatible donors. We can

write them out as follows: lO = (1− θ)pOλπO, lA = (1− θ)(pO + pA)λπA, lB = (1− θ)(pO + pB)λπB,
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and lAB = (1− θ)(pO + pB + pA + pAB)λπAB. Next consider {lX + eX}X∈T , direct living-donor and

exchange transplants. We have

lO + eO
πO

=(1− θ)pOλ+ θ(pO + pA + pB + pAB)λ = (pO + θpA + θpB + θpAB)λ

lA + eA
πA

=(1− θ)(pO + pA)λ+ (θpO + θpA + pB + θpAB) = (pO + pA + pB + θpAB)λ

lB + eB
πB

=(1− θ)(pO + pB)λ+ (θpO + pA + θpB + θpAB)λ = (pO + pA + pB + θpAB)λ

lAB + eAB
πAB

=(1− θ)(pAB + pO + pA + pB)λ+ θ(pAB + pO + pA + pB)λ = (pAB + pO + pA + pB)λ

Since θ < 1, we have, lO+eO
πO

< lA+eA
πA

= lB+eB
πB

< lAB+eAB
πAB

.

Proof of Theorem 3. Using Assumption 4 instead of Assumption 2, the proof follows verbatim

the proof of Theorem 1, after noting that no self-demanded type can be used to save additional

underdemanded or A-B type pairs.

Proof of Theorem 4. Let ψi be the optimal policy explained in Theorem 3 under incentivized

exchange, and ϕe be the optimal policy explained in Theorem 1 under regular exchange. Recall that

any reentrant is classified as a single patient. Under ψi, no unwilling compatible pairs and compat-

ible self-demanded pairs participate in exchange. And under ϕe, no compatible pairs participate in

exchange. Such compatible pairs’ patients immediately receive transplants from their paired donors.

All overdemanded type pairs are matched through exchange with their reciprocal types under both

ψi and ϕe upon entry immediately (by Assumption 4). We prove the first statement and then the

second.

Proof of the First Part : First consider underdemanded pairs. Suppose that an underdemanded

X − Y pair type is not pooled with blood-type X single patients for deceased donation under ϕe.

Under ψi, that type of pair is matched at the rate

πi
Y−X = [ρ(1− θ) + θ]pXλπY , (4)

i.e., the inflow rate of Y-X pairs for incentivized exchange. At each point in time while under ϕe,

they are matched at the rate

πe
Y−X = θpXλπY , (5)

which is strictly smaller.

Next, suppose that pair types X1−Y1, . . . , X`−Y` are pooled together for deceased donation, and

suppose that among these pair types, X`∗−Y`∗ is underdemanded. Note that all of these pair types

are either underdemanded or A-B. Each Xk − Yk is matched at the rate πe
Xk−Yk + εeXk−Yk under ϕe,

where the rate εeXk−Yk > 0 is the measure of Xk−Yk pairs whose patients receive deceased donation

and πe
Xk−Yk is defined as in Equation 5. Under ψi, πi

Yk−Xk is the measure of the reciprocal Xk − Yk
pairs (who are on high demand) willing to participate in exchange, which is strictly larger than

πe
Yk−Xk , while the rate of deceased donation does not change. Hence, while πi

Yk−Xk
− πe

Yk−Xk more
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Xk − Yk pairs participate in exchange under ψi, fewer such pairs may receive deceased donation.

Suppose that εiXk−Yk is the rate of Xk − Yk pairs receiving deceased donation under ψi. We will

show that iXk−Yk = [πi
Yk−Xk + εiXk−Yk ] − [πe

Yk−Xk + εeXk−Yk ] > 0 for all k. Suppose not for some k.

In particular, if there are multiple such k, let k be chosen with the smallest iXk−Yk ≤ 0. Hence, as

waiting time of all pairs X1−Y1, . . . , X`−Y` is the same, under ϕe, Xk−Yk’s waiting time increases

the most among all pairs or stays the same and no other pair’s waiting time increases under ψi.

Hence, Xk−Yk continues to be pooled with Xk single patients under ψi. As πi
Y`∗−X`∗−π

e
Y`∗−X`∗ > 0,

and for all k∗ 6= `∗, we have, πi
Yk∗−Xk∗ −π

e
Yk∗−Xk∗ ≥ 0, then a higher share of deceased donors should

go to Xk − Yk pairs under ψi with respect to ϕe. Hence, εiXk−Yk − εeXk−Yk > 0, implying that

iXk−Yk > 0, a contradiction.

Hence, unless A-B is pooled by itself with blood-type A single patients under ϕe, any pooled

paired group with blood-type X single patients has a strictly higher measure of being matched at

each point in time under ψi.

We continue with other patient groups. All overdemanded pairs and self-demanded pairs receive

live donation under both ψi and ϕe immediately after their arrival. We already showed that un-

derdemanded pairs strictly benefit from ψi. Moreover, by Assumption 3, Lemma 4, and Theorems

1 and 3, all B-A pairs are matched with A-B pairs through exchange as soon as they enter the

exchange pool. This and the proof for underdemanded pairs imply that A-B pairs either benefit

under ψi (if they are pooled with an underdemanded type for deceased donation under ϕe) or they

remain indifferent between the two technologies (otherwise). Thus, all reciprocally demanded pairs

have weakly less waiting times under incentivized exchange.

Finally, consider any X ∈ T blood-type single patients. As more underdemanded-type pairs are

matched through exchange and the same measure of A-B pairs participate in exchange under ψi,

overall fewer underdemanded-type and A-B type pairs will be left from the same cohort for deceased

donation. Furthermore, the measure of incentivized patients from willing compatible pairs returning

for deceased-donor kidneys is only a fraction of this number. Hence, weakly more blood-type X

single patients receive deceased donation under ψi.

