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Abstract

An implicit assumption in most of the matching literature is that all participants
know their preferences. If there is variance in the effort agents spend researching
options, some will know their preferences, while others may not. When this is true,
(ex-post) stable outcomes need not exist and informed agents gain at the expense of less
informed agents, outcomes we attribute to a curse of acceptance for the less informed
students. However, when all agents have a “secure school”, we recover positive results:
equilibrium strategies are simple, the outcome is ex-post stable, and less informed
students are made better off. Our results have potential policy implications for the
current debate in school choice over how priority design affects outcomes.

1 Introduction

“Please accept my resignation. I refuse to join any club that would have me

as a member.”

-Groucho Marx

In the last decade, school choice has rapidly expanded across the United States and

around the world,1 which has led to a vast and rapidly expanding economics literature, en-

compassing a wide array of theoretical, practical, and empirical papers. On the mechanism

design side of this literature, the standard modeling approach emanates from the seminal

paper of Abdulkadiroğlu and Sönmez (2003), and is the analogue of what the broader mecha-

nism design/auctions literature refers to as private values : each student is perfectly informed

∗P.O. Box 400182, Charlottesville, VA, 22904. Emails: ask5b@virginia.edu and troyan@virginia.edu.
Both authors gratefully acknowledge the Bankard Fund for Political Economy for supporting this research.

1In a 2012 survey, almost 40% of parents in the United States reported having access to public school
choice, a number which has certainly only increased since (National Center For Education Statistics, 2015).
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about her own (usually strict) ordinal preference relation over all schools.2 While this sim-

plifies the analysis, it abstracts away from differentially informed students that likely exists

in practice. For example, a key component of most school choice markets is a pre-assignment

information acquisition stage, during which some parents may spend considerable time re-

searching and visiting schools to learn about their quality. However, not all parents engage

in such activities, perhaps due to a lack of time or other resources. In this setting, the

standard framework will not apply. In fact, the other model of mechanism design and auc-

tions, common values, is likely a better analogue: every agent has the same value for the

object but agents have different information about what this value is. It is reasonable to

assume that students preferences are correlated, although perhaps not perfectly so, because

one dimension on which students rate schools is the quality of the school. In this paper, we

investigate school choice where students preferences are correlated and some students have

more information than others.3

Perhaps the most well-known result from the common value auction literature is the so-

called winner’s curse. We start by identifying a related “curse” in our environment, which we

call the curse of acceptance: upon observing their assignments, less informed students infer

that, whatever school they are assigned, it is a worse school on average. Intuitively, some

students may not have as much information as others, but they are at least aware that there

are other students who do have this information, which implies that, all else equal, the more

informed students are more likely to list the better schools higher ex-ante. Thus, for a less

informed student, even if she listed a school highly ex-ante and is admitted, after the fact,

she will update her beliefs about the school’s quality downward; in short, just like Groucho,

less informed students would prefer not to enroll in any school that admits them.

The curse of acceptance leads to the failure of many standard properties that are familiar

from the literature, such as strategy-proofness and stability of well-known assignment mech-

anisms.4 First, the strategy-proofness of popular mechanisms such as deferred acceptance

(DA) will no longer hold. Indeed, as we show, determining an optimal strategy can be very

2Mechanism design and auctions also usually consider independence in this setting which has not pre-
viously been seen as relevant in the matching literature, where it has simply been assumed that each agent
is “born” with an innate ordinal preference relation, and the distribution from which they are drawn is not
modeled. However, in order to understand and analyze correlations in preferences, as we will do in this
paper, some type of distributional assumptions will obviously be necessary.

3The broader mechanism design literature usually assumes that all agents get different signals but from
the same information structure. In school choice, it is more natural to think of students as getting signals
from different information structures and so this is the assumption we will pursue.

4Strategy-proofness means that it is a dominant strategy for every student to report her true preferences
to the mechanism. Stability means that no student prefers some school to her assignment and has higher
priority than a student who is assigned to that school.
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complex for the less informed students.5 Second, stable matchings may no longer exist. In

particular, less informed students may desire to rematch and have high enough priority to

do so, based on the information they obtain by observing their match and the inherent in-

formation of knowing when a school would accept them; a property we call ex-post stability.

Third, and perhaps most importantly, from a welfare perspective, the less informed students

will be worse off relative to the more informed students. Both of these latter two facts can be

directly attributed to the curse of acceptance: since the more informed students have more

knowledge about which schools are better than others, they will be more likely to receive

these schools in equilibrium. Therefore, less informed students know that any school that

they receive is likely to be a worse school on average. This last point is particularly salient,

as school choice is often justified on the basis of giving all students equal access to quality

schools. To the extent that disadvantaged students are more likely to be less informed, the

curse of acceptance will exacerbate this problem.6

While the first part of the paper contains mostly negative results, they rely on showing

that desirable properties fail for some specific priority structure. In the second part of the

paper, we show these negative results motivate looking at the problem in a new light, as one of

priority design. We show that if priorities are designed in an appropriate way, positive results

can be recovered. In particular, we introduce the idea of a “secure school”, which is simply

a school s such that a student j’s priority ranking at s is below the capacity of s; in other

words, it is a school that j can be certain she will receive (under any stable mechanism), so

long as she ranks it first. The idea of a secure school is reminiscent of “neighborhood schools”

or “walk-zone schools” that are often discussed in the literature. However, we emphasize that

secure schools need not be neighborhood schools, and can be based on many other criteria

besides geography. For example, a school district may divide the schools into certain quality

levels, and allocate priorities based on this metric (as has been done recently in Boston; see

below).

When the priority structure is designed so that each student has a secure school, many

positive results are recovered. First, we show that ex-post stable matchings exist, and the

deferred acceptance mechanism finds one. Second, while DA will still not be strategy-proof,

the equilibrium strategies become very simple. Third, and perhaps most importantly, the

existence of a secure school protects uninformed students from the curse of acceptance. Their

5DA will continue to be strategy-proof for students who know their preferences.
6Pathak and Sönmez (2008) argue that one of the main advantages of strategy-proof mechanisms is that

they “level the playing field” between what they refer to as sophisticated students (who strategize optimally)
and sincere students (who always report their true preferences, whether it is in their interest or not). Note,
however, that they still follow the standard modeling approach and assume that all sincere students know
their own preferences. When these assumptions do not hold, strategy-proof mechanisms may no longer “level
the playing field”. See also Pathak and Sönmez (2013).
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secure school cannot be taken from them by the informed students, and so the informed

students are no longer able to exploit the uninformed students by always taking the better

schools for themselves and leaving the uninformed students with the lower quality schools.7

Recovering positive results differentiates our paper from Chakraborty et al. (2010), who

are the first and only other we are aware of to take the“mechanism design”approach to study-

ing matching under interdependent values. They consider a two-sided (college admissions)

market and show that under various alternative notions of stability, a series of impossibility

results are obtained. They are only able to recover positive results by imposing a strict

assumption, which in our environment would translate to a common priority relation that

all schools use to admit students. Under this assumption, they find that a serial dictatorship

is stable in their sense.8

While there is a rich school choice literature comparing different mechanisms (Boston

vs. DA vs. TTC, etc.), there is far less work devoted to the topic of how to design the

priority structure that the mechanism will use, which is arguably just as important (if not

moreso) than the ultimate algorithm that is applied to them.9 Most formal models simply

take priorities as given, but in reality, many school districts have the ability to design the

priorities to achieve certain goals. For instance, Boston recently undertook a major redesign

of the menu of schools from which students could choose. After intense debate in the city,

Boston eventually settled on a plan proposed by Shi (2015) (see also Pathak and Shi, 2017).

Previously, the district had been divided geographically, and a student’s menu of possible

choices she could list depended only on where she lived. Roughly, under the new plan,

schools are divided into quality tiers, and a student’s menu consists of the two closest Tier

1 schools, the four closest Tier 2 schools, etc. The key parallel to priority design is that any

school that is not in a student’s menu is just a school where they have no priority. Now,

this redesign was done with many objectives in mind (see Shi (2015) and Pathak and Shi

(2017) for further details) but giving each student some, but limited access, to Tier 1 schools

7We emphasize existence of secure schools does not preclude students from applying to other schools
should they determine that others are a better match, and indeed in our model students who are informed
will do so. The point is that it is unlikely that the mechanism designer will know which students will be
more or less informed ex-ante, and the role of secure schools is to prevent less informed students from being
exploited while still allowing choice for those who have the requisite information.

8Chade (2006) identifies a phenomenon he calls the “acceptance curse effect” in a dynamic marriage
model where men and women randomly meet each period and must decide whether to accept their current
partner and leave the market or wait and get a new draw in the next period. While intuitively similar to our
curse of acceptance, the precise manifestation, as well his overall motivation and model, are quite different
from ours, and thus the results are not formally comparable.

9In a survey of the school choice literature, Pathak (2016) argues that much of research comparing
different mechanisms has turned out to be not as important for practical implementation as it was thought
at the time, and that “the criteria used to allocate seats [the priorities] - taken as given by much of the
literature - are just as important as how the mechanism processes applicants’ claims”.
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is somewhat like how one would give students secure schools in the sense that they have a

“good” school that they have high priority at, because it is not on many students’ menus.

In order to provide a broader theoretical insight, we abstract away from particular in-

stitutional details that apply only to certain cities. However, our formal model captures

relevant features that are present in many real-world settings, yet are absent from the stan-

dard framework, while still remaining tractable enough to produce clear results. Boston’s

priority redesign plan was undertaken for a variety of other reasons, but our paper shows

that there may be an additional benefit: it mitigates the curse of acceptance for less informed

students. This is something that could not be captured in standard models that take the

priority structure as a given and assume private values and perfectly informed students. We

hope that our model brings attention to an important issue that has heretofore been mostly

overlooked, and will be an important step towards better-designed school choice markets in

practice.

The rest of this paper proceeds as follows. Section 2 presents our model of school choice

under asymmetric information. Section 3 discusses impossibility results and the curse of

acceptance. Sections 4 and 5 show how priority design choices can be used to recover positive

results. Section 6 concludes.

