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Abstract

We consider a two-player game of war of attrition under complete information. It is well-

known that this class of games admits equilibria in pure, as well as mixed strategies, and much of

the literature has focused on the latter. We show that if the players’ payoffs whilst in “war” vary

stochastically and their exit payoffs are heterogeneous, then the game admits Markov Perfect

equilibria in pure strategies only. This is true irrespective of the degree of randomness and

heterogeneity, thus highlighting the fragility of mixed-strategy equilibria to a perturbation of

the canonical model. In contrast, when the players’ flow payoffs are deterministic or their exit

payoffs are homogeneous, we show that the game admits equilibria in pure and mixed strategies.

1 Introduction

In the classic war of attrition, the first player to quit concedes a prize to his opponent. Each player

trades off the cost associated with fighting against the value of the prize. These features are com-

mon in many managerial and economic problems. Oligopolists in a declining industry may bear

losses in anticipation of profitability following a competitor’s exit (Ghemawat and Nalebuff, 1985).

For example, the rise of Amazon in the mid-1990s made the business model of Barnes & No-

ble and Borders obsolete, turning traditional bookselling into a declining market. As the demand

shrank sharply, these two major players at the time had to cut down slack in their capacities, but

each would prefer its competitors to carry the painful burden of closing stores or exit the market

altogether (Newman, 2011). Similarly, the presently low price of crude oil is often attributed to
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a war of attrition among Saudi Arabia, its Persian Gulf OPEC allies, and non-OPEC rivals such

as Russia and the many shale-oil producers in the United States (Reed, 2016). Other examples of

wars of attrition include the provision of public goods (Bliss and Nalebuff, 1984), lobbying (Becker,

1983), labor disputes (Greenhouse, 1999), court of law battles (McAfee, 2009), races to dominate

a market (Ghemawat, 1997), technology standard races (Bulow and Klemperer, 1999), price cycles

in oligopolistic collusion (Maskin and Tirole, 1988), all-pay auctions (Krishna and Morgan, 1997),

and bargaining games (Abreu and Gul, 2000).

It is well-known that the canonical model of war of attrition admits equilibria in both pure and

mixed strategies (Tirole (1988), Fudenberg and Tirole (1996), Levin (2004), and others). Moreover,

much of the (applied) literature has focused on the mixed-strategy equilibria of the game, owing

to the fact that only they feature certain attractive properties such as attrition (i.e., costly waste

of resources), and symmetry in certain cases. In this paper, we study a simple model of war of

attrition under complete information, and we show that if the players’ flow payoffs whilst fighting

for the prize are stochastic and their exit payoffs are heterogeneous, then the game admits only pure-

strategy Markov Perfect equilibria (hereafter MPE). Moreover, this is true irrespective of the degree

of randomness and heterogeneity. As it is rare for players to be precisely identical or payoffs to be

deterministic (in applications), this result highlights the instability of the mixed-strategy equilibria

in wars of attrition under complete information. This result also has implications for a growing

literature that aims to empirical characterize strategies in real-world games of war of attrition; see

for example Wang (2009) and Takahashi (2015).

In our model, two competing oligopolists contemplate exiting a market. While both firms remain

in the market, each receives a flow payoff that depends on the stochastically fluctuating market

conditions (e.g., the price of a relevant commodity); hereafter the state. At every moment, each firm

can exit the market and collect its outside option. Its rival then obtains a (higher) winner’s payoff,

which depends on the state at the time of exit; i.e., the net present discounted monopoly profit in that

market. We assume that all payoff-relevant parameters are common knowledge, so this is a game

with complete information. Noting that the state follows a Markov process and the mixed-strategy

equilibria characterized in the literature are typically stationary (see for example, Tirole (1988)), we

restrict attention to Markov strategies, wherein at every moment, each firm conditions its probability

of exit on the current state.

We begin by characterizing the best response of a firm that anticipates its rival will never exit

the market. We show that a firm will optimally exit at the first moment the state drifts below a

threshold. Moreover, this single decision-maker’s optimal threshold increases in the firm’s outside

option. Intuitively, the better is a firm’s outside option, the less it is willing to endure poor market

conditions before exiting the market. Proposition 1 shows that there exists a pure-strategy MPE in

which the firm with the larger outside option exits the market at its single decision-maker’s optimal
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threshold, and its rival never exits. If the heterogeneity in outside options is not too large, then there

exists another pure-strategy MPE in which the firm with the lower outside option exits the market at

its own single decision-maker’s optimal threshold and its rival never exits.

Towards our main result, we establish two lemmas. The first shows that in any mixed-strategy

MPE, even if the state evolves deterministically, (a) both firms must be randomizing between re-

maining in the market and exiting on a common set of states (i.e., their strategies must have com-

mon support), and (b) strategies must be continuous in the interior of their support (i.e., during any

interval (t, t + dt), the probability that a firm exits the market must be of order dt). The second

lemma shows that if the state evolves stochastically, then each firm’s strategy must be continuous

everywhere, including at the boundary of its support, and its support must be equal the set of states

below its single decision-maker’s optimal exit threshold.

The main result follows immediately: If the market conditions are stochastic and the firms have

heterogeneous outside options, in which case their single decision-maker’s optimal exit thresholds

differ, then the game admits no mixed-strategy MPE. Both of these ingredients are necessary for

the game to admit only pure-strategy MPE: if the firms have identical outside options or the market

conditions are deterministic, then there exists a mixed-strategy MPE which we characterize.

Related Literature

First and foremost, this paper contributes to the literature on wars of attrition, which has received

widespread attention since the seminal work of Maynard Smith (1974). Our model is closest to

Hendricks et al. (1988) and Murto (2004). The former provides a complete characterization of the

equilibria (in both pure and mixed strategies) in a war of attrition under complete information, in

which the players’ payoffs vary deterministically over time. The latter considers stochastic payoffs,

but restricts attention to pure-strategy Markov Perfect equilibria. In contrast, we allow payoffs to

vary stochastically, and we show that if players are heterogeneous, then the game admits MPE in

pure strategies only.

Our paper also contributes to a strand of literature that contemplates equilibrium selection in the

war of attrition. Fudenberg and Tirole (1986) consider a game of exit in a duopoly, in which players

are uncertain about their rivals’ cost of remaining in the market. In the unique equilibrium, each

firm exits at a deterministic time that decreases in its cost. In Kornhauser et al. (1989), with a small

probability, each player is irrational and never quits. They show that this approach of introducing

a small probability of irrational behavior selects a unique equilibrium in which the weaker player

quits immediately. Kambe (1999), and Abreu and Gul (2000) analyze a bargaining game in which

two players seek to divide some surplus, and each player behaves irrationally with some probability.

They show that this possibility of irrational behavior gives rise to a unique equilibrium that entails

delay. See also Myatt (2005) and the references therein. In contrast, players are rational and possess
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complete information about the parameters of the game in our model.

Touzi and Vieille (2002) introduces the concept of mixed strategies in continuous-time Dynkin

games (a class of stopping games), and proves that the game admits minimax solutions in mixed

strategies. With this notion of mixed strategies, Seel and Strack (2016) investigates a war of attrition

(all-pay auction) with privately observed Brownian motions, and Steg (2015) characterizes equilibria

in both pure and mixed strategies in a family of continuous-time stochastic timing games. Whereas

these papers consider games with identical players, we focus on games with non-homogeneous

players and show that the set of equilibria differ drastically from the case with homogenous players.

Riedel and Steg (2017) examines mixed-strategy equilibria in continuous-time stopping games with

heterogeneous players, but they restrict attention to pre-emption games, whereas our model is one

of a war of attrition.

Finally, our paper is also related to the literature in real option games in the context of timing

decisions with externalities under uncertainty. Dixit and Pindyck (1994) establishes the fundamental

framework for analyzing real options and real option games. Grenadier (2002), Lambrecht and Perraudin

(2003), and Mason and Weeds (2010) examine the interplay between the option value of waiting and

externalities due to competition, learning, and network effects. However, these papers focus on the

role of a preemptive threat in real option games while our work is focused on a free-riding incentive.

2 Model

We consider a war of attrition with complete information between two oligopolistic firms. Time is

continuous, and both firms discount time at rate r > 0. At every moment, each firm decides whether

to remain or exit the market.

While both firms remain in the market, each firm earns a flow profit π(Xt), where π : R→ R is

continuous and strictly increasing, while Xt is a scalar that captures the market conditions that the

firms operate in (e.g., the size of the market, or the price of raw materials).1 The market conditions

fluctuate over time according to

dX x
t = µ(X x

t )dt +σ(X x
t )dBt , (1)

where X x
t is defined on I := (a,b) ⊆ R, X x

0 = x, the functions µ : I → R and σ : I → R+ are

1For simplicity, we assume that the firms earn identical flow profits. Our results are generalizable to allow heteroge-

neous flow profits.
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continuous, and Bt is a Wiener process.2,3,4 Let (Ω,{Ft}t≥0) denote the sample space Ω and a

natural filtration {Ft}t≥0 with respect to the process {Bt}t≥0 (or equivalently {Xt}t≥0). Throughout

the paper, we let E[·] denote the expected values. In particular, we often use the notation Ex[·] :=

E[·|X0 = x] for expected values conditional on the initial value X0 = x.

If firm i chooses to exit at time t, then it receives its outside option li, and firm −i receives w(X x
t ),

where w : I → R is the expected (finite) payoff associated with being the sole remaining firm; i.e.,

the expected net present value of monopoly profits. We say that firm j is the winner, and firm i is

the loser. We set the convention that l1 ≤ l2; i.e., firm 2 has a larger outside option than firm 1. We

assume that w(x)> l2 for all x ∈I so that the winner’s reward is always larger than that of the loser.

The game ends as soon as a firm exits the market. If both firms exit at the same moment, then each

firm obtains the outside option li or w(X x
t ) with probability 1/2 each.

Finally, we make the following technical assumptions (see also Alvarez, 2001):

1. π(·) satisfies the absolute integrability condition Ex
[´ ∞

0
|e−rtπ(X x

t )|dt
]

< ∞.