Proof of the Second Part : First observe that the waiting times of underdemanded types strictly

decreases by the first part. The waiting times of reciprocally demanded B-A type pairs and A-B

type pairs do not increase by the first part. Moreover, self-demanded and overdemanded type pairs

do not wait and get immediately matched under both technologies. Finally, we consider single

patients. To see how their waiting times are affected, we consider the change in the exchange rates

for compatible and incompatible pairs first. We do this analysis for all blood types separately.

1. Blood-type O patients:

Compatible pairs: O-O is the only compatible type with blood-type O patients. However,

incompatible O-O pairs are already immediately matched with each other in exchange. Hence,

a cO = 0 measure of compatible pairs with blood-type O patients participates in exchange.

Incompatible pairs: A measure of [ρ(1 − θ) + θ]pOλ[πA + πB + πAB] incompatible pairs with

blood-type O patients is matched through exchange with their reciprocal type pairs at each
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point in time. This is a net increase of iO = ρ(1−θ)pOλ[πA+πB+πAB] with respect to regular

exchange. If some of these pair types are pooled for deceased donation under exchange with

incentivized compatible pairs, then they are also pooled for deceased donation under regular

exchange.

Single patients:

* Prioritized reentrants : As no blood-type O reentrants are prioritized, all blood-type O

deceased donors are still given to blood-type O single patients, and there is a φlcO = 0

measure of prioritized blood-type O reentrants per unit time.

* Nonprioritized single patients : On the other hand, because some additional blood-type O

patients are saved through exchange, an additional measure of φliO = φl[ρ(1 − θ)]pOλ[πA +

πB+πAB] of blood-type O patients reenters with respect to regular exchange. These reentrants

join the nonprioritized deceased-donor queue. However, if some underdemanded pairs with

blood-type O patients receive deceased-donation under exchange, then some of these fall from

competition for deceased donation under incentivized exchange. Depending on the size of this

fallout, the net effect on the net inflow rate of blood-type O single patients can be negative or

positive, but this additional inflow rate to the nonprioritized deceased donation queue will be

no more than φliO. Depending on which of the above effects dominates, the waiting time for

nonprioritized blood-type O single patients can slightly increase or decrease under incentivized

exchange. However if O-A, O-B, and O-AB pairs received deceased-donor transplants under

regular exchange, then the first effect dominates, and their waiting time decreases. More

formally, in Theorem 9 in Appendix B see the waiting time in Equation 14, t = F−1
(
1− ∆

Π

)
for appropriately defined ∆ < Π, there. Suppose ρ increases above 0 sufficiently but not

too much so that O-A, O-B, and O-AB still receive deceased-donor transplants. Then the

increase in ∆ is iO and the increase in Π is φliO. Thus, t decreases as ∆/Π increases. As ρ

gets higher, so that such pairs are no longer pooled, the numerator ∆ does not change while

the denominator Π gets larger, and hence, t continues to increase.

2. Blood-type A patients:

Compatible pairs: A measure cA = ρ(1−θ)pOλπA of A-O type compatible pairs participates in

exchange to save O-A type pairs. Self-demanded A-A type compatible pairs do not participate

in exchange.

Incompatible pairs: A measure [ρ(1 − θ) + θ]pAλπAB of underdemanded type pairs A-AB is

matched through exchange in every point in time. This is a net increase of iA = ρ(1−θ)pAλπAB
with respect to regular exchange. If some of these pair types are pooled for deceased donation

under incentivized exchange, then they are also pooled for deceased donation under regular

exchange.

The reciprocally demanded pair type A-B continues to run a deficit as B-A inflow is – by

Assumption 3 – lower than A-B inflow. If A-B type pairs wait both for B-A type pairs and

deceased donors under incentivized exchange, see the case for single patients to understand
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the effect of incentivized exchange on their waiting times below. On the other hand, if they

are waiting exclusively for B-As under incentivized-exchange policies, then A-B types wait for

the same time under both regular and incentivized exchange, and exactly the same measure

of them gets matched.

Single patients:

* Prioritized reentrants : Patients of some of the A-O type compatible pairs that previously

participated in exchange reenter as their grafts fail. Their inflow is φlcA = φlρ(1− θ)pOλπA.

These A reentrants, who no longer have living donors, go directly to the top of the blood-type

A deceased-donor queue instead of going to the bottom as under regular exchange. We will

refer to this as the incentivized exchange burden. This is also the rate of the deceased donors

reserved for these patients.

* Nonprioritized single patients : An additional iA measure of A-AB pairs are saved by AB-A

types through exchange. A measure of φliA = φlρ(1−θ)pAλπAB blood-type A patients reenters

and joins in the nonprioritized queue with the single blood-type A patients. However, if some

A-AB pairs receive deceased donation under regular exchange, then some of these fall from

competition for deceased donation under incentivized exchange. Depending on the size of this

fallout, the net effect on the net inflow of blood-type A single patients for the nonprioritized

queue can be negative or positive, but this additional inflow will be no more than φliA−φlcA.

Moreover a φlcA measure of blood-type A deceased-donor kidneys will be reserved for the

prioritized blood-type A reentrants. If A-AB is sufficiently small in measure, then iA will be

negligible, and as a result the waiting time will be t′ ≈ F−1
(
1 − ∆−φlcA

Π−φlcA

)
, while the waiting

time with regular exchange was t = F−1
(
1 − ∆

Π

)
for appropriately defined ∆ and Π, as in

Theorem 9 in Appendix B in Equation 14 with ∆ < Π. Therefore, t′ > t.

As a result, the waiting time for new blood-type A single patients can slightly increase or

decrease under exchange with incentivized compatible pairs with respect to parameters.

3. Blood-type B patients:

Symmetric version of blood-type A patients, except that B-A’s are immediately matched with

A-B’s when they enter the pool by the assumption that B-A’s are on the short side.

4. Blood-type AB patients:

Compatible pairs: A total measure of cAB = ρ(1 − θ)[pO + pA + pB]λπAB compatible AB-O,

AB-A, and AB-B type pairs participate in exchange to save their reciprocals at each point in

time. Self-demanded compatible AB-AB type pairs do not participate in exchange.