2 Preliminaries

2.1 Model

Let J = {j1, · · · , jN} be a set of students and S = {s1, · · · , sM} be a set of schools. Each

school s has capacity qs and a priority relation �s, where �s is a strict, complete, and

transitive binary relation over J . We write q = (qs)s∈S and�= (�s)s∈S to denote the capacity

vector and priority profile for all schools, respectively. We assume that
∑

s∈S qs ≥ N .10

Student preferences depend on an underlying state ω. The state space Ω is finite, with

an associated probability distribution Pr : Ω → [0, 1] such that
∑

ω∈Ω Pr(ω) = 1. Every

student has a (state-dependent) utility function, where uωj (s) is student j’s utility for school

s in state ω. We assume that preferences are strict, i.e., given a state ω, uωj (s) 6= uωj (s′) for

all s 6= s′. Students may have different levels of information about the underlying state (and

therefore about their own preferences over schools). In particular, the agents are partitioned

into a set of informed students, I, and a set of uninformed students, U , where J = I ∪ U .

All students j ∈ I receive a perfectly informative signal of the state, while all students j ∈ U
10This is a natural assumption in school choice, where all students must legally be offered a seat in some

school.
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receive no signal (or receive a completely uninformative signal). Let Ij(ω) ⊆ Ω denote the

states that student j thinks are possible after receiving their signal when the true state is ω.

That is, for the informed students we have Ij(ω) = {ω} for all ω ∈ Ω, while for uninformed

students we have Ij(ω) = Ω for all ω ∈ Ω.11

Where relevant, agents evaluate lotteries using von Neumann-Morgenstern preferences;

that is, a student’s expected utility from matching to school s given information that the

true state lies in some subset of the state space Ij ⊆ Ω, is written

E(uωj (s)|Ij) =
∑
ω∈Ω

uωj (s)Pr(ω|Ij),

where Pr(ω|Ij) is the posterior probability of the true state being ω conditional on informa-

tion Ij, and is obtained via Bayes’ rule.

The state space Ω defined here is quite flexible, but in what follows we will concretely

define state spaces where the students’ utility for a school is determined by an intrinsic

quality, which is common to all students, and, later in the paper, also an idiosyncratic

component which is individual to each student. Informed students should be thought of as

those whose parents have invested the time and energy to learn which schools are the high

quality schools. Uninformed students also prefer schools with high intrinsic quality, though

they are uncertain which ones have this quality at the time they will be asked to submit their

preferences. We use the model presented because it is the most parsimonious formulation

that exhibits our main theoretical insights.

2.2 Matchings and mechanisms

A matching is a function µ : J ∪ S → 2J∪S such that: (i) µ(j) ∈ S for all j ∈ J , (ii)

µ(s) ⊆ J and |µ(s)| ≤ qs for all s ∈ S, and (iii) µ(j) = s if and only if j ∈ µ(s). Hereafter,

we use the shorthands µj for µ(j) and µs for µ(s). In words, µj is the school assigned to

student j, µs is the set of students assigned to school s, and the number of students assigned

to school s cannot exceed its capacity qs. Let M denote the set of all possible matchings.

In order to implement a “good” matching, market organizers (e.g., school districts) must

elicit the private information of the agents. In most real-world settings, this is done by asking

the agents to submit an ordinal preference relation over the set of schools, and then applying

a particular algorithm or mechanism to these preferences to determine the final matching.

11Note that we model the informed students as observing the true state ω precisely, which includes
information about the preferences of all other agents. This is for convenience only; the mechanisms we
consider will be “strategy-proof” as long as an agent is perfectly informed about her own preferences, and so
whether she knows the preferences of the other students or not will be irrelevant.
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To model this formally, let P denote the set of all strict ordinal preference relations over S.

Given a preference relation Pj ∈ P , we write sPjs
′ to denote that s is strictly preferred to s′,

and we write sRjs
′ if either sPjs

′ or s = s′. Let P = (Pj)j∈J denote a profile of preference

relations, one for each student. A mechanism is a function ψ : PN → M. We use the

notation ψj(P ) to denote student j’s assignment under mechanism ψ when the submitted

reports are P ; analogously, ψs(P ) denotes school s’s assignment.

A mechanism ψ induces a game in which the action space for each player is P . A strategy

for student j in this game is a mapping σj : Ω → P that is measurable with respect to her

information Ij(ω).12 A profile of strategies σ = (σ1, . . . , σN) is a (Bayesian) equilibrium of

the game induced by mechanism ψ if

E[uωj (ψj(σ(ω)))|Ij(ω)] ≥ E[uωj (ψj(σ
′
j(ω), σ−j(ω)))|Ij(ω)]

for all other strategies σ′, all j ∈ J , and all ω ∈ Ω.

In standard matching models (where each student knows her own preferences and there is

no correlation across students), a mechanism is said to be strategy-proof if, for each student,

reporting her true preferences is a dominant strategy of the induced preference revelation

game. Strategy-proofness is a desirable property because it makes the mechanism simple

for students to play. Strategy-proof mechanisms will continue to be “strategy-proof” for the

informed students in our model, in the following sense: if a mechanism ψ is strategy-proof

in the standard sense,13 then, in the game we consider, it will be weakly dominant for an

informed student to use the truthful strategy σj(ω) = Pj(ω), where Pj(ω) is her true ordinal

preference ranking in state ω. For uninformed students, however, following the truthful

strategy is not possible; indeed, the concept of a truthful strategy is not a meaningful one

for uninformed students,14 and therefore strategy-proofness is not a feasible property. We

therefore must use Bayesian equilibrium to analyze the game, which, as we shall soon show,

can be far more complicated for the uninformed students.

Deferred acceptance

While there are many possible mechanism choices, for the remainder of this paper we focus

in particular on the student-proposing deferred acceptance (DA) mechanism. There are

12That is, for any two states ω and ω′ where Ij(ω) = Ij(ω′), it must be that σj(ω) = σj(ω
′). In particular,

informed students can condition their reports on the state while uninformed student can not.
13Formally, we say ψ is strategy-proof if, for any j, there do not exist preferences Pj , P

′
j , P−j such that

ψj(P
′
j , P−j)Pjψj(Pj , P−j).

14More precisely, the truthful strategy σ(ω) = Pj(ω) is not measurable with respect to the information of
uninformed students.
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several reasons for this. First, DA has a rich history in the literature, going back to the

foundational work of Gale and Shapley (1962), and in their seminal paper, Abdulkadiroğlu

and Sönmez (2003) propose DA as a promising solution for school choice markets. Second,

in private values settings, DA satisfies many desirable properties; namely, it is (i) strategy-

proof (ii) stable and (iii) Pareto dominates any other stable mechanism. Third, and most

importantly, because of its appealing theoretical properties, DA is one of the most widely

used mechanisms in practice, including in such large school districts as New York City,

Boston, and New Orleans, and many others in the United States and around the world (see,

for example, Abdulkadiroğlu et al. (2005a) and Abdulkadiroğlu et al. (2005b)). As most

of the prior work and positive results for DA uses the standard “private values” model, it

becomes particularly important to understand what happens to the appealing features of the

DA mechanism when these assumptions are relaxed.

Below, we give a brief definition of the standard deferred acceptance algorithm as it

applies to standard school choice problems (e.g., Abdulkadiroğlu and Sönmez, 2003). In

the next section, we will present an example to highlight the major issues that arise in our

model of asymmetrically informed students. The inputs to the algorithm consist of an ordinal

preference relation Pj for each student j and a priority relation �s for each school s.

Step 1 Each student j applies to her most preferred school according to Pj. Each school

s considers the set of students who have applied to it, and tentatively admits the qs-

highest priority students according to �s (if there are less than qs applicants, it admits

all students). All students not tentatively admitted to a school are rejected.

Step k,k > 1 Any student who was rejected in the previous step applies to her most pre-

ferred school that has not yet rejected her. Each school considers the pool of students

tentatively held from the previous step plus any new applicants, and tentatively admits

the qs- highest priority students according to �s. All students not tentatively admitted

to a school are rejected.

The algorithm ends after the earliest step in which no students are rejected.

2.3 Full matchings and ex-post stability

Suppose the state is ω. In the classical matching literature, given a matching µ, a student

and a school (j, s) are called a (classical) blocking pair if (i) uωj (s) > uωj (µj) and (ii) either

|µs| < qs or j �s j′ for some j′ ∈ µs. A matching µ is then called stable if there are no

blocking pairs.15 This captures the notion that after the match is assigned, no two agents

15An additional component of stability is that every student prefers her assigned school to being un-
matched, and no school wants to unilaterally drop one of its assigned students. We assume that students
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can jointly deviate by dropping (one of) their current partners and matching themselves. In

the school choice literature, stability is sometimes called fairness or no justified envy, and is

given a normative interpretation in that, while a school district can enforce any assignment

it wants, it desires to implement a fair outcome where no student will envy the assignment

of a student over which she has higher priority at that school. Since our results can also be

extended to two-sided matching models, and the terminology is more familiar, we stick with

the word “stability”.

The classical definition should still apply for the informed students. But the uninformed

students do not know the state, so part (i) of the definition of a blocking pair needs to be

modified to an expected utility. One might think this should be an unconditional expectation

as the uninformed students know nothing about the state. However, blocking is a process

that happens after the matching has been implemented and so uninformed students do

actually have some information, namely, they know what school they were assigned to. Part

(ii) also needs modification for the uninformed students, since having higher priority than

some other student at a school is no longer a simple yes or no, but rather yes in some states

and no in others. Both of these features can be folded into the conditional expected value

for an uninformed student. In particular, the relevant expected utility for a student who is

assigned to school s′ and is considering blocking with school s should condition on states

where the uninformed student is matched to the school s′ and they have higher priority than

some other student at school s (or s is not at full capacity).16

To capture this formally, we first introduce the concept of a full matching, which is

a mapping from states to observed matchings. This is an important object in our setting,

because strategies in the preference revelation game induce state-dependent (full) matchings.

We then introduce a notion of ex-post stability, which is defined on full matchings, which

extends the classical notion of stability to our environment.

Definition 1. A full matching is a function µ : Ω→M that assigns a matching to each

state ω ∈ Ω.

We will use bold face type, µ, to denote full matchings, and write µω for the matching

in state ω, and µω
j for the assignment of student j in matching µω.

find all schools acceptable, and schools find all students acceptable, so this part of stability is not an issue.
We assume this only for ease of exposition; none of our results are driven by this assumption.

16We take the traditional “game theory” approach here, meaning that the students play an equilibrium
and so know the strategies and therefore final matchings that will occur in each state. Hence, the uninformed
students “know” exactly in which states they will match to school s and exactly in which states they will
have higher priority than some student at s′. Obviously, this is not exactly true in the real world, but is
the best way to formalize the ideas and, as shall be seen, we think highlights the issues that information
asymmetry presents.