2. For each i, there exists some xci ∈ I such that π(xci) = rli.

The first assumption ensures that each firm’s payoff is well-defined, whereas the second guarantees

the existence of an optimal exit threshold in the interior of I .

2.1 Markov Strategies

At every moment t, each firm chooses the probability with which to remain in the market to max-

imize its expected discounted payoff. We assume that both firms employ Markov strategies, so

for any x, their decision at time t depends only on the current state X x
t . We make the defini-

tion of a Markov strategy mathematically precise below. Each firm i’s strategy can be defined as

a family of cumulative distribution functions (hereafter CDF) Gi := (Gx
i )x∈I of stopping times

with respect to {Ft}t≥0 for each x ∈ I .5 We say that a pair (G1,G2) is a strategy profile. For

each i, Gi must be time-consistent, or equivalently, conform to Bayes’ rule; i.e., for any t ≥ s ≥ 0,

Gx
i (t) = Gx

i (s
−)+ [1−Gx

i (s
−)]G

Xx
s

i (t − s).

For example, suppose that neither firm has yet exited by time t and Xt = x. Then firm i employs

the strategy Gx
i , and if neither firm exits during (t, t +dt), then the state evolves to x+dXt at time

2We use the superscript in X x
t to denote its dependence on the initial value x at time 0.

3Special cases in which σ(·) = 0 have been analyzed extensively (Ghemawat and Nalebuff, 1985, Hendricks et al.,

1988, and others). Therefore, we restrict attention to σ(·) > 0 in the main body of this paper, and for completeness, we

revisit the case in which σ(·) = 0 in Appendix A.
4The boundary points a and b are assumed to be natural (Borodin and Salminen, 1996, p.18-20); i.e., neither a, nor b

can be reached by X x
t in finite time. For example, if Xt is a standard diffusion process, then I = R. If Xt is a geometric

diffusion process, then I = (0,∞).
5By a CDF of stopping times, we refer to an F X -adapted, right-continuous, and non-decreasing process that ranges

in the interval [0,1], where F X := {Ft}t≥0 is the natural filtration generated by X .
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t +dt, at which moment firm i employs the strategy G
x+dXt

i . This definition extends the concept of

randomized stopping times (Touzi and Vieille, 2002) and subgames (Steg, 2015) to a continuous-

time game with a stochastic state variable.

Note that firm i exits at time t with positive probability when Gx
i either has an (upward) jump

at t, or it is continuously (strictly) increasing at t. One characteristic of a Markov strategy is that

any jump in Gx
i occurs at a hitting time τE = inf{t ≥ 0 : Xt ∈ E} for some set E ⊂ I , and that the

probability of exit at τE depends only on X x
τE

. The other defining characteristic of a Markov strategy

is that the hazard rate of exit is a function of X x
t alone whenever Gx

i continuously increases in t.

A special case of a Markov strategy Gi is one in which there exists a stopping time (a hitting time

of a set E) τi at which Gx
i jumps from 0 to 1. We call a strategy of this form a pure Markov strategy

and denote it by H(τi), where Gx
i (t) = Hx(t;τi) := 1{t≥τi}(t). In contrast, if a Markov strategy Gi

cannot be represented by H(τi) for any stopping time τi, then we refer to it as a mixed Markov

strategy.

Lastly, we define the support of a mixed-strategy as a subset of the state space in which firm i

randomizes between remaining in the market and exiting; i.e.,

supp(Gi) :=

{

x ∈ I :
dG

y
i (t)

dt

∣

∣

∣

∣

t=τ

> 0 or ∆G
y
i (τ) ∈ (0,1) for any y ∈ I whenever X

y
τ = x

}

,

where ∆G
y
i (τ) = G

y
i (τ)−G

y
i (τ

−) denotes a jump at time τ.

3 Preliminaries

In this section, we introduce notation and establish a lemma that will be helpful for the subsequent

analysis. In particular, in Section 3.1, we characterize each firm’s expected discounted payoff given

an arbitrary strategy profile. Then in Section 3.2, we characterize the best response of a firm which

anticipates that its rival will never exit the market.

3.1 Payoffs

We begin by defining the conditional expected payoff of firm i, given the history Ft of X starting at

X x
0 = x and its rival exiting the market at t, at which time it becomes the winner:

W x
i (t) =

ˆ t

0

π(X x
s )e

−rsds+w(X x
t )e

−rt . (2)

Firm i receives the flow payoff π(X x
s ) during [0, t), whereas at time t, its rival, firm −i exits and firm

i receives the winner’s payoff w(X x
t ). Similarly, we define the conditional expected payoff of firm i,
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given the history Ft of X starting at X x
0 = x and it exiting the market at t, at which time it becomes

the loser:

Lx
i (t) =

ˆ t

0

π(X x
s )e

−rsds+ lie
−rt , (3)

If both firms exit at t, then we assume that either firm becomes the winner with equal probability, so

each firm obtains conditional expected payoff Mx
i (t) = (Lx

i (t)+W x
i (t))/2. We define

Sx
i (t;G−i) =

t−
ˆ

0

W x
i (s)dGx

−i(s)+Mx
i (t)∆Gx

−i(t)+Lx
i (t)[1−Gx

−i(t)] . (4)

Note that Sx
i (t;G−i) denotes the conditional expected payoff of firm i, given the history Ft of X

starting at X x
0 = x, it exiting at t, and its rival employing strategy G−i. The first term captures the

payoff associated with becoming the winner at any time before t. The second term captures the

payoff associated with both firms exiting simultaneously at t, and the last term captures the payoff

associated with becoming the loser at t.

Finally, define firm i’s expected payoff under an arbitrary strategy profile (Gi,G−i) starting at

X x
0 = x by

Vi(x;Gi,G−i) = Ex

[
ˆ ∞

0

Si(t;G−i)dGx
i (t)

]

. (5)

We say that a strategy profile (G∗
1,G

∗
2) is an MPE if for each i, Vi(x;G∗

i ,G
∗
−i)≥Vi(x;Gi,G

∗
−i) for all

x ∈ I and any Gi.

3.2 Best Response to H(∞)

As a building block towards characterizing the MPE of the game, we begin by characterizing firm

i’s best response to H(∞); i.e., the best response of firm i when its opponent’s strategy is to never

exit the market. In this case, Gx
−i(t) = 0 for any x ∈ I and t < ∞, so firm i’s best response can be

determined by solving the following optimal stopping problem of a single decision maker:

sup
τi

Vi(x;H(τi),H(∞)) = sup
τi

Ex[Li(τi)] = sup
τi

Ex

[
ˆ τi

0

π(Xt)e
−rtdt + lie

−rτi

]

. (6)

We use Proposition 2 in Alvarez (2001, p.334) to establish the following lemma.

Lemma 1 For each i ∈ {1,2}, there exists a unique threshold θ∗i such that firm i optimally exits at

τ∗i = inf{t ≥ 0 : X x
t ≤ θ∗i } ; (7)
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i.e., at the first time such that X x
t ≤ θ∗i . If l1 < l2, then θ∗1 < θ∗2.

The firm’s value of remaining in the market decreases as the market conditions deteriorate, and

once they become sufficiently poor, the firm is better off exiting and collecting its outside option.

As the firms earn identical flow payoffs while they remain in the market, the firm with the higher

outside option optimally exits at a higher threshold.

4 Markov Perfect Equilibria

In this section, we characterize the MPE of this game. We begin by characterizing the pure-strategy

MPE in Section 4.1. In Section 4.2, we establish our main result: if the market conditions fluctuate

stochastically (i.e., σ(·) > 0) and the firms are heterogeneous (i.e., l1 < l2), then this game has no

mixed-strategy MPE.

4.1 Pure-strategy MPE

The following result shows that the strategy profile (H(∞),H(τ∗2)) constitutes an MPE, and under

certain conditions, (H(τ∗1),H(∞)) also constitutes an MPE, where τ∗1,τ
∗
2 are defined in Lemma 1.

Proposition 1 The strategy profile (G1,G2) = (H(∞),H(τ∗2)) is a pure-strategy MPE. Moreover,

there exists a threshold κ > 0 that is independent of l1 such that (G1,G2) = (H(τ∗1),H(∞)) is also a

pure-strategy MPE if l2 < l1 +κ.

If firm i expects its rival to never exit the market, then by Lemma 1, it will optimally exit at the

first time such that X x
t ≤ θ∗i . Therefore, it suffices to show that if firm i employs the strategy H(τ∗i ),

then its opponent’s best response is to never exit.

Suppose that firm 1 expects its rival to exit at the first moment that X x
t ≤ θ∗2. Recall that firm 2

has a better outside option than firm 1 (i.e., l2 ≥ l1), so by Lemma 1, θ∗1 ≤ θ∗2, which implies that

firm 1 has no incentive to exit until at least X x
t ≤ θ∗1. Therefore, firm 1 expects that the game will

end before the state drifts below θ∗1, and hence the strategy G1 = H(∞) is incentive compatible. If

instead firm 2 anticipates that its rival employs the strategy H(τ∗1), then it can sustain the strategy

H(∞) as long as it does not need to wait too long in the time interval (τ∗2,τ
∗
1) until firm 1 exits, and

so H(∞) is a best response for firm 2 as long as l2 − l1 is not too large.

Note that we restrict attention to single-threshold strategies, so (H(τ∗1),H(∞)) and (H(∞),H(τ∗2))

are the sole candidates for pure-strategy MPE. As shown in Murto (2004), there may also exist pure-

strategy equilibria with multiple exit thresholds.6 However, these pure-strategy MPE with multiple

6In particular, Murto (2004) shows that there may exist an equilibrium in which each firm i exits at the first moment

such that X x
t ∈ (−∞,ai]∪[bi,θ

∗
i ] for some ai < bi; i.e., firm i does not exit within some interval (ai,bi) below the threshold
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thresholds do not affect our characterization of mixed-strategy MPE, and so we do not consider them

in this paper.

4.2 Mixed-strategy MPE

We begin by establishing two Lemmas, which outline a set of necessary conditions that any mixed-

strategy MPE must satisfy. Below we let Γo denote the interior of a set Γ, and Γo denote the closure

of Γo.7

Lemma 2 Suppose that (G1,G2) constitutes a mixed-strategy MPE. Then:

(a) The supports of G1 and G2 have common interior Γo.

