
On the Role of Stability and Strategy-proofness

under Multi-unit Demand∗

Yusuke Iwase†

Graduate School of Economics, the University of Tokyo

March 15, 2018

Abstract

We examine the indivisible resource allocation problem with multi-unit de-

mand. In the literature on matching, stability and strategy-proofness have been

important concepts. We pay our attention to the role of these concepts and

show the following results in matching markets with multi-unit demand. First,

the stable and strategy-proof rule, if exists, is unique, which coincides with the

agent-optimal stable rule. Next, the stable and strategy-proof rule is robustly

stable. Moreover, from the point of view of decentralized procedure, the stable

and strategy-proof rule is Nash implementable.

1 Introduction

The indivisible resource allocation problem treats a problem where each object is as-

signed to agents through a centralized clearinghouse, based on the preferences agents

∗I am grateful to Taro Kumano for helpful discussions and suggestions. All errors are mine.
†Email address: iwaseyusuke1209@gmail.com
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submit. Typical examples include school choice problem. In such problem, schools

are merely regarded as objects, so incentives and efficiency are involved in only agents.

Same assumption is put on our paper.

In the literature, two central concepts have played an essential role in various

matching contexts. A matching rule is stable if any agent and any agent-object pair

cannot block the matching induced by the rule. A matching rule is strategy-proof if

submitting truthfully makes no agent worse, compared with the matching under the

untruthful behavior. Gale and Shapley [5] do the great work of discovering the algo-

rithm, called the Deferred Acceptance (DA) algorithm.1 This prominent algorithm

always gives the stable matching, and more marvelously, the stable matching becomes

an optimal in the sense that all agents weakly prefer the matching to any other stable

matching. Fortunately, the DA algorithm is also endowed with strategy-proofness in

different settings (Dubins and Freedman [4] and Roth [12]).

Observe that the results associated with strategy-proofness hold true in the setup

where each agent obtains at most one object. Meanwhile, Kojima [10] shows that

there is no stable and strategy-proof rule in the setting which allows each agent to

get multiple objects, and he also finds the necessary and sufficient condition for the

existence of the rule.

Our paper builds on the result of Kojima [10] and considers the following questions:

if there exists a stable and strategy-proof rule, then how many such rules are present

and whether do they also meet other properties ? To answer these questions, we

will first show that the stable and strategy-proof rule is at most one. In addition,

from the result of Kojima [10], the rule can be specified to the agent-optimal stable

one. Then, we seek to consider the property like merging stability with stratgey-

1Note that they consider the two-sided matching market, where an agent in each side has a
preference ranking over agents in the other side. Our paper, by contrast, examines the one-sided
version.
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proofness, called robust stability. What we will next show is that the rule indeed

satisfies robust stability. In turn, the last part of this paper hits light on the strategic

interaction among agents since submitting preferences forms the preference revelation

game. Finally, we will show that the set of matchings induced by the desirable rule

corresponds to the set of Nash equilibrium outcomes in some mechanism, that is, Nash

implementability. Recently, several experiments reveal that people in the real world

may take untruthful actions, even though it is best to act honestly. The last result

says that by setting alternative mechanism, we can reach the outcome produced by

the desirable rule, under the situation that agents play the weaker solution concept.

1.1 Related literature

The most related paper is Kojima [10]. He shows the equivalence in the same setup as

ours that a stable matching rule is strategy-proof if and only if essential homogeneity

holds. Essential homogeneity means the similar rankings objects have over agents.

Also, Hatfield, Kojima, and Narita [7] analyze the many-to-many matching market

and investigate the (in)compatibility between stability and strategy-proofness. How-

ever, their approach focuses on the two-sided matching, assuming the “max-min”

preferences. As to the uniqueness theorem, Alcalde and Barberà [2], Sakai [13], and

Hirata and Kasuya [8] tackle this issue. Concerning robust stability, Kojima [9] first

introduces it and Afacan [1] extends to the group robust stability. Regarding imple-

mentability, Danilov [3] and Yamato [15] propose the necessary and sufficient condi-

tion for Nash implementability. Particularly, in the context of matching, Haeringer

and Klijn [6], and Kumano [11] show the Nash implementability of agent-optimal

stable rule in different environments.
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2 Model

