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Abstract

We consider revenue maximization for one-to-one matching plat-
forms. Heterogeneous agents from two sides of a market use the plat-
form to form pairs, yielding non-transferable value. The platform
commits to a stable matching mechanism and a match-contingent fee
for each of the two sides. Despite the fact that agents on the “short”
side of the market capture relatively more gross value than those on
the long side (when preferences are independently drawn; Ashlagi et
al. (2017)), we show that the platform does not use relative market
sizes to price discriminate across the two sides. The analysis leads
to an approximation for the platform’s expected revenue through a
revenue expression for a constrained serial dictatorship mechanism.
The approximation shows that the platform’s revenue loss from the
stability constraint vanishes in large markets. Finally we demonstrate
how two types of correlation in preferences lead to two different direc-
tions of price discrimination from the baseline case of independence.
These effects are absent in classic models of two-sided markets, demon-
strating the importance of considering the interaction of capacity con-
straints and preference correlation.
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1 Introduction

The proliferation of online platforms has led to intensified interest in the
study of platform pricing. The topic becomes increasingly important—
particularly for regulators—as dominant platforms emerge in “winner-take-
all” environments.1 While the existing literature tells us much about pricing
on certain kinds of platforms, much of it has ignored two market character-
istics that, together, distinguish some platforms from those that have been
studied. Specifically, we consider platforms serving markets in which ex-
clusive (one-to-one) partnerships occur between horizontally differentiated
agents.

Exclusivity. Canonical models of platforms (see Subsection 1.2) address
many-to-many matching environments, where each participating agent in-
teracts with all the agents on the other side of the market. These models
accurately portray often-cited examples of platforms such as credit cards
(connecting consumers and merchants), video game consoles (game players
and developers), and newspapers (readers and advertisers). On the other
hand, many platforms exist specifically to create one-to-one matchings, such
as AirBnB (guests lodging with hosts), Uber (riders and drivers), and online
dating platforms. Each AirBnB guest wants to be matched to a single host,
and each host desires a single guest; Uber drivers and passengers also are
matched one-to-one at any given point in time.2 For people interested in
developing a monogamous relationship, the outcome ideally produced by a
dating platform is a one-to-one matching.3

Heterogeneity. There remains a gap between the literature on platform
pricing and the literature pioneered by Gale and Shapley (1962) concerning
capacity-constrained matching of agents with heterogeneous tastes. For ex-

1The article “Online Platforms: Nostrums for Rostrums” (The Economist, May 28,
2016) observes that for platforms, “established rules of regulation often do not apply.”

2Slightly complicating our story, Uber also offers a pooled service in which customers
share a driver. There could be analogous exceptions to the one-to-oen rule on AirBnB.
Nevertheless, the capacity constraints implicit on these platforms are better approximated
with one-to-one models than the “all-to-all” models in the canonical literature.

3This is true even if agents have to “learn their preferences” in the short run by initially
dating multiple people through the platform. If a single, long term relationship is the
ultimate goal then a one-to-one model captures the essence of the platform.
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ample, canonical papers in the former literature address agents who would
obtain the same value from all partners to whom they are matched; agents
on one side of the market perceive agents on the other side as homogeneous.
Again, this assumption makes sense in certain applications—credit card hold-
ers and merchants value a credit card based on its “cashless” feature rather
than the identity of their matched partners. In one-to-one markets, how-
ever, this homogeneity is atypical. Instead, an agent on any one side (e.g. an
AirBnB guest) typically perceives the other side’s agents (AirBnB hosts) as
heterogeneous objects. Furthermore, these heterogeneous tastes may differ
even across agents within one side of the market, creating horizontal differ-
entiation amongst the agents on the other side. AirBnB guests have different
tastes over the type and location of residences; hosts have different prefer-
ences over guests with pets, children, or other needs.4

To consider the pricing implications of these two characteristics, we con-
sider the revenue maximization problem for a monopolistic platform that sets
prices to two sides of a “marriage market” and creates a one-to-one matching
between the two sides. As a minimal requirement, we restrict attention to
platforms that are (ex post) individually rational : once agents anticipate the
outcome of the platform’s matching process, they should not want to renege
on participation and payment. Given our interest in heterogeneous prefer-
ences, we also consider the revenue and pricing consequences for a platform
that further commits to producing stable outcomes, i.e. ruling out the ex
post possibility that a “blocking pair” of agents would have preferred being
matched with each other, even when taking the platform’s pricing into ac-
count. Our interest in the stability condition is motivated both normatively
and positively.

Normatively, a platform may wish to use stable matching procedures for
a variety of reasons. For one, stability allows a matchmaker to advertise the
“quality” of its matching procedure in that no (blocking) pair of customers
could come to the realization that they could have jointly created a better
match than the one created by the platform.5 A second reason is that stabil-

4Numerous articles on the internet advise AirBnB hosts on how to accept or reject
guest applications. The subjectiveness of these articles merely strengthens our opinion
that tastes vary: preferences are heterogeneous on both sides.

5For example, online matchmaker eHarmony claims to use its patented algorithms to
“identify matches with the highest potential for a successful relationship” and to predict
“who you match best with.” Since these promises are being made to both sides of the

3



ity has been argued to help prevent market unravelling; see Roth (2002) for
evidence supporting this argument. Even if a monopolistic platform has tech-
nology that, in the short run, gives it exclusive control over agents’ ability to
match, its creation of unstable matchings could increase the platform’s long
run vulnerability to the entry of alternate technologies/platforms that would
allow blocking pairs to match outside of the monopolist’s current platform.
A farsighted, monopolistic matching platform could thus consider stability
to be a form of entry deterrence.

To see the positive motivation for studying stability in this problem, con-
sider platforms (e.g. dating sites) that “create” matchings in a decentralized
way, by allowing the agents themselves to form pairs. In such settings, stable
outcomes can arise naturally (Hitsch et al. (2010)). By allowing decentralized
matching, the platform has indirectly committed to providing a stable out-
come. In such markets, stability should be viewed more as a market design
constraint than as a choice.

1.1 Overview of results

Our focus is on how a platform would set prices to two sides of a matching
market as a function of market parameters. These parameters include not
only the distribution of individual agent’s values, but also the degree of mar-
ket imbalance (relative sizes of the two sides) and the degree of correlation in
agents’ values. While imbalance and correlation play little role in standard
models of many-to-many platforms, these characteristics can impact pricing
in our setting (see Section 6).

Our first set of results concerning market imbalance appear counterintu-
itive with respect to the following recent result in the literature on stable
matching. In a classic marriage model with independent, uniformly drawn
preferences, Ashlagi et al. (2017) show a striking result which can be inter-
preted as follows. In large markets with essentially any degree of market
imbalance, average (normalized) payoffs are notably higher for agents on the
short side of the market than for those on the long side, at any stable out-
come. As the authors explain,6 their result is more subtle than the related
idea that, in a market of unit-demand buyers and unit-supply sellers of ho-
mogeneous objects, a wide range of market (core) prices exist only in the

market, one can interpret these claims as an attempt to determine stable outcomes.
6Our explanation here borrows heavily from that of those authors (ibid., p. 72).
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knife edge case of a balanced market, e.g. one extra seller depresses prices to
cost by creating an “outside option” for each buyer. The extra subtlety is
that, in the marriage model, bringing an extra agent to one side of a balanced
market creates an outside option that potentially benefits only a few agents
on the (now) short side. However, this in turn harms a few agents on the
long side, in turn benefitting a few more agents on the short side, etc. These
effects turn out to ripple through the market, on average benefitting many
of the short side’s agents.

Following this result one might guess that a monopolist who controls
the stable matching process could partially capture these unbalanced pay-
offs by charging unbalanced prices, charging a relatively higher price to the
short side of the market. It turns out that this reasoning does not hold for
a platform that charges agents in the form of match-contingent fees. We
prove a “symmetric-pricing” result stating that a revenue maximizing stable
platform does not price discriminate between the two sides of the market
based on their relative sizes, despite the asymmetric-payoff result of Ashlagi
et al. (2017). For example, in the particular case that all agents’ values
are drawn i.i.d. from the same distribution, a standard hazard rate condi-
tion leads the platform to charge the same price to both sides of the market
regardless of their relative sizes.

At first glance, this no-price-discrimination result appears to coincide
with results obtained for the many-to-many platform models described in
Subsection 1.2. In those models it is conventional wisdom to subsidize the
price-sensitive side of the market in order to exploit cross-network effects.7

Therefore it may sound unsurprising when we show, for example, an absence
of price discrimination when both sides are equally price sensitive. This is
a misleading comparison, however. In many-to-many models, this argument
not to price discriminate applies regardless of whether agent’s values are cor-
related. Intuitively, in many-to-many models without a capacity constraint,
a platform is essentially pricing each transaction separately so correlation
plays no role in maximizing expected revenue. On the other hand, when
values become correlated in capacity constrained models such as ours, mar-
ket imbalance can affect the platform’s optimal pricing decision, leading to
different pricing across the two sides. Interestingly, we show that the direc-
tion of price discrimination depends on the type of preference correlation;

7A small price drop on the sensitive side leads to a large increase in transactions,
proportionally increasing revenue earned from the other side.
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see Section 6.
Looking at these results in combination, our model sits between the liter-

atures on matching and on two-sided market pricing. Despite the fact that,
with i.i.d. values, the short side of the market captures more value than
the long side under stability (Ashlagi et al. (2017)) a monopolistic platform
does not capture value by charging a premium to the short side. Yet if
market imbalance coexists with correlation in agents’ values, the platform
does price discriminate on the basis of market imbalance despite the fact
that such discrimination does not occur in many-to-many models without
capacity constraints (Rochet and Tirole (2003) and others).