(b) If x ∈ Γo, then both Gx
1(t) and Gx

2(t) are continuous at any t = τ such that Pr(X x
τ ∈ Γo)> 0.

It is helpful to convey the intuition with a heuristic derivation. (The formal arguments are rele-

gated to Appendix C.) In the interior of the support of Gi, firm i must be indifferent between exiting

immediately and remaining in the market; i.e.,

li =
dGx

−i(t)

1−Gx
−i(t)

w(X x
t )+

(

1−
dGx

−i(t)

1−Gx
−i(t)

)

[π(X x
t )dt +(1− rdt)li] . (8)

where dGx
−i(t)/[1−Gx

−i(t)] represents the probability that firm −i will exit during (t, t+dt), conditional

on not having exited until t. The left-hand-side of (8) represents firm i’s payoff in case it exits at t. If

it remains in the market, then with probability dGx
−i(t)/[1−Gx

−i(t)] it receives the winner’s payoff w(X x
t ),

whereas with the complementary probability, it earns the flow payoff π(X x
t ) during (t, t + dt), and

its (discounted) continuation profit li at t +dt.8 It follows from (8) that firm −i’s probability of exit

during (t, t+dt), where dt ≃ 0, must equal

dGx
−i(t)

1−Gx
−i(t)

=
rli −π(X x

t )

w(X x
t )− li

dt . (9)

Notice that if π(X x
t )> rli, then the right-hand-side of (8) is strictly larger than li, and so firm i strictly

prefers to remain in the market regardless of its rival’s strategy; i.e., any x with π(x) > rli does not

belong to the support of Gi.

θ∗i . Intuitively, for x ∈ (a1,b1), if x− a1 or b1 − x is sufficiently small, then firm 2 can be better off waiting until X x
t hits

a1 or b1 and becoming the winner rather than exiting immediately. Finally, note that if the initial state x ≥ max{θ∗1,θ
∗
2},

then the outcome of this equilibrium coincides with the outcome of the equilibrium characterized in Proposition 1.
7Clearly, Γo is always a subset of Γ. Note also that it can be a proper subset; i.e., Γo ( Γ, if and only if there are

some point components of Γ that are not in in Γo. A point component of a set A is defined as a singleton point set {a}
such that a ∈ A but disconnected from A\{a}.

8We ignore the event that both firms exit the market simultaneously. As the proof shows, this is an innocuous

simplification.
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Towards a contradiction, suppose that there exists a non-empty interval that is in the interior of

the support of Gi but not of G−i. Then for at least some x in that interval, we must have π(x) < rli

and dGx
−i(0) = 0. This implies that the right-hand-side of (8) is strictly smaller than li, so firm i

strictly prefers to exit. However, this contradicts that x is in the interior of the support of Gi, so we

conclude that the supports of G1 and G2 share the same interior.

Second, observe from (9) that in the interior of the common support of G1 and G2, dGx
i (t)/dt is

finite for each i, which implies that strategies are continuous. If a firm’s strategy were discontinuous

at some state in the interior of its support, then its rival would strictly prefer to remain in the market

when that state is reached in order to increase the probability of obtaining the winner’s payoff.

Lemma 2 holds irrespective of whether the market conditions fluctuate stochastically (i.e., σ(·)>

0), or deterministically. The following lemma establishes two additional necessary conditions that

any mixed-strategy MPE must satisfy when σ(·)> 0.

Lemma 3 Suppose that σ(·)> 0, and (G1,G2) constitutes a mixed-strategy MPE. Then:

(a) Gx
1(t) and Gx

2(t) are continuous in t for all x ∈ I , i.e., they have no mass points (discontinu-

ities of the CDFs).

(b) The support Γ = (a,θ∗1) = (a,θ∗2), where θ∗i is given in Lemma 1.

Lemma 3(a) establishes that if σ(·) > 0, then CDFs of an MPE must be continuous even if the

initial value x is not in Γo. To see why, we first recall that a discontinuity of a CDF must be a

hitting time τE = inf{t ≥ 0 : X x
t ∈ E} for some set E ⊂ R and for all x such that Pr(τE < ∞) > 0.

Then because X is irreducible if σ(·)> 0, Lemma 2(b) implies that if σ(·)> 0, then a discontinuity

of a CDF cannot take place while X is within Γo for ∀x ∈ I , i.e., irrespective of the initial value

x. Hence, a mass point can exist only outside Γo, in which case Γ must have a point component.

However, we can further show that Γ cannot have a point component. Suppose to the contrary that

{y} is a point component of Γ. Then both firms assign a non-zero probability of exit when X hits

y. However, in that case, one firm may decide never to exit when X = y thereby increasing the

probability of being the winner. Thus, a point component of Γ cannot be part of an equilibrium, and

so Γ = Γo. Thus, we obtain the result that the CDFs of an MPE are continuous in time.

Next, recall that even if firm i anticipates that its rival will never exit the market, it is not willing

to exit before X goes below θ∗i . Hence, if firm i expects its rival to exit in finite time with positive

probability, then this would, ceteris paribus, only decrease firm i’s incentive to exit. Consequently,

firm i always strictly prefers to remain in the market whenever X > θ∗i , which implies Γ ⊆ (a,θ∗i ).

To see that this inclusion is indeed an equality, suppose that, for some θ < θ∗i , firm −i (and hence

firm i) exits with positive probability on (a,θ). Then because firm −i does not exit at any X > θ and

its strategy has no mass points, starting at θ∗i , firm i’s expected payoff from exiting at the first time

10



that X
θ∗i
t ≤ θ is strictly less than li by Lemma 1. Therefore, firm i strictly prefers to exit at θ∗i , which

contradicts the premise that Γ = (a,θ) where θ < θ∗i .

Recall from Lemma 1 that if l1 < l2, then θ∗1 < θ∗2. Therefore, we have the following immediate

implication.

Theorem 1 Suppose that σ(·)> 0 and l1 < l2. Then this game admits no mixed-strategy MPE.

While the assumptions that payoffs are deterministic and firms are symmetric may be a good

approximation of a particular setting, in reality, payoffs are not set in stone and no firms are exactly

alike. This theorem, together with Proposition 1, shows that in this case, the game admits either one,

or two pure-strategy MPE only.

Because the result holds irrespective of the degree of uncertainty (and heterogeneity), it shows

that mixed-strategy MPE are unstable to a natural perturbation of the canonical model, and provides

an equilibrium selection argument for wars of attrition under complete information.

Finally, we point out that both ingredients are necessary to eliminate mixed-strategy MPE. To

highlight this point, in the following section and in Appendix A, we characterize a mixed-strategy

MPE for the case in which firms are homogeneous and payoffs are deterministic, respectively.

Special Case: Homogeneous Firms (l1 = l2)

In this section, we consider the case in which the firms are homogeneous (i.e., l1 = l2), and we

characterize the unique mixed-strategy MPE. It follows from Lemmas 2 and 3 that if (G1,G2) con-

stitutes a mixed-strategy MPE, then each Gi must satisfy (8) on Γ = (a,θ∗1), where θ∗1 = θ∗2 is given

in Lemma 1. Solving (8) subject to the boundary condition Gx
i (0) = 0 for every i and x ∈ Γ yields

Gx
i (t) = 1− exp

[

−

ˆ t

0

1{Xx
s ∈Γ}(s)[rl−i−π(X x

s )]

w(X x
s )− l−i

ds

]

. (10)

Observe that Gx
i (t) is a CDF of stopping times because it is right-continuous with left limits and non-

decreasing in t. Moreover, its hazard rate depends only on the state X x
t , confirming that it is a Markov

strategy. The following Proposition shows that the strategy profile (G1,G2) = (Gx
1,G

x
2)x∈I indeed

constitutes the unique mixed-strategy MPE, which is analogous to the symmetric mixed strategy

equilibrium obtained by Steg (2015).

Proposition 2 Suppose that σ(·)> 0 and l1 = l2. Then (G1,G2) = (Gx
1,G

x
2)x∈I , where Γ = (a,θ∗)

and θ∗ = θ∗1 = θ∗2 constitutes a mixed-strategy MPE.

11



5 Concluding Remarks

It is well known that canonical war of attrition games under complete information admit equilibria

in pure, as well as in mixed strategies; e.g., Tirole (1988), Levin (2004), and others. We study such a

two-player model and show that if the players’ in-war payoffs are stochastic, and their exit payoffs

are heterogeneous, then the game admits only pure-strategy MPE. That is, any degree of Brownian

uncertainty in the players’ in-war payoffs and any amount of heterogeneity in their exit payoffs is

sufficient to destabilize the mixed-strategy MPE. The implication of this result is that it may be more

prudent to focus on pure-strategy MPE in this class of games. (This is in contrast to much of the

extant literature that has focused on mixed-strategy equilibria.)

The issue of equilibrium selection is interesting to explore further. First, whether non-Markov

strategies make it possible to construct mixed-strategy equilibria in the war of attrition remains an

open question. Second, analyzing the set of equilibria in the presence of asymmetric information

constitutes a plausible avenue for future research. For instance, firms in a declining industry may

have private information about their exit barriers (Fudenberg and Tirole, 1986; Takahashi, 2015).

Because a game with private types involves multiple types of players, the equilibrium selection

requires understanding games between asymmetric types. In particular, games with discrete types

are known to have mixed strategy equilibria (Levin, 2004). It will be fruitful to examine the impact

of stochasticity on the equilibrium selection in this case.
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A Mixed-strategy MPE when σ(·) = 0

In this section, we consider the case in which σ(·) = 0. This case was previously analyzed by

Hendricks et al. (1988) using a similar model. We present it here for completeness, and to highlight

that the non-existence of mixed-strategy MPE requires two ingredients: first, that the firms’ flow

payoffs while they remain in the market are stochastic, and second, that the firms have heterogeneous

outside options. To facilitate the analysis and following Hendricks et al. (1988), we will assume in

this section that µ(·)≤ 0; i.e., the market conditions deteriorate over time.