Let N and X be a finite set of agents and a finite set of objects, respectively. Each

agent i ∈ N has a preference relation Ri which is complete, transitive, and antisym-

metric over the set of subsets of X. Pi is the strict part associated with Ri. Let

R = (Ri)i∈N and R−i = (Rj)j∈N\{i}. Also, let Ri be the set of all preference relations

for i ∈ N and define R = ×i∈NRi. Besides the preference relation, each agent i ∈ N

has a quota qi ∈ N. We assume that the preference relation is responsive, that is,

for all i ∈ N ,2

• for all X ′ ⊆ X with |X ′| ≤ qi, x ∈ X \X ′ and y ∈ X ′, X ′ ∪ {x} \ {y}RiX
′ if

and only if xRiy,

• for all X ′ ⊆ X with |X ′| ≤ qi and x ∈ X ′, X ′RiX
′ \ {x} if and only if xRi∅,

and

• ∅PiX
′ for all X ′ ⊆ X with |X ′| > qi.

For convenience of notation, we sometimes write the preference relation as, say,

Ri : a, b, · · · , ∅. The responsiveness of the preference relations allows us to use this

formulation. A subset of objects X ′ ⊆ X is acceptable to agent i ∈ N if X ′RiX
′′

for all X ′′ ⊆ X ′. Each object x ∈ X has a strict priority (linear order) ≻x over N

and has a quota qx ∈ N. Let ≻= (≻x)x∈X and qX = (qx)x∈X . We call the pair (≻, qX)

a priority structure. Throughout the paper, fix the priority structure.

A matching µ : N → X is a correspondence that satisfies (1) µ(i) ⊆ X for all

i ∈ N , (2) |µ(i)| ≤ qi for all i ∈ N , and (3) each object x ∈ X is matched to at

most qx agents. We write µx = {i ∈ N |x ∈ µ(i)}. Let M be the set of all matchings.

A matching µ is individually rational under R if for all i ∈ N , µ(i) is acceptable

2For convenience, we frequently denote a singleton set {x} as x.
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to agent i under Ri. A matching µ is blocked by a pair (i, x) ∈ N ×X under R if

i /∈ µx and either (1) xPi∅ and |µ(i)| < qi or (2) xPiy for some y ∈ µ(i), and either

(1) |µx| < qx or (2) i ≻x j for some j ∈ µx. A matching µ is stable under R if µ

is individually rational and no pair (i, x) ∈ N ×X blocks µ under R. A matching µ

dominates another matching ν under R if µ(i)Riν(i) for all i ∈ N and µ(i)Piν(i)

for some i ∈ N .

A rule is a function from each preference profile to a matching. We denote the

assignment of i at the matching f(R) by fi(R). A rule f is stable if for all R ∈ R,

f(R) is stable under R. A rule f is agent-optimal stable if for all R ∈ R, f(R)

is stable under R and f(R) is not dominated by any other stable matching under R.

A rule f is strategy-proof if for all i ∈ N,R ∈ R and R′
i ∈ Ri, fi(R)Rifi(R

′
i, R−i).

Both stability and strategy-proofness are regarded as desirable. However, no such

rule exists in many-to-many matching markets (Kojima [10]). The DA rule is a rule

which produces a matching via the following algorithm.

step 1: Each agent i applies to qi most acceptable objects if any. Each

object rejects the lowest-ranking agents in excess of its supply among

those who applied to it, keeping the remaining agents tentatively.

step t: Each agent i who was not tentatively matched to qi objects in step

t− 1 applies to the next highest acceptable objects up to demand if any.

Each object considers these agents and agents who are tentatively held

from the previous step together, and rejects the lowest-ranking agents in

excess of its supply, keeping the remaining agents tentatively.

The algorithm terminates when no agent applies to an object. Each agent tenta-

tively accepted by an object at the last step is allocated a seat in that object, resulting
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in a matching. ♢

Indeed, the DA rule sustains the stability in many-to-many setting, which implies

that the DA rule is not strategy-proof by the impossibility result. The next section

displays some results concerning the stable and strategy-proof rule.

3 Some results

3.1 Uniqueness of the stable and strategy-proof rule

First, we pay our attention to the number of the stable and strategy-proof rules.

From an application point of view, it becomes unnecessary to wonder which rule to

use as the number of the desirable rule is smaller. In fact, as Theorem 1 indicates,

the stable and strategy-proof rule is unique.

Theorem 1. There exists at most one stable and strategy-proof rule.