Our tool for analyzing stable platform pricing is a new family of (typi-
cally unstable) matching procedures that we call Meet and Propose (MAP)
algorithms. These algorithms depart from the classic Deferred Acceptance
algorithm by requiring proposers to “meet” potential mates in some predeter-
mined order. We use a relationship between MAP algorithms and Deferred
Acceptance to prove the no-price-discrimination theorem described earlier.

Our analysis of MAP algorithms leads to a closed-form expression that
approximates a stable platform’s expected revenue when agents have i.i.d.
values. This occurs in the special case where the MAP algorithm yields a
“constrained-dictatorship” mechanism, representing a platform where agents
from one side arrive sequentially and are matched with their favorite remain-
ing (mutually compatible) agent on the other side.8 By appealing to sim-
ulations we argue that our approximation is a fairly tight lower bound on
revenue when a platform uses stable matching mechanisms in large markets.

We also use this bound to show that, as markets with independently
drawn preferences grow arbitrarily large, the platform’s “cost of committing
to stability” essentially vanishes: that is, by relaxing stability to mere ex-
post individual rationality, a platform would improve its revenue by only a
vanishingly small percentage. Hence our lower bound on the stable platform’s
revenue turns out to be a good approximation of that revenue as the market
becomes large. Furthermore, simulations demonstrate that the bound is a
good approximation of revenue for markets of any size.

8Though it is not our objective, one could apply our results directly to platforms where
agents one one side arrive sequentially to be immediately matched, while all agents on the
other side are already present.
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1.2 Related literature on two-sided markets

The two-sided markets literature, pioneered by Rochet and Tirole (2003), also
considers revenue-maximizing platforms that match two sets of agents who
derive value from interacting with each other. In contrast to our approach,
many models in this literature exhibit primitives with the following features,
making them less relevant for the applications we have in mind.

All-to-all: each agent receives constant marginal benefit from each addi-
tional participant on the other side of the market;

No differentiation: each agent perceives the other side’s participants as
indistinguishable;

No same-side externalities: each agent is unaffected by the presence of
other agents on the same side.

These features are implied by the modeling assumption that an agent’s payoff
is some affine function, say a + bn, of the number of agents n on the other
side of the market. The fixed and per-transaction benefits, a and b, may or
may not be assumed to vary across agents.9

The affine payoff structure easily captures so-called “cross-network ef-
fects” where agents benefit from additional participation on the other side.
A consequence of this leads to one of the fundamental lessons taken from the
two-sided markets literature: A profit-maximizing platform should not set
prices to the two sides of the markets independently, as if it were pricing two
unrelated products. Instead, an increase in the per-transaction price charged
to one side of the market should be viewed as a decrease in the marginal
cost of providing transactions to the other side of the market, thus affecting
that side’s optimal price. Furthermore this observation yields the see-saw
effect (Rochet and Tirole (2006)): if the platform has reason to decrease
the price charged to one side of the market (e.g. due to an increase in that
side’s price sensitivity) then this typically justifies a price increase to the
other side of the market. A form of cross-network effect also exists in the
one-to-one matching markets we consider. A well-known result of Gale and
Sotomayor (1985a) states that the addition of an agent on one side of the

9This is the essential payoff structure used by the seminal papers of the literature,
such as Rochet and Tirole (2003),(2006) and Armstrong (2006), as well as Caillaud and
Jullien (2003), Weyl (2010), and others.
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market weakly improves stable outcomes for agents on the other side of the
market.

On the other hand, one-to-one matching models distinguish themselves
from two-sided market models in that the latter typically ignore market size
effects.10 It is the all-to-all feature of these latter models that neutralizes
market size effects outright. In our one-to-one model on the other hand,
absolute market size does impact pricing even when the relative sizes of the
two sides does not. Furthermore market imbalance does impact pricing in
our model only to the extent that agents’ preferences are correlated (see
Section 6), an effect not present in standard models of two-sided markets.

Another feature of the literature—beyond our current interest—is the
analysis of competing platforms. The “divide and conquer” theme aris-
ing from this literature formalizes the idea that platforms may subsidize
a “critical” side of the market and recover profits from the other. As Arm-
strong (2006) points out, if agents on only one side of the market must
“single-home” (commit to a single platform), then platforms will compete for
them (through low/subisidized pricing) while charging the “multi-homing”
side monopoly prices.

Somewhat closer to our work, Damiano and Li (2008) consider competing
platforms where heterogeneous agents are randomly matched one-to-one and
each payoff is the product of the pair’s types.11 One of the main points in
their setup is that prices lead to an assortative segmentation of agents across
platforms. Besides the issue of platform competition, there are other critical
differences between their model and ours. Whereas our main results concern
the case of heterogeneous preferences, Damiano and Li’s agents have the
same (ordinal) preferences over the “vertically differentiated” agents on the
other side (analogous to one form of correlation we consider in Section 6).
Second, their random matching assumption bypasses market size effects in
the same way that all-to-all models do; this is natural since their motivation is

10An exception is the distantly related work of Ambrus and Argenziano (2009) who
consider competing platforms that endogenously create a kind of market size effect. In
their equilibrium, one platform ends up being cheaper and larger on one side of the market
while the other ends up cheaper and larger on the other side. This equilibrium price
discrimination differentiates the platforms. “High value” agents choose their expensive
platforms in order to access a greater pool of potential partners on the other side (who
have chosen their cheaper platform).

11Also see Damiano and Li (2007) for a similar monopolistic setting. Results here deal
with efficiency.
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the question of market composition or quality. Third, their model contains
no same-side externalities: an agent does not suffer from the presence of
additional agents on the same side. This is not the case in our model (Gale
and Sotomayor (1985a)).

Finally, a series of papers considers the impact of various information
structures on a platform’s mechanism design problem but remains separated
from our work by the focus on many-to-many matchings. In this area, Fer-
shtman and Pavan (2016) consider many-to-many matching platforms where
private information is persistent over time. Where matchings can change over
time, they show that optimal mechanisms are dynamic auctions that deter-
mine matchings by applying a scoring rule to reported preferences. Gomes
and Pavan (2016) consider the interaction between pricing and matching rules
in a many-to-many market where agents have private information about their
own values and those of agents on the other side of the market. Jullien and
Pavan (2016) study the design of information management policies when
agents are uncertain about the participation decisions of other agents; this
uncertainty does not apply to our setting of a monopolistic platform that
guarantees ex post individual rationality.

2 Model

The agents consist of a finite set of men, M = {1, 2, . . . ,M}, and a finite
set of women, W = {1, 2, . . . ,W}. We refer to the men’s and women’s sides
of the market as M and W , respectively. A (one-to-one) matching is a
function µ : M ×W → M ×W satisfying the following usual conditions for
all m ∈ M,w ∈ W : (i) µ(m) ∈ W ∪ {m}, (ii) µ(w) ∈ M ∪ {w}, and (iii)
µ(m) = w if and only if µ(w) = m. We say that agent i ∈ M ∪ W is
unmatched (or single) at µ when µ(i) = i.

If man m ∈ M is matched to woman w ∈ W , m obtains value um(w) ∈
[0, 1] and w obtains uw(m) ∈ [0, 1]. The value of being unmatched is zero
(denoted ui(i) ≡ 0 when necessary). These normalizations are not critical to
our results. Each value um(w) is randomly drawn according to a marginal
distribution FM, and each uw(m) is drawn according to FW , where the cor-
responding densities are continuously differentiable with positive support on
[0, 1]. We initially assume that each value ui(j) is drawn independently of
all other values. Correlated values are considered in Section 6.12

12In the independent case, there is zero probability that ui(j) = ui(j
′) for j 6= j′. We
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Though we rule out transfers between agents, they may make payments
to the platform itself. Agents’ preferences are represented by payoffs that are
quasi-linear in such payments. Specifically, at a matching µ, if man m ∈ M
makes a payment of pM to the platform, then his payoff is um(µ(m))− pM.
The symmetric assumption holds for women.

Fixing M and W , we assume that the platform can charge an agent only
as a function of (i) to which side of the market that agent belongs (M vs.
W ), and (ii) whether the agent is matched or single. That is, prices are
simply a pair of “match-contingent fees” (pM, pW) ∈ R2, where matched
men and women are charged pM and pW respectively, while the payments of
unmatched agents are normalized to zero. Note that whenever we take M
and W as given, the platform is also implicitly setting prices as a function of
market size (M and W ).

2.1 Constraints of the platform

Our main interest is in platforms that charge agents fees to end up as part of
a stable matching (Gale and Shapley (1962)), i.e. a matching guaranteeing
individual rationality and the absence of pairwise blocking. As discussed in
the Introduction, stability can be viewed either as a normative criterion or
as a positive description of outcomes on decentralized platforms. Regardless
of its interpretation and motivation, the classic stability condition becomes
endogenous once the platform has the ability to vary prices. This is because
an agent who is comparing his current match status with either a departure
from the platform (individual rationality) or an alternative partner (pairwise
blocking) needs to make this comparison with respect to the platform’s prices.

To formalize this, we begin with the individual rationality requirement
which states that an agent should not prefer to withdraw from the platform.
In our context this means that no matched agent should prefer remaining
single for free over remaining matched at the platform’s current prices.13

therefore take the standard approach of considering only the realizations of u in which
preferences are strict. In Section 6 ties may occur non-trivially, but this turns out to be
irrelevant to our results.

13This is an ex post individual rationality condition, which is stronger than an ex ante
definition which only requires agents to benefit from the platform in expectation. Most real
world platforms would require the stronger definition. This would be true, for instance, on
any platform that allows agents to “cancel their reservations,” upon learning their match.
On the other hand, for platforms content with the weaker (ex ante) condition, the revenue
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Definition 1. Fix values u and prices p = (pM, pW). A matching µ is
individually rational at p when, for all m ∈M and w ∈ W ,

µ(m) = w =⇒ um(w) ≥ pM and uw(m) ≥ pW .