Incompatible pairs: All incompatible pairs with blood-type AB patients are either self-demanded

or overdemanded. Hence, they are matched immediately when they arrive through exchange

with their reciprocal types under both regular exchange and exchange with incentivized com-

patible pairs. Hence, additionally an iAB = 0 measure of incompatible pairs with blood-type

AB patients is matched under the new regime.
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Single patients:

* Prioritized reentrants : The reentry burden of blood-type AB patients from previous com-

patible pairs that participated in exchange is φlcAB = φlρ(1− θ)[pO + pA + pB]λπAB, which is

the rate of prioritization for blood-type AB reentrants to the deceased-donor queue. This is

also the rate of the deceased donors reserved for these patients.

* Nonprioritized single patients : On the other hand, the same measure of blood-type AB

patients reenters at each point in time under both regular exchange and exchange with in-

centivized compatible pairs. No pairs with blood-type AB patients are pooled for deceased

donation under either regular exchange or exchange with incentivized compatible pairs. Hence,

a φliAB = 0 measure of additional blood-type AB reentrants from previous incompatible pairs

reenters the deceased-donor queue. The net increase of rate of entry to the nonprioritized

blood-type AB deceased-donor queue is negative and equal to −φlcAB. As a result, the waiting

time for nonprioritized blood-type AB single patients unambiguously slightly increases under

exchange with incentivized compatible pairs. This holds as all of the prioritized blood-type

AB patients receive deceased donation under exchange with incentivized compatible pairs,

while some patients from the same population would have died and not received deceased

donation under the alternative regime, regular exchange.

Proof of Theorem 5. From the proof of Theorem 2, we have the following:

lO + eO
πO

=(pO + θpA + θpB + θpAB)λ,

lA + eA
πA

=(pO + pA + pB + θpAB)λ,

lB + eB
πB

=(pO + pA + pB + θpAB)λ, and

lAB + eAB
πAB

=(pAB + pO + pA + pB)λ.

Plugging in the values of iX/πX for each X ∈ T and using the assumption that pX/πX is a

constant among all X ∈ T give us the following:

lO + eO + iO
πO

=pOλ+ (pA + pB + pAB)λ[θ + ρ(1− θ)],

lA + eA + iA
πA

=(pO + pA + pB)λ+ pABλ[θ + ρ(1− θ)],

lB + eB + iB
πB

=(pO + pA + pB)λ+ pABλ[θ + ρ(1− θ)], and

lAB + eAB + iAB
πAB

=(pAB + pO + pA + pB)λ.
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Therefore, we get lO+eO+iO
πO

≤ lA+eA+iA
πA

= lB+eB+iB
πB

≤ lAB+eAB+iAB
πAB

. Furthermore, since λ > 0,

weak inequalities hold with equality if and only if ρ = 1.
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Appendix B Steady States of Transplantation Policies

In this appendix, we characterize the steady state waiting times for transplantation using the

primitives of our model for all the transplantation policies. Using these results, we calculate the

steady state waiting times in our policy experiments with calibrated real-data statistics in Section

5.

B.1 Deceased-Donor Transplantation

In this subsection, we characterize the steady state of the deceased-donor transplantation policy

under ABO-i FIFO allocation policy.

We start with the following result, which directly follows from Lemma 3 in Appendix C:

Lemma 2 Under the ABO-i deceased-donor allocation policy, a δX measure of blood-type X patients

receive deceased-donor transplantation per unit time at steady state. Moreover, a φdδX measure of

previous recipients reenter the deceased-donor queue per unit time due to graft failure at steady state.

Let the receiving cohort have arrived td,decX years before the current point in time. As there is a

[πX + φdδX ][1 − F (td,decX )] measure of patients in this cohort, including reentries and new arrivals,

we should have

[πX + φdδX ][1− F (tX)] = δX .

Hence, at steady state, the time spent on the X queue by the receiving cohort can be found through

td,decX = F−1(1 − δX
πX+φdδX

) < T = F−1(1). This is also the transplant waiting time for blood-type

X patients. Based on this analysis, we state the following characterization of the deceased-donor

queue at steady state.

Theorem 6 (ABO-i deceased-donor transplantation) Under the ABO-i deceased-donor trans-

plantation technology, at steady state, the waiting time for blood-type X patients for transplant is

td,decX = F−1
(
1− δX

πX+φdδX

)
, (6)

which is also the average waiting time for transplant. Moreover, δX
πX+φdδX

is the probability of a

patient ever receiving a transplant.

Proof. Immediately follows from the analysis preceding the theorem.21

B.2 Living Donor Transplantation

We continue with the characterization of waiting times when direct live donation is also feasible.

We calculate the inflow rates of compatible and incompatible pair types as follows:

21Average and deceased-donor waiting times are identical, as the only means of transplantation is deceased donors
under this technology.
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For blood-type O patients: (1 − θ)pOλπO is the inflow rate of blood-type O patients with a

compatible paired donor. Given Y ∈ {A,B,AB}, pY λπO is the measure of O − Y pairs, which are

always incompatible.

For blood-type A and B patients, given X ∈ {A,B}: Given Y ∈ {X,O}, (1 − θ)pY λπX is the

inflow rate of blood-type X patients with a compatible blood-type Y live donor. Given Y ∈ {X,O},
θpY λπX is the measure of incompatible X − Y pairs. Given Y ∈ {A,B,AB} \ {X} pY , λπX as the

inflow rate of X − Y pairs, which are always incompatible.

For blood-type AB patients: For any given Y : (1 − θ)pY λπAB is the inflow rate of compatible

AB − Y pairs, and θpY λπAB is the inflow rate of incompatible AB − Y pairs.

For a paired patient of blood type X, let plX denote the probability that his paired donor

is compatible with the patient. Thus, plXλπX is the inflow rate of blood-type X patients with

compatible living donors. These patients receive organs from their paired donors upon entry, and

they do not wait in the deceased-donor queue.