Proof. In the Appendix. 2

What kind of rule can be a candidate for the stable and strategy-proof rule ?

Theorem 1 in Kojima [10] together with Theorem 1 in our paper implies the following

theorem.

Theorem 2. The agent-optimal stable rule is the unique candidate for the stable and

strategy-proof rule.

Proof. By Kojima [10], if the stable and strategy-proof rule exists, then the DA rule

is one candidate for it. By Theorem 1, the DA rule can be the unique candidate for

the stable and strategy-proof rule. Also, the DA rule coincides with the agent-optimal

stable rule in our setup. 2
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3.2 Robust stability

In this subsection, further analysis is put on the property of mixing stability and

strategy-proofness, which takes an element of after-market. Roughly speaking, the

property eliminates the situation where any agent makes more desirable object match

another agent with lower priority than him, and then he blocks the previous matching,

cooperating with the object. More specifically,

Definition 1. A rule f is robustly stable if it satisfies the following three properties:

• f is stable,

• f is strategy-proof, and

• there exist no i ∈ N,R ∈ R and R′
i ∈ Ri such that (1) X ′Pifi(R) for some

X ′ ⊆ X and (2) for all x ∈ X ′, either i ≻x j for some j ∈ fx(R
′
i, R−i) or

|fx(R′
i, R−i)| < qx.

Theorem 3. The stable and strategy-proof rule is robustly stable.

Proof. In the Appendix. 2

By Theorem 3, we can exclude another kind of manipulable deviation. In the next

section, we seek to consider the practical application of the stable and strategy-proof

rule while considering strategic interaction among agents.

4 Preference revelation game

So far we have discussed the desirability of the stable and strategy-proof rule. From

now on, we consider how to produce the matching via the stable and strategy-proof

rule, by regarding the rule as a goal we would like to achieve. Let Mi be the set of
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strategies for i ∈ N . Denote the strategy profile by m ∈ M = ×i∈NMi. An outcome

function is a function g mapping each strategy profile to a matching. We call the

pair (M, g) a mechanism. The assignment of i at g under m ∈ M is denoted by

gi(m). A strategy profile m ∈ M is Nash equilibrium at (M, g) under R ∈ R if for

all i ∈ N and all m′
i ∈ Mi, gi(m)Rigi(m

′
i,m−i). Let N(M, g,R) be the set of Nash

equilibria at (M, g) under R ∈ R, and define g(N(M, g,R)) = ∪m∈N(M,g,R){g(m)}.

A matching rule f is Nash implementable if there exists a mechanism (M, g) such

that {f(R)} = g(N(M, g,R)) for all R ∈ R.

Let L(µ,Ri) = {ν ∈ M|µ(i)Riν(i)}, that is, the lower contour set of a matching

µ for i ∈ N under Ri. For all i ∈ N and all M ′ ⊆ M, µ ∈ M ′ is essential for i

in M ′ if there exists some preference profile R ∈ R such that L(µ,Ri) ⊆ M ′ and

µ = f(R). Denote the set of essential matchings for i ∈ N, f , and M ′ ⊆ M by

ESS(f, i,M ′). The following two notions of monotonicity play a significant role for

Nash implementability.

Definition 2. A matching rule f is essentially monotonic if for all R,R′ ∈ R,

∀i ∈ N ESS(f, i, L(f(R), R′
i)) ⊆ L(f(R), R′

i) ⇒ f(R′) = f(R).

Definition 3. A matching rule f is Maskin monotonic if for all R,

∀i ∈ N L(f(R), Ri) ⊆ L(f(R), R′
i) ⇒ f(R′) = f(R).

Remark 1. Essential monotonicity implies Maskin monotonicity by definition.

Remark 2. Yamato [15] shows that a social choice correspondence (i.e., a rule)

is Nash implementable if and only if it is essentially monotonic. His environment

contains ours.

8



Now we are ready to state the implementability result. From the next theorem,

we can accomplish the matching via the stable and strategy-proof rule (which is also

robustly stable) by playing a Nash equilibrium in some mechanism.

Theorem 4. The stable and strategy-proof rule is Nash implementable.

Proof. In the Appendix. 2

This result gives a certain solution to the problem that real world humans often

do not take optimal action. That is, by setting up an alternative mechanism, we can

achieve a desirable matching, while we weaken the equilibrium concept.