The no-blocking-pairs requirement means that no man-woman pair would
prefer matching with each other instead of receiving their prescribed match-
ing outcome. In our context we rule out blocking pairs that would prefer
matching with each other while paying the platform’s prices in order to do
so.

Definition 2. Fix values u and prices p = (pM, pW). A matching µ is p-
blocked by man m ∈M and woman w ∈ W when

um(w)− pM > um(µ(m))− pM ∗ 1µ(m)∈W , and

uw(m)− pW > uw(µ(w))− pW ∗ 1µ(w)∈M

where 1 is the indicator function.

Combining these definitions leads to the following notion of stability.

Definition 3. Fix values u and prices p = (pM, pW). A matching µ is p-
stable if (i) µ is individually rational at p and (ii) µ is not p-blocked by any
m,w ∈M ×W .

It is immediately clear that a p-stable matching can be found by simply (i)
truncating each man’s (woman’s) preferences by removing all potential mates
who are valued at less than pM (pW), then (ii) running the classic Deferred
Acceptance (DA) algorithm on these truncated preferences. Furthermore it
follows from well known results (Roth (1984b)) that all p-stable matchings
contain the same number of marriages.14

Theorem (Rural Hospital Theorem). Fix values u and prices p = (pM, pW).
All p-stable matchings contain the same number of marriages.

maximization problem becomes trivial by charging agents their full expected surplus from
joining the platform.

14Furthermore the set of married agents is constant across all p-stable matchings; see
also McVitie and Wilson (1970).
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2.2 Implicit Informational Assumptions

In our analysis we take each realization of agents’ preferences u as given
and then compute a realized matching as a function of these preferences.
When preferences can be observed by the platform, our approach is without
loss of generality. Even when preferences are not directly observable by
the platform, however, the literature provides various justifications for our
approach.

A first justification is that, if the platform’s objective is to yield p-stable
matchings, then under some assumptions this can be done by setting up the
proper “game.” This is certainly the case when agents themselves have com-
plete information about each others’ preferences. Specifically, Roth (1984a)
shows that in the revelation game induced by Deferred Acceptance, a (com-
plete information) equilibrium outcome in undominated strategies must be
stable. Kara and Sönmez (1996) show that the set of stable outcomes is fully
implementable in Nash equilibrium. An even sharper prediction of stability
can be made using iterated deletion of dominated strategies (Alcalde (1996)).

Under some of these implementation results, one cannot necessarily pre-
dict which stable outcome would be obtained. For our purposes, however,
the Rural Hospital Theorem makes this irrelevant for the platform concerned
simply with revenue-maximization—the same number of marriages are cre-
ated at any stable matching, so all stable matchings would provide the same
revenue to the platform.

A second justification for our approach comes from a growing body of
work confirming the idea that, in large markets, agents have little incentive
to misreport their preferences. Roth and Peranson (1999) find that, em-
pirically, the set of stable matchings—and therefore the opportunities for
strategic manipulation—are small in the NRMP matching market. Based on
a resulting conjecture of theirs, Immorlica and Mahdian (2005) show that, at
least whenever preference lists are short, the fraction of participants who can
manipulate a stable mechanism vanishes as the market grows large. Con-
sequently, truthful reporting is an approximate equilibrium in such markets
(Kojima and Pathak (2009)). Making an additional connection between the
ideas of small cores and non-manipulability,15 Ashlagi et al. (2017) show that
in essentially all markets other than perfectly balanced ones, truth telling is
an ε-equilibrium under any stable mechanism. Technically, none of these
results applies directly to our model. As markets grow large, the length of

15This idea traces back to Sönmez (1999).

12



preference lists is exogenously fixed by Immorlica and Mahdian but is of full
length in Ashalagi et al. Our model fits “between” these two assumptions:
fixing market size, preference lists are endogenously truncated by prices as
in Immorlica and Mahdian (2005). However as market size grows (for fixed
prices), preference lists grow in proportion to market size (as in Ashlagi et
al. (2017)). Therefore as a whole, this body of work justifies our approach of
taking realized preferences as given.

A third justification is the empirical evidence (cited in the Introduction)
supporting the idea that in certain decentralized markets, real world “equilib-
rium” outcomes often are stable. For example Hitsch et al. (2010) show that
matchings in decentralized, online dating markets are approximately stable
even though such platforms clearly cannot dictate which matchings occur.
For all three of these reasons, we find our simplifying assumption—that a
platform can commit ex ante to producing p-stable outcomes with respect to
ex post, realized preferences—to be a plausible simplification of real world
platforms.

3 Meet and Propose

A p-stable matching can be found by running the Deferred Acceptance (DA)
algorithm (Gale and Shapley (1962)) after the agents’ preferences are trun-
cated with respect to prices p. We formalize such an algorithm (DAp) in a
somewhat atypical fashion. The reason for this is simply to highlight how
the MAP family of algorithms described below relates to DA. To provide the
definition, for any prices p = (pM, pW) we say that (m,w) ∈ M × W are
p-compatible if um(w) > pM and uw(m) > pW .

Definition 4 (DAp algorithm). The algorithm takes values u as input and
initializes all men to be single. In rounds t = 1, 2, . . ., the following two steps
are executed.

Step t.1: Each manm who is single “meets” his favorite16 woman, w, among
those to whom he has not already proposed. (If no such women exist, he
remains single.) He proposes to w if and only if they are p-compatible.

16Ties can be broken arbitrarily. In the case of independent preferences, ties happen
with zero probability. With certain kinds of perfect correlation (Section 6) there could be
ties, but tie breaking remains irrelevant. The same comments apply to Step t.2.
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Step t.2: Each woman becomes matched to her favorite man among those
who have proposed to her. (If none exist, she remains single.) All other
men become (or remain) single. If each man is either matched or has
“met” every woman, the algorithm ends; otherwise begin round t+ 1.

It should be clear that DAp describes the standard DA algorithm, with a
bit of redundancy in the notion of men first “meeting” women before propos-
ing. In the standard description of DA in the literature, one dispenses with
the notion of “meeting” since men propose only to acceptable women, while
women reject offers from unacceptable men. We have intentionally included
this redundancy in order to highlight the difference between DAp and the
class of MAPB

p algorithms that we use in our analysis.
Specifically, we now introduce algorithms where each man’s “meeting

order” is not determined by his preferences as it is under the Steps t.1 of
DAp, but is determined exogenously. This separates meeting orders from
preference orders, though proposals are still tied to preferences when the
algorithm determines whether a man makes a proposal to a woman he meets.
Women, on the other hand, accept and reject proposals as they do under DA:
they reject all proposals other than the best one they have received so far.17

To describe these algorithms, define a meeting order for man m ∈ M ,
denoted Bm, to be a linear order on W . A profile of meeting orders is denoted
B = (Bm)m∈M .

Definition 5 (MAPB
p algorithm). The algorithm is parameterized by a pro-

file of meeting orders B. It takes values u as input and initializes all men to
be single. In rounds t = 1, 2, . . ., the following two steps are executed.

Step t.1: Each man m who is single “meets” the woman w ranked highest
under Bm among those to whom he has not already proposed. (If no
such women exist, he remains single.) He proposes to her if and only
if they are p-compatible.

Step t.2: Each woman becomes matched to her favorite man among those
who have proposed to her. (If none exist, she remains single.) All other
men become (or remain) single. If each man is either matched or has
“met” every woman, the algorithm ends; otherwise begin round t+ 1.

17Observe that since men make only p-compatible proposals, the women’s individual
rationality constraints are automatically satisfied.
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Each MAPB
p differs from DAp to the extent that each Bm differs from m’s

relative preference order over women according to um(). If (by chance) the
realization of u is such that these orders are equivalent for each man, then the
two algorithms produce the same matching. Typically, of course, this does
not happen and the algorithms yield different outcomes. Nevertheless, we
use MAPB

p to analyze and approximate the distribution of p-stable marriages
in a random economy.

As a final observation, note that we have described an “all men propose at
the same time” version of both DAp and MAPB

p . It is well known that DA is
invariant to specifications in which men instead propose “one at a time” (e.g.
only the lowest-indexed, unmatched man proposes in each round). Similarly
it is easily shown that a “one at a time” version of MAPB

p would produce the
same outcome as the algorithm we provide.

4 Independent preferences

We begin with the case of independently drawn values. Formally we suppose
that: each um(w) is drawn according to FM, each uw(m) is drawn according
to FW , and each of these draws is independent of the others. Throughout
Section 4, a random economy refers to such independently drawn values
(for some fixed M,W ).

Our first result establishes a relationship between p-stability and a ran-
domized version of MAP: Running DAp on a random economy generates the
same expected number of marriages as uniformly randomly generating a pro-
file of meeting orders, B, and then running MAPB

p on a random economy. In
fact, the two processes yield the same distribution of marriages, even though
their outputs typically differ ex post.18

Theorem 1 (random-order MAP marriages
d
= p-stable marriages). Fix M ,

W and prices p = (pM, pW). Let KDA
p be a random variable representing

the number of p-stable marriages in a random economy. Let KrMAP
p be a

random variable representing the number of marriages created under MAPB
p

for a random economy when each meeting order Bm is independently drawn
from a uniform distribution over all orders. Then KDA

p and KrMAP
p have the

same probability distribution.

18Omitted proofs appear in the Appendix.
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The distribution of KDA
p obviously depends on prices p = (pM, pW). How-

ever our next result shows that this is true only to the extent that prices
affect the (independent) probability that any given man-woman pair is p-
compatible. Recall that (m,w) are p-compatible when um(w) ≥ pM and
uw(m) ≥ pW . They are thus incompatible with probability

q(pM, pW) ≡ FM(pM) + FW(pW)− FM(pM)FW(pW) (1)

We call q(p) the incompatibility parameter at prices p.
Lemma 1 states that, for fixed M , W , and meeting order profile B, the

expected number of marriages created by MAPB
p at prices p is a function only

of q(p). That is, q(p) = q(p′) implies that MAPB
p and MAPB

p′ induce the same
expected number of marriages.