9



There are two pieces of information that a student can use to update her information

and form a potential blocking pair: first, the original school to which she is assigned, and

second, whether the school she wishes to form a blocking pair with will accept her.17 Given

a full matching µ, define the following two sets (to avoid notational clutter, we suppress the

dependence of these sets on µ):

Aj(s) = {ω ∈ Ω : µω
j = s}

Bj(s) = {ω ∈ Ω : |µω
s | < qs or j �s j′ for some j′ ∈ µω

s }

The set Aj(s) is the set of states in which student j is assigned to s, while the set Bj(s) is

the set of states in which j has high enough priority to block with school s, either because

she has higher priority over one of the current students of s, or s is not filled to capacity.

Let Cj(s′, s) = Aj(s′) ∩ Bj(s). In words, Cj(s′, s) is the set of states in which student j is

assigned to s′, but could block with school s.

Definition 2. Given a full matching µ, student-school pair (j, s) are an ex-post blocking

pair if there exists a state ω̃ such that Cj(µω̃
j , s) 6= ∅ and

E[uωj (s)|Cj(µω̃
j , s) ∩ Ij(ω̃)] > E[uωj (µω̃

j )|Cj(µω̃
j , s) ∩ Ij(ω̃)].

Full matching µ is ex-post stable if there are no ex-post blocking pairs.

To understand this definition, fix a state ω̃ and notice that the right side of the inequality

is student j’s expected utility from her current assignment, µω̃
j , given her information that

true state lies in the set Cj(µω̃
j , s) ∩ Ij(ω̃). (The expected values are taken over all states

ω ∈ Cj(µω̃
j , c)∩Ij(ω̃); within each expected value, the school remains fixed, while the utility

function varies with ω.) The left side of the inequality is j’s expected utility from any other

school s with which she may potentially want to form a blocking pair. If the latter is greater

than the former, then (j, s) is an ex-post blocking pair, and the full matching µ is not ex-post

stable.

Informed students know the state exactly, Ij(ω̃) = {ω̃} for all ω̃, and so for them

Cj(µω̃
j , s) ∩ Ij(ω̃) = ω̃. Therefore, the inequality reduces to uω̃j (s) > uω̃j (µω̃

j ). This, together

with Cj(µj(ω̃), s) 6= ∅ (which implies that j has high enough priority to form a blocking pair

with s), shows that the definition reduces to that of a classical blocking pair for informed

17It is possible to define ex-post stability under other informational assumptions, e.g., by allowing students
to observe the entire final matching µω (rather than just their own assignment). However, besides arguably
being less realistic, under such a definition, almost nothing will be ex-post stable (see Chakraborty et al.,
2010).
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students. For uninformed students, Ij(ω̃) = Ω (they initially have no information), and so

for them Cj(µω̃
j , s) ∩ Ij(ω̃) = Cj(µω̃

j , s). The information Cj(µω̃
j , s) is student j’s updated

information given both the observation of her current assignment and the knowledge of the

set of states in which she has high enough priority at school s to form a blocking pair.

The following example is instructive for understanding the concepts of full matchings and

ex-post stability.

Example 1. There are 3 students, I = {j1} and U = {j2, j3}, and 3 schools S = {A,B,C}
each with capacity one. The state space Ω is the set of all permutations of S (and therefore

has size |Ω| = M ! = 6), and the probability distribution Pr over Ω is uniform. Each state

ω ∈ Ω is identified with an ordinal preference relation over the schools, and, given the state,

each student has the same ordinal preferences. For shorthand, we will write ω = ABC to

refer to the state where A is the most preferred school, B is the second most preferred school,

and C is the least preferred school for all students and likewise for the other 5 states. For

concreteness, we define utility as uωj (s) = M − rankω(s), where rankω(s) is the ranking of

school s in permutation ω (although any utility function that preserves the common ordinal

preferences would give the same results). We refer to this model as the common ordinal

preference model.

The priority structure is as follows:

�A �B �C
j1 j1 j2

j2 j3 j3

j3 j2 j1

In this example, a full matching µ is a function that gives a matching µω for each of the 6

possible states ω ∈ Ω, and so, in this example, there are 36 possible full matchings (6 possible

matchings per state × 6 states). The following table presents one possible (arbitrary) full

matching µ:

µω
j1

µω
j2

µω
j3

ω = ABC A C B

ω = ACB A C B

ω = BAC B C A

ω = BCA B C A

ω = CAB A C B

ω = CBA B C A
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We claim that this full matching is ex-post stable. To see why, start with the informed

student j1. As Ij1(ω) = {ω}, j1 simply conditions potential blocks on the state to determine

if they deliver a higher expected utility. In states ABC, ACB, BAC, and BCA, j1 gets the

best school, and so does not want to block. In state CAB and CBA, j1 gets the second-best

school, but has lower priority at the best school C than j2, who is matched to it. So the

stability constraints hold for j1.

The stability constraints for the uninformed students are where we diverge from the

standard model of stability. Consider j2 first. It may be tempting to see that j2 gets C

in every state, so Aj2(C) = Ω, and therefore conclude that j2 learns nothing and so the

stability constraints are satisfied. But one must be careful to also condition on whether

potential blocks are possible or not. In particular, suppose j2 is considering blocking at A.

Then, Bj2(A) = {BAC,BCA,CBA} as these are the three states where j3 is matched to A

so j2 would have higher priority than the student matched to A. Combining these, we have

Cj2(C,A) = Bj2(A) = {BAC,BCA,CBA}. Hence we compare E[uωj2(A)|Cj2(C,A)] = 1/3

to E[uωj2(C)|Cj2(C,A)] = 1 and see that j2 would prefer to stay at C. Alternatively, j2 does

not have high enough priority to ever get school B, and so Bj2(B) = ∅ and Cj2(C,B) = ∅.
Furthermore, as j2 is never matched to A or B, we have that Aj2(A) = Aj2(B) = ∅ and so

Cj2(A,B) = Cj2(A,C) = Cj2(B,A) = Cj2(B,C) = ∅ as well. We stress that it is true that the

ex-post stability constraints are satisfied for j2, but we must be careful as perhaps j2, even

though they learn nothing from observing their match, may find that they would only be

accepted to a school when it is very good and therefore wish to block with that school.

Moving to j3, consider first when j3 is matched toB. Here,Aj3(B) = {ABC,ACB,CAB}.
On the other hand, j3 does not have high enough priority to block at A, as j3 has the

lowest priority there, or to block with C, as j2 is matched to C in all 6 states. Hence

Bj3(A) = Bj3(C) = ∅ and so Cj3(B,A) = Cj3(B,C) = ∅ as well. Similarly, when j3 is

matched to A, we have Aj3(A) = {BAC,BCA,CBA} but Bj3(B) = Bj3(C) = ∅ and so

Cj3(A,B) = Cj3(A,C) = ∅ too. Thus, the full matching µ is ex-post stable.

It should be clear now that given some mechanism ψ, any strategy σ induces a full

matching µ(σ) defined by µω(σ) = ψ(σ(ω)). This leads naturally to the next definition.

Definition 3. Mechanism ψ is ex-post stable if there exists an equilibrium σ such that

the induced full matching µ(σ) is ex-post stable.
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3 The Curse of Acceptance

As stated above, in the standard model where each student is informed about their own

preferences, DA is strategy-proof and stable.18 In this section, we highlight some of the

issues these properties present in our model with uninformed students, and how they can be

attributed to a so-called curse of acceptance. We begin with stability. Example 2 shows that

when there is even one student that is not perfectly informed about her preferences, DA is

no longer (ex-post) stable.

Example 2. There are 4 students, I = {j1, j2, j3} and U = {j4}, and 4 schools, S =

{A,B,C,D}, each with capacity one. We continue to work in the common ordinal preference

model of Example 1.19 There are four schools now, so we write, for example, ω = ABCD to

refer to the state where A is the most preferred school, B is the second most preferred school,

etc., for all students, and define utility as uωj (s) = 4− rankω(s).20 The priority structure is

as follows:

�A �B �C �D
j1 j1 j3 j2

j2 j3 j1 j1

j3 j2 j4 j4

j4 j4 j2 j3

After receiving their signals, each student must submit a preference list, and the final

assignment will be determined via deferred acceptance. First consider the informed students.

For these students, playing the truthful strategy σj(ω) = ω is weakly dominant. This means,

for example, in state ω = DABC, students j1, j2, and j3 will all report σj(ω) = DABC.

It has been shown (McVitie and Wilson, 1971; Dubins and Freedman, 1981) that an

equivalent way to run DA is that at each step, to arbitrarily choose one unmatched student

and have them apply to their most-preferred school where they have not yet been rejected.

The order in which students are chosen to apply does not matter; in particular, we can run

DA with only students j1, j2, and j3 first and then, when they are all tentatively matched,

have j4 apply to her most-preferred school in her report and continue until DA ends.

Now, note that before j4 makes her first application in this method of DA, j1, j2, and

j3 are matched to the best three schools according to the state. Student j4 does not have

18While not Pareto efficient, another desirable property is that it Pareto dominates any other stable
match.

19As with many similar impossibility results, this market can easily be embedded in other markets of
arbitrary size and preference structure.

20Again, any utility values that preserve the common ordinal preference will give the same result.
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very good priority at any school, and so will usually get the worst school regardless of the

preference they have submitted. In particular, she only has a chance to match to a better

(than the worst) school if, before she enters the market, either (i) j2 is matched to C or

(ii) j3 is matched to D. Calculating DA on {j1, j2, j3} shows that this only happens in 2

of the 24 states: in state ω′ = ABCD, j2 is matched to C and in state ω′′ = BADC, j3 is

matched to D. The final matching in these 2 states will depend on what preference relation

j4 reports. If j4 reports a preference relation Pj4 with CPj4D then j4 will match to C in both

ω′ and ω′′, whereas if j4 reports a preference relation P ′j4 with DP ′j4C then j4 will match to

D in both ω′ and ω′′.21 The key point to notice is that no matter what she submits, j4 will

receive the same assignment in ω′ and ω′′. In one of these states, this assignment will be the

third-best school, and in the other, it will be the worst. Combining this with the previous

discussion, we see that j4 will get the worst school in 23 states and the third-best school in

1 state, regardless of what she reports.

We claim that for either report (Pj4 or P ′j4), the resulting full matching will not be ex-

post stable. Suppose j4 reports CPj4D and is matched to C. Now, she is matched to C in

7 states: the 6 states where C is worst and ω′ = ABCD. But j3 is only matched to D in

ω′′ = BADC, so if she proposes a block with D it will only be accepted in this state. Her

utility from D in state ω′′ is 1, while her utility from C is 0, and so she wishes to propose

the block.22 That is, the match is not ex-post stable. If j4 were instead to report P ′j4 with

DP ′j4C, a symmetric argument shows that she will want to propose blocking with C when

she matches to D.