5 Environment in which the desirable rule is guar-

anteed

In the final section, we note the existence of the desirable rule. In many-to-many

matching, there does not necessarily exist a stable rule which is compatible with

strategy-proofness.3 The necessary and sufficient condition for the existence of such

desirable rule is characterized by a class of the priority structure.

Definition 4. The priority structure (≻, qX) is essentially homogeneous if there

do not exist i, j ∈ N and x, y ∈ X such that

• i ≻x j, j ≻y i and

• there exist distinct sets Nx, Ny ⊆ N \ {i, j} such that |Nx| = qx − 1, |Ny| =

qy − 1, k ≻x j for all k ∈ Nx, and k ≻y i for all k ∈ Ny.

3See Kojima [10] for the example which shows the impossibility.
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Roughly speaking, essential homogeneity requires that objects should have the

similar rankings. Due to the next theorem shown by Kojima [10], our analysis will

cover the class of the priority structure satisfying essential homogeneity.

Theorem . (Kojima [10]) There exists a stable and strategy-proof rule if and only if

the priority structure satisfies essential homogeneity.

Appendix: Omitted proof

The following Lemma plays an essential role in showing Theorem 1.

Lemma 1. Suppose that there exist two distinct stable matchings µ and ν under R.

Then, there exists an agent i ∈ N such that µ(i) ⊈ ν(i) and ν(i) ⊈ µ(i); there is no

case where µ(i) ⊆ ν(i) or ν(i) ⊆ µ(i) for all i ∈ N .

Proof. Take any R ∈ R. Let µ and ν be two distinct stable matchings under R.

Suppose, by way of contradiction, that µ(i) ⊆ ν(i) or ν(i) ⊆ µ(i) for all i ∈ N .

Case 1: For all i ∈ N , µ(i) ⊆ ν(i).

Let i ∈ N be an agent such that µ(i) ⊊ ν(i). By the individual rationality of ν,

and by strict preferences, we have ν(i)Piµ(i). By responsiveness, for all x ∈ ν(i)\µ(i),

(1) xPi∅. Note that (2) i /∈ µx and (3) |µ(i)| < qi since |ν(i)| ≤ qi and µ(i) ⊊ ν(i).

Also, since ν is a matching, |νx| ≤ qx. Since µ(i) ⊆ ν(i) for all i ∈ N , there exists no

agent j such that x ∈ µ(j) and x /∈ ν(j). By noting that i ∈ νx but i /∈ µx, we have

(4) |µx| < qx.

Therefore, by (1)–(4), we can get to the contradiction that the µ is not stable

under R.
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Case 2: For all i ∈ N , ν(i) ⊆ µ(i).

We can apply the same argument as that of Case 1 to this case.

Case 3: For some i, j ∈ N with i ̸= j, µ(i) ⊊ ν(i) and ν(j) ⊊ µ(j).

By the individual rationality of ν, and by strict preferences, we have ν(i)Piµ(i).

By responsiveness, for all x ∈ ν(i) \ µ(i), (1) xPi∅. Note that (2) i /∈ µx and (3)

|µ(i)| < qi since |ν(i)| ≤ qi and µ(i) ⊊ ν(i).

Case 3–1: |µx| < qx.

The matching µ is blocked by the pair (i, x) under R, a contradiction.

Case 3–2: |µx| = qx.

For all k ∈ µx, k ≻x i, otherwise the pair (i, x) blocks µ due to (1)–(3). Since

i ∈ νx, i /∈ µx, and |µx| = qx, there exist k ∈ µx such that (4) k /∈ νx. By the

assumption that µ(i) ⊆ ν(i) or ν(i) ⊆ µ(i) for all i ∈ N , we have ν(k) ⊊ µ(k). By

responsiveness, (5) xPk∅. Also, (6) |ν(k)| < qk. Moreover, (7) i ∈ νx and k ≻x i.

Therefore, by (4)–(7), we can get to the contradiction that ν is not stable under

R.

In either case, we can get to the contradiction, and the proof is complete. 2

Proof of Theorem 1

Proof. Let f and g be the stable and strategy-proof rules. Suppose, by way of con-

tradiction, that for some R, f(R) ̸= g(R). Let Ac(Ri) be the set of objects contained

in some acceptable set X ′, that is,

Ac(Ri) = {x ∈ X| x ∈ X ′ for some X ′ ⊆ X which is acceptable to agent i }.