We shall construct a mixed-strategy MPE in which both firms remain in the market whenever

X x
t > θ∗1, and they randomize on the set Γ = (α,θ∗1). Lemma 2 holds, and because µ(·)≤ 0, the set

Γ is absorbing; i.e., if X x
t ∈ Γ, then X x

s ∈ Γ for all s > t with probability 1. Therefore, for every

x ∈ Γ, each firm i’s strategy Gx
i (t) must satisfy (10). If x /∈ Γ, then each firm i’s strategy may have

a discontinuity of size 1− pi at τΓ = inf{t ≥ 0 : X x
t ∈ Γ}, and solving (8) subject to the boundary

condition Gx
i (τΓ) = 1− pi where pi ∈ [0,1] yields that each firm i’s strategy must satisfy

Gx
i (t) = 1{Xx

t ∈Γ}(t)

{

1− pi exp

[

−

ˆ t

0

1{Xx
s ∈Γ}(s)[rl−i−π(X x

s )]

w(X x
s )− l−i

ds

]}

. (11)

The strategy Gx
i (·) stipulates that firm i exits with probability pi when X x

t first hits Γ, after which

Gx
i (t) is continuous in time. Observe that the strategy profile (Gx

1,G
x
2)x∈I

∣

∣

p1,p2
is Markov, and the

following proposition shows that for an appropriate choice of p1 and p2, it constitutes a mixed-

strategy MPE.

Proposition A.1 Suppose that σ(·) = 0. Then there exists κ(l2) > 0 such that (Gx
1,G

x
2)x∈I

∣

∣

p1,p2
is

a mixed-strategy MPE with 0 < p1 < p̄(l1, l2) for some function p̄(l1, l2) ∈ (0,1) and p2 = 1 as long

as l2 − l1 < κ(l2).

This continuum of equilibria parameterized by p1 are analogous to the continuum of mixed

strategy equilibria obtained by Hendricks et al. (1988). The proof of the proposition appears in

Appendix C. Recall from Proposition 1 that whenever X x
t ∈ (θ∗1,θ

∗
2], firm 1 strictly prefers to remain

in the market, whereas firm 2 strictly prefers to exit immediately. In order for firm 2 to wait until

X x
t enters the randomization set Γ, in equilibrium, firm 1 must exit at the moment such that X x

t = θ∗1

with sufficiently high probability. When X x
t ∈ Γo, it follows from Lemma (2) that both firms must

exit at the rate given by (9).
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B Mathematical Preliminaries

This section lays out the preliminary facts necessary to construct mathematical proofs in Appendix

C. We first define the following functions that will be used in Appendices B and C.

R(x) := Ex

[
ˆ ∞

0

π(Xt)e
−rtdt

]

, (12)

βi(x) :=
li −R(x)

φ(x)
, (13)

where φ : I → R satisfies the differential equation9 1
2
σ2(x)φ

′′
(x)+µ(x)φ

′
(x)− rφ(x) = 0 with the

properties of φ(·)> 0 and φ
′
(·)< 0. The function R(·) is well-defined because we assume that π(·)

satisfies the absolute integrability condition in Section 2.

Lemma B.1 The function βi(x) has a unique interior maximum at θ∗i ≤ xci where π(xci) = rli. Fur-

thermore, β
′

i(x)> 0 for x < θ∗i and β
′

i(x)< 0 for x > θ∗i .

Proof of Lemma B.1: To prove this lemma, it is enough to examine the behavior of the first deriva-

tive of βi(x) = [li −R(x)]/φ(x).

According to the theory of diffusive processes (Alvarez, 2001, p.319), the function R(·), given

in (12), can be expressed as

R(x) =
φ(x)

B

ˆ x

a

ψ(y)π(y)m
′
(y)dy+

ψ(x)

B

ˆ b

x

φ(y)π(y)m
′
(y)dy . (14)

Here, a and b are the two boundaries of the state space I , ψ(·) and φ(·) are the increasing and

decreasing fundamental solutions to the differential equation 1
2
σ2(x) f

′′
(x)+µ(x) f

′
(x)− r f (x) = 0,

B = [ψ
′
(x)φ(x)−ψ(x)φ

′
(x)]/S

′
(x) is the constant Wronskian determinant of ψ(·) and φ(·), S

′
(x) =

exp(−
´

2µ(x)/σ2(x)dx) is the density of the scale function of X , and m
′
(y) = 2/[σ2(y)S

′
(y)] is the

density of the speed measure of X .

By virtue of (14), differentiation of R(x) with respect to x leads to

R
′
(x)φ(x)−R(x)φ

′
(x) = S

′
(x)

ˆ b

x

φ(y)π(y)m
′
(y)dy . (15)

9This second-order linear ordinary differential equation (ODE) always has two linearly independent fundamental

solutions, one of which is monotonically decreasing (see Alvarez, 2001, p.319). Note that if f (·) solves this equation,

then so does c f (·) for any constant c ∈ R because it is a homogeneous equation. Hence, we can always find the one

which is always positive.
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Moreover, because li = Ex[
´ ∞

0
rlie

−rtdt], we can write

R(x)− li = Ex

[
ˆ ∞

0

[π(Xt)− rli]e
−rtdt

]

, (16)

which implies that we can treat the functional R(x)− li as the expected cumulative present value of

a flow payoff π(·)− rli. Combining (15) and (16), therefore, we obtain

β
′

i(x) =−
R

′
(x)φ(x)− [R(x)− li]φ

′
(x)

φ2(x)
=−

S
′
(x)

φ2(x)

ˆ b

x

φ(y)[π(y)− rli]m
′
(y)dy . (17)

Now, because π(·) is strictly increasing and π(xci) = rli, it must be the case that π(x) < rli for

x < xci and π(x)> rli for x > xci. Thus, β
′

i(x)< 0 for all x > xci. Note also that if x < K < xci, then

ˆ b

x

φ(y)[π(y)− rli]m
′
(y)dy =

ˆ K

x

φ(y)[π(y)− rli]m
′
(y)dy+

ˆ b

K

φ(y)[π(y)− rli]m
′
(y)dy

≤
[π(K)− rli]

r

(

φ
′
(K)

S
′
(K)

−
φ
′
(x)

S
′
(x)

)

+

ˆ b

K

φ(y)[π(y)− rli]m
′
(y)dy →−∞ ,

as x ↓ a because a is a natural boundary, which implies that limx↓a β
′

i(x) = ∞. Here we use φ
′
(x)< 0

and π(x) < π(K) < rli for x < K. It thus follows that β
′

i(θ
∗
i ) = 0 for some θ∗i ≤ xci, which implies

that
´ b

θ∗i
φ(y)[π(y)− rli]m

′
(y)dy = 0 because S

′
(x) > 0 and φ(x) > 0 in (17). Moreover, note that

´ b

x
φ(y)[π(y)− rli]m

′
(y)dy is increasing in x < xci because π(y) < rli for ∀y < xci, thus yielding

´ b

x
φ(y)[π(y)− rli]m

′
(y)dy < 0 if x < θ∗i ≤ xci and

´ b

x
φ(y)[π(y)− rli]m

′
(y)dy > 0 if θ∗i < x ≤ xci.

Combining this with (17), we obtain the unique existence of θ∗i such that β
′

i(x) > 0 for ∀x < θ∗i and

β
′

i(x)< 0 for ∀x > θ∗i , which completes the proof.

Lemma B.2 A mixed-strategy Gi is a best response to a mixed-strategy G−i if and only if, for each

x ∈ I ,

Ex[Si(τ̂;G−i)] = sup
τ
Ex[Si(τ;G−i)] , (18)

whenever X x
τ̂ ∈ supp(Gi) almost surely.

Lemma B.2 implies that each pure-strategy, which is involved in a mixed-strategy best response,

must itself be a best response.

Proof of Lemma B.2: This lemma follows from Lemma 3.1. in Steg (2015). Define the right-

continuous inverse of Gx
i as

τ
G,x
i (z) := inf{s ≥ 0 : Gx

i (s)> z} ,∀z ∈ [0,1] , (19)
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which satisfies τ
G,x
i (z) ≤ t if and only if Gx

i (t) ≥ z. Then we can obtain the change-of-variable

formula between Gx
i and τ

G,x
i (z) as the following:

Ex

[
ˆ ∞

0

Si(t;G−i)dGx
i (t)

]

= Ex

[
ˆ 1

0

Si(τ
G,x
i (z);G−i)dz

]

.

Using this change-of-variable, we have

Vi(x;Gi,G−i) = Ex

[
ˆ ∞

0

Si(t;G−i)dGx
i (t)

]

= Ex

[
ˆ 1

0

Si(τ
G,x
i (z);G−i)dz

]

=

ˆ 1

0

Ex[Si(τ
G,x
i (z);G j)]dz

≤

ˆ 1

0

sup
τ
Ex[Si(τ;G−i)]dz = sup

τ
Ex[Si(τ;G−i)] , (20)

where the first equality follows from (5) and the first inequality follows because τ
G,x
i (z) is a stopping

time with respect to the state X for each z. Note that the relation holds for any pair of mixed strategies

(Gi,G−i).

Now, suppose that Ex[Sx
i (τ̂;G−i)] = supτE

x[Sx
i (τ;G−i)] whenever X x

τ̂ ∈ supp(Gi) almost surely.

Observe that X x

τ
G,x
i (z)

is in supp(Gi) for any z; this is because t > τ
G,x
i (z) implies that Gx

i (t) > z =

Gx
i (τ

G,x
i (z)) if Gx

i (·) has no jump at τ
G,x
i (z), or ∆Gx

i (τ
G,x
i (z))> 0 if Gx

i (·) has a jump at τ
G,x
i (z). Hence,

Ex[Sx
i (τ

G,x
i (z);G−i)] = supτE

x[Sx
i (τ;G−i)] for any z ∈ [0,1] by our assumption, which implies that,

for any mixed-strategy G̃i,

Vi(x;Gi,G−i) = Ex

[
ˆ ∞

0

Si(t;G−i)dGx
i (t)

]

= Ex

[
ˆ 1

0

Si(τ
G,x
i (z);G−i)dz

]

=

ˆ 1

0

Ex[Si(τ
G,x
i (z);G−i)]dz =

ˆ 1

0

sup
τ
Ex[Si(τ;G−i)]dz

= sup
τ
Ex[Si(τ;G−i)]≥Vi(x; G̃i,G−i) ,

where the last inequality follows from (20). Thus, Gi is a best response to G−i. Conversely, if Gi is

a best response to G−i and X x
τ̂ ∈ supp(Gi), then we must have Ex[Si(τ̂;G−i)] = supτE

x[Si(τ;G−i)];

otherwise firm i could earn higher payoff by exiting at τ such that X x
τ 6∈ supp(Gi), which is a contra-

diction. This completes the proof.
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C Proofs

Proof of Lemma 1: The proof of this lemma is available in Alvarez (2001), but here, we provide a

sketch of the proof based on the verification theorem (Oksendal, 2003, Theorem 10.4.1). To that end,

we will use the optimality conditions, which are known as “value matching” and “smooth pasting”

conditions (Samuelson, 1965; McKean, 1965; Merton, 1973).

