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Abstract
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1 Introduction

This paper revisits the classic hold-up problem which arises whenever economic agents have
to make sunk investments that are ex-ante uncontractible. Hold-up risks are ubiquitous in
many economic settings. These include relationship-specific investment in partnerships, ac-
quisition of firm-specific skills by employees, provision of general training by firms, campaign
contribution in political lobbying, and quality investment by hospitals in the healthcare mar-
ket. Framing it in the context of a bilateral trade, a buyer (he) can make an investment to
increase his valuation for a good sold by a monopolist seller (she); but anticipating that the
seller will charge a higher price upon investment and expropriate all the gains, the buyer
never invests.

Some papers (e.g. Gul, 2001; Lau, 2008) have suggested that hiding the investment from
the seller could mitigate hold-up risks. The resulting asymmetric information limits the
seller’s ability to extract the investment gains, thus improving ex-ante efficiency by partially
restoring the buyer’s investment incentive. However, the asymmetric information also creates
the possibility of trade breaking down, thus resulting in ex-post inefficiency. This suggests
that a tradeoff exists between creating ex-ante investment incentive and minimizing ex-post
inefficiency, thus the optimal information control must balance the two effects.

In this paper, we study the use of information control to mitigate hold-up risks. A
signal structure, which is publicly determined before investment, generates signals about
the buyer’s eventual valuation of the good. Our main result illustrates that the tradeoff
described above is not necessary, if there is access to a slightly richer form of information
control. Intuitively, ex-ante investment incentive is created when the seller is unaware of
the buyer’s higher valuation at least some of the time so that he can reap some investment
gain from being under-charged; this only concerns hiding information from the seller in the
“investment state”. On the other hand, ex-post inefficiency is eliminated by revealing the
buyer’s low valuation so that the seller does not set a high price which prohibits trade; this
only concerns information about the “non-investment state” which does not affect the ex-
ante investment incentive. In turn, this separation implies that ex-post inefficiency can be
eliminated without compromising the buyer’s ex-ante investment incentive.

Our goal is to formalize this intuition which can be instructive for information design
to mitigate hold-up risks in various applied contexts. To achieve this, we will begin our
analysis with a hold-up setting with a single and deterministic investment in Section 3. This
simple setting, whereby the investment outcome is binary, allows for a direct and transparent
exposition but manages to illustrate the key intuitions. We then generalize the results to
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allow for stochastic investment (Section 4) and multiple types of investment (Section 5).
In the single investment setting, we first show that when the seller cannot directly ob-

serve the investment, the buyer’s investment decision must be randomized in equilibrium.
This is because if the seller anticipates that the buyer always invests, she will charge a high
price which destroys the buyer’s ex-ante investment incentive. On the other hand, the seller
will charge a low price if she anticipates that the buyer never invests; in turn, the buyer
will want to invest for his own gains. We then characterize the set of possible investment
probability and social welfare that can be sustained in equilibrium, and the signal structure
that implements it. We show that every implementable investment probability can be op-
timally (in terms of the social welfare) implemented by the same signal structure which is
unique within an appropriate class of signal structures. This optimal signal structure takes
the following form: the buyer’s low valuation generates the “low” signal all the time; whereas
his high valuation generates both “low” and “ high” signals with strictly positive probability.
The simplicity of the optimal signal structure also allows it to be replicated by practical
arrangements, thus also alleviating the usual concern in the information design literature
about how one derives the ability to commit to a signal structure.

The optimal signal structure can be understood by viewing the signal structure as a
hypothesis test for the presence of the investment. If the test is sufficiently accurate, the
seller will set the high price when the test detects an investment, and she will set the low
price otherwise. Therefore, when the test makes a “false positive” type I error (i.e. detect an
investment when there is not), the seller will set the high price when the buyer’s valuation
is low, thus leading to no trade. On the other hand, when the test makes a “false negative”
type II error (i.e. fail to detect the investment), the seller will set the low price when the
buyer’s valuation is high, thus leaving some surplus for the buyer to compensate for his
investment. Therefore, from an ex-ante perspective, ex-post inefficiency due to no trade is
caused by type I errors, whereas the ex-ante investment incentive for the buyer is created
from the possibility of type II errors. Since the two types of errors are created separately,
the welfare maximizing hypothesis test (or signal structure) eliminates the type I errors
while maintaining the presence of type II errors, thus leading to the form of the optimal
signal structure described above. However, the need to maintain the accuracy of the test
limits the amount of type II error allowed, which in turn creates an upper bound on the
buyer’s incentive to invest in equilibrium. Intuitively, if the buyer invests too often (which is
correctly conjectured by the seller in equilibrium), then no signal can convince the seller to
set the low price, which in turn kills all the buyer’s ex-ante investment incentives. Therefore,
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information control cannot achieve the first-best.
In Section 4, we discuss how the findings above remain when the buyer’s investment

stochastically (rather than deterministically) affects his valuation. The optimal signal struc-
ture under stochastic investment continues to result in zero ex-post inefficiency because it is
designed to never make any type II error. The only difference lies in the way type I errors gen-
erate ex-ante investment incentive for the buyer now, thus affecting the exact configuration
(but not the form) of the optimal signal structure.

In Section 5, we allow the buyer to have more than one investment choice. We show that
the separation between information that creates ex-ante investment incentive and informa-
tion that causes ex-post inefficiency remains, so ex-post inefficiency is still always zero under
the optimal signal structure. The buyer’s ex-ante investment incentive is created when the
seller is too pessimistic about the buyer’s valuation and under-charges him, whereas ex-post
inefficiency due to trade breaking down arises when the seller is too optimistic about the
buyer’s valuation and over-charges him. Pessimism is created when the information struc-
ture muddles information about the buyer’s true investment with signals that suggest lower
investments; on the other hand, optimism is created when information about the buyer’s
true investment is muddled with signals that suggest higher investments. Therefore, the
optimal information structure is designed to allow for seller pessimism but eliminates seller
optimism. Under the optimal signal structure, whenever the seller charges a price p, she is
certain that the buyer’s true valuation is at least p but is otherwise unsure about how high
above p is the valuation.