The total inflow rate of patients entering or reentering the blood-type X deceased-donor queue

under the ABO-i allocation policy is given as

πl,dec
X = πX︸︷︷︸

new patients

+ φdδX︸ ︷︷ ︸
reentry / deceased

+ φlplXλπX︸ ︷︷ ︸
reentry / live

− plXλπX︸ ︷︷ ︸
=lX: compatible pairs

(7)

Above, “reentry / deceased” and “reentry / live” refer to the reentering previous deceased- and

living-donor organ recipients, respectively. Equation 7 and Lemma 3 imply that the ABO-i alloca-

tion waiting time in the blood-type X deceased-donor queue is given by

tl,decX = F−1

(
1− δX

πl,dec
X

)
(8)

The average waiting time for transplant for patients under living-donor transplantation technol-

ogy is substantially less for all blood types than those under the deceased-donor transplantation.

Many patients have compatible living donors, and they immediately receive a transplant without

waiting. Hence, the average waiting time for transplant is

tl,aveX =
δXt

l,dec
X

δX + plXλπX
(9)

under the ABO-i deceased-donor allocation policy.

We are ready to make a more detailed analysis of how different blood types are affected by

the availability of live donation. Due to the partial-order structure of blood-type compatibility

across blood types, not all blood types will be affected equally when live donation is possible.

For example, O blood-type paired patients are at a disadvantage in finding a compatible paired

donor. In general, A blood type is more prominent in the population than B. Therefore, at random,

blood-type A paired patients will have a higher chance of finding a compatible donor than B types,

given that they can all receive from O blood-type donors as well as their own types. Finally, AB
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blood-type paired patients have the highest chance of a compatible paired donor.

However, depending on the exact shape of the survival function, 1−F , and the deceased-donor-

to-new-patient inflow rate ratios across blood types, δX/πX , O blood type does not necessarily

experience the lowest decrease in waiting time, and AB blood type does not necessarily experience

the greatest improvement.

On the other hand, for the benchmark case, where the deceased donor to new patient inflow

rate ratio δX/πX , is the same for each blood type, we can make unambiguous predictions.22

Theorem 7 (Living-donor transplantation) Suppose Assumption 1 holds. For all blood types

with respect to deceased-donor transplantation, living-donor transplantation will unambiguously de-

crease the steady state deceased-donor waiting time, which is now only relevant for single patients

and patients with incompatible donors, will make overall waiting time zero for patients with com-

patible donors, and will decrease the overall average waiting times for transplant.

Consider the benchmark case that the ratio δX/πX is constant across all X ∈ T . The following

hold:

• blood-type O patients have the lowest waiting-time decrease,

• blood-type AB patients have the highest waiting-time decrease, and

• provided that pA > pB, blood-type A patients have a higher waiting-time decrease than blood-

type B patients.

In particular, if pA > pB, then the waiting times for deceased-donor transplant satisfy tl,decO > tl,decB >

tl,decA > tl,decAB , and the average waiting times for transplant satisfy tl,aveO > tl,aveB > tl,aveA > tl,aveAB .

Theorem 8 (Living donor transplantation and inequity in transplant ratios) Suppose As-

sumption 1 holds. Living-donor transplantation unambiguously increases transplant ratios for all

blood types at steady state. Moreover, live-donation transplant ratios satisfy lO/πO < lA/πA, lB/πB <

lAB/πAB, i.e., blood-type O patients benefit marginally the least and blood-type AB patients marginally

the most from living-donor transplantation technology. Additionally, if pA > pB, then lB/πB <

lA/πA, i.e., blood-type A patients marginally benefit more than blood-type B patients.

Proof of Theorems 7 and 8. Observe that we have plO = pO(1 − θ), plA = (pO + pA)(1 − θ),
plB = (pO + pB)(1 − θ), and plAB = 1 − θ. Hence, plO < plA, p

l
B < plAB. Since lX/πX = plXλ (recall

that lX = plXλπX ∈ (0, πX) is the inflow rate of compatible pairs with blood-type X patients), we

obtain Theorem 8.

For Theorem 7, first consider the ABO-i deceased-donor allocation policy. By Equation 8, for

any X,

tl,decX = F−1
(
1− δX

(πX−(1−φl)lX)+φdδX

)
. (10)

22Although these conclusions seem to have been reached with the help of our assumption that blood types of
patients are uncorrelated with their paired donors, a version of this result will also hold true even if there is positive
correlation in a pair’s blood types; however, the magnitude of the difference in eventual waiting times will not be as
extreme.
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As tl,decX is increasing in net patient inflow rate, comparing Equation 6 with Equation 10, we conclude

for all X, tl,decX < td,decX .

In the rest of the proof, we analyze the benchmark case where δX/πX is constant across all blood

types X. Then lO ≤ lX for all X, and lAB ≥ lX for all X. These in turn imply that tl,decO ≥ tl,decX for

all X, and tl,decAB ≤ tl,decX for all X, respectively, since tl,decX is decreasing in lX . We also have

δO
πO − (1− φl)lO

≤ δA
πA − (1− φl)lA

,
δB

πB − (1− φl)lB
≤ δAB
πAB − (1− φl)lAB

.

Further assume that pA > pB. Then plA > plB. Therefore, lA > lB, which in turn implies
δB

πB−(1−φl)lB
< δA

πA−(1−φl)lA
, and hence, tl,decA < tl,decB .

Given this result, comparing Equation 9 across blood types together with the fact that plO <

plA, p
l
B < plAB leads to the analogous result for the overall average waiting times for deceased and

living donors. If plB < plA, then we get the required result in Theorem 7.