First, the state space I must be the union of C := {x ∈ I : V ∗
i (x) > li} and Γ := {x ∈ I :

V ∗
i (x) = li}, which are mutually exclusive: This is because (1) X is a stationary process and the

time horizon is infinite, and (2) the value function V ∗
i (·) from an optimal stopping policy must be

always no less than the reward li from stopping immediately. Hence, the problem to find an optimal

stopping policy can be reduced to identify C or Γ.

Next, we find the differential equation that V ∗
i (x) must satisfy if x ∈ C. Note that the optimal

value function V ∗
i (x) is the maximum of the reward from waiting an instant and the reward from

stopping immediately. For any x ∈C, therefore, the optimal stopping policy is to wait an instant dt,

and hence, the optimal value function must satisfy the following equation:

V ∗
i (x) = π(x)dt +(1− rdt)Ex[V ∗

i (x)+dV ∗
i (Xt)] . (21)

Then applying Ito formula to V ∗
i (Xt) and using Ex[dBt] = 0 yields

Ex[dV ∗
i (Xt)] = [µ(x)V ∗′

i (x)+
1

2
σ2(x)V ∗′′

i (x)]dt . (22)

By plugging (22) into (21) and ignoring the term smaller than dt, we have

V ∗
i (x) = π(x)dt +V ∗

i (x)+ [−rV ∗
i (x)+µ(x)V ∗′

i (x)+
1

2
σ2(x)V ∗′′

i (x)]dt ,

from which we obtain the following second-order linear differential equation:

1

2
σ2(x)V ∗′′

i (x)+µ(x)V ∗′
i (x)− rV ∗

i (x) =−π(x) . (23)

Thus, V ∗
i (·) can be obtained by solving the differential equation (23). In fact, it can be seen from a

series of algebra with the relation (14) that the function R(·)+Aφ(·) with some constant A ∈ R is a

solution to (23), and hence, we can guess V ∗
i (x) = R(x)+Aφ(x) with some constant A.

Intuitively, firm i must find it optimal to exit and receive his outside option li as soon as the state

X hits some lower threshold θi. Hence, assume at the moment that the optimal stopping policy is

given as τ∗ := inf{t ≥ 0 : X x
t ≤ θi}, which implies that θi is the boundary point of the region C.

Now, we state the value matching condition and the smooth pasting condition, which results in two
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boundary conditions to the boundary value problem (23) with the free boundary θi:

V ∗
i (θi) = R(θi)+Aφ(θi) = li (24)

V ∗′
i (θi) = R′(θi)+Aφ′(θi) = 0 . (25)

The value matching condition (24) and the smooth pasting condition (25) are the conditions that

V ∗
i (·) must satisfy at the boundary θi of C. We can first obtain A = [li −R(θi)]/φ(θi) = βi(θi) from

(24). Then the condition (25) is equivalent to

0 = R
′
(θi)+

li −R(θi)

φ(θi)
φ
′
(θi)

=
R

′
(θi)φ(θi)+ [li −R(θi)]φ

′
(θi)

φ(θi)
=−φ(θi)β

′

i(θi) .

Because φ(·)> 0, it can be seen from Lemma B.1 that this condition is satisfied if and only if θi = θ∗i ,

which implies that A = βi(θ
∗
i ).

Lastly, it can be easily verified that R(x)+βi(θ
∗
i )φ(x) ≥ li for ∀x ≥ θ∗i and π(x) < rli for ∀x ≤

θ∗i < xci. By the verification theorem (Oksendal, 2003, Theorem 10.4.1), therefore, the proposed

value function R(·)+βi(θ
∗
i )φ(·) is, in fact, the optimal value function V ∗

i (·), as desired.

Proof of Proposition 1: (i) We first prove that (H(∞),H(τ∗2)) is an MPE. Because it is shown in

Lemma 1 that G2 = H(τ∗2), where τ∗2 = inf{t ≥ 0 : X x
t ≤ θ∗2} is given in (7), is firm 2’s best response

to G1 = H(∞), it only remains to prove that G1 = H(∞) is also firm 1’s best response to G2 = H(τ∗2).

Let H(τ1) be firm 1’s best response to H(τ∗2) and V ∗
W 1(x) := supτV1(x;H(τ),H(τ∗2))=V1(x;H(τ1),H(τ∗2))

be the corresponding payoff to firm 1. We denote the continuation region associated with τ1 by C1,

i.e., τ1 = inf{t ≥ 0 : X x
t 66∈C1}, and its complement by Γ1 = I \C1.

First, we show that Γ1 ∩ (θ∗2,∞) = /0. Toward a contradiction, suppose this is not the case. Then

pick some x ∈ Γ1 ∩ (θ∗2,∞) and observe that V ∗
W 1(x) = l1 due to x ∈ Γ1. However,

V ∗
W1(x)≥V1(x;H(∞),H(τ∗2)) = Ex

[
ˆ τ∗2

0

π(Xt)e
−rtdt +w(X x

τ∗2
)e−rτ∗2

]

= R(x)+

[

w(θ∗2)−R(θ∗2)

φ(θ∗2)

]

φ(x)

> R(x)+

[

l1 −R(θ∗2)

φ(θ∗2)

]

φ(x)

= R(x)+β1(θ
∗
2)φ(x)

> R(x)+β1(x)φ(x) = l1 ,

where the first inequality follows because w(X x
τ∗2
) = w(θ∗2)> l1 and Ex[e−rτ∗2] = φ(x)/φ(θ∗2) for x >
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θ∗2, and the second inequality holds because x > θ∗2 > θ∗1 and β
′

1(x) < 0 for x > θ∗1 by Lemma B.1.

This establishes the contradiction.

Second, we also prove that Γ1 ∩ (−∞,θ∗2] = /0. Towards a contradiction, suppose this is not the

case. Then we can pick some x ∈ Γ1 ∩ (−∞,θ∗2] such that V ∗
W 1(x) = m1(x) because τ∗2 = inf{t ≥ 0 :

X x
t ≤ θ∗2}. However,

V ∗
W 1(x)≥V1(x;H(∞),H(τ∗2)) = Ex

[
ˆ τ∗2

0

π(Xt)e
−rtdt +w(X x

τ∗2
)e−rτ∗2

]

= w(x)> m1(x) ,

where the second equality uses that τ∗2 = 0 when X0 = x ≤ θ∗2. This establishes the contradiction.

Hence, we can conclude that Γ1 = /0 and C1 = I , which implies that τ1 = ∞.

(ii) Next, we prove the conditions under which (H(τ∗1),H(∞)) is an MPE. Consider the following

condition:

V2(x;H(τ∗1),H(∞)) = Ex

[
ˆ τ∗1

0

π(Xt)e
−rtdt +w(X x

τ∗1
)e−rτ∗1

]

> l2 for all x ∈ (θ∗1,θ
∗
2] . (26)

First, we prove that (26) is a sufficient condition for (G1,G2) = (H(τ∗1),H(∞)) to be an MPE. Let

H(τ2) be firm 2’s best response to H(τ∗1), i.e., V ∗
W 2(x) := supτV2(x;H(τ∗1),H(τ))=V2(x;H(τ∗1),H(τ2))

be the corresponding payoff. We denote the continuation region associated with τ2 by C2, i.e.,

τ2 = inf{t ≥ 0 : X x
t 66∈C2}, and its complement by Γ2 = I \C2.

We now claim that Γ2 ∩ (θ∗2,∞) = /0. Towards a contradiction, suppose not. Then we can pick

some x ∈ Γ2 ∩ (θ∗2,∞), which implies that V ∗
W2(x) = l2. However, because τ∗1 > τ∗2 when X0 = x,

Lemma 1 implies that firm 2 could obtain a strictly higher payoff by exiting at τ∗2 > 0 instead, i.e.,

V ∗
W2(x)≥V2(x;H(τ∗1),H(τ∗2)) = Ex

[
ˆ τ∗2

0

π(Xt)e
−rtdt + l2e−rτ∗2

]

> l2 ,

which is a contradiction. We next claim that Γ2∩(θ∗1,θ
∗
2] = /0. Towards a contradiction, suppose not.

Then we can pick x ∈ Γ2 ∩ (θ∗1,θ
∗
2], which implies that V ∗

W2(x) = l2. However, we have

V ∗
W 2(x)≥V2(x;H(τ∗1),H(∞)) = Ex

[
ˆ τ∗1

0

π(Xt)e
−rtdt +w(X x

τ∗1
)e−rτ∗1

]

> l2 ,

where the last inequality follows from (26). This establishes the contradiction. We further claim

that Γ2 ∩ (−∞,θ∗1] = /0. If not, then there exists x ∈ Γ2∩ (−∞,θ∗1], which implies that both firms exit

simultaneously when X
y
t = x, and hence, V ∗

W 2(x) = m2(x). Because τ∗1 = 0 when X0 = x ≤ θ∗1, we
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have

V ∗
W 2(x)≥V2(x;H(τ∗1),H(∞)) = Ex

[
ˆ τ∗1

0

π(Xt)e
−rtdt +w(X x

τ∗1
)e−rτ∗1

]

= w(x)> m2(x) ,

which is a contradiction. Combining the three claims above, therefore, we conclude that Γ2 = /0,

which implies that C2 = I , and hence, τ2 = ∞.