The optimal signal structure is thus determined by the pessimism required to create
the necessary investment incentive for the buyer. With only a single investment option,
pessimism can only be created by generating the “low” signal some of the time when the
buyer’s valuation is high. Suppose there is an additional investment option that leads to a
moderate valuation. Pessimism in a high-valuation state can now be created by generating
the “moderate” signal some of the time, or a combination of both the “low” and “moderate”
signals. This makes the characterization of the optimal signal structure significantly more
difficult. To make progress, we restrict attention to a set of buyer investment strategy
denoted by Q. Intuitively, the restriction under Q puts an upper bound on the probability of
taking a particular investment relative to the probability of taking the next lower investment.
Under the single investment setting, Q corresponds to the set of all implementable investment
strategies. We characterize the optimal signal structure that implements the investment
strategies in Q and the set of social welfare achievable when there are more than one type
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of investment. Using an example with two investment options, we illustrate when and why
the highest social welfare is achieved by implementing an investment strategy within Q.

2 Related Literature

Our paper is primarily related to the literature on the use of asymmetric information to
mitigate hold-up risks. Gibbons (1992) and Gul (2001) show that when the investment is
completely unobservable to the seller, the ex-ante efficiency and ex-post inefficiency created
from the asymmetric information exactly cancel out; thus the welfare is unchanged from the
hold-up situation. Lau (2008) shows that the two effects change at different rates when the
probability of the seller observing the investment outcome varies. Therefore, welfare can be
improved if the seller observes the investment outcome with an intermediate probability. In
addition, both Gul (2001) and Lau (2008) emphasize how welfare is always improved if the
seller can make repeated and frequent offers after rejection by the buyer.

Our setting contrasts these two papers in two main ways. First, we allow for more general
forms of information control and also illustrate that choosing or randomizing between perfect
observability and perfect unobservability is never optimal. Second, we show that conditional
on the optimal information structure, allowing for repeated offers upon rejection by the
buyer has no effect since the seller’s offer will be accepted immediately. Yet our results also
complement these earlier works in that it illustrates why allowing for repeated offers in their
setup always improves welfare – repeated offers eliminate ex-post inefficiency due to trade
breakdown which occurs only in the “no-investment states”, and our results indirectly point
out that allowing for renegotiation at these states has no detrimental effect on the buyer’s
ex-ante investment incentive.

Other papers that study asymmetric information in the hold-up problem include González
(2004), Hermalin and Katz (2009), Hermalin (2013), Halac (2015), and Tan (2017). As in
Gul (2001), these papers study a variety of related issues while restricting attention to perfect
observability versus perfect unobservability of the investment, but they do not consider more
general forms of information control as in here.

Our paper is also related to the information control literature – see for example Rayo and
Segal (2010), Ostrovsky and Schwarz (2010), Kamenica and Gentzkow (2011), and subse-
quent works on Bayesian persuasion. The difference is that these papers put no restriction on
the signal structure choice (at least within the class of signal structures considered), whereas
the signal structure in our setup has to also satisfy an equilibrium condition because infor-
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mation control is embedded in a hold-up problem. Consequently, we cannot appeal to the
“concavification” argument (Aumann and Maschler, 1995), which is commonly used in the
Bayesian persuasion settings; and (as will be discussed) the underlying logic of the optimal
signal structure here will also be very different.

Away from pure information control, Condorelli and Szentes (2017) study information
design in bilateral trade by allowing the buyer to publicly choose the distribution of his
valuation and consider how this choice affects the buyer’s ex-ante expected information rent;
by contrast, we study the effects of the information transmission of the buyer’s realized
valuation instead. Bergemann, Brooks, and Morris (2015) study the effects of the signal
structure that generates signals about the buyer’s valuation to the seller; and Roesler and
Szentes (2017) study the effects of the signal structure that generates signals about the
buyer’s valuation to the buyer himself. Both of these papers do not allow the buyer to
determine his own valuation which is the focus of our paper.

3 Single Investment

Single type of investment is a special case of Section 5. However, we provide all the details
in this section independent of Section 5, as this special case allows for a direct exposition
while illustrating the main intuitions transparently. The omitted proofs for this section are
in Appendix A.

3.1 Model

A buyer (he) has valuation v = L for a good that a seller (she) can produce at a cost which
is normalized to zero. Before interacting with the seller, the buyer can privately increase
his valuation to v = H at a cost c. Increasing the valuation is henceforth termed as an
investment. We assume that H − L > c so that it is socially efficient to invest. But due to
incomplete contracts, the investment is not contractible.

After the investment decision is made but before trade, the seller receives a signal s
regarding v. Let the set of signals be S. For expositional clarity, we assume that S is a finite
set, although this is without loss of generality. A signal structure is defined by {S, π} where
π (s|v) denotes the conditional probability of s ∈ S given valuation v. This signal structure
is common knowledge to both players at the start of the game.

After observing the signal, the seller makes a take-it-or-leave-it offer p to the buyer. If
accepted, the seller’s payoff is p while the buyer’s payoff is v− p− Ic, where I is an indicator
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function that takes the value 1 if the buyer invested, and is zero otherwise; if rejected, the
seller’s payoff is 0 and the buyer’s payoff is −Ic.

Our equilibrium concept is the Perfect Bayesian equilibrium. Given a signal structure,
the buyer optimally chooses to invest or not, taking into account the distribution of signals
that his investment decision will generate and his conjecture about the seller’s pricing strat-
egy after observing each signal s ∈ S. The seller, upon observing a signal s, forms a posterior
which depends on both her conjecture about the buyer’s investment strategy and the dis-
tribution of the signals under the signal structure, and then optimally sets a price based on
her posterior. The buyer then accepts if p ≤ v and rejects otherwise. In equilibrium, each
player’s conjecture about the other player’s strategy is correct. It is readily noted that the
seller will only set p = L or p = H in equilibrium.

Throughout, we let q ∈ [0, 1] denote the probability of the buyer investing. Thus, we say
that a signal structure implements q if the buyer’s strategy of investing with probability q
can be sustained as an equilibrium under the signal structure. In addition, all payoffs will
be expected payoffs; henceforth, we drop the “expected” quantifier to ease exposition.

Proposition 1. The buyer’s payoff is always zero in equilibrium. Moreover, q = 1 cannot
be implemented.

Proof. Since the seller will never set p lower than L, the buyer’s payoff is zero if he does
not invest (i.e. q = 0). If q ∈ (0, 1) in equilibrium, the buyer must be indifferent between
investing and not investing, which means that his payoff is also 0. Lastly, q cannot be 1 in
equilibrium. This is because if q = 1, the seller will correctly conjecture it in equilibrium
and always sets p = H, in which case the buyer will never invest in the first place.

Proposition 1 thus implies that the seller’s payoff in equilibrium is also the social welfare,
so there is no need to differentiate between the two. Henceforth, the term “optimality” will
refer to optimality of the seller’s payoff. Since q cannot be 1 in equilibrium, the first-best
optimality cannot be achieved.