Let R̃ be a minimal one in terms of total number of acceptable objects: that is,
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f(R̃) ̸= g(R̃) and

f(R) ̸= g(R) ⇒
∑
i∈N

|Ac(Ri)| ≥
∑
i∈N

|Ac(R̃i)|.

Since f(R̃) and g(R̃) is stable under R̃, by Lemma 1, there exists an agent i ∈ N

such that

fi(R̃) ⊈ gi(R̃) and gi(R̃) ⊈ fi(R̃). (1)

Assume, without loss of generality, fi(R̃)P̃igi(R̃) by strict preferences. Let R̂i be a

preference for i ∈ N such that fi(R̃) is only acceptable objects, that is, Ac(R̂i) =

{fi(R̃)}.4 Define R̂ = (R̂i, R̃−i). Observe that fi(R̂), gi(R̂) ∈ {fi(R̃), ∅}, otherwise

contradicts to the individual rationality of f and g.

By strategy-proofness of f , fi(R̂)R̂ifi(R̃). By the construction of R̂i,

fi(R̂) = fi(R̃) ̸= ∅. (2)

Also, by assumption, fi(R̃)P̃igi(R̃). By strategy-proofness of g, gi(R̃)R̃igi(R̂). Thus,

these two imply that fi(R̃)P̃igi(R̂), meaning that fi(R̃) ̸= gi(R̂) and gi(R̂) = ∅ since

gi(R̂) ∈ {fi(R̃), ∅}. Hence, fi(R̂) ̸= gi(R̂), and so f(R̂) ̸= g(R̂).

However, by (1), there exists an object x ∈ X such that x ∈ gi(R̃) \ fi(R̃) and

xP̃i∅. This means that |Ac(R̃i)| > |Ac(R̂i)|. By noting that R̃j = R̂j for all j ̸= i,

∑
i∈N

|Ac(R̃i)| >
∑
i∈N

|Ac(R̂i)|,

which contradicts to the minimality of the number of acceptable objects in R̃.

Therefore, f(R) = g(R) for all R, and the uniqueness of the stable and strategy-

4Note that fi(R̃) ̸= ∅, otherwise contradicts to the stability of g under R̃ because of fi(R̃)P̃igi(R̃).

12



proof rule has been proved. 2

A rule f is efficient if for all R, there exists no matching that dominates f(R) un-

der R. A rule f is group strategy-proof if there exist noN ′ ⊆ N,R ∈ R, and R′
N ′ ∈

×i∈N ′Ri such that fi(R
′
N ′ , R−N ′)Rifi(R) for all i ∈ N ′ and fj(R

′
N ′ , R−N ′)Pjfj(R)

for some j ∈ N ′. A rule f is nonbossy if for all i ∈ N,R ∈ R, and R′
i ∈ Ri,

fi(R
′
i, R−i) = fi(R) implies f(R′

i, R−i) = f(R). Observe that if a rule is group

strategy-proof, then it is nonbossy. The following proposition is useful for the proof

of Theorem 3. Proposition 1 is very similar to Theorem 1 in Kojima [10], but we can

strengthen the second statement, from strategy-proofness to group strategy-proofness.

Proposition 1. The following statements are equivalent.

(1) The agent-optimal stable rule is efficient.

(2) The agent-optimal stable rule is group strategy-proof.

(3) The priority structure is essentially homogeneous.

Proof. We have already known that (1) is equivalent to (3). Since group strategy-

proofness implies strategy-proofness, we obtain that (2) implies (3). Regarding that

(3) implies (2), let f be the agent-optimal stable rule and suppose that f is not group

strategy-proof. Then, there exist N ′ ⊆ N,R ∈ R, and R′
N ′ ∈ ×i∈N ′Ri such that

fi(R
′
N ′ , R−N ′)Rifi(R) for all i ∈ N ′ and fj(R

′
N ′ , R−N ′)Pjfj(R) for some j ∈ N ′. This

implies that there exists x ∈ X such that j ∈ fx(R
′
N ′ , R−N ′)\fx(R). From now, proof

proceeds exactly the same as Kojima [10]. 2

Proof of Theorem 3
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Proof. Let f be the stable and strategy-proof rule. Suppose that f is not robustly

stable. Then, there exist i ∈ N , x ∈ X,R, and R′
i such that (1) X ′Pifi(R) for

some X ′ ⊆ X and (2) for all x ∈ X ′, either i ≻x j for some j ∈ fx(R
′
i, R−i) or

|fx(R′
i, R−i)| < qx.