Second, define w := inf{w(x) : x ∈I } and βW (θ) := [w−R(θ)]/φ(θ). Note that βW (θ)> β2(θ)

for ∀θ ∈ I because w > l2. Also, observe that for ∀θ < θ∗2, we have

β
′

W (θ) =
{

−R
′
(θ)φ(θ)−φ

′
(θ)[w−R(θ)]

}

/φ2(θ)

>
{

−R
′
(θ)φ(θ)−φ

′
(θ)[l2−R(θ)]

}

/φ2(θ) = β
′

2(θ)> 0

where the first inequality follows because φ
′
(θ)< 0, and the last inequality holds because β

′

2(θ)> 0

for θ < θ∗2 from Lemma B.1. Next, pick κθ > 0 such that

βW (θ∗2 −κθ) = β2(θ
∗
2) , (27)

where β2(·) is defined in (13). If such κθ exists, it must be unique because β
′

W (θ)> 0 for θ < θ∗2. If

there does not exist κθ which satisfies 27, then we let κθ = ∞.

Finally, we show that (26) is satisfied i f θ∗2 − θ∗1 < κθ, which will complete the proof; this

is because we can always find the unique κl > 0 for any given κθ > 0 such that θ∗2 − θ∗1 < κθ if

and only if l2 − l1 < κl from the fact that θ∗i given in (7) strictly increases in li. Suppose now that

θ∗2−θ∗1 < κθ, i.e., θ∗1 > θ∗2−κθ. Note that β
′

W (θ)> 0 for ∀θ < θ∗2, and recall that θ∗1 < θ∗2. Therefore,

βW (θ∗1)> βW (θ∗2 −κθ) = β2(θ
∗
2) by (27). Thus, for any x ∈ (θ∗1,θ

∗
2],

Ex

[
ˆ τ∗1

0

π(X x
t )e

−rtdt +w(θ∗1)e
−rτ∗1

]

≥ Ex

[
ˆ τ∗1

0

π(X x
t )e

−rtdt +we−rτ∗1

]

= R(x)+φ(x)βW (θ∗1)

> R(x)+φ(x)β2(θ
∗
2)

≥ R(x)+φ(x)β2(x) = l2 ,

where the first inequality holds from the definition of w, the first equality holds because Ex[e−rτ∗1] =

φ(x)/φ(θ∗1) for x > θ∗1, the second inequality follows because βW (θ∗1) > β2(θ
∗
2), the last inequality

holds because β2(·) achieves its maximum at θ∗2 by Lemma B.1, and the last equality follows by the

definition of β2(·). Hence, (26) is satisfied, which establishes the desired result for κθ > 0.

Proof of Lemma 2(a): Suppose that (G1,G2) is a mixed-strategy MPE. First, let us define Di :=
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{x ∈ I : π(x) > rli}. We will show that Di is a subset of the continuation region for firm i, i.e.,

supp(Gi)∩Di = /0. Towards a contradiction, suppose there exists some x ∈ supp(Gi)∩Di. Because

π(·) is continuous, for sufficiently small ε > 0, π(y)> rli is satisfied for all y ∈ (x− ε,x+ ε). Then

using
´ t

0
−rlie

−rsds = li(e
−rt −1), we have

Li(t) = li +

ˆ t

0

[π(X x
s )− rli]e

−rsds > li , ∀t ∈ (0,τε] , (28)

where τε := inf{t ≥ 0 : X x
t 6∈ (x − ε,x+ ε)}, and the inequality follows because πi(X

x
s ) > rli for

∀s < τε. Note that

Ex[Si(τε;G j)] = Ex

[
ˆ τε

0

Wi(t)dG j(t)+Mi(τε)∆G j(τε)+Li(τε)[1−G j(τε)]

]

> Ex

[
ˆ τε

0

Li(t)dG j(t)+Li(τε)∆G j(τε)+Li(τε)[1−G j(τε)]

]

> Ex

[
ˆ τε

0

lidG j(t)+ li∆G j(τε)+ li[1−G j(τε)]

]

= li = Ex[Si(0;G j)] ,

where the first inequality follows because Wi(t)> Mi(t)> Li(t), the second inequality follows from

(28). This contradicts the supposition that x ∈ supp(Gi) because firm i can obtain a strictly greater

expected payoff by adopting the strategy τε. Therefore, it must be the case that supp(Gi)∩Di = /0.

Next, we prove that the interiors of supp(G1) and supp(G2) must coincide, which establishes

the statement of this lemma. Towards a contradiction, suppose that there exists an open interval

E ⊆ supp(Gi) but E * supp(G j). Consider an exit strategy τE := inf{t > 0 : X x
t 6∈ E} for firm i,

where x ∈ E. Then τE > 0 a.s. because E is an open set. Fix some τ ∈ (0,τE), and note that Lemma

B.2 implies that Ex[Si(τ;G j)] = Ex[Si(0;G j)]. Moreover, because x ∈ E * supp(G j), it must be the

case that Gx
j(τ) = 0.

Recall that supp(Gi)∩Di = /0, so E ∩Di = /0, which implies that π(X x
s ) < rli for all s ∈ [0,τ)

because E is an open set and π(·) strictly increases. Hence, we have

Ex[Si(τ;G j)] = Ex[Li(τ)] = li +Ex

[
ˆ τ

0

[π(Xt)− rli]e
−rtdt

]

< li = Ex[Si(0;G j)] ,

where the first equality follows because Gx
j(τ) = 0, and hence, Gx

j(t) = ∆Gx
j(t) = 0 for all t ≤ τ, the

second equality follows from the definition of Li(·), and the inequality follows from π(X x
s )< rli for

all s ∈ [0,τ). Therefore, firm i can obtain a strictly greater payoff by exiting immediately, which

contradicts the supposition that E is in the support of Gi. This completes the proof.

Proof of Lemma 2(b): Suppose that (G1,G2) is a mixed-strategy MPE, and let Γo be the closure of

the common interior of supp(G1) and supp(G2). Note that Γo comprises of all the (open) component
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intervals of supp(G1) and supp(G2); it thus excludes all the point components, if any, of either

supp(G1) or supp(G2). (A point component of supp(Gi) is a singleton subset {c} of supp(Gi) that

is disconnected from the rest of supp(Gi).) Γo is simply augmented by the boundary points of all

the component intervals of Γo.

Towards a contradiction, pick some x ∈ Γo, some i ∈ {1,2}, j ∈ {1,2}\{i}, and suppose that

Gx
j(·) has a jump of size qτ > 0 at some τ such that P(X x

τ ∈ Γo) > 0. Defining τ′ := min{τ,τE}

where τE := inf{t ≥ 0 : Xt 6∈ Γo} is the exit time from Γo, this supposition implies that Gx
j(·) has

a jump of size qτ′ > 0 at time τ′ such that P(X x
τ′ ∈ Γo) = 1. (Here we allow for the possibility

that Gx
j(·) has an additional jump at time τE as well.) It must then follow from Lemma B.2 that

Ex[Si(τ
′;G j)]≥ Ex[Si(τ

′+;G j)].

Now, we compare Ex[Si(τ
′;G j)] and Ex[Si(τ

′+;G j)]. First, observe that

Ex[Si(τ
′;G j)] = Ex

[
ˆ τ′−

0

Wi(t)dGx
j(t)+Mi(τ

′)∆Gx
j(τ

′)+Li(τ
′)[1−Gx

j(τ
′)]

]

,

where ∆Gx
j(τ

′) = [1−Gx
j(τ

′−)]qτ′ because we assume Gx
j(·) has a jump at τ′. On the other hand, we

can similarly express Ex[Si(τ
′+;G j)] as

Ex

[
ˆ τ′

0

Wi(t)dGx
j(t)+Li(τ

′)[1−Gx
j(τ

′)]

]

= Ex

[
ˆ τ′−

0

Wi(t)dGx
j(t)+Wi(τ

′)∆Gx
j(τ

′)+Li(τ
′)[1−Gx

j(τ
′)]

]

,

where the equality follows by breaking down the integral over [0,τ′−] and (τ′−,τ′]. Then because

Wi(·)>Mi(·) and Ex[∆Gx
j(τ

′)] =Ex[[1−Gx
j(τ

′−)]qτ′]> 0, we concludeEx[Si(τ
′;G j)]<Ex[Si(τ

′+;G j)],

which is a contradiction. Hence, if x ∈ Γo, then Gx
j(t) must be continuous as long as Xt ∈ Γo.

Proof of Lemma 3(a): Suppose that G := (Gi,G j) is a mixed-strategy MPE. First, we claim that

there is no point component c ∈ I of supp(Gi) such that c /∈ supp(G j). Note that this claim com-

bined with Lemma 2(a) establishes that supp(Gi) = supp(G j), thus yielding supp(Gi) = supp(G j).

To prove this claim, observe first that there is no singleton set {c′} that is a point component of

both supp(Gi) and supp(G j). This is because exit simultaneously with the opponent yields lower

expected payoff compared to exit in an infinitesimal time. Now, consider a component interval

(d,θ) of the common interior Γo for some d ∈ [α,θ) and θ < ∞, and suppose that there is a point

component c ∈ I of supp(Gi) such that c /∈ supp(G j). We further suppose that the interval (θ,c)

does not contain any other point component of supp(Gi) or supp(G j).

It follows from the proof of Lemma 2(a) that c 6∈ Di where Di := {x : π(x)> rli}, which implies

that (θ,c) does not intersect with Di because π(·) strictly increases. Also, because our assumption

c /∈ supp(G j) and Lemma 2(b) imply that Gc
j(0) = Gθ

j(0) = 0, we obtain Vi(c;G) = Vi(θ;G) = li;

otherwise c and θ do not belong to supp(Gi) by definition of a mixed-strategy equilibrium. Then
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because π(x) < rli for ∀x ∈ (θ,c), it is straightforward to verify that Vi(x;G) < li for ∀x ∈ (θ,c)

(Oksendal, 2003). However, firm i can always achieve a higher payoff li from an immediate exit at

any point x ∈ (θ,c), which contradicts the assumption that G is an equilibrium. Hence, such a point

component c of supp(Gi) cannot exist above a component interval (d,θ) of Γo. Lastly, because the

exactly same procedure can be used to prove that there is no such point component c of supp(Gi)

below a component interval (θ,d) of Γo, we can conclude that there is no point component c ∈ I

of supp(Gi) such that c /∈ supp(G j). This has proved that supp(Gi) = supp(G j) = Γ and Γ = Γo.