B.3 Living-Donor Exchange: Regular and Incentivized

Suppose ρ ∈ [0, 1] ratio of compatible pairs participate in exchange. We use terms “regular ex-

change” and “incentivized exchange with ρ = 0,” interchangeably. To determine steady state, for

each blood type X and Y 6= X, let

πi
X−Y =

{
[θ + ρ(1− θ)]pY λπX if Y . X

pY λπX otherwise
(11)

refer to the exchange pool X − Y inflow rate,23 and let

πi
X = (1− λ)πX︸ ︷︷ ︸

new single

+ φdδX︸ ︷︷ ︸
reentry / deceased

+ φl[lX + eX + iX − cX ]︸ ︷︷ ︸
reentry / all live minus incentivized

(12)

be the nonprioritized single X patient inflow rate where the incentivized compatible pair

rate is given by24

cX = ρ(1− θ)
( ∑
Y .X&Y 6=X

pY

)
λπX .

We calculate the following ratios for each blood type X:

(1)The deceased-donor inflow rate reserved for nonprioritized single patients is δX − φlcX . The

ratio of this rate to nonprioritized single patient inflow rate is defined as

rX =
δX − φlcX

πi
X

23These were defined only for overdemanded types in Equation 4 before.
24These were previously defined throughout the Proof of Theorem 4 before.
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(2) For each underdemanded type X − Y (i.e., X 6= Y and X . Y ), the ratio of the incompatible

Y −X inflow rate to the X − Y inflow rate :

rX−Y =
πi
Y−X

πi
X−Y

=
[θ + ρ(1− θ)]pXλπY

pY λπX
.

(3) For reciprocal type A-B,

rA−B =
πi
B−A

πi
A−B

=
pAλπB
pBλπA

.

Ratio rX would be relevant if we wanted to allocate all X deceased donors to only blood-type X

single patients. For an underdemanded type X − Y or X − Y = A−B, ratio rX−Y =
πi
Y−X
πi
X−Y

would

be relevant if we did not want X − Y pairs to receive deceased donation, but only to participate

in ABO-i optimal exchange. In these cases, the waiting time for deceased-donor transplant for

nonprioritized single blood-type X patients would be tX = F−1
(
1− δX−φlcX

πi
X

)
, and the waiting time

of X − Y pairs would be tX−Y = F−1
(
1− πi

Y−X
πi
X−Y

)
.25

However, underdemanded or reciprocally demanded X − Y pairs have another option besides

waiting for their reciprocal type pairs. If available deceased donors arrive earlier, they can receive

deceased-donor transplants. We assume that patients accept the first donor who is offered to them

through deceased-donor allocation or exchange. Hence, the patient of an X−Y type pair will never

wait for a Y − X pair for exchange if a deceased organ comes first, i.e., if tX−Y < tX . As time is

decreasing in r ratios, all we need to do is to compare these ratios in an iterative manner to decide

whether any underdemanded type or A-B type will receive a deceased-donor transplant:

Exchange technology pooling procedure for single and paired patients:

(1) Let X − Y1, . . . , X − Yk be the ordered list of underdemanded or reciprocally demanded types

ascending in rX−Y ratio. Define for each ` = 0, . . . , k :

rX,X−Y1,...,X−Y` =
δX − φlcX + πi

Y1−X + . . .+ πi
Y`−X

πi
X + πi

X−Y1 + . . .+ πi
X−Y`

. (13)

(2) For ` ∈ {0, . . . , k − 1}, suppose types X − Y1, . . . , X − Y` have already been deemed to be

receiving both deceased-donor and exchange transplants.

(*) If rX−Y`+1
< rX,X−Y1,...,X−Y` then X−Y`+1 pairs receive both exchange transplants and deceased-

donor transplants with the rest of the blood-type X single patients and X − Y1, . . . , X − Y` pairs.

We continue with Step 2 with ` := `+ 1.

(*) If rX−Y`+1
≥ rX,X−Y1,...,X−Y` then all typesX−Y`+1, . . . , X−Yk only receive exchange transplants,

but no transplants from deceased donors. We terminate the procedure.

Based on this procedure, we state the following theorem:

25The waiting time of B-A is 0, as this type is on the shorter side of the market when compared to A-B, by
Assumption 3.
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Theorem 9 (Regular and incentivized exchange) Suppose Assumptions 1, 2, and 4 hold. Con-

sider the ABO-i deceased-donor allocation and incentivized-exchange policies with a given ρ ∈ [0, 1]

compatible pair participation rate. Consider a blood type X. Then the following statements hold.

(1) Blood-type X paired patients with non-exchange-participating compatible donors immediately

receive their donor’s organ upon entry.

(2) Blood-type X reentrants who previously participated in incentivized exchange immediately re-

ceive deceased donor donation upon entry.

(3) Blood-type X paired patients who are part of incompatible or exchange-participating overde-

manded type pairs or self-demanded type pairs and, if X = B, then of B-A type pairs, immediately

participate in an exchange upon entry.

(4) Suppose patients of underdemanded and reciprocally demanded types X−Y1, . . . , X−Y` receive

both deceased-donor and exchange transplants while patients of underdemanded and reciprocally de-

manded types X − Y`+1, . . . , X − Yk receive only exchange transplants. Then

(*) Other blood-type X single patients and patients of X−Y1, . . . , X−Y` pairs wait for a deceased-

donor or exchange transplant for

ti,decX = F−1

(
1−

δX − φlcX + πi
Y1−X + . . .+ πi

Y`−X

πi
X + πi

X−Y1 + . . .+ πi
X−Y`

)
. (14)

(*) For all m ∈ {`+ 1, . . . , k}, patients of X − Ym type pairs wait for an exchange transplant for

tiX−Ym = F−1

(
1−

πi
Ym−X

πi
X−Ym

)
. (15)

The average waiting time to a transplant for all blood-type X patients is

ti,aveX =

[
δX − φlcX +

∑`
m=1 π

i
Ym−X

]
ti,decX +

∑k
m=`+1

[
πi
Ym−Xt

i
X−Ym

]
δX + lX + eX + iX

(16)

Proof. It follows from the procedure discussed before the statement of the theorem. For Equation

16, the blood-type X patient inflow with compatible living donors, plXλπX and the blood-type X

patient inflow with incompatible but blood-type compatible donors have 0 waiting time.
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Appendix C Discrete Limit

In this appendix we weaken our limit assumptions on the donor tissue types. Each donor has a

tissue type. There are k distinct tissue types. The probability that a donor is of tissue type i

is mi,k > 0, so
∑

imi,k = 1. Let θi,k be the tissue rejection probability between any patient and

donor of tissue type i. If a patient is tissue-type compatible with a type i donor, then the patient

is tissue-type compatible with all donors of tissue type i.