3.2 Benchmarks

3.2.1 Fully Informative π: the Hold-up Case.

Consider a fully informative signal structure first, which gives the classic hold-up problem:
since the seller perfectly knows v, she always sets p = v and hence, the buyer never invests
in equilibrium. The social welfare is thus L which is all given to the seller.
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3.2.2 Fully Uninformative π.

Consider a fully uninformative signal structure next: π (s|v) = π (s′|v) ∀v ∈ {L,H} , s, s′ ∈
S. The following restates the result of Gibbons (1992) and Gul (2001) that the players’
payoffs under no information are the same as in the hold-up case:1

Proposition 2. The equilibrium under the fully uninformative signal structure is unique:
the buyer invests with probability L

H
and the seller sets p = L with probability c

H−L after every
(uninformative) signal. The seller’s equilibrium payoff is L. Therefore, the players’ payoffs
are the same as in the hold-up case in expectation.

Proof. From Proposition 1, q 6= 1. Similarly, q 6= 0; if q = 0, the seller will also correctly
conjecture that in equilibrium and always sets p = L, in which case the buyer will deviate
to choosing q = 1 instead. Let ρ be the probability that the seller sets price p = L (ρ is
independent of the signal since the signal has no information). Since q ∈ (0, 1), the buyer
must be indifferent between investing and not investing, which implies that ρ (H − L)− c =
0 ⇐⇒ ρ = c

H−L ∈ (0, 1). Thus the seller is also randomizing over H and L in equilibrium,
which implies that she must be indifferent between the two prices: L = qH ⇐⇒ q = L

H
.

The seller’s ignorance about the buyer’s investment limits her ability to expropriate
the gains from investment, thus improving ex-ante efficiency by (partially) restoring the
buyer’s ex-ante investment incentive. As a result, the buyer invests with positive probability.
However, the asymmetric information at the trading stage creates ex-post inefficiency because
trade breaks down when the buyer did not invest but the seller sets p = H. These two effects
exactly cancel each other out in equilibrium.

3.3 Optimal Signal Structure

We first fix a q ∈ (0, 1) and solve for the signal structure that gives the highest seller payoff
while implementing q, assuming that such a signal structure exists. The subsequent variables
will be dependent on q, but we omit the argument throughout to ease notation. Let βs be
the seller’s posterior belief that v = H after observing signal s under signal structure {S, π}.
With q correctly conjectured by the seller in equilibrium,

βs = Pr (v = H|s) = π (s|H) q
π (s|H) q + π (s|L) (1− q) . (3.1)

1See problem 2.23 in Gibbons (1992), and Proposition 1 in Gul (2001).
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Conditional on belief β, the seller’s payoff from setting p = H is βH, and that from p = L

is L. Denote xs := qπ (s|H) + (1− q) π (s|L) as the ex-ante probability of signal s realizing.
We say that a signal structure {S, π} is almost direct if S = {l, n, h} and π has the following
properties:2

if xl > 0, then βl < L
H

;
if xn > 0, then βn = L

H
;

if xh > 0, then βh > L
H

.
(3.2)

An almost direct signal structure produces an incentive compatible pricing recommendation
for the seller almost all the time. The seller chooses p = L when she observes s = l, chooses
p = H when she observes s = H, but she is indifferent between either price when she receives
the neutral signal n.

Lemma 1. Suppose a signal structure {π, S} implements q and the seller’s payoff in the
equilibrium is V . There exists an almost direct signal structure that also implements q and
the seller’s payoff in the equilibrium is also V .

Lemma 1 implies that it is without loss of generality to restrict attention to almost direct
signal structures, which we will henceforth do so. The intuition behind is similar to the
revelation principle. For any signal structure, the seller sets the same price whenever her
posterior is less (resp. more) than L

H
, so all signals that generate posteriors that are less

(resp. more) than L
H

can be grouped together accordingly.3

We follow Kamenica and Gentzkow (2011) and frame the problem as choosing a distri-
bution of posteriors {xs, βs}∑

s
xs=1 that has to satisfy the Bayes plausibility constraint:

∑
s∈{l,n,h}

xsβs = q. (3.3)

The original signal structure can then be backed out via π (s|H) = βsxs
q

and π (s|L) =
(1−βs)xs

1−q . In addition, the signal structure must satisfy the equilibrium condition:

2Note that βs is undefined when xs = 0. For completeness, we specify the convention that βl = 0 when
xl = 0, βn = L

H when xn = 0, and βh = 1 when xh = 0. These beliefs form the seller’s off-equilibrium beliefs
when there is a detectable deviation from q by the buyer.

3Unlike the Bayesian persuasion literature, restricting the signal space to be the state space here is
not without loss (at least at this stage). In the persuasion literature, the papers typically assume that
the Receiver has a unique optimal action under each belief, or that the Receiver always takes the Sender-
preferred action when the Receiver is indifferent. In this paper, however, it is not a priori clear what is a
“Sender-preferred action” at a belief whereby the seller is indifferent between setting either price. This is
because the seller’s randomization strategy can disrupt the equilibrium and thus have implication on her
ex-ante expected payoff.
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[
π (l|H) + σπ (n|H)

]
(H − L)− c = 0, (3.4)

whereby σ ∈ [0, 1] is the probability that the seller sets p = L after observing s = n. The
left hand side of (3.4) is the buyer’s payoff from investing. For him to be indifferent between
investing and not investing (so that q ∈ (0, 1) in equilibrium), this payoff must be the same
as his payoff from not investing, which is 0. Using (3.1), condition (3.4) is equivalent to:

xlβl + σxnβn = q
(

c

H − L

)
. (3.5)

Therefore, a signal structure is an almost direct signal structure that implements q and σ

if the resulting distribution of posteriors {xs, βs}∑
s
xs=1 satisfies (3.2), (3.3) and (3.5). The

resulting seller payoff is:

(xl + xn)L+ xhβhH = L+ xh (βhH − L) (3.6)

Lemma 2. Suppose there exists an almost direct signal structure with xn > 0 that implements
q and σ < 1, and the seller’s payoff in the equilibrium is V . There exists an almost direct
signal structure that implements q and σ = 1, and the seller’s payoff in the equilibrium is
strictly higher than V .

Proof. Suppose a distribution of posteriors {xs, βs} supports an equilibrium with q and σ < 1.
Consider another distribution of posteriors {x′s, β′s} whereby x′l = xl + (1− σ)xn

(
1− βn

βh

)
,

x′n = σxn, x′h = xh + (1− σ)xn βnβh ; β
′
l = xl

x′
l
βl, β′n = βn, β′h = βh. It is readily verified that

{x′s, β′s} satisfies (3.2) (3.3) and (3.5). Since x′h > xh and β′h = βh, from (3.6), the seller’s
payoff under {x′s, β′s} is higher.