Finally, we prove the statement of this lemma. Suppose that Gx
i is discontinuous in time. Because

we have proved above that no point component of Γ can exist outside (disconnected from) Γ in

equilibrium, discontinuities in Gx
i (·) cannot take place when Xt 6∈ Γ, thus implying a discontinuity

can only happen within Γ. Also, by definition of the Markov strategy, a discontinuity can only

happen at τE = inf{t ≥ 0 : Xt ∈ E} for some E ⊂ Γ irrespective of the initial point x. If E 6= /0,

because X is an irreducible Markov chain if σ(·) > 0, we have τE < ∞ with positive probability

irrespective of the initial point x. However, Lemma 2(b) stipulates that such a set E cannot intersect

Γo if the initial point x is within Γo. Because Γ = Γo, and because a Markov strategy does not depend

on the initial value of the state variable, these two statements contradict each other unless E = /0.

Therefore, Gx
i must be continuous in time irrespective of x.

Proof of Lemma 3(b): Suppose that (G1,G2) is a mixed-strategy MPE. We have shown in Lemma

3(a) that if σ(·)> 0, then Gx
1(·) and Gx

2(·) are continuous for all x ∈I . Let Γ := supp(G1)=supp(G2)

and define C := I \Γ = (a,b)\Γ. Recall from the proof of Lemma 2(a) that {x : π(x) > rli} =

(xci,b)⊂C for each i ∈ {1,2}.

First, we show that Γ is of the form (a,θ). Towards a contradiction, suppose that there exists

an interval (c,d) such that (c,d) ⊆ C and c,d ∈ Γ. This implies that (c,d) is disconnected from

{x : π(x)> rli}= (xci,b) for each i. Pick x ∈ (c,d) and define τ(c,d) := inf{t ≥ 0 : X x
t /∈ (c,d)}.

It follows from Lemma B.2 that Ex[Si(τ(c,d);G j)] = supτE
x[Si(τ;G j)]. Observe that

Ex[Si(τ(c,d);G j)] = Ex[Li(τ(c,d))] = li +Ex

[
ˆ τ(c,d)

0

[π(Xt)− rli]e
−rtdt

]

< li = Ex[Si(0;G j)] ,

where the first equality follows from Gx
j(τ(c,d)) = 0, the second equality follows from the definition

of Li(·), and the inequality follows because π(X x
s ) < rli for all s ≤ τ(c,d). This is a contradiction,

which implies that Γ = (a,θ) for some θ ≤ xci ∧ xc j.

Second, pick some x > θ, and define the strategy τ := inf{t ≥ 0 : X x
t ≤ θ}. We show that it must

be the case θ = θ∗i for each i where θ∗i is given in Lemma 1.

Towards a contradiction, suppose that θ < θ∗2 and recall that θ∗1 ≤ θ∗2 because l1 ≥ l2 by conven-

tion. Let τ∗2 = inf{t ≥ 0 : X x
t ≤ θ∗2} and note that G1(τ

∗
2) ≤ G1(τ) = 0 because θ < θ∗2. Therefore,
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we have Ex[S2(τ;G1)] = Ex[L2(τ)]< Ex[L2(τ
∗
2)] = Ex[S2(τ

∗
2;G1)] where the equalities follow from

G1(τ
∗
2) = G1(τ) = 0, and the inequality follows from Lemma 1. However, this contradicts that

Ex[S2(τ;G1)] = supτ̃E
x[S2(τ̃;G1)].

On the other hand, suppose that θ > θ∗2, which implies that τ ≤ τ∗2. Recall that w(x) is defined

as the expected net present value of monopoly profits so that w(x) = Ex[
´ ∞

0
πM(Xt)e

−rtdt] for some

πM(·)> π(·). It is implicitly assumed that πM(·) satisfies the absolute integrability assumption. We

first note that W2(·) defined in (2) is a supermartingale:

Ex

[

W2(t)|Fs

]

= Ex

[
ˆ t

0

π(Xv)e
−rvdv+ e−rtw(Xt) | Fs

]

=

ˆ s

0

π(Xv)e
−rvdv+Ex

[
ˆ t

s

π(Xv)e
−rvdv+Ex

[
ˆ ∞

t

πM(Xv)e
−rvdv | Ft

]

| Fs

]

<

ˆ s

0

π(Xv)e
−rvdv+Ex

[
ˆ ∞

s

πM(Xv)e
−rvdv | Fs

]

=W2(s) ,

for any s < t. Here, we use the inequality πM(·)> π(·) and the tower rule of the conditional expecta-

tion for the inequality and we employ Markov property of X for the last equality. We next establish

that

Ex

[
ˆ τ∗2

τ
W2(t)dG1(t) | Fτ

]

=

ˆ 1

0

Ex

[

W2(τ
G,x
1 (z))1[τ,τ∗2](τ

G,x
1 (z))|Fτ

]

dz

≥

ˆ 1

0

Ex

[

Ex

[

W2(τ
∗
2)|Fτ

G,x
1 (z)

]

1[τ,τ∗2]
(τG,x

1 (z))|Fτ

]

dz

=

ˆ 1

0

Ex

[

Ex

[

W2(τ
∗
2)1[τ,τ∗2](τ

G,x
1 (z))|F

τ
G,x
1 (z)

]

|Fτ

]

dz

= Ex

[

W2(τ
∗
2)

ˆ 1

0

1[τ,τ∗2]
(τ

G,x
1 (z))dz|Fτ

]

= Ex

[

W2(τ
∗
2)[G1(τ

∗
2)−G1(τ)]|Fτ

]

> Ex

[

L2(τ
∗
2)G1(τ

∗
2)|Fτ

]

, (29)

where the first equality holds from the change-of-variable from G1(t) to τ
G,x
1 (z) given in (19), the in-

equality holds because W2(·) is a supermartingale, the second equality holds because 1[τ,τ∗2]
(τG,x

1 (z))

is measurable with respect to the filtration F
τ

G,x
1 (z)

, the third equality follows from the tower rule of

the conditional expectation because Fτ ⊆F
τ

G,x
1 (z)

, the fourth equality follows from
´ 1

0
1[τ,τ∗2]

(τ
G,x
1 (z))dz=

G1(τ
∗
2)−G1(τ) by the definition of τ

G,x
1 (z), and the last inequality follows because W2(·) > L2(·)

and G1(τ) = 0 (recall that supp(G1) = (a,θ)).

Using (29), therefore, we obtain
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Ex[S2(τ
∗
2;G1)]−Ex[S2(τ;G1)] = Ex

[

Ex

[
ˆ τ∗2

τ
W2(t)dG1(t)+L2(τ

∗
2)[1−G1(τ

∗
2)]−L2(τ) | Fτ

]]

> Ex

[

Ex

[

L2(τ
∗
2)G1(τ

∗
2)+L2(τ

∗
2)[1−G1(τ

∗
2)]−L2(τ) | Fτ

]]

= Ex

[

Ex

[

L2(τ
∗
2)−L2(τ) | Fτ

]]

= Ex

[

L2(τ
∗
2)−L2(τ)

]

> 0 ,

where the last equality follows from the tower rule of the conditional expectation and the last in-

equality follows from Lemma 1.

Therefore, it must be the case that θ = θ∗2. By a symmetric argument, one can show that it must

be the case that θ = θ∗1.

Proof of Theorem 1: By noting that θ∗1 = θ∗2 if and only if l1 = l2, it is straightforward to see from

Lemma 3(b) that if l1 6= l2, then the game does not admit any mixed-strategy MPE, which completes

the proof.

Proof of Proposition 2: To prove this proposition, we need to establish the following lemma:

Lemma C.1 Define the process

Ji(t) := sup
τ≥t

Ex[Li(τ)|Ft] =

ˆ t

0

π(X x
s )e

−rsds+V ∗
i (X

x
t )e

−rt , (30)

where V ∗
i (·) is defined in (6). Then we have the following results:

(a) Ji(t)≥ Li(t) for all t ≥ 0, and the equality holds if t ≥ τ∗i where τ∗i is given in (7). Moreover,

Ji(·) can be expressed as Ji(t) = Ni(t)−D
θ∗i
i (t) where Ni(·) is a uniformly integrable martingale,

and D
y
i (·) is a non-decreasing and predictable process given by

dD
y
i (t) := 1{Xx

t ≤y}[rli −π(X x
t )]e

−rtdt with D
y
i (0) = 0 . (31)

(b) For any stopping times τA,τB with τA ≤ τB and a mixed-strategy G−i,

Ex

[
ˆ τB

τA

Ni(t)dGx
−i(t)|FτA

]

=−Ex

[

Ni(τB)[1−Gx
−i(τB)]|FτA

]

+Ni(τA)[1−Gx
−i(τA)] , (32)

where Ft is the natural filtration generated by the state X (Oksendal, 2003).

Proof of Lemma C.1(a): Comparing (3) and (30), it can be clearly seen that Ji(t) ≥ Li(t) for

all t ≥ 0. Also, Ji(t) = Li(t) if t ≥ τ∗i by the definition of V ∗
i (·). According to the theory of optimal

stopping, it is well-known that the process Ji(·) is the Snell envelope of the process Li(·) and it

is of Class D (Steg, 2015). Hence, we can apply Doob-Meyer decomposition theorem to Ji(·),
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which implies that Ji(·) can be decomposed into a uniformly integrable martingale and a unique,

non decreasing, predictable process. Because Ji(t) (more precisely, V ∗
i (X

x
t )) is a twice differentiable

function of X , the exact form of Ni(·) and D
θ∗i
i (·) can be obtained by applying Ito formula to Ji(·).