Lemma 1 (E[#MAP marriages] is a polynomial function of q). Fix M , W ,
and meeting order profile B. For any prices (pM, pW), let KB

pM,pW
be a ran-

dom variable representing the number of marriages created under MAPB
p for

a random economy. Then E[KB
pM,pW

] is a polynomial function of q(pM, pW).
That is, there exists a function K̄B : R → R such that, for all pM, pW ,
E[KB

pM,pW
] = K̄B(q(pM, pW)), where q(pM, pW) ≡ pM + pW − pMpW is the

incompatibility parameter. Furthermore K̄B() is polynomial in q.

This lemma follows intuitively from the definition of MAPB
p . First, each

Step t.1 of MAPB
p looks at prices p only to decide the p-compatibility of each

(m,w) pair. Since meeting orders are exogenous, each pair’s compatibility
is randomly determined by a probability independent of the history of the
algorithm. Second, each Step t.2 of MAPB

p determines a woman’s favorite
man within some set, conditional on the men in that set having already be-
ing deemed compatible. This determination is (conditionally) independent of
prices. Hence the lemma intuitively follows. In fact the proof shows that
MAPB

p and MAPB
p′ induce the same distribution on number of marriages.

On the other hand this intuition does not apply directly to p-stable mar-
riages and DAp. In particular, men’s meeting orders under DAp are deter-
mined endogenously (i.e. by the realization of u), hence it becomes unclear
how the decomposition of q into prices (pM, pW) might affect the distribu-
tion of p-stable marriages: the probability of compatibility decreases as a
man moves further down his preference list, and hence is not independent of
history. As it turns out, however, we show that the conclusion of Lemma 1
does also apply to p-stable marriages, using Theorem 1. If q(p) = q(p′), then
DAp and DAp′ induce the same expected number of marriages.

16



Theorem 2 (E[#p-stable marriages] is a polynomial function of q). Fix
M and W . For any prices pM, pW , let KDA

pM,pW
be a random variable rep-

resenting the number of (pM, pW)-stable marriages for a random economy.
Then E[KDA

pM,pW
] is a polynomial function of q(pM, pW). That is, there

exists a function K̄DA : R → R such that, for all pM, pW , E[KDA
pM,pW

] =
K̄DA(q(pM, pW)), where q(pM, pW) ≡ pM+pW−pMpW is the incompatibility
parameter. Furthermore K̄DA() is polynomial in its argument.

Proof: Letting O denote the set of all meeting order profiles, Theorem 1
implies

E[KDA
pM,pW

] = E(KrMAP
pM,pW

) =

∑
B∈O E[K

MAP(B)
pM,pW ]

|O|
where, by Lemma 1, the numerator is a sum of functions polynomial in
q(pM, pW).

The takeaway of the theorem is that, under p-stability, a monopolistic
platform’s demand curve is a function only of the incompatibility param-
eter q(). An immediate consequence of this is that, when the two sides’
values are drawn from the same distribution F = FM = FW , the platform’s
expected revenue is symmetric in the price vector (pM, pW). We interpret
this as a “non-price-discrimination” result: Despite the fact that matched
agents on the short side of a market would extract greater value than those
on the long side (as demonstrated by Ashlagi et al. (2017)), the revenue-
maximizing platform does not use this fact as a reason to price discriminate
against that side of the market. Market imbalance per se is not a reason to
price discriminate.

Corollary 1 (Revenue symmetry). Fix M and W , and suppose FM = FW .
For any prices p = (pM, pW), let R(pM,pW ) denote the platform’s expected
revenue from a random economy under DAp. Then for all prices p1, p2,
R(p1,p2) = R(p2,p1). The same conclusion holds if the platform uses a MAPB

p

mechanism with arbitrary, fixed meeting orders B.

Proof: The planner earns (pM + pW) from each marriage, so under p-
stability, expected revenue has the form (pM+pW)K̄DA(q(pM, pW)) by Theo-
rem 2. Since q() is symmetric in FM(pM) and FW(pW) the result follows. The
result for MAPB

p is proven by replacing K̄DA with K̄B and using Lemma 1.
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We further show that, under a standard hazard rate assumption on F =
FM = FW , revenue-maximizing prices are in fact equal across the two sides,
again regardless of the relative size of M in relation to W . To prove this
we first observe the intuitive fact that, under either p-stability or MAPB

p , an
increase in the incompatibility parameter q leads to a decrease in the expected
number of marriages. For the case of DA, this statement can be proven using
a result of Gale and Sotomayor (1985b) stating that, under DA with fixed
preferences, a preference truncation on one side of the market makes the
other side worse off, implying a weakly decreasing number of marriages. Our
direct proof in the Appendix also handles the case of MAPB

p .

Lemma 2 (Marriages decreasing in q). Fix the DAp mechanism or any ar-
bitrary MAPB

p mechanism, and denote the expected number of marriages in
a random economy by K̄(q(pM, pW)). Then K̄() is decreasing in q.

Since the platform’s expected revenue is (pM+pW)K̄(q(pM, pW)), Lemma 2
demonstrates the typical tradeoff of total price per marriage vs. volume, i.e.
pT ≡ (pM + pW) vs. K̄(q(pM, pW)). It is straightforward to observe that the
total price pT = pM+pW charged by a revenue maximizing platform must be
divided amongst the two sides of the market in a way that maximizes K̄(),
i.e. that minimizes q().19 Under a standard monotone hazard rate condition,
this is typically accomplished with prices that equate hazard rates across
the two sides of the market.20 In the particular case of FM = FW , this is
accomplished by charging the same price to both sides.

Theorem 3 (Monotone hazard rate implies symmetric pricing). Fix M and

W , and suppose F = FM = FW , where F ’s hazard rate f(x)
1−F (x)

is weakly
increasing in x. Let R(pM,pW ) denote the platform’s expected revenue from
a random economy under a p-stable mechanism with prices p = (pM, pW).
There exists (p∗M, p

∗
W) that maximizes R(pM,pW ) satisfying p∗M = p∗W .

The same conclusion holds if the platform uses a MAPB
p mechanism with

arbitrary, fixed meeting orders B.

19Clearly the choice of how to divide pT between pM and pW affects the platform’s
revenue through its effect on q(). This means that our model fits Rochet and Tirole’s (2006)
definition of two-sided markets.

20The two sides’ hazard rates are equated as long as the revenue maximization problem
has an interior solution. This may not be the case for arbitrary FM, FW , and we wish to
avoid making further assumptions that add no additional insights. For interested readers,
the proof of Theorem 3 provides the FOC that demonstrates this idea.
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Obviously when FM 6= FW , the platform typically charges different prices
to the two sides; the intuition to subsidize the price sensitive side demon-
strated in models such as Rochet and Tirole (2003) would hold here also.
Conversely, if the hazard rate condition does not hold then optimal prices
may be unequal even if FM = FW . To illustrate this as simply as possible,
consider the following discrete example.21

Example 1 (Optimal, unequal prices). Consider one man and one woman.
The value that each agent assigns to its potential mate is (independently)
either 0.1 (probability π) or 0.9 (probability 1 − π). One can restriction
attention to prices pM, pW ∈ {0.1, 0.9} and check by inspection that the
following price combinations maximize expected revenue.

(p∗m, p
∗
w) = (0.9, 0.9) when π ≤ 4/9,

(p∗m, p
∗
w) ∈ {(0.1, 0.9), (0.9, 0.1)} when 4/9 ≤ π ≤ 4/5,

(p∗m, p
∗
w) = (0.1, 0.1) when 4/5 ≤ π.

The case 4/9 ≤ π ≤ 4/5 is the relevant one, demonstrating unequal optimal
prices. Note, however, that the set of optimal price lists is symmetric in
accordance with Corollary 1.

5 Constrained serial dictatorship: MAP=
p

Our next objective is to evaluate a platform’s expected revenue under a p-
stable mechanism, given arbitrary prices p = (pM, pW) and for arbitrary
distributions FM, FW . Due to the combinatorial nature of this problem, a
tractable expression for this expected revenue remains elusive. On the other
hand, it turns out that this revenue would be well-approximated by assuming
that the platform instead uses a MAPB

p algorithm. In particular we show this
approximation to hold in the special case that all men have identical meeting
orders under B. The advantage of this special case is that it does yield a
tractable expression for the expected number of marriages for arbitrary prices
and value distributions, and hence can be used to approximate a platform’s
expected revenue.

21The example fails our assumptions but easily demonstrates our point. It can be
perturbed into a continuous version that does satisfy our assumptions and yields the same
conclusion.

19



Though we are motivated by this approximation, simulations also suggest
that the approximation is in fact a lower bound for the expected revenue of a
p-stable platform. This observation is consistent with a related (but logically
independent) asymptotic result of Arnosti (2016), who considers matching
markets in which one side has “short” preference lists. As markets grow
large (while preference lists remain “short”) Arnosti shows that the expected
number of stable marriages exceeds the expected number of marriages under
a random dictatorship mechanism.22

For the remainder of this section we consider MAPB
p algorithms when

Bm = Bm′ for all m,m′ ∈ M . Given the ex ante symmetry of the agents in
our model, it is without loss of generality to further suppose that each Bm

orders the women according to their indices, since if the men had any other
(common) meeting ordering, the algorithm would yield the same distribution
on the number of marriages. We denote this algorithm by MAP=

p .
MAP=

p corresponds to a type of constrained serial dictatorship mech-
anism, where each woman sequentially takes a turn choosing her favorite
man among the remaining men who are compatible with her (if any).23 It
turns out that under MAP=

p , the probability distribution of the number of
marriages can be described elegantly. To do this, we introduce the concept
of q-analogs (i.e. parameterized generalizations) of integers, factorials, and
binomial coefficients.