In summary, we have shown the following.

Proposition 1. The deferred acceptance mechanism is not ex-post stable.23

In fact, there are even larger problems with deferred acceptance other than the fact that

it is not ex-post stable. In the last example, the uninformed student gets the worst possible

school in 23 of the 24 states. Now, part of reason for this is that she has quite low priority at

21The locations of A and B in j′4s report are irrelevant as she will just be immediately rejected from either
if she applies.

22In the notation of the previous section, Aj4(C) = {ABCD,ABDC,ADBC,BADC,BDAC,DABC,DBAC}
and Bj4(D) = {BADC} and so Cj4(C,D) = {BADC}. Thus, 1 = E[uωj4(D)|Cj4(µω̃

j4
, D) ∩ Ij4(ω̃)] >

E[uωj4(µω̃
j4

)|Cj4(µω̃
j4
, D) ∩ Ij4(ω̃)] = 0, where µ is the full matching induced by DA. Complete calculations

for this example are provided in the appendix.
23While DA is not ex-post stable, it is also possible to ask whether any ex-post stable mechanism exists.

In the appendix, we show that there is in fact a unique ex-post stable mechanism we call the state-learning
mechanism. Intuitively, this mechanism works by learning the state from the reports of the informed students,
and using this information to assign the uninformed students. This mechanism not only ignores the stated
preferences of some students, it also requires the mechanism designer to know which students are informed
and which are uninformed. For these reasons, we do not believe it is a relevant mechanism in practice.
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each school. But, as we will show more carefully in the next section, even when her priority

is higher, she will always do worse than average.

These two features, no ex-post stability and generally poor outcomes for the uninformed

students, can be attributed to a so-called curse of acceptance: uninformed students do not

know which schools are the good schools, but upon seeing their assignment, they update

their beliefs about the quality of the school they were assigned downwards. The reason is

that they know that the more informed students know which schools are the good schools

and will end up taking them for themselves. This leaves the less informed students with the

low-quality schools, which not only makes them worse off from a welfare perspective, but

also leads to ex-post instability.

This still is not the end of the story for how poorly we think DA performs in this envi-

ronment, as we have yet to consider incentive issues. In the standard model, one of the most

desirable features of DA is it’s strategy-proofness. However, as argued previously, strategy-

proofness is no longer a feasible property in our model, and it turns out that without it,

determining the equilibrium can be quite complicated. In the previous example, this was not

so bad, as in fact every strategy for j4 yielded the same expected utility and therefore every

strategy was an equilibrium. This is just an artifact of the example, however, and usually

determining an optimal strategy will be far more complicated and depend very much on the

details of the full priority structure. This can make playing the mechanism very difficult for

some parents, which is unappealing to many school districts (see Pathak and Sönmez, 2008).

The next example clearly illustrates this point. It actually considers two different prob-

lems, which barely differ in their primitives but have vastly different equilibria. Furthermore,

the example shows that a student’s own priority is not sufficient for determining their equi-

librium strategy (e.g., reporting a preference list that orders schools by one’s priorities at

them is generally not an equilibrium strategy for the uninformed students).

Example 3. The students, schools, and states are the same as in Example 2. We consider

two more examples with slightly different priority structures. The first structure is as follows:

�A �B �C �D
j3 j2 j2 j2

j4 j1 j1 j1

j2 j4 j3 j3

j1 j3 j4 j4

Following the same argument as in the previous example, after running DA on the three

informed students, j4 can only get A when it is not worst if j2 or j1 is matched to A and

can only get B when it is not worst if j3 is matched to B. There are no states where j2 or
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j1 are matched to A. However, j3 is matched to B in both CDBA and DCBA. So if j4

reports a preference Pj4 with APj4B, then j4 will get matched to the worst school in every

state, but if j4 reports a preference Pj4 with BPj4A, then j4 will get matched to B, the third

best school in states CDBA and DCBA. That is, the equilibrium strategies for j4 are any

reports where BPj4A (the rankings of C and D are irrelevant).

But now let’s slightly alter the priority structure by switching the priorities of j1 and j3

at school D (note in particular that the priorities of student j4 have not changed):

�A �B �C �D
j3 j2 j2 j2

j4 j1 j1 j3

j2 j4 j3 j1

j1 j3 j4 j4

With this priority structure, j1 is matched to A in states CDAB and BDAC and j3

is matched to B in DCBA. So if j4 reports a preference Pj4 with APj4B, then j4 will get

matched to A, the third best school, in states CDAB and BDAC. If j4 reports a preference

Pj4 with BPj4A, then j4 will get matched to B, the third best school, in state DCBA.

Therefore, the equilibrium strategies for j4 are any reports where APj4B. So, just switching

the priorities of two students at a school (who both have higher priority than j4, and to

which j4 is never matched unless it is the worst school) completely reverses the equilibrium

strategies. In one case, j4 should favor the school at which they have second-highest priority,

but in the other case, they should favor the school at which they have third-highest priority.

There is no way for j4 to determine their equilibrium strategy without considering the full

priority structure of all students, and we think this challenge is rather unappealing.

In summary, DA fails to be strategy-proof or ex-post stable. Furthermore, the uninformed

students end up with poor outcomes. One way to proceed would be to look at different

mechanisms, although we do not think this would be a fruitful approach, since the general

logic of the curse of acceptance will hold independently of the mechanism used. Thus, the

next section re-frames the problem from one of mechanism design to one of priority design,

and argues that school districts can alleviate all of these issues by choosing an appropriate

priority structure.

4 Secure Schools

The importance of the problems identified in the preceding section clearly depended on the

underlying priority structure. In school choice settings, school districts generally have some
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control over the priority structure, and may be able to design priorities to achieve particular

objectives. For example, Dur et al. (2017) and Pathak and Shi (2017) explore consequences

of different design decisions relating to the design of walk zones in Boston.24 These models

still worked in the standard framework of perfectly informed students. In this section, we

show that when this assumption is relaxed, the design of priorities can have important

consequences for incentives, ex-post stability, and welfare of the uninformed students. In

particular, we show that designing priorities such that all students have a “secure school”

makes DA ex-post stable, the equilibrium strategies simple, and improves the welfare of the

uninformed students by protecting them from the curse of acceptance.

We say that school s is a secure school for student j if | {j′ ∈ J : j′ %s j} | ≤ qs. In

words, a secure school is one with enough seats for j and every student who has higher

priority than j. The rest of this section shows how secure schools allow uninformed students

to guard themselves against the curse of acceptance. They allow for a natural and intuitive

equilibrium that is ex-post stable and guarantees the uninformed students get an average

utility.

Consider again Example 2. Note that in this example, student j4 does not have a secure

school. What happens if we modify the priority structure to give her a secure school? The

priority structure below does so, where we have raised j4’s priority at school D.

�A �B �C �D
j1 j1 j3 j4

j2 j3 j1 j2

j3 j2 j4 j1

j4 j4 j2 j3

Let us reconsider the DA mechanism under these new priorities. Just as before, it remains

a dominant strategy for the informed students to submit their true preferences. However, it

turns out for the uninformed student j4, her optimal strategy is now to rank D, her secure

school, first. Formally, this will follow from Theorem 1 below which applies to more general

markets of arbitrary size, but the intuition is easy to see in the small example: by ranking

D first, j4 receives D in every state. If she instead ranked C above D,25 she will not get C

24One of the most important priority design issues to many school districts is how to design priorities to
ensure certain diversity goals at schools, objectives that we do not consider here. Starting with the seminal
paper of Abdulkadiroğlu and Sönmez (2003), there is a large literature that follows the standard approach of
taking a priority structure that includes diversity constraints as given and looking for an optimal mechanism.
Papers in this vein include Hafalir et al. (2013), Ehlers et al. (2014), Echenique and Yenmez (2015), and
Fragiadakis and Troyan (2017). However, there is less work on how to design the priorities to achieve desired
diversity goals, which we think is an interesting open question for future work.

25Note that j4 still has the lowest priority at A and B, and so once again only the relative rankings of C
and D are relevant.
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when it is “good”, but will continue to get it when it is “bad”. Essentially, taking her secure

school protects her from the acceptance curse and being taken advantage of by the informed

students.

Theorem 1 formalizes this intuition to more general markets of arbitrary size. For the

formal results in this section, we continue to work in the common ordinal preferences model

introduced earlier, where |Ω| = M ! and each state corresponds to an ordinal ranking of

schools that is common to all students in that state. This can be thought of as an approx-

imation to highly correlated ordinal preferences, which is a common feature in real-world

school choice settings. Many papers have used this assumption when generalizing classical

matching models to include more realistic assumptions on preferences and information (e.g.,

Abdulkadiroğlu et al. (2011) and Troyan (2012)). This assumption is necessary to get a

clear result in the discrete model, as the proofs rely on combinatoric arguments that quickly

become intractable when this assumption is relaxed. However, the intuition applies much

more generally, and in the next section, we will use a continuum model to analyze the more

general case of heterogeneous (but correlated) preferences.

For the priority structure, we assume that each uninformed student has at least one secure

school, but otherwise, the priority structure is arbitrary. Define a strategy profile σ∗j (ω) as

follows: for all informed j ∈ I, σ∗j (ω) = Pj(ω), and for all uninformed j ∈ U , σ∗j (ω) = P̃j for

all ω, where P̃j is any preference ranking that lists one of j’s secure schools first. As discussed

above, following σ∗j is weakly dominant for the informed students; i.e., after observing their

signal, they just report their true preferences. For the uninformed students, we have the

following result.

Theorem 1. Assume that every uninformed student has a secure school. Then, σ∗ is an

equilibrium strategy profile.

The proof of this theorem in the appendix actually shows something slightly stronger,

which is that for each j, j’s outcome under profile (σ∗j , σ
∗
−j) first-order stochastically dom-

inates her outcome under (σ′j, σ
∗
−j) for any other strategy σ′j that j could choose.26 This

implies that the strategy profile σ∗ is an equilibrium of the deferred acceptance mechanism

(and is also the reason why the cardinal utility values we assigned in the common ordinal

preference model could be changed to any other values that preserve the order).

While Theorem 1 simply constructs one equilibrium, it is a natural equilibrium. When

uninformed students do not have a secure school, determining equilibrium strategies for the

26A strategy induces a distribution over the number of states where j gets the best school, the second-best
school, the third-best school etc. according to the common ordinal preference. This is the distribution we
are referring to in regards to comments on first-order stochastic dominance.
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uninformed students can be quite complicated, as seen in Example 3. Designing priorities

such that every student has a secure school results in equilibrium strategies that are focal

and very simple to compute: informed students follow the familiar truth-telling strategy,

while uninformed students simply take their secure school. Doing so is optimal because it

protects them from the curse of acceptance identified previously.