Intuitively, at the interim stage (after the signal realization but before trade), the seller’s
(interim) payoff under each signal can be ranked: signal l gives payoff L; signal n gives payoff
L regardless of the seller setting p = L or p = H; and signal h gives a payoff that is higher
than L. Thus, if there is a probability of 1 − σ > 0 that she will set p = H after seeing
signal n, this probability can be appropriately shifted to increase the ex-ante likelihood of
signal h being realized which gives the seller a higher payoff. Doing so would not affect the
equilibrium condition (3.5) since the probability of the seller offering p = L after the buyer
has invested will not be altered.

Lemma 2 implies that when searching for the (almost direct) signal structure that maxi-
mizes the seller’s payoff, we can restrict attention to equilibria with σ = 1. In turn, signals l
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and n are essentially equivalent and can hence be pooled together. Thus we can restrict at-
tention to direct signal structures whereby S = {l, h}, the resulting posteriors satisfy βl ≤ L

H

and βh > L
H
, and the seller plays p = L at s = l and p = H at s = h.4 The following theorem

gives the main result of this section:

Theorem 1. A signal structure that implements q exists if and only if q ≤ L
L+c . For any

q ≤ L
L+c , the signal structure that maximizes the seller’s payoff while implementing q is

unique within the set of direct signal structures. It consists of:π (l|L) π (h|L)
π (l|H) π (h|H)

 =
 1 0

c
H−L 1− c

H−L


The resulting posteriors are βh = 1 and βl = 1

1+ 1−q
q (H−Lc ) ≤

L
H
. Trade always takes place,

and the seller’s payoff is L+ q (H − L− c).

We emphasize that the equilibrium existence condition in Theorem 1 takes into account
all possible signal structures, not just direct signal structures. This thus provides an upper
bound on the possible investment frequency in equilibrium. Moreover, the optimal signal
structure is independent of q (although the posteriors generated and the resulting payoffs
are dependent on q). This means that the direct signal structure that optimally implements
q is the same for all implementable q.

Although this signal structure is reminiscent of the optimal signal structure in the leading
“prosecutor” example in Kamenica and Gentzkow (2011) (hereafter KG) – in the sense that
one state is always revealed (the “L” state here and the “guilty” state in KG) – the reasonings
behind the two signal structures are very different. In particular, since the seller’s payoff is
convex in her belief here,5 the optimal signal structure in the KG world would have been the
fully informative one, but this would bring back the hold-up problem here. More generally,
in Bayesian persuasion, when the fully informative signal structure is not optimal but there
is scope for persuasion, the optimal signal structure optimally pools “favorable” states with
“unfavorable” states while maintaining the credibility of the signals. In contrast, the optimal
signal structure here determines the conditional probabilities at each state separately.

More precisely, the buyer’s ex-ante investment incentive is provided via a probability of
4To see this formally, suppose an almost direct signal structure {xs, βs} implements q = 1 and σ = 1.

Consider another almost direct signal structure {x′s, β′s} such that x′l = xl + xn, β′l = xlβl+xnβn

xl+xn
; x′n = 0,

β′n = βn; and x′h = xh and β′h = βh. It is readily verified that {x′s, β′s} also satisfies (3.2), (3.3) and (3.5)
and gives the same payoff to the seller as {x′s, β′s}. Since x′n = 0, signal n is irrelevant.

5At belief β ≤ L
H , the seller’s payoff is L; at belief β ≥ L

H , her payoff is βH.
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c
H−L that his investment is not detected by the seller, in which case, he gets to keep the
investment gains. This probability is set so that he is ex-ante indifferent between investing
or not, which effectively pins down π (·|H). As for π (·|L), since π (h|L) is the conditional
probability of having ex-post inefficiency due to trade not taking place when the buyer did
not invest and π (·|L) also does not affect the buyer’s ex-ante investment incentive, π (h|L)
is set to zero to eliminate all ex-post inefficiency. The result that ex-ante investment incen-
tive and ex-post inefficiency are taken care of separately by π (·|H) and π (·|L) respectively
thus implies that there is no tradeoff between increasing ex-ante investment incentive and
eliminating ex-post inefficiency.

Corollary 1. For any implementable q, there is zero ex-post inefficiency under the optimal
signal structure that implements q. The set of seller payoff that is achievable in equilibrium
is
[
L, H

c+LL
]
.

Given a fixed q, a signal structure here can be also viewed as a hypothesis test for the
investment. The “false positive” type I error of the test is (1− q) π (h|L), which is the ex-
ante probability of detecting an investment when there is not; while the “false negative” type
II error is qπ (l|H), which is the ex-ante probability of failing to detect the investment when
there is one. When the test makes a type I error, the seller sets the high price which will
be rejected by the buyer whose valuation remains low; thus ex-post efficiency arises. On the
other hand, when the test makes a type II error, the seller sets the low price which leaves
some surplus for the buyer whose valuation is high; the potential for this then feeds back as
the buyer’s ex-ante investment incentive. Therefore, under the optimal signal structure, the
test never makes any type I error but allows for some type II error. However, to maintain
the accuracy of the test to the seller, there cannot be too much type II error, which in turn
creates an upper bound on the implementable q. Intuitively, when q increases, the need
to maintain the credibility of signal l implies that signal l needs to detect state L more
accurately and makes less mistake via wrongly detecting state H. However, this mistake
(i.e. the type II error) is what creates ex-ante investment incentive for the buyer, so the
need to improve the accuracy of l due to a higher q in turn destroys the buyer’s ex-ante
incentive to invest at all.

Finally, the simplicity of the optimal signal structure implies that it can be replicated by
practical arrangements in many hold-up situations. The requirement is simply a technology
that imperfectly searches for hard evidence of the presence of the investment. For example,
in a vertical relationship in which the upstream supplier can make a cost-saving investment,
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this “technology” can be the random inspection of the supplier’s facilities or the delegation
of this inspection to a monitor who shirks occasionally.

4 Stochastic Investment

We have thus far only considered investment that is deterministic. In this section, we show
that our results readily extend to stochastic investment. Suppose that instead of a binary
investment decision, the buyer now gets to choose an investment level ρ ∈ [0, 1] at a cost φ (ρ),
whereby ρ is the probability that his valuation increases from L to H. We make standard
assumptions on the cost function: φ (·) is strictly increasing and convex, with φ′ (0) = 0 and
limq→1 φ

′ (q) =∞.
Let f (ρ) := ρ [L+ φ′ (ρ)]− L; it is readily verified that there exists unique ρ∗ such that

f (ρ∗) = 0.