Definition 6. For any real number q ∈ [0, 1], the q-analog of integer
j ∈ Z is

[j]q ≡ 1 + q + · · ·+ qj−1 =
1− qj

1− q

and the q-factorial of j is

[j]q! ≡ [j]q[j − 1]q · · · [1]q.

22Arnosti’s dictatorship mechanism occurs as a result of what he calls Common pref-
erences under Deferred Acceptance. Our conclusions are separate from his, due not only
to minor differences in our models, but because we observe this bound across all market
sizes, not just asymptotically.

23Though it is not our objective, one can interpret this algorithm as literally describing
platforms where agents on one side (women) arrive randomly over time and are assigned
a favorite (but compatible) agent among those remaining on the other side.
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The q-binomial coefficient for integers k,n ∈ Z+ (k ≤ n) is[
n

k

]
q

≡ [n]q!

[k]q![n− k]q!
=

(1− qn)(1− qn−1) · · · (1− qn−(k−1))
(1− q1)(1− q2) · · · (1− qk)

.

The distribution of marriages under MAP=
p is as follows.24

Theorem 4 (Distribution of MAP marriages for identical orders). Fix M,W ,
and prices pM, pW with incompatibility parameter q = q(pM, pW). Let K=

be a random variable representing the number of marriages in a random
economy created under MAP=

p . The probability distribution of K= is given
by

P (k;M,W ) = (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[k]q! (2)

for 0 ≤ k ≤ min{M,W}.

The first two terms in Equation 2 have a straightforward interpretation:
fixing k man-woman pairs, (1−q)k is the probability of mutual compatibility
among them, while q(M−k)(W−k) is the probability of mutual incompatibility
among all possible pairs of the remaining agents. The remaining q-analog
terms in Equation 2 are a probabilistic analog to

(
M
k

)(
W
k

)
k!, the number of

ways to form k man-woman pairs from the market (M,W ).
Two special cases of the theorem are that (i) at q = 1 the probability of

zero matches is one, and (ii) at q = 0 the probability of k = min{M,W}
matches is one. Typically, of course, an expected-revenue maximizer cares
specifically about the expectation of K= for all intermediate values of q.
Fortunately Kemp (1998) provides an expression for this.

Theorem 5 (Kemp (1998)). The expected number of marriages under MAP=
p

is
E(K=) =

∑min{M,W}
j=1

[(1−qM )···(1−qM−j+1)][(1−qW )···(1−qW−j+1)]
1−qj (3)

Figure 1 graphs Equation 3 for various levels of q. Fixing the number of
men, M = 50, we vary the number of women W (x-axis) in order to vary
the degree of market imbalance. The figure shows, for instance, that when

24Equation 2, known as the absorption distribution, was first described by
Blomqvist (1952). Kemp (1998) finds its moments and shows that it is log-concave.
Ebrahimy and Shimer (2010) use this distribution to describe the employment rate in
a stock-flow matching model with heterogeneous workers and jobs.
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Figure 1. The expected number of marriages under MAP=
p , varying q and

W when M = 50.

q = 0.90 and M = W = 50, there are roughly 43.6 expected marriages under
MAP=

p .25

It is clear that, as W grows large, the expected number of marriages
converges to 50 since it becomes increasingly likely that each man will be
the favorite (remaining) man of some woman in the common meeting or-
der. Consequently, as markets become very imbalanced, the platform can
charge relatively higher prices to both sides (high q) yet still expect to create
close to the maximum feasible number of possible marriages. Furthermore
this convergence happens more quickly for lower incompatibility parameters.
That is, when prices are very low, the platform again creates close to the
maximum number of possible marriages regardless of the degree of market
imbalance. Thus the more interesting cases tend to occur in somewhat bal-
anced markets, where higher prices lead to a non-trivial expected number of
single agents.

25For example, when values um(·), uw(·) are uniformly distributed on [0, 1], prices pM =
pW = 0.684 yield an incompatibility parameter of roughly q = 0.90; this is close to the
prices (roughly pM = pW = 0.718) that would maximize revenue under MAP=

p .
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5.1 MAP=
p as approximation and bound

We compare the expected number of marriages created under MAP=
p to that

under DAp, arguing that the former acts as both an approximation and a
bound for the latter. As argued above, in sufficiently unbalanced markets
(i.e. when the ratio M/W is far from 1) MAP=

p tends to create close to the
maximum feasible number of marriages, namely min{M,W}. This observa-
tion intuitively extends to DAp (and for that matter, to all MAPB

p algorithms
with arbitrary B): even at “high” prices (high incompatibility q), partners
can be found for almost all of the agents on the thin side of the market due to
the relative thickness of the other side. Therefore it would not be surprising
to show that MAP=

p can be used to approximate the expected number of
marriages created by DAp in the case of unbalanced markets.

Therefore we focus on the “worst case” of balanced markets (M = W )
where, for a broader range of prices, the expected number of p-stable mar-
riages is not close to min{M,W}. We compare (i) the expected number
of p-stable marriages (estimated via simulation) to (ii) the expected num-
ber of marriages under MAP=

p (using Equation 3). For a given market size
n = M = W and incompatibility parameter q, Figure 2 graphs this differ-
ence as a percentage of (i). Our interpretation is that the values in the figure
are “small.” Since, for the parameters considered in the graph, Equation 3
estimates the expected number of p-stable marriages to within 2.5% of its ac-
tual value, Equation 3 serves as a reasonable approximation for the expected
number of p-stable marriages even in the worst case of balanced markets.
As argued above, this approximation improves in unbalanced markets. An
additional observation is that the values in the graph are non-negative, i.e.
Equation 3 appears to provide a lower bound for the expected number of
p-stable marriages across all market sizes and values of q. As mentioned
earlier, this is consistent with a result of Arnosti (2016) in a related model,
showing an analogous bound in asymptotically large markets.

The graphs for relatively lower values of q in Figure 2 further suggest that,
as the market size grows arbitrarily large, the expected difference between
DAp and MAP=

p converges to a constant. This is indeed the case. In fact
what we show next is that the absolute expected number of unmatched agents
under MAP=

p converges to a constant as n grows large.
To give some insight toward the result, consider the probability of achiev-

ing a perfect matching in a balanced market of size n = M = W , i.e. of having
zero unmatched agents. The probability that MAP=

p yields such a matching
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Figure 2. For various balanced market sizes (M = W ≤ 200) and values of
q, the graph shows the percentage by which Equation 3 underestimates the
expected number of p-stable marriages; this percentage is at most 2.5% for
the parameters represented in the figure. (The unevenness near zero is due to
noise from the simulations.)

is given by Equation 2.

P (n;n, n) = (1− q)nq(n−n)(n−n)
[
n

n

]
q

[
n

n

]
q

[n]q!

= (1− q)n [n]q!

= (1− qn) · · · (1− q1)

As n goes to infinity, P (n;n, n) converges to the following expression.26

φ(q) ≡
∞∏
i=1

(1− qi) (4)

Therefore P (n;n, n) is bounded away from zero (by φ(q)) across all market
sizes n.

We can generalize this calculation to find the asymptotic probability of
leaving arbitrary, fixed numbers of men and women unmatched, even in un-
balanced markets. If there are g single men and h single women, then market

26The function φ is referred to as Euler’s function—though unfortunately so are various
other functions—and also as a (special case of a) q-Pochhammer symbol. Banerjee and
Wilkerson (2016) give a closed-form approximation for φ.
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sizes must satisfy M = k + g and W = k + h for some number of marriages
k. Rewriting Equation 2 in terms of g and h we have

P (k;M,W ) = P (k; k + g, k + h) = (1− q)kqgh
[
k + g

k

]
q

[
k + h

k

]
q

[k]q!

Letting the number of marriages k → ∞ (so M = k + g → ∞ and W =
k + h→∞) this converges to the following (see the Proof of Theorem 6).

lim
k→∞

P (k; k + g, k + h) = φ(q)
qgh

(1− q) · · · (1− qg) · (1− q) · · · (1− qh)
(5)

Returning to our focus on balanced markets (g = h) this implies the follow-
ing.

Theorem 6 (asymptotic distribution of unmatched agents in balanced mar-
kets). Fix prices pM, pW with incompatibility parameter q ≡ q(pM, pW) < 1,
and consider using MAP=

p in a random economy. For any positive integer
g ∈ Z++,

lim
M=W→∞

P (exactly g men and g women remain single)

= G(g; q) ≡ φ(q)
qg

2

((1− q) · · · (1− qg))2
(6)

For the case g = 0, the limit is G(0; q) = φ(q).

Using Equation 6, Figure 3 shows the expected number of unmatched
agents in arbitrarily large (balanced) markets under MAP=

p .27 For example,
even when any man-woman pair is incompatible with probability q = 0.95,
the expected number of single men in arbitrarily large balanced markets is
less than 13.4. When q = 0.80 the expected value drops below 3.0.

Under MAP=
p , this observation somewhat trivializes the platform’s pric-

ing problem for “very large” markets since, for any fixed prices, unmatched
agents become a vanishingly small fraction of the total market size. There-
fore a platform can charge close to maximal prices to both sides of the market
and yet still create close to the maximum feasible percentage of matches.

27Fixing any q, G(g; q) quickly converges to zero as g increases. We approximate∑∞
g=0 gG(g; q) by graphing the sum of the first (sufficiently many) terms.
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Figure 3. The expected number of unmatched men (equivalently unmatched
women) under MAP=

p in large, balanced markets as a function of q, for 0.1 ≤
q ≤ 0.975.