Furthermore, we think that secure schools may be helpful in this environment, because

the full matching induced by the equilibrium strategies σ∗ described above is ex-post stable.

Theorem 2. Suppose every uninformed student has a secure school. Then, the full matching

induced by equilibrium σ∗ in the deferred acceptance mechanism is ex-post stable.

What is it about secure schools that make the full matching ex-post stable? The reason is

that the uninformed students do not learn anything from observing their own match, because

they are always matched to their secure school. However, it’s actually somewhat subtle to

see why this implies ex-post stability, because they can still condition on their proposed block

being implementable (recall the set Bj(s) above). Perhaps a student considers a rematching

proposal to some school s that she knows will be accepted in some state where s is very

good. Then, because the informed students propose to the schools in the order of the

common values, when s is worse, the students who match to s have weakly lower priority

than when s is better. That is, if s will block with j when it is a good school, it will continue

to block with j whenever it is worse. So, the best that j can hope for is to get s when it’s

best, second-best, etc. down to the worst, which gives her the same expected utility as her

secure school. In fact, unless she gets s when it is the best, she strictly prefers matching to

her secure school.27

5 Heterogeneous Preferences

While preferences over schools are likely correlated in the real-world, they are almost cer-

tainly not perfectly correlated, which raises the question of how our results extend to this

setting. The proof strategies used for the discrete economies in the previous section rely on

combinatoric arguments that explode and quickly become intractable when preferences are

correlated but heterogeneous. Still, the intuition for the curse of acceptance still holds when

preferences are partially correlated. We can obtain formal results in this setting by moving

to a continuum economy.

27She can only get s when it is best if s is also a secure school or at least one other uninformed student
has two secure schools, one of which is s, and chooses one other than s. So, in most cases, j strictly will
prefer to stay at her secure school.
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Continuum economies have recently been receiving significant interest in the matching

literature because they simplify analysis considerably while still providing useful insights. For

example, Miralles (2008) uses a continuum model to compare the Boston mechanism and DA

from an ex-ante welfare perspective. Abdulkadiroğlu et al. (2015) use a continuum model

to understand properties of their choice-augmented DA algorithm that are too complicated

to analyze in the standard discrete model. Azevedo and Leshno (2016) provide a general

framework for analyzing stable matchings in economies with a finite number of agents on one

side and a continuum on the other. Besides being much more tractable and providing useful

insights, continuum economies are particularly well-suited as an approximation in school

choice, where market sizes are often very large. For example, the Boston public school

district serves over 60,000 students, while in New York City, this number is over one million

students.28

We now introduce the formal description of the continuum model we will consider. The

set of schools is finite, still denoted S = {s1, . . . , sM}, but each school now has a unit mass of

seats to fill. On the student side, there is a total mass N of students. The underlying state

space Ω is again the set of all permutations of S, and each state ω is still identified with an

ordinal ranking of the schools. However, we no longer assume that students have common

preferences that are completely determined by the state. Rather, preferences are determined

as follows. First, nature draws a state ω = (s(1), . . . , s(M)) uniformly from Ω, and there is a

probability distribution P̃r such that P̃r(s(1)) > P̃r(s(2)) > · · · > P̃r(s(M)). Student j’s ordi-

nal preferences Pj are then determined via repeated draws from this distribution, removing

repetitions, until all M schools have been chosen.29 Intuitively, the state ω determines which

schools are “most likely” to be popular, and then preferences for each student are drawn from

this distribution. This procedure for drawing preferences is very similar to that used in the

large-market analyses of DA in Immorlica and Mahdian (2005), Kojima and Pathak (2009)

and Kojima et al. (2013). A student’s cardinal preference for school s, given that she has

ordinal preferences Pj, is uj(s, Pj) = v(rank(s, Pj)), where rank(s, Pj) is the rank of school

s according to preferences Pj and v is any decreasing function.30 As before, students are ei-

ther informed or uninformed. Informed students receive a perfectly informative signal about

their preferences, while uninformed students receive no signal. A mass ν(I) of students are

informed and ν(U) are uninformed, where ν(I) + ν(U) = N . Whether a student is informed

28Chade et al. (2014), Bodoh-Creed and Hickman (2016), and Che and Koh (2016) use similar continuum
models to study decentralized college admissions problems.

29More formally, each state ω induces a measure τω on P, the space of ordinal preferences, where τω(P )
is the measure of students with ordinal preferences P .

30Higher ranks correspond to more preferred schools, i.e., the most preferred school according to Pj has
rank(s, Pj) = 1.
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or uninformed is independent of her preferences.

The last piece of the model to discuss is priorities. In reality, schools do not usually have

strict priority relations, but instead divide students into a few large priority classes, with

many ties that are broken using a random lottery. Most models of school choice in continuum

economies go one step further and assume away priorities completely, for tractability (e.g.,

Miralles, 2008 and Abdulkadiroğlu et al., 2015). However, this will not work for our purposes,

since we want to understand the role of secure schools. The most parsimonious way to

capture the relevant issues is to assume that each school s has two priority levels, which

we will refer to as “high priority” and “low priority”. Each school has a mass 1 of students

with high priority, and each student has high priority at exactly one school. To break ties,

each student randomly draws a unique lottery number `j(s) for each school s.31 If school

s is student j’s high priority school, then `j(s) is drawn uniformly from [0, 1]; for all other

schools, `j(s) is drawn uniformly from [1, 2]. In other words, this procedure ensures that all

high priority students at school s have better lottery numbers than low priority students at

school s (where we use the convention that a lower lottery number is better, in the sense

that schools admit students with lower lottery numbers first).

To summarize, a student j can be thought of as a tuple (ιj, Pj, `j) where ιj ∈ {I, U} is

her information type, Pj is her preference type, and `j = (`j(s1), . . . , `j(sM)) is her vector of

lottery numbers. Informed students know Pj, while uninformed students do not. Whether

students observe their precise lottery numbers before they submit their preferences is irrele-

vant, and all of the results below will hold in both cases, so long as they do know their high

priority school.

As before, each student will submit an ordinal preference relation, which will then be

turned into a matching using the DA algorithm. Intuitively, the deferred acceptance mecha-

nism works in the same way as in the discrete case: students apply starting at the top of their

(submitted) ordinal preference list, and if the total mass of students who apply to a school

is greater than the capacity of the school, the school admits the mass of students equal to

its capacity that have the highest priority. Rejected students apply to their next most pre-

ferred school, etc. However, following these rejection chains, which may only converge in the

limit, is difficult and cumbersome. A more useful way to understand deferred acceptance in

continuum models is given by Abdulkadiroğlu et al. (2015) and Azevedo and Leshno (2016),

who show that the output of DA can be characterized by a vector of cutoffs (¯̀
1, . . . , ¯̀

M).

Each student j is then assigned to her most preferred school for which her priority score is

lower than the school’s cutoff.

31In particular, the mechanism we consider will be DA with multiple tie-breaking (DA-MTB), where each
student receives a different lottery number at each school, drawn independently across schools and students.
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Intuitively, an individual student has no ability to affect the cutoffs, and so effectively

act as “price-takers”. This simplifies the strategic analysis, since, to analyze the equilibrium

outcomes of DA in our model, we only need to understand the structure of these cutoffs. We

begin with the following key proposition. Let σ∗ be a strategy profile

Proposition 2. Fix a state ω = (s(1), . . . , s(M)), and suppose all informed students report

their true preferences and uninformed students report their secure school first in their pref-

erence list. Then, ¯̀
s(1) ≤ ¯̀

s(2) ≤ · · · ≤ ¯̀
s(M).

This proposition gives a characterization of the equilibrium cutoffs under the proposed

strategies. Intuitively, the cutoffs are smaller (and so the school is harder to get) for the

schools that are more likely to be popular. Indeed, if any of these inequalities were reversed,

then there is some school that is both more popular in aggregate and is easier to get into.

The proof in the appendix reaches a contradiction by showing that this would result in some

school being over capacity.

We can now use Proposition 2 to find an equilibrium of the preference submission game.

For the informed students, truthful reporting continues to be a weakly dominant strategy.

What is left to show is that for an uninformed student, listing her secure school first gives

a higher expected utility than any other strategy. The proof of the following theorem is

technical, but of all the many cases, the one that matters is intuitive. For every state ω

where j’s secure school is less popular than some other school s′, there is a corresponding

state ω′ in which the relative popularities of her secure school and s′ are swapped. If j

submits her secure school at the top of her list, she will get it in both states. If she instead

puts s′ above her secure school, then it is possible for her lottery number to only be small

enough to get it when s′ is less popular, i.e., in state ω′, where by Proposition 2, the cutoff

to get into s′ is larger than in state ω, thereby giving her the less popular school in both

states.

Theorem 3. The strategy profile in which all informed students is an equilibrium of the

deferred acceptance mechanism.

The remaining question that needs to be answered is ex-post stability. As in the discrete

case, there is no learning by uninformed students, but we still need to address the issue of

conditioning on a potential block being accepted. This turns out to be much simpler in this

setting than in the discrete case, because by Proposition 2 we can immediately see that if a

school will accept a student in some state ω, then the cutoffs are larger in every state where

the school is less popular and so will accept the student in all those states as well.
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Theorem 4. The strategy σ∗ induces an ex-post stable matching and therefore the deferred

acceptance mechanism is ex-post stable.

In summary, we have shown that the prior results continue to hold with correlated,

heterogeneous preferences. In general, uninformed students may be exploited by informed

students, falling prey to the curse acceptance and ending up at worse-performing schools

on average. Further, DA will no longer be (ex-post) strategy proof. However, we have

also provided school districts worried about these issues with a potential design response to

mitigate their effects. Giving each student a secure school protects uninformed students from

the curse of acceptance while still allowing students to make other choices if so desired. By

doing so, equilibrium strategies are simpler, uninformed students are made better off, and

(ex-post) stability of DA is recovered.