Proposition 3. When investment is stochastic, a signal structure that implements invest-
ment ρ exists if and only if ρ ≤ ρ∗. For any ρ ≤ ρ∗, the signal structure that maximizes the
social welfare while implementing ρ is unique within the set of direct signal structures. It
consists of: π (l|L) π (h|L)

π (l|H) π (h|H)

 =
 1 0
φ′(ρ)
H−L 1− φ′(ρ)

H−L


The resulting posteriors are βh = 1 and βl = 1

1+ 1−ρ
ρ

(
H−L
φ′(ρ)

) ≤ L
H
. Trade always takes place,

and the set of social welfare that is achievable in equilibrium is [L,L+ ρ∗ (H − L)− φ (ρ∗)].

We only provide the arguments behind Proposition 3; the formal proof is omitted since
it is mostly retracing the steps to arrive at Theorem 1, with a minor modification which we
explain now.

Given an almost direct signal structure, the buyer’s payoff from investment ρ is ρ
[
π (l|H)+

σπ (n|H)
]

(H − L)−φ (ρ). His optimal investment level is thus determined by the first order
condition: [

π (l|H) + σπ (n|H)
]

(H − L)− φ′ (ρ) = 0. (4.1)

This first order condition (4.1) then replaces the equilibrium condition in (3.4). By replacing
“q” with “ρ” and “c” with “φ′ (ρ)”, the analysis in Section 3.3 follows through with a few
cautions and qualifications about the interpretations.

First, the analysis in Section 3.3 only holds under the assumption that c < H−L, hence ρ
must satisfy φ′ (ρ) < H−L; but this is not a problem because π (l|H)+σπ (n|H) < 1 (if not,
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the seller will never set p = H), so condition (4.1) implies that any implementable ρ must
satisfy φ′ (ρ) < H − L. Second, the buyer’s payoff is no longer always zero under stochastic
investment, so the objective in (3.6) is now the social welfare rather than just the seller’s
payoff. Third, the upper bound on the implementable investment ρ∗ is “analogous” to the
upper bound on the probability of investment q = L

L+c in Theorem 1; it is readily verified
that ρ∗ = L

L+φ′(ρ∗) , and ρ ≤
L

L+φ′(ρ∗) if and only if ρ ≤ ρ∗.6 Fourth, the social welfare under
an implementable investment level ρ is L+ ρ (H − L)− φ (ρ), and it is strictly increasing in
ρ because, as observed above, any implementable ρ must satisfy H − L > φ′ (ρ); this thus
gives an analogous set of implementable social welfare (c.f. Corollary 1).

We note that if the signals reveal information on ρ rather than on the outcome,7 then
even the fully informative signal structure will result in some ex-post inefficiency. Thus, the
elimination of ex-post inefficiency hinges on the assumption that the information structure
generates signals about the investment outcome.

5 Multiple Types of Investment

This section considers the hold-up setting with multiple types of investment. The omitted
proofs and details for this section are in Appendix B.

5.1 Model

Returning to deterministic investment as in Section 3, we suppose now that the buyer has
m + 1 possible investment actions. Investment action i ∈ M := {0, 1, . . . ,m} results in a
valuation of vi and incurs a cost of ci for the buyer. Without loss of generality, we assume
that v0 < v1 < · · · < vm; c0 = 0; and ci > 0 for any i ≥ 1. Thus i = 0 corresponds to no
investment, and m = 1 is the case considered in Section 3. Note that at this point, we do
not require ci to be increasing in i nor that m is the first best investment action.

As previously, an ex-ante determined signal structure generates signals about the buyer’s
valuation before the seller makes her price offer. The signal structure consists of {S, π}
whereby S is the signal space and π (s|vi) is the conditional probability of signal s ∈ S

after the buyer has chosen investment action i. The buyer’s investment strategy now is a
probability vector ~q = (q0, q1, . . . , qm) whereby qi is the probability that the buyer chooses
investment action i. His strategy is mixed if qi < 1 ∀i. In equilibrium, ~q is correctly

6This comes from noting that ρ ≤ L
L+φ′(ρ) if and only if f (ρ) ≤ 0, and f is strictly increasing.

7This is the setting consider in Hermalin and Katz (2009).
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conjectured by the seller. It is readily noted that the seller will choose a price from only the
set of possible ex-post valuations {v0, v1, . . . , vm}, and she will never offer a price vi if she
believes that v = vi with zero probability.

The following two statements are the analogues of Propositions 1 and 2 when there are
multiple types of investment:

Proposition 4. .

1. In any equilibrium, the buyer’s investment strategy involves q0 > 0, and his payoff is
zero.

2. Under the fully uninformative signal structure, the seller’s equilibrium payoff is v0.
Therefore the players’ payoffs are the same as in the hold-up case in expectation.

Proposition 4.1 states that the buyer chooses not to invest with strictly positive probabil-
ity in equilibrium. This is because the seller will correctly conjecture the lowest investment
that is played with positive probability by the buyer in equilibrium, hence she will never
charge a price below that resulting valuation. This implies that the buyer will get a negative
payoff unless the lowest investment played is of zero cost, which is only possible if it is the
no-investment action. In turn, since the buyer must be indifferent among any action played
with positive probability and the no-investment action gives him a zero payoff, the buyer’s
payoff in equilibrium is zero. As in the single investment setting, the seller’s payoff is the
social welfare, so there is no need to differentiate between the two.

If the buyer’s investment is perfectly observed by the seller, the hold-up problem arises:
the only equilibrium outcome is the buyer chooses not to invest and is charged the price
v0. The social welfare with hold-up is v0 which is all extracted by the seller. Proposition
4.2 generalizes Proposition 2: even when there are multiple types of investment, the fully
uninformative signal structure still does not improve welfare relative to the hold-up result
as just discussed.

5.2 Optimal Signal Structure

We consider the optimal signal structure next. As in Section 3.3, we proceed by first fixing
a buyer strategy ~q under the assumption that it is implementable, and then we consider the
optimal signal structure that implements it. It remains without loss of generality to restrict
attention to direct signal structures which we describe next. This claim requires a more
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general argument than the one used in Lemma 2, but the intuition is similar, so we relegate
the details for this claim to Appendix B.