Nevertheless the pricing problem remains non-trivial for the important
case of small- to medium-sized markets.28 We would argue that many im-
portant markets are not large. Even platforms with millions of users, such
as Airbnb and Uber, should be viewed as a collection of local markets, each
with a relatively small number of participants. At any given time, an Uber
driver in North Chicago is not in the same market as a passenger on the
city’s South Side. An Airbnb renter traveling to New York City on a given
night might be interested in staying only in specific areas of that city.

6 Correlated Preferences

We now consider how correlation among agents’ values affects the interac-
tion between the platform’s prices and the expected number of marriages
it creates. We find that correlation alters our price-symmetry results from
the independent case (Corollary 1 and Theorem 3), leading a platform to
price discriminate between the two sides of the market. The direction of
price discrimination depends on the form of correlation in preferences while
the magnitude of discrimination depends on the degree of market imbalance.
Consequently, the presence of correlation does not validate the false intuition

28For a stylistic example, suppose FM and FW are uniform distributions on [0, 1], and
M = W = 100. Optimal prices under MAP=

p turn out to be approximately pM =
pW = 0.77. Since q(0.77, 0.77) ≈ 0.95, these prices on average leave roughly 12.6 agents
unmatched on each side of the market by Equation 3. Even when M = W = 500, optimal
prices of roughly 0.86 leave roughly 35 agents unmatched on each side.
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(discussed in the Introduction) that a platform should price discriminate by
charging relatively higher prices to the short side of the matching market.
In fact under one form of preference correlation the platform wants to do
precisely the opposite.

Our observation that correlation matters is important for a second rea-
son. It contrasts with the fact that, in the classic two-sided market mod-
els29 where agents can form multiple matches, the platform’s pricing decision
turns out to be independent of whether agents’ preferences are correlated.
To elaborate on this, temporarily imagine a many-to-many platform being
allowed to price each potential transaction separately, i.e. in our language,
imagine that each man-woman pair (m,w) is given its own personalized pair
of match-contingent prices. With no capacity constraints, the willingness of
m and w to match with each other is unaffected by their possibility to be
matched with other agents; these two agents will match if and only if they
are compatible. Thus the risk-neutral platform maximizes the revenue ob-
tained from this pair by treating (m,w) as an independent pricing problem;
optimal personalized prices are derived independently of correlation across
men’s preferences (or across women’s preferences). When all men’s (resp.
women’s) values are drawn from the same FM (resp. FW), the optimal per-
sonalized prices charged to (m,w) are the same as those charged to any other
pair (m′, w′); that is, the constraint to charge all men and women the same
non-personalized prices does not bind for the risk-neutral platform. This
explains why optimal prices in these models are independent of the degree
of correlation in values. In contrast that is no longer the case in our model
since agents are capacity constrained in forming pairs.

6.1 Two forms of correlation

We separately consider two natural forms of preference correlation in two-
sided markets. To describe them, consider the preferences that the women
W have over men M . One form of correlation is one where the women tend
to agree in their relative preference (i.e. value) for any given man: i.e. the
uw(m)’s are correlated across the w’s. For example, Airbnb hosts may all tend
to think that clean, well-behaved guests are the most desirable ones. Under
this form of correlation, agents have a strong common value component in
assessing the (heterogeneous) agents on the other side.

29 E.g. Rochet and Tirole (2003), Armstrong (2006), Rochet and Tirole (2006).
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A second form of correlation is one where any given woman’s values for
various men are correlated. For example, Uber passengers may be indifferent
between drivers (at least ex ante, when they commit to being matched).
Under this form of correlation, each agent has private values for agents on
the other side, but tends to view those agents as being homogeneous. Each
agent has his or her own value for participating in the platform relative to
some personal outside option, but otherwise is indifferent over partners. It
turns out that these two forms of correlation are in a sense dual to each other
in a way that is made clear below.

The following definitions define settings where exactly one of the two
forms of correlation holds perfectly.30 In our earlier sections, each ui(j) was
drawn independently (according to either FM or FW). In this section we as-
sume that the entire profile of values u is drawn from some joint distribution,
but under one of the following two sets of assumptions.

Definition 7. Preferences exhibit (perfect) same-side correlation when,
for any m,m′ ∈M and w,w′ ∈ W , u is drawn in such a way that

• um(w) and um′(w) are perfectly correlated;

• uw(m) and uw′(m) are perfectly correlated;

• all other pairs of values are independent.

Preferences exhibit (perfect) cross-side correlation when, for any m,m′ ∈
M and w,w′ ∈ W , u is drawn in such a way that

• um(w) and um(w′) are perfectly correlated;

• uw(m) and uw(m′) are perfectly correlated;

• all other pairs of values are independent.

An equivalent definition of same-side correlation is as follows. For being
matched to a given man m, the women obtain a common value UW(m)
drawn from FW ; for being matched to a given woman w, the men obtain
a common value UM(w) drawn from FM. Furthermore these |M | + |W |
different values are drawn independently. Similarly, cross-side correlation

30Of course most real world applications might involve both of these forms of correlation.
Our intention is to analyze how these two forms lead to different pricing behavior, so we
consider them separately.
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is when each woman w has some “participation value” Vw drawn from FW
obtained from being matched to any man, and each man m obtains some
Vm drawn from FM from being matched to any woman. Furthermore these
|W |+ |M | different values are drawn independently.

It turns out that, under either form of correlation, the platform’s expected
number of marriages under MAP=

p is equivalent to that under DAp.

Theorem 7. Suppose preferences exhibit either same-side correlation or
cross-side correlation. Then for any prices p = (pM, pW), the expected num-
ber of marriages under MAP=

p is equal to that under DAp.

The simple idea behind the proof of this result illustrates a kind of du-
ality between the two kinds of correlation. Under same-side correlation,
the women commonly find any given man acceptable with probability 1 −
FW(pW). Thus the total number of “acceptable” men kM is a binomial ran-
dom variable, kM ∼ B(1−FW(pW),M). Similarly the number of acceptable
women is a binomial random variable kW ∼ B(1−FM(pM),W ). Under cross-
side correlation, a given woman finds all of the men acceptable with proba-
bility 1− FW(pW). The number of women “willing to participate” is thus a
binomial random variable, k′W ∼ B(1 − FW(pW),W ). Similarly the number
of willing men is a binomial random variable k′M ∼ B(1− FM(pM),M).

In the case of same-side correlation, a p-stable matching is obtained
by matching k = min{kM, kW} agents “assortatively,” i.e. with respect
to their perceived values. Under MAP=

p , the kM acceptable men sequen-
tially propose to (only) the kW acceptable women (in some order), result-
ing in k = min{kM, kW} marriages regardless of how the women choose
amongst their proposals. A similar argument under cross-side correlation
yields k = min{k′M, k′W} marriages under both algorithms.31

The above argument not only establishes an equivalence (in terms of
expected marriages) between DAp and MAP=

p but also helps to set up the
revenue maximization exercise. In the case of same-side correlation, the
platform’s problem is to maximize

(pM + pW) ∗ E(min{kM, kW}) (7)

where, as above, the distribution of kM is a function of (pW ,M), and the
distribution of kW is a function of (pM,W ). A similar expression holds

31Perfect cross-side correlation yields ties in preferences, but they are easily seen to be
irrelevant in the above arguments.
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for cross-side correlation, except that k′M and k′W depend on (pM,M) and
(pW ,W ), respectively. That is, the form of correlation determines which
market size (M vs. W ) interacts with which price (pM vs. pW). This inter-
action determines how the platform price discriminates when the market is
unbalanced.

To see how, observe that an increase in the size ofM shifts the distribution
of kM (or k′M) to the right. On the margin, this shift gives the platform
additional incentive to increase whichever price interacts with M (ceteris
paribus), e.g. pW in the case of same-side correlation. Since the distribution
of kM has shifted to the right, it becomes less costly to shift kM back to the
left through a given increase in the interacting price pW . This leads to our
conclusion that the platform’s level of price discrimination is based on two
factors.

(i) The form of preference correlation (same- or cross-side) determines
whether the platform price discriminates against the long or short side
of the market.

(ii) The degree of market imbalance affects the magnitude of price discrim-
ination.

In general, the revenue maximization problem (Equation 7) is intractable.32

Therefore we formalize this conclusion by considering a continuous version of
our model which abstracts away from the matching frictions of our discrete
model.

6.2 Correlation in a large market

Consider our original model, but with a continuum of agents on both sides of
the market: a mass M̃ of men and a mass W̃ of women. Our definitions ex-
tend to this setting in a straightforward way, so we omit their re-formalization
for brevity. The continuum model eliminates the uncertainty in the number
(mass) of created marriages, thus eliminating the need to consider an ex-
pected value in Equation 7.

For instance, with same-side correlation there are deterministic masses of
acceptable men, κM = (1− FW(pW)) ∗ M̃ , and of acceptable women, κW =

32Part of the intractability comes from the fact that there is no simple formula for
the platform’s expected volume, i.e. the expectation of the minimum of two arbitrary
binomials.
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men

κM

women

κW

Figure 4. The “best” κM men and κW women are matched. Under same-
side correlation, κM is determined by pW and κW by pM. If men are the long
side of the market as in the figure, then FW(pW) > FM(pM), i.e. a relative
premium is charged to the short side of the market. Cross-side correlation
flips the relationship between prices and κ’s, leading to FW(pW) < FM(pM),
i.e. a relative premium is charged to the long side of the market.

(1− FM(pM)) ∗ W̃ . The mass of p-stable marriages is κ = min{κM, κW}, so
the platform typically wants to set prices so that κM = κW ,33 i.e.

1− FW(pW)

1− FM(pM)
=
W̃

M̃
(8)

As illustrated in Figure 4 this leads to the conclusion that the short side of
the market (say W ) is charged a relatively higher price than the long side,
M , in the sense that FW(pW) > FM(pM). If FM = FW for instance, then
the short side of the market is charged a higher price in absolute terms.