C.1 Matching Deceased-Donor Kidneys

We first consider the case when deceased-donor kidneys are matched with patients. We make the

following regularity assumption on the frequency and tissue rejection probability of donor types.

Assumption 5 For every ε > 0, there exists k0 ∈ N, such that for every k > k0 and l ≤ k and

every permutation σ of donor types,

(1− ε)
∑l

i=1 mσ(i),k ≤ 1−
∏l

i=1 θσ(i),k.

When ε → 0, the regularity assumption can be rewritten as
∑k

i=l+1 mσ(i),k ≥
∏l

i=1 θσ(i),k. It

implies that if you take a set of patients and a set of donors with the same measure, then for any

set of donor types the measure of donors with those types is greater than or equal to the measure

of the set of patients who are tissue-type incompatible with all the other donors.

Now let us look at the implications of this assumption in detail for the special case when θi,k = θ

for every donor type i. The assumption is equivalent to (1 − ε)
∑l

i=1mσ(i),k ≤ 1 − θl, which is

satisfied, for example, when mi,k = Θ(1/k). More explicitly, for every donor type i, if there exist

constants ci1 > 0, ci2 > 0, and k0 ∈ N such that, ci1
1
k
≤ mi,k ≤ ci2

1
k

for every k > k0, then the

regularity assumption is satisfied.

Under this assumption, we get the following result, which is used explicitly in establishing

Theorems 6, 7, 8, and 9 in Appendix B and implicitly in all other results regarding steady state of

various policies:

Lemma 3 Consider a measurable set of patients and deceased-donor kidneys that are blood-type

compatible with all the patients such that the measure of the set of kidneys is weakly greater than

the measure of the set of patients. Suppose these sets are formed randomly using the governing

population distributions. Then, as the number of donor types k goes to infinity, almost every patient

can be matched with a compatible kidney under Assumption 5.

Proof. Without loss of generality, consider the case when the measures of the two sets are the

same and equal to one. Fix a small ε > 0. By Assumption 5, there exists k0 such that, for every

k > k0, l ≤ k, and permutation σ,
1−

∏l
i=1 θσ(i),k∑l

i=1mσ(i),k
≥ 1− ε. Consider any such k.

We use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1− ε measure of the patients

can be matched with compatible kidneys. Then the result follows by taking the limit as ε → 0 by

taking k →∞. To apply Gale’s Supply-Demand Theorem, consider a random measurable subset of
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kidneys with measure 1− ε. Since the subset is chosen randomly, the compatibility of kidneys with

the patients can still be formed randomly using the governing population. We need to show that

for any subset of kidneys, the measure of patients who are compatible with at least one kidney is

weakly greater than the measure of kidneys. Without loss of generality, instead of considering any

set of kidneys we can consider the set of all kidneys that have tissue types from any given set. For

any such set, the desired inequality is:

(1− ε)
∑l

i=1mσ(i),k ≤ 1−
∏l

i=1 θσ(i),k.

Here, the set of tissue types that we consider is {σ(1), . . . , σ(l)}. The measure of kidneys that

have a tissue type in this set is (1− ε)
∑l

i=1mσ(i),k. The measure of patients who are incompatible

with all such types is
∏l

i=1 θσ(i),k because the measure of patients is one. Therefore, the measure of

patients who are compatible with at least one kidney in the set is 1−
∏n

i=1 θσ(i),k.

The desired inequality holds by construction. The claim of the lemma follows by taking the

limit as ε→ 0 and k →∞.

C.2 Matching Reciprocal-Type Pairs

We next consider the case when we match reciprocally demanded pairs (A-B pairs with B-A pairs).

For any such pair, tissue-type compatibility is not known because the pair is blood-type incompat-

ible. Therefore, for any such pair, the tissue-type incompatibility is determined randomly as in the

overall population.

We make the following assumption on how the market grows, which guarantees that we can

match almost every patient in two measurable sets of A-B pairs and B-A pairs that have the same

measure.

Assumption 6 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, and every

permutation σ of donor types,

(1− ε)
∑l

i=1mσ(i),k ≤
∑k

i=1mσ(i),k[1−
∏l

j=1(1− (1− θσ(j),k)(1− θσ(i),k))].

Consider two measurable sets of A-B and B-A pairs with the same measure. As ε → 0, the

assumption guarantees that for any measurable set of reciprocal-type pairs, say B-A, the measure

of this set is smaller than the measure of A-B pairs that are compatible with at least one B-A pair

in this set.

When θi,k = θ for every donor type i, the assumption is equivalent to (1 − ε)
∑l

i=1 mσ(i),k ≤
1− (1− (1− θ)2)l and it is satisfied when mi,k = Θ(1/k).

Lemma 4 Consider two measurable sets of A-B and B-A pairs that have the same measure. Sup-

pose these sets are formed randomly using the governing population distributions. Then, as the

number of donor types k goes to infinity, almost every pair can be matched with a compatible pair

under Assumption 6.
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Proof. Without loss of generality, consider the case when the measures of the two sets are the

same and equal to one. Fix a small ε > 0. By Assumption 6, there exists k0 such that, for every

k > k0, l ≤ k, and permutation σ,
∑k
i=1mσ(i),k[1−

∏l
j=1(1−(1−θσ(j),k)(1−θσ(i),k))]∑l
i=1mσ(i),k

≥ 1− ε. Consider any such

k.