The seller’s posterior belief after observing signal s is a probability vector ~βs = {β0
s , β

1
s , . . . , β

m
s },

whereby βis is the probability that the seller assigns to v = vi, and the updating formula is:

βis = Pr
(
v = vi|s

)
= π (s|vi) qi∑m

j=0 π (s|vj) qj . (5.1)

Let xs = ∑m
i=0 q

iπ (s|vi) be the ex-ante probability of signal s being realized.
A direct signal structure consists of a signal space S = M and a set of conditional

probabilities π which results in posteriors that satisfy the following condition:

For any s ∈M : if xs > 0, then
∑
j≥s

βjsv
s ≥

∑
j≥i

βjsv
i ∀i 6= s. (5.2)

The term ∑
j≥i β

j
s in (5.2) is Pr [v ≥ vi|s], which is the seller’s subjective probability upon

observing signal s that the buyer will accept price vi; thus ∑j≥i β
j
sv

i is her interim payoff
from offering price vi after signal s. Condition (5.2) thus implies that the direct signal
structure provides signals that give incentive compatible price offer recommendations to the
seller – the seller sets p = vs upon receiving signal s.

Next, analogous to condition (3.5), a signal structure must satisfy an equilibrium condi-
tion. In particular, a direct signal structure {M,π} implements ~q if:

For any i such that qi > 0:
∑
j≤i

π
(
j|vi

) (
vi − vj

)
− ci = 0. (5.3)

Condition (5.3) is the buyer’s incentive compatibility condition – his payoff from playing any
investment action i in which qi > 0 must be zero (Proposition 4.1).

Under a direct signal structure {M,π} and buyer strategy ~q, the seller’s payoff is the
ex-ante expected social welfare. Since ∑m

j≤i π (j|vi) is the conditional probability of trade
after the buyer has chosen investment action i, the ex-ante expected welfare is:

m∑
i=0

qi

 m∑
j≤i

π
(
j|vi

) (vi − ci) . (5.4)

We say that a signal structure π achieves a seller payoff W if π can implement a buyer
investment strategy ~q such that the seller’s payoff under ~q and π is W .

Theorem 2. .
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1. Suppose that ~q is implementable and the direct signal structure {M,π} optimally im-
plements ~q. It holds that for all i such that qi > 0, π (j|vi) = 0 for all j > i; and the
seller’s payoff is ∑m

i=0 q
i (vi − ci).

2. The set of achievable seller payoff is a closed interval [vo,W ∗]. Moreover, if a signal
structure π∗ can achieve W ∗, then π∗ can also achieve any W ∈ [v0,W ∗].

Corollary 2. By Theorem 2.1, under the optimal signal structure, the posterior satisfies
Pr (v ≤ vs|s) = 1 for any s ∈M such that xs > 0. Therefore trade always takes place.

q0π00 q0π00 q0π00 . . . q0π00
s = 0 s = 1 s = 2 . . . s = m

q0n
n v0

q0
n v

1

q0
n v

2

...

q0
n v

m



q0π00 q0π01 q0π02 . . . q0π0m

q1π10 q1π11 q0π12 . . . q0π1m

q2π20 q2π21 q2π22
. . . q0π2m

... ... ... . . . ...

qmπm0 qmπm1 qmπm2 . . . qmπmm



Figure 5.1: Unconditional probabilities of the three types of outcomes. Ex-ante in-
vestment incentive relies on the “underlined” outcomes; ex-post inefficiency arises in the
“boxed” outcomes.

Theorem 2.1 provides a partial characterization of the optimal signal structure. To
understand it, consider the unconditional probabilities of the outcomes. Denoting π (j|vi)
by πij (to simplify notation), Figure 5.1 shows a probability matrix whereby entry qiπij is
the unconditional probability of the “outcome” in which the buyer had taken investment
action i and signal j is realized. The set of outcomes can be categorized into three types:
the “boxed outcomes”, the “underlined outcomes” and the “diagonal outcomes”. The boxed
outcomes are in the upper triangular section of the matrix whereby the probabilities of
their occurrences are boxed; in these outcomes, the seller is overly optimistic about the
buyer’s valuation and hence charges too high a price which then results in trade breakdown
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and thus ex-post inefficiency. On the other hand, the underlined outcomes are in the lower
triangular section of the matrix whereby the probabilities of their occurrences are underlined;
in these outcomes, the seller is too pessimistic about the buyer’s valuation and hence under-
charges him which then allows the buyer to keep some of the investment gain. Finally, the
diagonal outcomes are the diagonals of the matrix; in these outcomes, the seller has the
exact judgement of the buyer’s valuation and hence charges him his true valuation which
results in the seller extracting all the investment gain.

Given ~q, the seller strictly prefers only the diagonal outcomes to occur. However, the
buyer’s ex-ante investment incentive can only come from the underlined outcomes. In partic-
ular, along each row, the underlined entries in the matrix (and only these underlined entries)
have to satisfy the buyer’s incentive compatibility condition in (5.3). Therefore, underlined
outcomes must occur with positive probability. The other concern is the seller’s incentive
compatibility condition in (5.2). This requires that along each column, the seller believes
that the outcome is sufficiently likely to be the diagonal outcome. Notice that moving all
the probabilities of the boxed outcomes (where ex-post inefficiency occurs) to the diagonal
outcomes actually helps to satisfy (5.2) and does not affect (5.3). This illustrates the sep-
arability between eliminating ex-post inefficiency and creating ex-ante investment incentive
for the buyer. Therefore, under the optimal signal structure, the boxed outcomes (hence
ex-post inefficiency) never occurs.

The characterization of the optimal signal structure is then completed by appropriately
choosing the occurrences of the underlined outcomes to generate the buyer’s investment
incentive to implement an investment strategy ~q. Given how these choices must interact with
the occurrences of the diagonal outcomes to simultaneously satisfy both conditions (5.2) and
(5.3), this problem is significantly more difficult when there are multiple investments, and
there is not any general property that one can exploit.

To make progress, we henceforth assume that vi− vi−1 ≥ ci for all i ≥ 1, and we restrict
attention to the set of buyer investment strategy Q, defined as the following:

Definition 1. Q is the set of buyer investment strategy ~q that satisfies:

q0 ≥ c1

v0 q
1 and qi ≥ (vi − vi−1) ci+1

(vi − vi−1 − ci) vi q
i+1 ∀i ∈ {1, 2, . . . ,m− 1} . (5.5)

Q is a set of investment strategy whereby the probability of taking any investment action
is bounded above relative to the probability of the next lower investment action. Recall
that the seller’s incentive compatibility condition in (5.2) requires that along each column
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in Figure 5.1, the diagonal outcome is sufficiently likely to occur relative to the underlined
outcomes. Intuitively, the investment strategies in Q would satisfy (5.2) more “easily”. Using
the results in Theorem 1, it is readily verified that Q is the full set of implementable buyer
investment strategy when m = 1.