In the case of cross-side correlation, the conclusion is reversed. The plat-
form equalizes the two masses of agents “willing to participate” by setting
(1 − FW(pW)) ∗ W̃ = (1 − FM(pM)) ∗ M̃ . This inverts the relationship in
Equation 8. Therefore the short long of the market (say M) is charged the
relatively higher price: FM(pM) > FW(pW). If FM = FW , then the long side
is charged a higher absolute price.

Finally we relate our conclusions to changes in the degree of market imbal-
ance. Consider a ride-sharing platform such as Uber, where preferences ap-
proximately exhibit cross-side correlation.34 This correlation leads to higher

33This is true under assumptions that lead to interior solutions to the revenue maxi-
mization problem.

34Passengers and drivers are roughly indifferent among partners at the time the platform
executes a matching, but differ in their willingness to participate. Indeed, an Uber driver’s
ex ante indifference is enforced by the fact that the driver learns the next destination only
after agreeing to the next pick up.
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relative prices for the long side of the market. Now imagine an increase in
the number of passengers. Since the passenger side of the market has become
longer, it would be consistent with our results for the platform to adjust its
prices in a way that further price discriminates against the long side.35 Indeed
this is what happens under Uber’s surge pricing: the passenger-side price is
increased while the driver-side price is decreased through higher wages.

On the other hand same-side correlation has the opposite effect. Imagine
a platform where agents on any one side tend to agree about the relative
desirability of agents on the other side; examples might include dating plat-
forms, or to some extent room rental platforms such as AirBnb. Fixing
distributions of values, an increase in the size of one side of the market leads
to more value for each member of the other side. E.g., on a (heterosexual)
dating site, an increase in the number of agents of one gender, say female,
improves the prospects of the males, leading the platform to extract some
of this value by increasing the price to the men’s side. Of course the situa-
tion is more complicated when both types of correlation exist simultaneously.
Agents on a dating site likely differ in their outside options, corresponding
to a form of cross-side correlation. The effect of this would be analogous
to Uber’s surge pricing: an increase in the number of women leads to lower
prices for the men in order to induce their participation.

7 Conclusion

Online platforms have been established—and continue to emerge—in a va-
riety of two-sided markets. While the pricing question for such markets has
long been appreciated as important, the literature has not focused on those
in which horizontally-differentiated agents from the two sides form exclusive
(or capacity-constrained) partnerships. On the other hand, while the broad
and growing literature on two-sided matching focuses specifically on such set-
tings, it has not addressed the perspective of a revenue-maximizing platform.
We fill this gap by considering a stable matching platform that charges prices
to two groups of agents contingent on obtaining a partner on the platform.

Our first main result is a qualitative one that is counterintuitive in light
of recent work on stability in unbalanced marriage markets. Ashlagi et
al. (2017) show that, with even the slightest imbalance in market sizes, the

35Formally showing this would require making additional assumptions on the distribu-
tions FM and FW , going beyond the scope of our discussion.
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matched agents on the short side of the marriage market obtain significantly
higher payoffs than matched agents on the long side. Thus one might intu-
itively expect a monopolistic platform to extract some of this surplus imbal-
ance through a corresponding imbalance in prices, charging higher prices to
the short side (at least relative to the distributions of values). This turns
out not to be the case. For example, when both sides’ agents draw i.i.d.
valuations for partners from a single distribution, the platform has no incen-
tive to price discriminate against the short side of the market (Corollary 1).
For example, if values on both sides of the market are drawn from the same
distribution, a standard hazard rate condition induces the platform to price
both sides equally (Theorem 3), regardless of the degree of market imbalance.

Our analysis is done by introducing a class of “meet-and-propose” (MAP)
algorithms. They differ from Deferred Acceptance by separating the agents’
preference orders from the (exogenous) order in which agents make proposals.
These algorithms are relevant to our problem because, fixing any prices, the
distribution of marriages created by a stable platform (i.e. its “sales volume”)
turns out to be the same as it would be had the platform instead used a
randomized MAP algorithm (Theorem 1). Since we can show that MAP
algorithms would not induce the platform to price discriminate as above,
that first result follows.

Furthermore, the equal-meeting-orders MAP=
p algorithm yields a closed

form expression for the expected number of marriages, which we demonstrate
to be both an approximation and bound for the expected number of marriages
for a stable platform. A consequence of this is to trivialize the pricing problem
for very large markets with independent preferences: fixing any prices, the
number of potential marriages that are prevented by the platform’s fees is
bounded above by some constant, for all market sizes (Subsection 5.1).

Finally we consider two forms of correlated preferences: same-side (com-
monality of preferences within the same side) or cross-side (commonality of
a given agent’s values for agents on the other side). First, when either of
these forms of correlation is perfect, the expected number of marriages un-
der the MAP=

p algorithm is precisely the same as the expected number of
stable marriages. This can be viewed as a robustness check on our earlier use
of MAP=

p as an approximation for stability. Second, while correlation affects
our earlier no-price-discrimination result, we show that the form of corre-
lation determines the way in which market imbalance affects the platform’s
decision to price discriminate.

Intuitively, same-side correlation induces the platform to price discrim-
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inate against the short side of the market in order to extract the higher
values obtained by those agents. Cross-side correlation induces price dis-
crimination against the long side of the market in order to ration access
to the low supply of agents on the other side. Remarkably, in the bench-
mark case of independent values, these two effects precisely canceled out as
mentioned above. These effects highlight the empirical requirements of a
revenue-maximizing platform dealing with capacity constrained agents: it
needs to estimate not only the distributions of values that individual agents
could have, but also the form of correlation these values could have across
different agents. Our capacity constrained (one-to-one) model was necessary
to establish this observation since, in the classic two-sided market models
without capacity constraints, correlation does not affect expected revenue
and hence does not affect the platform’s incentive to price discriminate.
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8 Proofs

Proof of Theorem 1. To randomly generate a realization ofKDA, the pro-
cess would randomly generate preferences, and then run DA. However this
is probabilistically equivalent to the following process:
(i) randomly determine whether each w is acceptable to each m (given pM),

(ii) randomly order each m’s acceptable women to determine ordinal pref-
erences, and then

(iii) run DA.
To randomly generate a realization of KrMAP, the process would ran-

domly generate preferences and Bm’s, and then run MAP. However this is
probabilistically equivalent to the following process:
(i) randomly generate whether each w is acceptable to each m (given pM),

(ii) randomly order eachm’s acceptable women to determine a relative meet-
ing order over just those women,

(iii) run DA, using these meeting orders as “preferences”.
This process skips the steps in which men meet unacceptable women. It is
clear, however, that this would be a redundant step36 hence the two processes
are equivalent.

Proof of Lemma 1. As in the matching literature, we can consider the
equivalent case where men propose sequentially, and the current proposer
is given by the lowest indexed man who is currently unengaged. We will
define a recursive proposal probability function πk(η,P , µ) to compute the
probability of k matches conditional on:

• A W -length vector η whose ith entry counts the number of compatible
proposals received so far by woman i.

• An order P of meetings remaining for each of the men.37

• A temporary match µ which records the set of engagements at the given
stage.38

36We intentionally include this redundancy since it allows derivation of our later results.
37We use P because we can think without loss of this object lying in the space of (the

men’s) preferences. Namely, think of the meetings left for any man in the same way as a
preference, and denote the end of the meeting list in the same way as an IR constraint.

38 Again, this µ can inhabit the same space as a traditional matching function µ.
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Note that, given our lowest-unengaged-index proposal rule, the remaining
meetings P and the temporary match µ are enough to determine the next
proposer m(P , µ), as well as the woman w(P , µ) he meets, in the next step
of a MAP algorithm with remaining meetings P and a temporary match µ.
Additionally, let δ(P , µ) denote the transformation which deletes the current
meeting between m and w from the meeting order, and let ρ(P , µ) denote
the transformation which updates the temporary match µ by replacing w’s
current engagement (if any) by m(P , µ).

Then observe that we can write the conditional probability πk of k matches
recursively as follows:

πk(η,P , µ) =qπk(η,P ′, µ)

+(1− q)
(

1− 1

n′w

)
πk(n

′,P ′, µ)

+(1− q) 1

n′w
πk(n

′,P ′, µ′)

where w = w(P , µ), n′ = n + 1w denotes the new vector in which we have
augmented the wth value of n by 1, P ′ = δ(P , µ), and µ′ = ρ(P , µ).

The three terms correspond to the three possible outcomes at such a stage
of MAP given random preferences:
• m and w are incompatible, which occurs with probability q. To proceed

we simply remove w from m’s meeting order.
• m and w are compatible but w prefers her previous engagement. This

occurs with probability (1−q)
(

1− 1
n′w

)
. We update the meeting order

and the number of compatible men that women w has met.
• m and w are compatible and w prefers m to her previous engagement.

This occurs with probability (1− q) 1
n′w

. We update the meeting order

and the number of compatible men met, and we replace w’s previous
engagement with m in the temporary match.

To close the loop, we specify the terminal conditions:

πk(η, ∅, µ) =

{
1 if |µ| = k

0 else.

Note that the number of remaining meetings decreases by one at every step,
so that every terminal node of the recursive computation is reached in finite
steps.
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We finish the proof by observing that the probability of k matches in a
random economy with meeting order B is given by:

P (k,B) = πk(η0,B, µ0)

where η0 is a length-W zero vector and µ0 denotes the null match where all
agents are single. It follows that the distribution of the number of matches
is parametrized by the single variable q.