Like before, we use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1− ε measure of

the B-A pairs can be matched with compatible A-B pairs. Then the result follows by taking the limit

as ε → 0 and k → ∞. To apply Gale’s Supply-Demand Theorem, consider a random measurable

subset of B-A pairs with measure 1 − ε. Since the subset is chosen randomly, the compatibility of

kidneys with patients can still be formed randomly using the governing population. We need to

show that for any subset of B-A pairs, the measure of A-B pairs who are compatible with at least

one B-A pair in the chosen set is weakly greater than the measure of the chosen set of B-A pairs.

Without loss of generality, instead of considering any set of B-A pairs, we can consider the set of

all B-A pairs with donors that have tissue types from any given set. For any such set, the desired

inequality is:

(1− ε)
∑l

i=1mσ(i),k ≤
∑k

i=1 mσ(i),k[1−
∏l

j=1(1− (1− θσ(j),k)(1− θσ(i),k))].

Here, the set of tissue types that we consider is {σ(1), . . . , σ(l)}. The measure of B-A pairs with

donor kidneys that have a tissue type in this set is (1− ε)
∑l

i=1 mσ(i),k. The measure of A-B pairs

with donor tissue type i who are incompatible with all such pairs is mσ(i),k

∏l
j=1(1− (1−θσ(j),k)(1−

θσ(i),k)). Therefore, the measure of A-B pairs with donor tissue type i who are compatible with

at least one B-A pair from the chosen set is mσ(i),k[1−
∏l

j=1(1− (1− θσ(j),k)(1− θσ(i),k))]. Hence,

the measure of A-B pairs that are compatible with at least one B-A pair in the chosen set is∑k
i=1 mσ(i),k[1−

∏l
j=1(1− (1− θσ(j),k)(1− θσ(i),k))]. This sum is greater than the measure of chosen

B-A pairs (1− ε)
∑l

i=1mσ(i),k by construction.

The proof that 1− ε measure of B-A pairs can be matched follows. The lemma follows by taking

k →∞ and ε→ 0.

C.3 Matching Overdemanded Pairs with Underdemanded Pairs

We next consider the case when we match overdemanded pairs with underdemanded pairs. Under-

demanded pairs are blood-type incompatible, so their tissue-type compatibility is determined as in

the general population. However, overdemanded types are blood-type compatible. Therefore, in

the regular exchange they are tissue-type incompatible, whereas in the incentivized exchange some

of them are tissue-type compatible. To guarantee that almost every pair can be matched, we make

the following assumption.

Assumption 7 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, a ∈ [0, 1],

and every permutation σ of donor types,

(1− ε)
∑l
i=1mσ(i),k[aθσ(i),k+(1−a)(1−θσ(i),k)]∑k

i=1mi,k[aθi,k+(1−a)(1−θi,k)]
≤
∑k

i=1mσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))].
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For overdemanded type pairs, tissue-type incompatible ones participate in the regular exchange.

However, in the incentivized exchange, compatible pairs also participate. As a result, a fraction of

the overdemanded pairs are compatible, while the rest are incompatible. Hence, the assumption

above has a parameter a ∈ [0, 1] that changes as the fraction of incompatible pairs to compatible

pairs changes. It guarantees that, for any set of overdemanded pairs, the set of underdemanded

pairs that are compatible with at least one pair in the set has a greater measure as ε→ 0.

In the special case when θi,k = θ for every donor type i, the assumption is equivalent to (1 −
ε)
∑l

i=1mσ(i),k ≤ 1− (1− (1− θ)2)l−1. Like before, it is satisfied when mi,k = Θ(1/k).

Lemma 5 Consider two measurable sets of overdemanded X−Y pairs and underdemanded Y −X
pairs with the same measure. Suppose that a fraction of overdemanded X − Y pairs are known to

be tissue-type incompatible and the rest are known to be tissue-type compatible but otherwise these

sets are formed randomly using the governing population distributions. Then, as the donor types

goes to infinity, almost every pair can be matched with a compatible pair from the other side under

Assumption 7.

Proof. Without loss of generality consider the case when the measures of the two sets are the

same and equal to one. Then, for underdemanded Y − X pairs, mi,k measure of the donors have

type i for every i. For overdemanded X − Y pairs, some are known to be tissue-type compatible

while others are tissue-type incompatible. The incompatible pairs with type i donors have measure

proportional to mi,kθi,k, whereas among the compatible pairs those with type i donors have measure

proportional to mi,k(1 − θi,k). Let M ≡
∑k

i=1 mi,k[aθi,k + (1 − a)(1 − θi,k)], where a ∈ [0, 1] is

determined by the ratio of compatible X−Y pairs to incompatible X−Y pairs. Then the measure

of overdemanded X − Y pairs with type i donors is mi,k[aθi,k + (1− a)(1− θi,k)]/M .

Fix a small ε > 0. By Assumption 7, there exists k0 such that, for every k > k0, l ≤ k, a ∈ [0, 1]

and permutation σ,

∑k
i=1mσ(i),k[1−

∏l
j=1,j 6=i(1−(1−θσ(j),k)(1−θσ(i),k))]∑l

i=1mσ(i),k[(aθσ(i),k+(1−a)(1−θσ(i),k))]/M
≥ 1− ε.

Consider any such k.

Like before, we use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1 − ε measure

of the overdemanded X − Y pairs can be matched with compatible underdemanded Y −X pairs.