We say that a seller payoff W is Q-achieveable if there exists a signal structure π and a
buyer investment strategy ~q ∈ Q such that π implements ~q and the resulting seller payoff is
W .

Proposition 5. Every ~q ∈ Q is optimally implementable by the following signal structure:

π (0|v0) = 1 ; π (j|v0) = 0 ∀j > 0;

∀i ≥ 1: π (i− 1|vi) = ci

vi−vi−1 ; π (i|vi) = 1− ci

vi−vi−1 ; π (j|vi) = 0 ∀j 6= i− 1, i.

(5.6)

The set of Q-achieveable seller payoff is
[
v0,

∑m
i=0

αi∑m

j=0 α
j (vi − ci)

]
, where α0 = 1 and αi =

v0

c1

(∏i−1
j=1

(vj−vj−1−cj)vj
(vj−vj−1)cj+1

)
for i ≥ 1.

The signal structure in (5.6) has the simple feature that the seller’s pessimism after an
investment action i is created via only believing that it is the next lower investment action
i−1. In terms of the probability matrix in Figure 5.1, under this information structure, only
two outcomes arise with positive probability along each row i ≥ 1: the diagonal outcome and
the underlined outcome immediately to the left of it. Therefore, we call the signal structure
in (5.6) an adjacent type-II error signal structure (hereafter A2 signal structure). In the
proof of Proposition 5, we also show that any strategy that is implementable by the A2
signal structure must be in the set Q.

As higher investment actions are also more efficient by assumption here,8 the optimal
investment strategy (i.e. the one that maximizes the seller’s payoff) is the one whereby
all the bounds in condition (5.5) are binding. This corresponds to an investment strategy
in which qi = αi∑m

j=0 α
j ; hence αi represents the “weight” for investment action i under the

optimal investment strategy.
The question that naturally arises next is whether if there exists any ~q /∈ Q that is

implementable and results in a higher payoff for the seller. While we deem this question
impossible to answer in general, we can consider the example of m = 2 whereby we can
analytically solve for the signal structure that achieves the highest seller payoff. We show that

8vi − vi−1 ≥ ci implies that vi − ci > vi−1 − ci−1.
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for certain parameter values, the highest seller payoff is indeedQ-achieveable; in other words,
our restriction to the set Q in such instances is without loss and Proposition 5 characterizes
the optimal signal structure that implements any implementable buyer strategy. In cases
where this highest seller payoff is not Q-implementable, we use the example to illustrate why
and how better investment strategies can be implemented.

Example: m = 2.

We characterize the signal structure that implements the highest seller payoff under m = 2
now. Note that Theorem 2 together with condition (5.3) completely pin down π (·|v0) and
π (·|v1); and π (·|v2) is determined by π (0|v2) (v2 − v0) + π (1|v2) (v2 − v1) = c2. Denote
π (0|v2) by γ ∈

[
0, c2

v2−v0

]
, and let π (1|v2) = f (γ) = c2−γ(v2−v0)

v2−v1 . Thus, for any implementable
~q, the signal structure that implements it is parametrized by γ (which is dependent on ~q):


π (0|v0) π (1|v0) π (2|v0)
π (0|v1) π (1|v1) π (2|v1)
π (0|v2) π (1|v2) π (2|v2)

 =


1 0 0
c1

v1−v0
v1−v0−c1

v1−v0 0
γ f (γ) 1− γ − f (γ)

 (5.7)

Proposition 6. Let ξ = c2(v1−v0)+v0(v2−v0)
(c1+v0)(v2−v0)−(v1−v0−c1)v1 . The signal structure that achieves the

highest seller payoff under m = 2 is uniquely the signal structure in (5.7) whereby:9

• if v2−v0−c2

v1−v0−c1 ≤ ξ, then γ = 0;

• if v2−v0−c2

v1−v0−c1 > ξ, then γ = c1c2

(v1−v0)(v2−v1+c1) .

Therefore, when v2−v0−c2

v1−v0−c1 ≤ ξ, the highest achievable seller payoff is Q-achieveable.10

We provide a bit of details of the derivation to outline the intuitions of Proposition 6; the
full derivation is in the proof. Fixing a γ, the highest achievable seller payoff is the solution

9To be precise, the uniqueness property does not apply at the knife-edge case of v2−v0−c2

v1−v0−c1 = ξ. In this
case, γ is anything in the set

[
0, c1c2

(v1−v0)(v2−v1+c1)

]
.

10This is because the signal structure under γ = 0 is the A2 signal structure. As mentioned above, any
strategy that is implementable by the A2 signal structure must be in Q.
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to program P (γ):

W (γ) := max
q1;q2

(1− q1 − q2) v0 + q1 (v1 − c1) + q2 (v2 − c2)

subject to[
(1− q1 − q2) + q1

(
c1

v1−v0

)
+ q2γ

]
v0 ≥

[
q1
(

c1

v1−v0

)
+ q2γ

]
v1 (5.8)[

(1− q1 − q2) + q1
(

c1

v1−v0

)
+ q2γ

]
v0 ≥ q2γv2 (5.9)[

q1
(
v1−v0−c1

v1−v0

)
+ q2f (γ)

]
v1 ≥ q2f (γ) v2 (5.10)

q1 + q2 ≤ 1 (5.11)

The objective follows from (5.4). Constraints (5.8) and (5.9) are conditions (5.2) for s = 0;
and (5.10) is condition (5.2) for s = 1. We shall illustrate the point by starting at γ = 0 (i.e.
the A2 signal structure) and see if the seller’s payoff can be improved by increasing γ.

First note that we can write (5.8) as (1−q1−q2)
q1 c1
v1−v0 +q2γ

+ 1 ≥ v1

v0 , which is violated if q1 + q2 > 1;

thus (5.11) is subsumed by (5.8). Moreover, this is a linear program, so the solution lies on
a vertex. It is readily seen that constraint (5.9) is trivially satisfied at γ = 0. So the solution
is the intersection of (5.8) and (5.10) when both constraints bind. We note that these two
constraints maintain the credibility of signals s = 0 and s = 1 respectively.

Consider increasing γ slightly from 0 to ε. Since f (ε) < f (0), this relaxes constraint
(5.10) which allows us to increase q2 slightly at the expense of q1. On the other hand,
increasing ε and q2 will violate constraint (5.8); to restore it, we have to decrease q1 and
move the probability weight to q0. Denote the increase in q2 by z2; and the decrease in q1

by z1. The resulting change in the seller’s payoff is thus:

(
z1 − z2

)
v0 − z1

(
v1 − c1

)
+ z2

(
v2 − c2

)
= z2

(
v2 − v0 − c2

)
− z1

(
v1 − v0 − c1

)
.