6 Conclusion

This paper has built on the canonical (private values) school choice model by allowing student

preferences to be correlated across schools and assuming some students are more informed

about their preferences than others. This will be the case, for example, if each school has an

intrinsic quality that all parents care about, but some parents have more time and resources

to research and learn about the qualities of various schools. We show that many of the

standard results in the literature fail to hold: the popular deferred acceptance mechanism

is no longer strategy-proof or stable, and uninformed students are made worse off. These

results are not specific to deferred acceptance, and can be attributed to a general curse of

acceptance: under any mechanism, informed students are more likely to list the good schools

highly precisely because they know which ones they are, and so uninformed students expect

that any school that accepts them will be of low quality. However, we also show that these

effects can be mitigated by casting the problem as one of priority design. By designing

priorities such that all students are given a secure school, positive results are recovered: DA

is (ex-post) stable, the equilibrium strategies are simple, and the uninformed students are

protected from the worst consequences of the acceptance curse.

Introducing more realistic assumptions about preferences motivates the need to think

about the school choice problem from the priority design perspective, rather than just the

mechanism selection perspective. While our model provides broad guidance, it remains

highly stylized. The goal of our paper is to point out issues regarding preferences that have

gone understudied in the school choice literature and highlight how they underscore the

importance of priority design. The specifics of precise implementation in particular settings
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(e.g., how to distribute secure schools) is a crucial open question for future work.
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Abdulkadiroğlu, A., P. A. Pathak, and A. E. Roth (2005a): “The New York City

high school match,” American Economic Review, Papers and Proceedings, 95, 364–367.
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A An ex-post stable mechanism for Example 2

Example 2 shows that the DA mechanism is not ex-post stable. This leaves open the question

of whether any other ex-post stable matchings and/or mechanisms exist. In this appendix,

we show that such a full matching may exist, but any mechanism that could be used to

implement it would be unreasonable from a practical perspective.

Consider again the example, and recall that the ex-post stability constraints for the

informed students uniquely determined the final matching in all but 2 of the 24 possible.

Further, in these two remaining states, there were two possible matchings that could be

implemented, states ABCD and BADC. Consider state ABCD first, and note that ex-

post stability requires that j1 be assigned A and j3 be assigned B. Then, suppose in this

state that j2 is assigned to C and j4 to D. While j4 matches to D in a number of states

(namely, whenever D is worst and possibly in state BADC), there is just one state where j4

has priority over any other student at the school to which they are matched, state ABCD,

where j4 has higher priority than j2 at C, where j2 is matched. Since C is better than D in

state ABCD, j4 will block with C when matched to D, and so any ex-post stable mechanism

must assign j2 to D and j4 to C in state ABCD. A similar argument shows that an ex-post

stable mechanism must match j3 to C and j4 to D in state BADC. That is, there is only

one ex-post stable full matching. Denote this matching µ̃.

Since there is a unique full matching µ̃, any mechanism must select matching µ̃ω in each

state ω. We call this mechanism the state-learning mechanism. While this mechanism is

ex-post stable, it is unappealing for two reasons: first, it is paternalistic, in the sense that

it ignores the actual submitted preferences of student j4 and sometimes gives her a school

she claims she does not like at the expense of other students who claim to like it more.

Second, in order to accomplish this, the mechanism designer must know who is informed

and uninformed, and the exact nature of the correlation across student preferences, which is

information a school district is unlikely to have.
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B Proofs

B.1 Proof of Theorem 1

Recall that a state ω ∈ Ω can be identified with an ordinal ranking of the schools. We will

write a generic state as

ω = (s(1), s(2), . . . , s(M)),

where s(k) denotes the kth best school in state ω. Let µ denote the full matching induce by

the deferred acceptance mechanism.

Lemma 1. Suppose all students j′ 6= j follow the strategy σ∗j′(·), and let i choose any arbitrary

strategy. Consider a state ω = (s(1), . . . , s(k), . . . , s(`), . . . , s(M)) such that under this strategy

profile, we have µω
j = s(k). Then, in any other state ω′ = (s(1), . . . , s(k), s(`), . . .), we have

µω′
j /∈ {s(1), . . . , s(k−1), s(`)}.

Proof. Given the proposed strategies, all of the uninformed students other than j apply to

a secure school in the first round and are admitted. Thus, it is without loss of generality

to consider the submarket that removes these students and their seats. This means that

we can consider a market with only one uninformed student, and the rest of the students

are informed. Consider step k of the DA mechanism, and note that at step k of the DA

mechanism, all of the informed students who were not assigned in earlier steps apply to

school s(k). Label this set of students Ik. Note that no informed student ever applies to s(k)

at any step after step k. To see why, note that if this were true for some informed student i,

then at the beginning of step k, i must have been tentatively held by a school s(k′) for some

k′ < k. This means that i must have been rejected from s(k′) at some round k̄ ≥ k > k′.

Consider the first time this happens in the algorithm, i.e., k̄ is the earliest step at which an

informed student is rejected from a school sk
′

such that k′ < k̄. Note that the only way this

can happen is if student j applies to s(k′) at step k̄. But this then implies that j will never

be rejected from s(k′), which contradicts that j ends up at s(k).32

Now, consider state ω′. Note that steps 1 to k−1 of DA are equivalent as to the previous

case, because the first k−1 schools are the same for the informed students, and we are fixing

the strategy of the (unique) uninformed student. This means that at the beginning of step

k, the same set of students are unmatched under either ω′ or ω. In state ω′, the informed

students apply to school s(k) at a step k′ > k, and so the set students who apply to s(k), I
′

k,

will only be a subset of those who applied in state ω, i.e., I ′k ⊆ Ik. Since j was matched to

32To see why, note that j can only be rejected from s(k
′) by an informed student i′′ who is matched to

a school than s(k
′′) for some k′′ < k′. However, all of the unmatched informed students have already been

rejected from all more preferred schools, and so i′′ cannot be rejected from s(k
′′).

27



s(k) in state ω, she had one of the qs(k) highest priorities at s(k) among the students in Ik,

and so if she applies to s(k) in state ω′, she will also be matched to s(k).

What we have shown is that if j applies to a school in state ω′, then she also applies to

that school in state ω. Since the first k − 1 steps of DA are the same in both states, and j

was rejected from schools s(1), . . . , s(k−1) in state ω, she will also be rejected from them in

state ω′. Last, consider school s(`). Note that in state ω′, school s(`) has improved in the

rankings of all of the informed students. Thus, if j had applied to s(`) in state ω (and was

therefore rejected), she will continue to be rejected in state ω′. If j did not apply to s(`) in

state ω, then it must be that her submitted preferences ranked s(k) over s(`). But, as we just

argued, if j applies to s(k) in state ω′, she will be matched there at the final assignment. In

either case, µω′
j 6= s(`), which completes the proof.

Fixing the strategies of the other agents at σ∗j′ , for any strategy σj for the uninformed

student j, let

F (k|σj) = Pr(j receives a school ranked kth or better|σj)

denote the rank distribution of j’s assignment when she uses strategy σj. We now prove The-

orem 1, which is restated below using this notation. Note that F (k|σ∗j ) first-order stochas-

tically dominating F (k|σj) immediately implies that σ∗j is optimal for student j.

Theorem. For any strategy σj, F (k|σ∗j ) first-order stochastically dominates F (k|σj).

Proof. Suppose not, i.e., there exists some σj and some k such that F (k|σj) > F (k|σ∗j ).
Note that if j follows strategy σ∗j , she gets the same school in every state, call it s̄. There

are (M − 1)! states where s̄ is the best school, (M − 1)! states where it is the second-best

school, etc., and so it is easy to see that F (k|σ∗j ) = (M−1)!
M !

k. Consider the minimum k such

that F (k|σj) > F (k|σ∗j ). For this k, it must be that j gets the kth or better ranked school

in strictly more than k(n− 1)! states, and, because k is the smallest index for which this is

true, j must get exactly the kth ranked school in strictly more than (n− 1)! states.

Partition the state space into groups such that each group contains all of the states for

which the best k schools are the same; in other words, two states ω = (s(1), . . . , s(M)) and

ω̃ = (s̃(1), . . . , s̃(M)) belong to the same group G if and only if s(`) = s̃(`) for all ` = 1, . . . , k.

There are n!/(n− k)! groups, and each group contains (n− k)! states. Note that each group

G can be uniquely identified by listing its top k schools in order, (s(1), . . . , s(k)).

Suppose that in state ω = (s(1), . . . , s(k), . . . , s(M)), student j receives school s(k). Let Gs̃

be the group such that s̃(1) = s(1), . . . , s̃(k−1) = s(k−1), but s̃(k) = s̃ 6= s(k); in other words, Gs̃

is the group that has the same first (k−1) best schools as G, but replaces s(k) with s̃. There
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are n−k possible choices for s̃, and hence, n−k such groups Gs̃. Let S̃ = S \{s(1), . . . , s(k)},
and define G̃ = ∪s̃∈S̃Gs̃. Lemma 1 implies that for all ω′ ∈ G̃, student j ends up with worse

than the kth ranked school. Note that |G̃| = (n− k)× (n− k)!.

By our hypothesis, j gets the kth best school in strictly more than (n− 1)! states. Every

group G contains (n−k)! different states, which implies that i must get the kth best school in

at least (n− 1)!/(n− k)! different groups. But, by the previous paragraph, for each of these

groups G, there is an associated G̃ such that j gets strictly worse than the kth best school

for all ω′ ∈ G̃. Since |G̃| = (n − k) × (n − k)! and there must be at least (n − 1)!/(n − k)!

such G̃’s, that means that there are at least

(n− k)× (n− k)!× (n− 1)!

(n− k)!
= (n− k)× (n− 1)!

states where j gets worse than the kth ranked school. Since there are n! total states, this

leaves at most

n!− (n− k)× (n− 1)! = k × (n− 1)!

states where j can get the kth ranked or better school. However, this contradicts that j gets

the kth ranked or better school in strictly more than k × (n− 1)! states.

B.2 Proof of Theorem 2

Choose some uninformed student j. As with the proof of Theorem 1, it is without loss of

generality to consider a submarket that has removed all of the other uninformed students

j′ ∈ U \ {j} together with the seats they take at their secure schools in equilibrium. In the

submarket we consider, we (with slight abuse of notation) let qs be the remaining capacity

at school s once these seats are removed. The set of students is I ∪ {j}.
We start with the following lemma.

Lemma 2. Assume that j �s′ j′ for some j′ assigned to school s′ in state ω = (s(1), . . . ,

s(k−1), s′, s(k+1), . . . , s(M)). Then, for any state ω̃ that permutes the ranking of schools k

through n (i.e., in any ω̃ = (s̃(1), . . . , s̃(M)) such that s̃(k′) = s(k′) for all k′ ≤ k− 1), we have

j �s′ j′′ for some j′′ assigned to school s′ in state ω̃.