Case 1: fi(R
′
i, R−i) = ∅.

Let R′′
i : X ′, ∅ be another preference for i ∈ N . We divide two cases.

Case 1-1: fi(R
′′
i , R−i) = X ′.

Then, we have fi(R
′′
i , R−i) = X ′Pifi(R), implying a contradiction to the strategy-

proofness of f .

Case 1-2: fi(R
′′
i , R−i) = ∅.

Then, by definition of R′′
i , we have

X ′P ′′
i fi(R

′′
i , R−i) (3)

In addition, since (≻, q) is essentially homogeneous whenever the stable and strategy-

poof mechanism exists, f also satisfies group strategy-proofness by Proposition 1.

Thus, f is nonbossy. Hence, f(R′
i, R−i) = f(R′′

i , R−i). This property implies by sup-

position that for all x ∈ X ′, either i ≻x j for some j ∈ fx(R
′′
i , R−i) or |fx(R′′

i , R−i)| <

qx. This fact together with (3) contradicts to the stability of f under (R′′
i , R−i).

Case 2: fi(R
′
i, R−i) ̸= ∅.

Since f is strategy-proof and X ′Pifi(R), it follows that fi(R
′
i, R−i) ̸= X ′. Let R′′

i :

X ′, fi(R
′
i, R−i), ∅. Strategy-proofness of f implies that fi(R

′′
i , R−i) ∈ {fi(R′

i, R−i), ∅},

otherwise i can manipulate by misreporting R′′
i at R.

Case 2-1: fi(R
′′
i , R−i) = ∅.

Then, fi(R
′
i, R−i)P

′′
i ∅ = fi(R

′′
i , R−i), which contradicts to strategy-proofness of f .

Case 2-2: fi(R
′′
i , R−i) = fi(R

′
i, R−i).
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Then, nonbossiness implies f(R′′
i , R−i) = f(R′

i, R−i). This implies by supposition

that for all x ∈ X ′, either i ≻x j for some j ∈ fx(R
′′
i , R−i) or |fx(R′′

i , R−i)| < qx. This

fact together with X ′P ′′
i fi(R

′′
i , R−i) contradicts to the stability of f under (R′′

i , R−i).

2

Proof of Theorem 4

Proof. Let f be the stable and strategy-proof rule. Suppose that f is not essentially

monotonic. Then, there exist R and R′ such that

∀i ∈ N ESS(f, i, L(f(R), R′
i)) ⊆ L(f(R), R′

i) and f(R′) ̸= f(R).

Let µ = f(R). We will divide three cases and reach a contradiction in either case.

Case 1: µ is not individually rational under R′.

Then, there exists i ∈ N such that ∅P ′
iµ(i). Consider another matching ν and

another preference profile R̃:

ν =


ν(i) = ∅

ν(j) = µ(j) if µ(j) ∩X ′ ̸= ∅ for some X ′Piµ(i)

ν(k) = ∅ otherwise

and

R̃i : X
′′, ∅

R̃j : ν(j), ∅

R̃k : ∅

where X ′′ is the same as the part above µ(i) of Ri. Then, L(ν, R̃i) = L(µ,Ri).
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Also, ν is stable under R̃ because for all l ∈ N , ν is individually rational, and

l cannot make a blocking pair (if so, then such blocking pair also blocks µ under

R). Moreover, ν is the agent-optimal stable matching under R̃ since otherwise i

can match more preferred objects at ν, but this is impossible because the quotas

of such objects are already occupied by other agents. Hence, ν = f(R̃), meaning

that ν ∈ ESS(f, i, L(µ,Ri)) by L(ν, R̃i) ⊆ L(ν, R̃i) and L(ν, R̃i) = L(µ,Ri). By

assumption, ν ∈ L(µ,R′
i). Therefore, µ(i)R

′
iν(i) = ∅P ′

iµ(i), a contradiction.

Case 2: There exists a blocking pair (i, x) ∈ N ×X under R′.