Proof of Lemma 2. We prove the result for MAP, and the result for DA
follows immediately. Fix a profile of meeting orders B, a value of q ∈ (0, 1],
and a profile of preferences u. Consider prices pM = 0, pW = q, and p′w =
q′ > q (for which q(pM, pW) = q, q(pM, p

′
W) = q′). At pM = 0, each

man finds every woman acceptable. Hence we can reinterpret each Bm as
an ordinal preference relation over W , and reinterpret MAP(B) as Deferred
Acceptance.39 The input to DA is (i) the men’s preferences in the form of B,
and (ii) the women’s preferences in the form of their rankings over acceptable
men at prices pW and p′w respectively.

The women’s ordinal preferences over men at price p′W are a trunca-
tion of their preferences at pM. It follows from Theorem 2 of Gale and So-
tomayor (1985a) that any agent who is unmatched when DA on the women’s
preferences derived from pW remains unmatched when running DA on the
women’s preferences derived from p′W . This proves monotonicity of the num-
ber of marriages for any fixed u. Hence taking expectations over all prefer-
ences u, we have K̄(q) > K̄(q′).

Proof of Theorem 3. We show that if prices (p∗M, p
∗
W) maximize expected

revenue, then so does a price of (p∗M + p∗W)/2 charged to both sides. The
main steps are written for arbitrary FM, FW to demonstrate the generality
of the idea.

Using Theorem 2 (or Lemma 1 for the case of MAP) and a change of
variables, the platform’s expected revenue can be written as

max
pM,pW

(pM + pW)K̄(q(pM, pW)) = max
pT ,pM

pT K̄(q(pM, pT − pM))

39Each m meets women in order of Bm, and bothers proposing only if the woman finds
him acceptable; each woman keeps her best proposer.
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where pT ≡ pM+pW is the total revenue from a single marriage. Let (p∗T , p
∗
M)

be a solution to the latter maximization problem. Then

p∗M ∈ arg max
pM

p∗T K̄(q(pM, p
∗
T − pM))

That is, taking p∗T as given, revenue is maximized by any pM that maximizes
the expected number of marriages K̄(). By Lemma 2 this is accomplished
by any pM that minimizes the incompatibility parameter q(pM, p

∗
T − p∗M).

Observe that, since our assumptions guarantee the existence of prices that
give positive expected revenue, we must have q(p∗M, p

∗
T − pM) < 1 (otherwise

there are zero expected marriages).
Therefore the same must be true for any optimal pM, implying both

FM(pM) < 1 and FW(p∗T − pM) < 1 (see Equation 1). There is a non-
degenerate interval of values for pM on which these two inequalities are sat-
isfied. Consider the derivative of q(·) with respect to pM, evaluated over this
interval.

∂q(pM, p
∗
T − pM)

∂pM
= (1− FW(p∗T − pM))fM(pM)− (1− FM(pM))fW(p∗T − pM)

= (1− FM(pM))(1− FW(p∗T − pM))

[
fM(pM)

1− FM(pM)
− fW(p∗T − pM)

1− FW(p∗T − pM)

]
where the second line avoids division by zero for the candidate values of pM
considered above. Additionally, the sign of ∂q/∂pM is determined by the
last bracketed term. By the monotone hazard rate condition, this bracketed
term is increasing in pM. Hence any pM for which this term takes the value
of zero is optimal. Depending on FM and FW , such an interior solution may
or may not exist. Substituting F = FM = FW into the previous equation,
however, yields the following signs.

∂q(pM, p
∗
T − pM)

∂pM


≤ 0 for pM <

p∗T
2

= 0 for pM =
p∗T
2

≥ 0 for pM >
p∗T
2

.

Therefore q(pM, p
∗
T − pM) is minimized at pM = p∗T/2.

Proof of Theorem 4. Fix M and W , and a profile of identical meeting
orders. we want to know the probability P (k;M,W ) that this procedure ends
with k couples. Clearly Equation 2 holds whenever M = 1: the lone man in

40



the economy is either incompatible with each woman (P (0; 1,W ) = qW ) or
not (P (1; 1,W ) = 1− qW ).

Using induction on the number of men M , suppose that for any k, Equa-
tion 2 accurately describes P (k;M−1,W ). By the construction of the MAP
algorithm with identical orders, and symmetry of the men, we have the fol-
lowing observation: Fixing M , consider running the algorithm only until
man mM−1 is matched (or is rejected by all women); call this the end of
stage M − 1. The probability that k of the first M − 1 men are married at
this point in the algorithm is precisely P (k;M − 1,W ), since a complete run
of the algorithm for a randomized economy of size (M − 1,W ) is equivalent
to a run of the algorithm to the end of stage M−1 for a randomized economy
of size (M,W ).

Furthermore for the economy (M,W ) to end up with k marriages it must
be that, at the end of stage M − 1, there were either k or k − 1 temporary
marriages. We separately consider these two cases.

Case 1: at the end of stage M − 1, k men are temporarily matched.
There are thus W − k women currently unmatched. The algorithm now
introduces man mM , who begins to sequentially meet women. If w1 is cur-
rently unmatched, there is probability (1 − q) that she accepts a proposal
from mM (ending the algorithm), and probability q that he must continue by
meeting w2 (if she exists). But if w1 was temporarily matched, then with cer-
tainty some man—either mM or her temporary partner—will be permanently
matched to her, and the other man continues by meeting w2 (if she exists).
In this latter case, it is probabilistically irrelevant which man continues on
to meet w2 (by the i.i.d. assumption on utilities).

This process continues for each woman in turn until the algorithm ends.
Each temporarily married woman wj keeps some offer and sends the other
man on to meet wj+1. Each currently single woman (if met) ends the algo-
rithm with an accepted proposal with probability (1− q). Therefore, “stage
M” does not add an additional marriage to the already existing k marriages
with probability qW−k.

Case 2: at the end of stage M − 1, k − 1 men are temporarily matched.
There are thus W − k+ 1 women currently unmatched. As above, the intro-
duction of man mM in stage M fails to yield an additional match precisely
when each of the W−k+1 is incompatible with the unique man who proposes
to her. Therefore, “stage M” adds an additional marriage to the already ex-
isting k − 1 marriages with probability 1− qW−k+1.
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Combining Case 2 and Case 1 respectively, P (k;M,W ) equals

P (k − 1;M − 1,W ) · (1− qW−k+1) + P (k;M − 1,W ) · qW−k

Using Equation 2 to substitute for P ( · ;M − 1,W ) this becomes

(1− q)k−1q(M−k)(W−k+1)

[
M − 1

k − 1

]
q

[
W

k − 1

]
q

[k − 1]q!(1− q
W−k+1)

+ (1− q)kq(M−k−1)(W−k)
[
M − 1

k

]
q

[
W

k

]
q

[k]q!(q
W−k)

=

(
qM−k

[k]q (1− q)

)
(1− q)kq(M−k)(W−k)

[
M − 1

k − 1

]
q

[
W

k − 1

]
q

[k]q!(1− q
W−k+1)

+ (1− q)kq(M−k)(W−k)
[
M − 1

k

]
q

[
W

k

]
q

[k]q!

=

(
qM−k

[k]q (1− q)

)
(1− q)kq(M−k)(W−k)

[
M

k

]
q

[k]q
[M ]q

[
W

k

]
q

[k]q
[W − k + 1]q

[k]q!(1− q
W−k+1)

+ (1− q)kq(M−k)(W−k)
[
M

k

]
q

[M − k]q
[M ]q

[
W

k

]
q

[k]q!

= qM−k(1− q)kq(M−k)(W−k)
[
M

k

]
q

[k]q
[M ]q

[
W

k

]
q

[k]q!

+ (1− q)kq(M−k)(W−k)
[
M

k

]
q

[M − k]q
[M ]q

[
W

k

]
q

[k]q!

= (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[k]q!

(
qM−k [k]q + [M − k]q

[M ]q

)

= (1− q)kq(M−k)(W−k)
[
M

k

]
q

[
W

k

]
q

[k]q!

(
[M ]q
[M ]q

)

Proof of Theorem 6. The theorem results from proving Equation 5. We
rewrite Equation 2 in terms of k, g ≡ M − k, and h ≡ W − k, and take the
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limit as k →∞.

lim
k→∞

P (k; k + g, k + h)

= lim
k→∞

(1− q)kqgh
[
k + g

k

]
q

[
k + h

k

]
q

[k]q!

= lim
k→∞

(1− q)kqgh
(

(1− qk+1) · · · (1− qk+g)
(1− q) · · · (1− qg)

)(
(1− qk+1) · · · (1− qk+h)

(1− q) · · · (1− qh)

)
[k]q!

= lim
k→∞

(1− qk) · · · (1− q)qgh
(

(1− qk+1) · · · (1− qk+g)
(1− q) · · · (1− qg)

)(
(1− qk+1) · · · (1− qk+h)

(1− q) · · · (1− qh)

)
= φ(q)qgh

1

(1− q) · · · (1− qg) · (1− q) · · · (1− qh)

Proof of Theorem 7. Consider same-side correlation. Fix any prices
pM, pW and a realization of values u. Given pW , man m is acceptable to each
woman if and only if his common value to them exceeds pW ; there is some
number kM of such “acceptable” men. Similarly there is some number kW of
acceptable women. Hence any IR matching has at most k ≡ min{kM, kW}
marriages.

It is simple to see that the unique p-stable matching is the “assortative”
one, matching the k “best” men and women, i.e. it contains k marriages.

Consider MAP=
p . When the men meet the first woman under the common

meeting orders B (not necessarily the “best” woman), either she is unaccept-
able (and none propose), or she is acceptable (and the compatible kM of them
propose). In the latter case, she chooses the best man and rejects the rest.
Continuing similarly, each woman either receives no proposals or receives
proposals from each of the remaining acceptable men (if any exist). In the
latter case, she chooses the best remaining one. Continuing until we run out
of either acceptable men or acceptable women, k marriages will result.

A similar argument can be made for cross-side correlation. A difference is
this case is that preferences have indifference, but the method of tie-breaking
does not impact the expected number of marriages in either algorithm.
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