Proof of Lemma C.1(b): For a mixed-strategy G−i, consider the right-continuous inverse τ
G,x
−i (z)

given in (19). Observe that

Ex

[
ˆ τB

τA

Ni(t)dGx
−i(t)|FτA

]

= Ex

[
ˆ 1

0

Ni(τ
G,x
−i (z))1[τA,τB](τ

G,x
−i (z))dz|FτA

]

(33)

=

ˆ 1

0

Ex

[

Ni(τ
G,x
−i (z))1[τA,τB](τ

G,x
−i (z))|FτA

]

dz

=

ˆ 1

0

Ex

[

Ex

[

Ni(τB)|Fτ
G,x
−i (z)

]

1[τA,τB](τ
G,x
−i (z))|FτA

]

dz (34)

=

ˆ 1

0

Ex

[

Ex

[

Ni(τB)1[τA,τB](τ
G,x
−i (z))|Fτ

G,x
−i (z)

]

|FτA

]

dz (35)

=

ˆ 1

0

Ex

[

Ni(τB)1[τA,τB](τ
G,x
−i (z))|FτA

]

dz (36)

= Ex

[

Ni(τB)

ˆ 1

0

1[τA,τB](τ
G,x
−i (z))dz|FτA

]

= Ex

[

Ni(τB)[G−i(τB)−G−i(τA)]|FτA

]

(37)

= Ex

[

−Ni(τB)[1−G−i(τB)]+Ni(τB)[1−G−i(τA)]|FτA

]

=−Ex

[

Ni(τB)[1−G−i(τB)]|FτA

]

+Ni(τA)[1−G−i(τA)] , (38)

where (33) holds from the change-of-variable from G−i(t) to τ
G,x
−i (z), (34) follows from the fact

Ex

[

Ni(τB)|Fτ
G,x
−i (z)

]

= Ni(τ
G,x
−i (z)) because Ni(·) is a martingale, (35) holds because 1[τA,τB](τ

G,x
−i (z))

is measurable with respect to the filtration F
τ

G,x
−i (z)

, (36) follows from the smoothing law of the

conditional expectation because FτA
⊆ F

τ
G,x
−i (z)

, (37) follows from
´ 1

0
1[τA,τB](τ

G,x
−i (z))dz = G−i(τB)−

G−i(τA) by the definition of τ
G,x
−i (z), and (38) follows because Ex

[

Ni(τB)|FτA

]

= Ni(τA) (Ni(·) is a

martingale) and G−i(τA) is measurable with respect to FτA
. Thus, the desired relation is established.

Because l1 = l2, we must have θ∗ := θ∗1 = θ∗2. Define τ∗ := inf{t ≥ 0 : X x
t ≤ θ∗} and it is enough

to show that Gi is a best response to G j by symmetry.

To that end, we will use Lemma B.2. More precisely, since it can be seen from (10) that the
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closure of the support of Gx
i is (−∞,θ∗], we only need to prove the following two relations:

Ex[Si(u1;G j)] = Ex[Si(u2;G j)] for any u,v ≥ τ∗ , (39)

Ex[Si(τ;G j)]< Ex[Si(τ
∗;G j)] for any τ < τ∗ . (40)

To show (39), choose any stopping times u,v > τ∗ with v > u, and observe that

Ex[Si(v;G j)]−Ex[Si(u;G j)] = Ex

[

v
ˆ

u

Fi(s)dGx
j(s)+Li(v)[1−Gx

j(v)]−Li(u)[1−Gx
j(u)]

]

. (41)

Then it is enough to prove that the right side of (41) is equal to 0. By differentiating (10) with respect

to time, we obtain

dGx
j(s) = [1−Gx

j(s)]
dDθ∗

i (s)

Fi(s)−Li(s)
, (42)

where Dθ∗

i (·) is defined in (31). By applying integration by parts to (42), we have

v
ˆ

u

[Fi(s)−Li(s)]dGx
j(s) =−

v
ˆ

u

[1−Gx
j(s)]dDθ∗

i (s)

=−

v
ˆ

u

Dθ∗

i (s)dGx
j(s)−Dθ∗

i (v)[1−Gx
j(v)]+Dθ∗

i (u)[1−Gx
j(u)] .

Then it follows from (41) that

Si(v;G j)−Si(u;G j) =

v
ˆ

u

Fi(s)dGx
j(s)+Li(v)[1−Gx

j(v)]−Li(u)[1−Gx
j(u)] .

=

ˆ v

u

[Dθ∗

i (s)+Li(s)]dGx
j(s)+ [1−Gx

j(v)][D
θ∗

i (v)+Li(v)]

− [1−Gx
j(u)][D

θ∗

i (u)+Li(u)] .

By Lemma C.1(b), we now obtain

Ex[Si(v;G j)−Si(u;G j)] = Ex

[
ˆ v

u

[Dθ∗

i (s)+Li(s)−Ni(s)]dGx
j(s)+ [1−Gx

j(v)][D
θ∗

i (v)+Li(v)−Ni(v)]

− [1−Gx
j(u)][D

θ∗

i (u)+Li(u)−Ni(u)]

]

.
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Lemma C.1(a) implies that Li(s) = Ji(s) = Ni(s)−Dθ∗

i (s) for any s ≥ τ∗ and u,v > τ∗, from which

(39) follows.

To show (40), because Gx
j(s) = 0 for all s ≤ τ∗, we obtain, for any τ < τ∗,

Ex[Si(τ;G j)] = Ex[Li(τ)]< Ex[Li(τ
∗)] = Ex[Si(τ

∗;G j)] ,

where the inequality follows from Lemma 1. This establishes (40), which completes the proof.

Proof of Proposition A.1: Note that we do not need the expectation notation throughout the

proof of this proposition because there is no uncertainty when σ(·) = 0 in (1). However, Lemma

1 and Lemma B.2 are still valid when σ(·) = 0 so that we use those lemmas without expectation

notation for notational simplicity.

First, we show that G2 is also a best response to G1 if θ∗2 − θ∗1 < κθ where κθ is given in (27).

We will use Lemma B.2 and will prove the following relations:

S2(u;G1) = S2(v;G1) for any u,v > τ∗1 , (43)

S2(t;G1)< S2(u;G1) for any t ≤ τ∗1 < u . (44)

To prove (43), choose any u,v > τ∗ with v > u, and observe that

S2(v;G1)−S2(u;G1) =

v
ˆ

u

F2(s)dGx
1(s)+L2(v)[1−Gx

1(v)]−L2(u)[1−Gx
1(v)] . (45)

Then it is enough to prove that the right side of (45) is equal to 0. For any s > τ∗1, observe from (10)

and (11) that

Gx
1(s) =

{

(1− p1)+ p1G
θ∗1
1 (s− τ∗1) for x > θ∗1 ,

Gx
1(s) for x ≤ θ∗1 .

(46)

In addition, we can obtain from differentiating (10) that for any s > τ∗1,

dGx
1(s) = [1−Gx

1(s)]
[rl2−π(X x

s )]

w(X x
s )− l2

ds = [1−Gx
1(s)]

[rl2−π(X x
s )]e

−rsds

W (s)−L2(s)
= [1−Gx

1(s)]
−dL2(s)

W(s)−L2(s)
,

(47)

where 1{s≥τ∗1}
disappears because σ(·) = 0. Hence, we can use integration by parts and obtain
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v
ˆ

u

[F2(s)−L2(s)]dGx
1(s) =−

v
ˆ

u

[1−Gx
1(s)]dL2(s) (48)

=−

v
ˆ

u

L2(s)dGx
1(s)−L2(v)[1−Gx

1(v)]+L2(u)[1−Gx
1(u)] . (49)

After
´ v

u
L2(s)dGx

1(s) is cancelled out on the left side of (48) and the right side of (49), the resulting

equation implies that the equation (45) is equal to 0, which establishes (43).

To show (44), we will use limt↑τ∗1
Gx

1(t) = 0 and Gx
1(τ

∗
1) = (1− p1). These imply that S2(t;G1) =

L2(t) for all t < τ∗1, and that, for any u > τ∗1

S2(τ
∗
1;G1) = (1− p1)M2(τ

∗
1)+ p1L2(τ

∗
1)< (1− p1)W2(τ

∗
1)+ p1L2(τ

∗
1) = S2(u;G1) ,

because p1 < 1 and (43). Thus, (44) holds if

sup
τ

L2(τ) = L2(τ
∗
2)< (1− p1)W2(τ

∗
1)+ p1L2(τ

∗
1) =

ˆ τ∗1

0

π(Xs)e
−rsds+[(1− p1)w(X

x
τ∗1
)+ p1l2]e

−rτ∗1 .

(50)

It can be then seen that (50) holds if, for any x ∈ (θ∗1,θ
∗
2], we have

l2 < Ex

[
ˆ τ∗1

0

π(X x
s )e

−rsds+[(1− p1)w+ p1l2]e
−rτ∗1

]

= R(x)+β
p
2(θ

∗
1)φ(x) , (51)

where β
p
2(θ) := {[(1− p1)w+ p1l2]−R(θ)}/φ(θ) and w = inf{W (x) : x ∈ I }. However, because

β
p
2(θ)< βW (θ) for all p1 < 1 and θ ∈ I where βW (θ) = [w−R(θ)]/φ(θ) was used in the proof of

Proposition 1(b), (51) holds if (26) does. Because we already proved in the proof of Proposition 1(b)

that (26) is implied by the condition θ∗2 −θ∗1 < κθ, we can conclude that the desired result follows.

Conversely, we show that G1 is a best response to G2. Since the closure of the support of Gx
1 is

(α,θ∗1], by the virtue of Lemma B.2, it is enough to establish the following relations:

S1(u;G2) = S1(v;G2) for any u,v ≥ τ∗1 , (52)

S1(t;G2)< S1(u;G2) for any t < τ∗1 ≤ u . (53)

To show (52), can be shown by using the arguments for (52) above with p2 = 0.

To prove (53), because Gx
2(τ

∗
1) = 0, (52) implies that S1(u;G2) = S1(τ

∗
1;G2) = L1(τ

∗
1) for any

u > τ∗1, and that S1(t;G2) = L1(t) for any t < τ∗1. Hence, for any t < τ∗1 ≤ u, we have S1(t;G2) =
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L1(t)< L1(τ
∗
1) = S1(u;G2) where the inequality is due to Proposition 1.
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