In other words, this lemma says that if student j′s proposed rematching is accepted by

school s′ in some state ω, it will also be accepted in any state ω̃ where s′ is ranked lower;

i.e., if s′ accepts j when it is “good”, it will also accept j when it is “bad”.

Proof of lemma. First consider the DA algorithm in state ω. Since all uninformed

students take their secure school, we only need to consider the informed students. Thus,
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at each step k′ of the algorithm, there is a set of unmatched students Ik′ , and all of these

students apply to school s(k′). The qs(k′)-highest priority students are thus admitted, and,

since no new students apply to s(k′) at any later step of the algorithm, these students are

the ones who will ultimately be assigned to school s(k′). In state ω, s(k) = s′, and so the

qs′-highest priority students from Ik are admitted to s′. By assumption, in this set there is

some j′ such that j �s′ j′.
Now, consider any ω̃ that permutes the schools that were ranked k through M in state

ω. By construction, in state ω̃, school s′ is ranked weakly worse than kth: s′ = s̃(k′) for some

k′ ≥ k. Since the ranking of the first k − 1 schools are the same as in state ω, the set of

students who apply to s′ in state ω̃ is a subset of those who applied in state ω. This means

that the lowest-ranked student admitted to s′ in state ω̃, j′′, is ranked (weakly) worse than

j′ according to �s′ , and so j �s′ j′ %s′ j′′. �

Continuing with the main proof, let s̄ be the secure school that student j lists first in

equilibrium. Clearly, j she receives s̄ in every state ω. After the assignment is implemented,

consider j proposing to form a blocking pair with some other school s′. Suppose there is a

state ω where j has higher priority than some j′ that is assigned to s′. In particular, let the

ranking of s′ in state ω be k, and the ranking of s̄ be `:

ω = (s(1), . . . , s(k−1), s′, s(k+1), . . . , s(`−1), s̄, s(`+1), . . . , s(M)).

By the lemma, j also has priority over some j′′ assigned to s′ in the state

ω̃ = (s(1), . . . , s(k−1), s̄, s(k+1), . . . , s(`−1), s′, s(`+1), . . . , s(M)).

So, for every state where s′ accepts j as the kth ranked school and s̄ is the `th ranked school

for ` > k, there is a symmetric state where s′ accepts j as the `th ranked school, while had

j stuck with s̄, she would have received the kth ranked school. Since each of these states are

equally likely, student j is not better off conditional on being admitted to s′. �

(Side note: It is tempting to look at this proof and conclude that every school gives the

same expected payoff (conditional on a block being accepted), which is obviously not true.

The reason is that the above logic does not apply in reverse: that is, if we start with the

fact that j’s block with s′ is accepted in state ω̃, we cannot conclude that j’s block will be

accepted in state ω. But j is worse off when making the switch in state ω̃, and if she is not

accepted in state ω to offset this “loss”, she will be worse off overall.)
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B.3 Proof of Proposition 2

Fix a state ω. All of the uninformed students receive their secure school in every state, which

leaves an equal capacity of µ(I)
M

at each school for the informed students. Note that each

school will be entirely filled to capacity with informed students. For any ordinal preference

ranking P ∈ P , write P (r) for the rth ranked school according to P . Consider two ordinal

preference rankings, P and P ′, such that P (r) = P ′(t) = sA and P (t) = P ′(r) = sB for

some r < t, and P (k) = P ′(k) for all k 6= r, t. In words, P and P ′ are exactly the same,

except that the ranking of schools sA and sB are swapped. Let λω(P ) and λω(P ′) denote

the measure of informed students who have preferences P and P ′, respectively. Without loss

of generality, suppose that in state ω, we have rankω(A) < rankω(B), which implies that

λω(P ) > λω(P ′).

We want to show that ¯̀
sA ≤ ¯̀

sB . Towards a contradiction, suppose that ¯̀
sA >

¯̀
sB . First,

note that for any school s, the mass of students with preferences P and high priority at

any s is 1
N
λω(P ). It will be helpful to divide these students into three distinct classes: (1)

students who have high priority at school they strictly prefer to sA; (2) students who have

high priority at sA; and (3) students who have high priority at a school ranked worse than sA

(where the rankings are according to P ). The measure of students in class (1) is r−1
M
λω(P ),

the measure of students in class (2) is 1
M
λω(P ), and the measure of students in class (3) is

M−r
M

λω(P ).

Now, no student in class (1) is matched to sA, since DA will never give them worse than

their high priority school. Students in class (2) match to sA if and only if their lottery

numbers at the r − 1 schools they prefer to sA are higher than the cutoffs at (all of) these

schools. Thus, the mass of students matched to sA is
∏r−1

x=1(1− ¯̀
P (x)). Students in class (3)

are similar, except that they also must have a high enough lottery number at sA, and so the

total mass of students in class (3) matched to sA is
∏r−1

x=1(1− ¯̀
P (x))× ¯̀

sA . Combining all of

this, the total measure of students with preference P matched to school sA in state ω is

λω(P )

M
×

[
r−1∏
x=1

(1− ¯̀
P (x))× (1 + (M − r)¯̀

sA)

]
(1)

We can do an equivalent analysis for the number of students with preference P ′ who get

matched to sA (recalling that under P ′, school sA is ranked tth):

λω(P ′)

M
×

[
t−1∏
x=1

(1− ¯̀
P ′(x))× (1 + (M − t)¯̀

sA)

]
(2)
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Now, recall that P (k) = P ′(k) for all k < t, with the exception of k = r. In particular, we

can re-write equation 2 as

λω(P ′)

M
×

[
r−1∏
x=1

(1− ¯̀
P ′(x))×

t−1∏
x=r+1

(1− ¯̀
P ′(x))× (1− ¯̀

sB)× (1 + (M − t)¯̀
sA)

]

Now, total mass of students assigned to sA that are of preference type either P or P ′

δ(P, sA)
λω(P )

M
+ δ(P ′, sA)

λω(P ′)

M
,

where, to simplify the notation, we define δ(P, sA) and δ(P ′, sA) as

δ(P, sA) =
r−1∏
x=1

(1− ¯̀
P (x))× (1 + (M − r)¯̀

sA)

δ(P ′, sA) =
r−1∏
x=1

(1− ¯̀
P ′(x))×

t−1∏
x=r+1

(1− ¯̀
P ′(x))× (1− ¯̀

sB)× (1 + (M − t)¯̀
sA)

We can do the same analysis for school sB. By symmetry, the expressions are the same as

above, except P is swapped with P ′ and sA is swapped with sB. to find the total measure

of students matched to sB is

δ(P, sB)
λω(P )

M
+ δ(P ′, sB)

λω(P ′)

M
,

where the δ’s in this case are defined as

δ(P, sB) =
r−1∏
x=1

(1− ¯̀
P (x))×

t−1∏
x=r+1

(1− ¯̀
P (x))× (1− ¯̀

sA)× (1 + (M − t)¯̀
sB)

δ(P ′, sB) =
r−1∏
x=1

(1− ¯̀
P ′(x))× (1 + (M − r)¯̀

sB)

We are now interested in comparing the δ’s. In particular, recall our contradiction hypothesis

that ¯̀
sA >

¯̀
sB . This immediately implies that δ(P, sA) > δ(P ′, sB) and δ(P ′, sA) > δ(P, sB).

Adding these two equations and re-arranging gives

δ(P, sA)− δ(P, sB) > δ(P ′, sB)− δ(P ′, sA) (3)

Note also that δ(P, sA) − δ(P, sB) ≥ 0 (since r < t). Further, λω(P ) > λω(P ′), so we can
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multiply equation 3 and maintain the inequality to get

[δ(P, sA)− δ(P, sB)]λω(P ) > [δ(P ′, sB)− δ(P ′, sA)]λω(P ′) (4)

This re-arranges to

δ(P, sA)λω(P ) + δ(P ′, sA)λω(P ′) > δ(P ′, sB)λω(P ′) + δ(P, sB)λω(P ) (5)

Note what this says: among those students whose ordinal preference types Pj ∈ {P, P ′}, a

greater measure are matched to sA than to sB. But now, we can partition the entire ordinal

preference space P = PA ∪PB, where P ∈ PA if and only if sAPsB (and P ∈ PB if and only

if sBPsA). Then, for every P ∈ PA, we can find a corresponding P ′ ∈ PB that is the same

as P , except sA and sB are swapped. We can then write an analogue of equation 5 for each

pair (P, P ′). Summing over all of these equations for every possible pair, we conclude that

in state ω, the total mass of students matched to sA is strictly greater than the total mass of

students matched to sB. However, this contradicts that the schools have the same measure

of informed students in all states.

B.4 Proof of Theorem 3

Consider an uninformed student j. Recall that the cardinal utility for a school is some

function v(x) of its ordinal rank x, where v is strictly decreasing (so that x = 1 is the best

possible rank). Thus, the expected utility for school s in state ω is

uωj (s) =
∑
P∈P

Pr(j draws ordinal preferences P |ω)v(rankP (s))

For a state ω = (s(1), . . . , s(M)), it is clear that uωj (s(1)) > uωj (s(2)) > · · · > uωj (s(M)), and

further, by symmetry, for any other state ω̃ = (s̃(1), . . . , s̃(M)), we have uω̃j (s̃(m)) = uωj (s(m)) :=

v̄m for all m = 1, . . . ,M . In other words, there are M numbers v̄1 > · · · > v̄M such that,

conditional on any state ω = (s(1), . . . , s(M)), j’s expected utility for school s(1) is v̄1, for s(2)

is v̄2, etc., i.e., her expected utility for a school s depends only on the state-level ranking of

school s (note that this may be different from j’s own ordinal ranking of s, which he only

learns ex-post).

Assume that all other players are playing their equilibrium strategy. Since j’s strategy

must be measurable with respect to her information, we can identify each of her possible

strategies σj with an ordinal preference relation Pj, and her strategy space is the space of

all ordinal preferences P . Let EUj(Pj) be j’s expected utility when she reports Pj (and
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everyone else plays their equilibrium strategy). More formally, using the above definitions,

EUj(Pj) =
∑
ω∈Ω

∑
s∈S

Pr(ω)× Pr(j receives s|σ∗−j, ω, Pj)× v̄rankω(s).

As in the previous proof, for any ordinal preference relation Pj, let (with slight abuse of

notation) Pj(r) be a function that returns the school that is ranked rth according to Pj;

where necessary, we also use the notation P−1
j (s) to denote the ranking of school s under

preferences Pj. The proof relies on the following lemma.33

Lemma 3. Let sA and sB be two schools such that `j(sA) > `j(sB), and consider a preference

report Pj such that Pj(r) = sA and Pj(r + 1) = sB. Let P ′j be the alternative report such

that P ′j(r) = sB, P ′j(r + 1) = sA, and, for all other t 6= r, r + 1, P ′j(t) = P ′j(t). Then,

EUj(Pj) < EUj(P
′
j).