Then, i /∈ µx and either (1) xP ′
i∅ and |µ(i)| < qi or (2) xP

′
iy for some y ∈ µ(i),

and either (1) |µx| < qx or (2) i ≻x j for some j ∈ µx. We divide two cases depending

on i’s conditions.

Case 2–1: xP ′
i∅ and |µ(i)| < qi.

By responsiveness, µ(i)∪ {x}P ′
iµ(i). We observe that µ(i)Riµ(i)∪ {x} since oth-

erwise µ is not stable under R. Consider another matching ν and another preference

profile R̃:

ν =


ν(i) = µ(i) ∪ {x}

ν(j) = µ(j) if µ(j) ∩X ′ ̸= ∅ for some X ′Piµ(i)

ν(k) = ∅ otherwise

and

R̃i : X
′′, µ(i) ∪ {x}, ∅

R̃j : ν(j), ∅

R̃k : ∅

where X ′′ is the same as the part above µ(i) of Ri. Then, L(ν, R̃i) = L(µ,Ri). Similar
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to Case 1, ν = f(R̃), meaning that ν ∈ ESS(f, i, L(µ,Ri)) ⊆ L(µ,R′
i). Therefore,

µ(i)R′
iν(i) = µ(i) ∪ {x}P ′

iµ(i), a contradiction.

Case 2–2: xP ′
iy for some y ∈ µ(i).

By responsiveness, (µ(i)\{y})∪{x}P ′
iµ(i). We observe that µ(i)Ri(µ(i)\{y})∪{x}

since otherwise µ is not stable under R. Consider another matching ν and another

preference profile R̃:

ν =


ν(i) = (µ(i) \ {y}) ∪ {x}

ν(j) = µ(j) if µ(j) ∩X ′ ̸= ∅ for some X ′Piµ(i)

ν(k) = ∅ otherwise

and

R̃i : X
′′, (µ(i) \ {y}) ∪ {x}, ∅

R̃j : ν(j), ∅

R̃k : ∅

where X ′′ is the same as the part above µ(i) of Ri. Then, L(ν, R̃i) = L(µ,Ri). Similar

to Case 1, ν = f(R̃), meaning that ν ∈ ESS(f, i, L(µ,Ri)) ⊆ L(µ,R′
i). Therefore,

µ(i)R′
iν(i) = (µ(i) \ {y}) ∪ {x}P ′

iµ(i), a contradiction.

Case 3: µ is stable, but not agent-optimal stable under R′.

Then, there is the agent-optimal stable matching ν under R′. That is, ν(i)R′
iµ(i)

for all i ∈ N and ν(j)P ′
jµ(j) for some j ∈ N . Let N ′ = {j ∈ N |ν(j)P ′

jµ(j)}.

Case 3–1: For some j ∈ N ′, µ(j)Pjν(j).

Take any j ∈ N ′ such that µ(j)Pjν(j). Consider another matching η and another
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preference profile R̃:

η =


η(j) = ν(j)

η(k) = µ(k) if µ(k) ∩X ′ ̸= ∅ for some X ′Pjµ(j)

η(l) = ∅ otherwise

and

R̃i : X
′′, ν(j), ∅

R̃j : µ(k), ∅

R̃k : ∅

Then, L(η, R̃j) = L(µ,Rj) and η is agent-optimal stable under R̃, that is, η = f(R̃).

Thus, η ∈ ESS(f, j, L(µ,Rj)) ⊆ L(µ,R′
j). Therefore, µ(j)R′

jη(j) = ν(j)P ′
jµ(j), a

contradiction.

Case 3–2: For all j ∈ N ′, ν(j)Pjµ(j).

Consider another preference profile R̃:

∀j ∈ N ′, R̃j : ν(j), µ(j), ∅

∀k ∈ N \N ′, R̃k : µ(k), ∅

By antisymmetry of preferences, each agent who is not in N ′ gets the same objects

under µ and ν. Then, on one hand, for all i ∈ N , L(ν,R′
i) ⊆ L(ν, R̃i), so R̃ ∈

MT (ν,R′). Note here that group strategy-proofness implies Maskin monotonicity by

Takamiya [14]. So, f satisfies Maskin monotonicity, which implies ν = f(R̃). On

the other hand, for all i ∈ N , L(µ,Ri) ⊆ L(µ, R̃i), so R̃ ∈ MT (µ,R). By Maskin

monotonicity of f , µ = f(R̃). Therefore, µ = ν, a contradiction.
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