Then the result follows by taking the limit as ε → 0 and k → ∞. To apply Gale’s Supply-

Demand Theorem, consider a random measurable subset of overdemanded X−Y pairs with measure

1− ε. Since the subset is chosen randomly, the compatibility of kidneys with the patients can still

be formed randomly using the governing population. We need to show that, for any subset of

overdemanded X − Y pairs, the measure of underdemanded Y −X pairs who are compatible with

at least one overdemanded X −Y pair is weakly greater than the measure of overdemanded X −Y
pairs. Without loss of generality, instead of considering any set of overdemanded X − Y pairs, we

can consider the set of all overdemanded X − Y pairs with donors that have tissue types from any

given set. For any such set, the desired inequality is:
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(1− ε)
∑l

i=1 mσ(i),k[(aθσ(i),k + (1− a)(1− θσ(i),k))]/M ≤∑k
i=1mσ(i),k[1−

∏l
j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))].

Here, the set of tissue types that we consider is {σ(1), . . . , σ(l)}. The measure of overdemanded

X−Y pairs with donor kidneys that have tissue types in this set is (1−ε)
∑l

i=1 mσ(i),k[(aθσ(i),k+(1−
a)(1− θσ(i),k))]/M . The measure of A-B pairs with donor tissue-type i who are incompatible with

all such pairs is mσ(i),k

∏l
j=1(1− (1− θσ(j),k)(1− θσ(i),k)). Therefore, the measure of underdemanded

Y −X pairs with donor tissue type i who are compatible with at least one overdemanded X−Y pair

from the chosen set is at least mσ(i),k[1−
∏l

j=1(1−(1−θσ(j),k)(1−θσ(i),k))]. Note here that we do not

consider possible matchings with overdemanded X − Y pairs with donor tissue-type i. Hence, the

measure of underdemanded Y −X pairs that are compatible with at least one overdemanded X−Y
pair in the chosen set is

∑k
i=1 mσ(i),k[1−

∏l
j=1(1− (1−θσ(j),k)(1−θσ(i),k))]. This sum is greater than

the measure of chosen overdemanded X−Y pairs (1−ε)
∑l

i=1mσ(i),k[(aθσ(i),k+(1−a)(1−θσ(i),k))]/M

by construction.

The proof that 1− ε measure of B-A pairs can be mathced follows. The lemma follows by taking

k →∞ and ε→ 0.

C.4 Matching Self-Demanded Type Pairs

In this section, we consider the case when we match self-demanded type pairs. Fix any self-

demanded type pair X − X where X ∈ T . Any such pair in the exchange pool is tissue-type

incompatible. We match these pairs with each other. Therefore, in contrast with the previous

sections, this is a one-sided matching problem.

We make the following assumption to show that almost every pair can be matched in the limit.

Assumption 8 For every ε > 0, there exists k0 ∈ N such that for every k > k0, l ≤ k, and every

permutation σ of donor types,

(1− ε)
∑l

i=1 mσ(i),kθσ(i),k ≤
∑k

i=1mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))].

When θi,k = θ for every donor type i, the assumption reduces to (1− ε)
∑l

i=1mσ(i),k ≤ 1− (1−
(1− θ)2)l−1. As before, this is satisfied when mi,k = Θ(1/k).

Lemma 6 Consider a set of self-demanded type pairs X − X that are tissue-type incompatible

with positive measure. Assume that this set is formed randomly using the governing population

distributions. Then, as the donor types goes to infinity, almost every pair can be matched with a

compatible pair, Assumption 8.

Proof. Since the pairs are tissue-type incompatible, but otherwise formed randomly using the

governing population distributions, for each donor tissue type i, the measure of pairs with donor

type i is proportional to miθi.

Fix a small ε > 0. By Assumption 7, there exists k0 such that, for every k > k0, l ≤ k, and

permutation σ,
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∑k
i=1mσ(i),kθσ(i),k[1−

∏l
j=1,j 6=i(1−(1−θσ(j),k)(1−θσ(i),k))]∑l

i=1mσ(i),kθσ(i),k
≥ 1− ε.

Consider any such k.

We use Gale’s Supply-Demand Theorem (Gale, 1957) to show that 1 − ε fraction of the self-

demanded X−X pairs can be matched with compatible self-demanded X−X pairs. To show this,

we first construct a two-sided matching problem with these pairs. For any donor tissue-type i, we

split the set of pairs with donor tissue-type i into two sets with equal measure. These sets are then

added to one side of the market. As a result, we get a two-sided matching problem where each side

has X −X pairs where those with donor type i have a measure proportional to miθi. For ease of

exposition, suppose that the measure is exactly miθi.

Consider one side of the market. To apply Gale’s Supply-Demand Theorem, consider a random

measurable subset of pairs on one side of the market with measure 1 − ε. Since the subset is

chosen randomly, the compatibility of kidneys can still be formed randomly using the governing

population. We need to show that for any subset of pairs, the measure of pairs on the other side of

the market that are compatible with at least one pair is weakly greater than the measure of chosen

pairs. Without loss of generality, instead of considering any set of donor types, we can consider

the set of all donor types that have tissue types from any given set. For any such set, the desired

inequality is:

(1− ε)
∑l

i=1mσ(i),kθσ(i),k ≤
∑k

i=1 mσ(i),kθσ(i),k[1−
∏l

j=1,j 6=i(1− (1− θσ(j),k)(1− θσ(i),k))].

But this inequality holds by assumption, so 1 − ε fraction of pairs on both sides of the market

can be matched. As we take ε → 0 and k → ∞, we establish the desired result that almost every

pair is matched with a compatible pair.

C-6


	Introduction
	A Dynamic Model of Transplant Patients
	Organ Transplantation
	Deceased-Donor Allocation Policies
	Living-Donor Transplantation

	Living-Donor Exchange
	A New Proposal: Incentivized Exchange
	Numerical Model Predictions
	Conclusion
	Appendix Remaining Proofs
	Appendix Steady States of Transplantation Policies
	Deceased-Donor Transplantation
	Living Donor Transplantation
	Living-Donor Exchange: Regular and Incentivized

	Appendix Discrete Limit
	Matching Deceased-Donor Kidneys
	Matching Reciprocal-Type Pairs
	Matching Overdemanded Pairs with Underdemanded Pairs
	Matching Self-Demanded Type Pairs