Given this lemma, any arbitrary strategy Pj for student j that does not rank her secure

school, s̄, first, i.e., Pj : s1, s2, . . . , sr−2, sr−1, s̄, sr+1, . . .. By the lemma, EUj(Pj) ≤ EUj(P
′
j),

where P ′j : s1, s2, . . . , sr−2, s̄, sr−1, sr+1, . . .. Applying the lemma again, EUj(P
′
j) ≤ EUj(P

′′
j ),

where P ′′j : s1, s2, . . . , s̄, sr−2, sr−1, sr+1, . . .. Continuing in this manner, we eventually find a

strategy P ∗j : s̄, s1, s2 . . . such that EUj(P
∗
j ) ≥ EUj(Pj). All strategies that rank s̄ first give

the same expected utility, and so any such strategy is optimal for player j.

We now prove the lemma.

Proof of Lemma 3.

Proposition 2 shows that for any state ω = (s(1), . . . , s(M)), the lottery cutoffs can be

written ¯̀
s(1) ≤ · · · ≤ ¯̀

s(M) . In addition, note that by symmetry, the cutoffs are independent

of the state; that is, given any two states ω = (s(1), . . . , s(M)) and ω̃ = (s̃(1), . . . , s̃(M)) and

corresponding vectors of cutoffs, we have ¯̀
s(m) = ¯̀̃

s(m) for all m. In other words, we can just

write ¯̀
1 ≤ · · · ≤ ¯̀

M for the schools ranked first to last in any state.

Start by partitioning the state space into Ω = ΩA ∪ ΩB, where ω ∈ ΩA if and only if

rankω(sA) < rankω(sB) (and ΩB = Ω \ΩA). For each ωA ∈ ΩA, there is a corresponding ωB

that swaps the positions of sA and sB, and leaves all other schools the same. Consider one

such pair (ωA, ωB). Let µ
Pj

j (ωA) be j’s match in state ωA when she reports preferences Pj.

Let ks,ωA
= rankωA

(s) be the rank of school s in state ωA.

First, suppose that P−1
j (µ

Pj

j (ωA)) < r. In other words, j is matched to a school she

reported as preferred to sA (and note that this implies that her match is also preferred to

33While this lemma is written for a fixed lottery draw `j(sA) and `j(sB), in the equilibrium we construct,
students need not actually know their realized lottery numbers; all they need to know is that their (high)
priority at their secure school is good enough that they will be admitted for sure if they list it first.

34



sB). This implies that `j(µ
Pj

j (ωA)) < ¯̀
µ

Pj
j (ωA)

and `j(s
′) > ¯̀

ks′
for all s′ ranked strictly higher

than µ
Pj

j (ωA) in state ωA. But, note that in moving to state ωB, the rankings (and hence,

cutoffs) of all schools that are Pj−weakly preferred to µ
Pj

j (ωA) do not change (nor do they

change in either of these states if j were to report P ′j). In summary, we can conclude that j’s

match is the same in all of these scenarios: µ
Pj

j (ωA) = µ
Pj

j (ωB) = µ
P ′
j

j (ωA) = µ
P ′
j

j (ωB) = s.

Next, suppose that P−1
j (µ

Pj

j (ωA)) ≥ r. For ease of notation, define rankωA
(sA) =

rankωB
(sB) = k and rankωA

(sB) = rankωB
(sA) = k′, where k > k′, and ¯̀

k is the cutoff

of the kth ranked school in any state. There are several subcases, depending on the relative

magnitudes of `j(sA), `j(sB), ¯̀
k, and ¯̀

k′ . Recall that `j(sB) < `j(sA) (by assumption) and
¯̀
k ≤ ¯̀

k′ (by Proposition 2), which will eliminate many possibilities.

Subcase (i): `j(sB) < `j(sA) ≤ ¯̀
k ≤ ¯̀

k′ . Note that j has a lottery number low enough

to be admitted to both sA and sB in both states ωA and ωB. Thus, she will be admitted

to whichever school she ranks higher in her preferences, regardless of the state. That is,

µ
Pj

j (ωA) = µ
Pj

j (ωB) = sA and µ
P ′
j

j (ωA) = µ
P ′
j

j (ωB) = sB.34

Subcase (ii): `j(sB) ≤ ¯̀
k < `j(sA) ≤ ¯̀

k′ . In this case, if j submits P ′j , then she will be

admitted to sB in both states. However, if she submits Pj, then she will only be admitted to

sA in state ωB, since her lottery number is not low enough in state ωA. Thus, µ
Pj

j (ωB) = sA

and µ
Pj

j (ωA) = µ
P ′
j

j (ωA) = µ
P ′
j

j (ωB) = sB.

Subcase (iii): `j(sB) ≤ ¯̀
k ≤ ¯̀

k′ < `j(sA): In this case, j’s lottery number is not low

enough to be admitted to sA in either state, but is low enough for sB in both states. That

is, µ
Pj

j (ωA) = µ
Pj

j (ωB) = µ
P ′
j

j (ωA) = µ
P ′
j

j (ωB) = sB.

Subcase (iv): ¯̀
k < `j(sB) < `j(sA) < ¯̀

k′ : In this case, j can never be admitted to

the “better” school among sA and sB. That is, µ
Pj

j (ωA) = µ
P ′
j

j (ωA) = sB and µ
Pj

j (ωB) =

µ
P ′
j

j (ωB) = sA.

Subcase (v): ¯̀
k < `j(sB) ≤ ¯̀

k′ < `j(sA): Note that here, j’s lottery number is not low

enough to be admitted to sA in either state, but is low enough to be admitted to sB in state

ωA, which happens under both Pj and P ′j . In state ωB, j does not have a low enough lottery

number for sA or sB, and so she gets some school s that is ranked (strictly) worse than

(r + 1)th. Recall that Pj(t) = P ′j(t) for all t > r + 1, and so this will be the same school s

under both reports in state ωB. To summarize, in this case we have µ
Pj

j (ωA) = µ
P ′
j

j (ωA) = sB

and µ
Pj

j (ωB) = µ
P ′
j

j (ωB) = s for some s such that P−1
j (s) = P ′−1

j (s) = t > r + 1.

Subcase (vi): ¯̀
k ≤ ¯̀

k′ < `j(sB) < `j(sA): In this case, j does not have a low enough

lottery number for either sA or sB in either state ωA or ωB. By similar reasoning to subcase

34Note that she can do no “better” (according to her reported preferences), since we are in the case

P−1j (µ
Pj

j (ωA)) ≥ r.
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(v), we have µ
Pj

j (ωA) = µ
P ′
j

j (ωA) = µ
Pj

j (ωB) = µ
P ′
j

j (ωB) = s for some s such that P−1
j (s) =

P ′−1
j (s) = t > r + 1.

Looking back through all of the previous cases, j’s assignment is independent of her

choice between reporting Pj and P ′j (for a fixed state) in all cases except subcases (i) and

(ii). In subcase (i), if she reports Pj, she gets sA in both states. Since both states are equally

likely, her expected utility conditional on the true state being ω ∈ {ωA, ωB} is 1
2
(v̄k + v̄′k).

If she reports P ′j , she gets sB in both states, and again her expected utility conditional on

the true state being ω ∈ {ωA, ωB} is 1
2
(v̄k + v̄k′). Thus, in this subcase again, j is actually

indifferent between Pj and P ′j . Last, consider subcase (ii). In this case, if she reports Pj, she

receives the (k′)th-ranked school (the worse school of sA and sB) in both states ωA and ωB,

for a expected utility conditional on ω ∈ {ωA, ωB} of v̄k′ . If she reports P ′j , she receives sB

in both states, for a conditional expected utility of 1
2
(v̄k + v̄k′) > v̄k′ .

Therefore, we have shown that we can partition the state space into M !/2 pairs (ωA, ωB)

such that, for each pair, EUj(Pj|ω ∈ {ωA, ωB}) < EUj(P
′
j|ω ∈ {ωA, ωB}). Since every pair

of states is equally likely ex-ante, summing over all such pairs gives EUj(Pj) < EUj(P
′
j). �

B.5 Proof of Theorem 4

It is obvious that informed students have no justified claims at a school they prefer. Thus,

consider an uninformed student j. Let her secure school where she has high priority be s̄

(and note that she is matched to s̄ in the equilibrium). Consider j potentially proposing a

block with some other school s′. We use many of the ideas and notation from the proof of

Theorem 3. In particular, we again partition the states into two groups: those where s̄ is

more popular (in aggregate) and those where s′ is more popular (in aggregate). Take two

states ω and ω̂ that differ only in that the relative positions of s̄ and s′ are swapped. Let

rankω(s′) = rankω̂(s̄) = k and rankω(s̄) = rankω̂(s′) = k′, where k′ > k. From the previous

proof, recall that ¯̀
k < ¯̀

k′ and v̄k > v̄k′ . There are three possibilities.

Case (i): `j(s
′) ≤ ¯̀

k. In this case, i will be rematched with s′ in both state ω and ω̂. In

this case, i’s payoff conditional on the true state being in {ω, ω̂} is 1
2
(v̄k + v̄k′), whether she

stays with s̄ or proposes a block with s′.

Case (ii): ¯̀
k < `j(s

′) ≤ ¯̀
k′ . In this case, then i is rematched with s′ in state ω̂, but not

in state ω. Thus, conditional on the true state being in {ω, ω̂}, i’s payoff from proposing a

block with s′ is v̄k′ , while her payoff from staying in at s̄ is 1
2
(v̄k + v̄k′). As v̄k > v̄k′ , she is

worse off from proposing a block.

Case (iii): ¯̀
k′ ≤ `j(s

′). In this case, i will not rematch to s′ in either state ω or ω̂, and

hence she indifferent between proposing a block or not.

36



Combining these three cases, we see that conditional on the true state lying in {ω, ω̂},
i strictly prefers to stay at school s̄ (she is indifferent in cases (i) and (iii), and is strictly

better off in case (ii)). Since the choice of s′ was arbitrary, as with the previous theorem,

we can partition the state space into M !/2 pairs (ω, ω̂) such that, for each pair, i prefers to

stay at s̄ than to propose a block with any other a s′. Since every pair of states is equally

likely ex-ante, summing over all such pairs implies that i prefers staying at s̄ over proposing

a block with any other s′. �
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