Therefore, increasing γ from 0 to ε will not increase the seller’s payoff if:

v2 − v0 − c2

v1 − v0 − c1 ≤
z2

z1 . (5.12)

Condition (5.12) has the intuitive interpretation that the left-hand side is the ratio of the
value of investment action 2 relative to 1; while the right-hand side is the ratio of the increase
in likelihood of 2 relative to the decrease in likelihood of 1.

The changes in probabilities (i.e. values of z1 and z2) depend on ε. For small enough
ε, it remains true that the solution to program P (ε) is the intersection of the two binding
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constraint (5.8) and (5.10). Thus, z1 and z2 are determined by these two conditions. Since
(5.8) must bind for both γ = 0 and γ = ε, we have:

z1
(
c1 + v0

)
− z2

(
v0 + ε

[
v1 − v0

])
= q̂2ε

[
v1 − v0

]
, (5.13)

where q̂2 is the solution of q2 under γ = 0. Likewise, (5.10) must bind for both γ = 0 and
γ = ε, which gives:

z2
(
c2 − ε

[
v2 − v0

]) (
v1 − v0

)
+ z1

(
v1 − v0 − c1

)
v1 = q̂2ε

(
v2 − v0

) (
v1 − v0

)
(5.14)

Combining (5.13) and (5.14) and taking ε to the zero limit, we get:

z2

z1 = c2 (v1 − v0) + v0 (v2 − v0)
(c1 + v0) (v2 − v0)− (v1 − v0 − c1) v1 = ξ. (5.15)

Condition (5.15) provides the ratio in the changes in likelihood of investment actions 2 and
1 when increasing γ slightly from 0. Combining (5.15) with (5.12), we can conclude that
increasing γ slightly from 0 worsens the seller’s payoff when v2−v0−c2

v1−v0−c1 ≤ ξ.
This tradeoff, which compares the effects of relative likelihood of investment actions 2

and 1 (i.e. z2

z1 ) with the relative payoffs from the two actions (i.e. v2−v0−c2

v1−v0−c1 ), determines
whether the seller’s payoff can be improved by increasing γ. For low γ in which constraints
(5.8) and (5.10) are binding – which happens when γ ≤ c1c2

(v1−v0)(v2−v1+c1) – the effect of a
marginal increase in γ on the relative likelihood of investment actions (i.e. z2

z1 ) is always the
expression in (5.15). Therefore, increasing γ increases (resp. decreases) the seller’s payoff
when v2−v0−c2

v1−v0−c1 < ξ (resp. v2−v0−c2

v1−v0−c1 > ξ).
When γ > c1c2

(v1−v0)(v2−v1+c1) , constraint (5.9) becomes binding, so the effect of an increase
in γ on the relative likelihood of investment actions changes, and we can verify that it is
always lower than the relative payoffs. This implies that increasing γ beyond c1c2

(v1−v0)(v2−v1+c1)

always decreases the seller’s payoff.

6 Conclusion

The literature has noted that introducing information asymmetry regarding the buyer’s
investment can prevent the seller from abusing her bargaining power and hence alleviate
the hold-up risks. Implicitly suggested in these earlier papers is a tradeoff between ex-
ante investment incentive and ex-post inefficiency due to the asymmetric information. In
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this paper, we make the point that such a tradeoff is unnecessary because the information
that creates ex-ante investment incentive (when hidden) is different from the information
that creates ex-post inefficiency (when hidden). Consequently, by hiding and revealing the
right information, ex-post inefficiency can be eliminated without compromising the ex-ante
investment incentive. Moreover, such forms of more efficient information control often do
not require overly complex arrangements in the economic relationship. In turn, we hope that
our results can serve as a guidance for future work on how to better make use of information
control to mitigate the hold-up problem in various applied settings.
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A Appendix for Section 3

Proof of Lemma 1

Proof. Let Sh ⊂ S be the set of signals such that the posteriors generated are strictly greater
than L

H
; analogously, let Sl (resp. Sn) be the set of signals with posteriors strictly less than

(resp. equal to) L
H
. In addition, let σs denote the probability of the seller playing p = L after

observing signal s. In equilibrium, σs must be 1 if s ∈ Sl, and it must be 0 if s ∈ Sh, while
it can be anything between 0 to 1 when s ∈ Sn. Consider the following almost direct signal
structure

{
Sad, πad

}
where Sad := {l, n, h}: πad

(
sad|v

)
= ∑

s∈S
sad

π (s|v) for all sad ∈ Sad; let

the seller play p = L with probability σad =
∑

s∈Sn
π[s|H]σs∑

s∈Sn
π[s|H] =

∑
s∈Sn

π[s|H]σs
πad[n|H] upon observing

n.11

To check that this is an equilibrium with the buyer investing with probability q, first
note that given q, the seller’s pricing strategy is clearly a best response. For the buyer, his
expected payoff after investing is

Pr [p = L|v = H] (H − L)− c =
(
πad (l|H) + πad (n|H)σad

)
(H − L)− c

=
∑
s∈Sl

π [s|H] +
∑
s∈Sn

π [s|H]σs

 (H − L)− c,

where the second line is the buyer’s expected payoff after investing under the original signal
structure {S, π}. The buyer’s payoff when he does not invest is 0 under both signal structures.
Since the buyer is indifferent between investing or not under {S, π}, he is also indifferent
under

{
Sad, πad

}
. Thus q is the buyer’s best response as well, and hence it is an equilibrium.

We check the payoff next. Conditional on the buyer investing, the seller’s expected payoff
under

{
Sad, πad

}
is:12

(
πad (l|H) + πad (n|H)

)
L+ π (h|H)H =

∑
s∈Sl

π (s|H) +
∑
s∈Sn

π (s|H)
L+H ·

∑
s∈Sh

π (s|H)

where the RHS is seller’s expected payoff, conditional on the buyer investing, under {S, π}.
Next, conditional on the buyer not investing, the seller’s expected payoff under

{
Sad, πad

}
11If Sn is empty, then this is irrelevant.
12Note that the seller’s conditional expected payoff under posterior L

H is always L.
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is:

(
πad (l|L) + πad (n|L)

)
L+ π (h|H) · 0 =

∑
s∈Sl

π (s|L) +
∑
s∈Sn

π (s|L)
L+ 0 ·

∑
s∈Sh

π (s|H) ,

where RHS is seller’s expected payoff, conditional on the buyer not investing, under {S, π}.

Proof of Theorem 1

Proof. We prove the “only if” direction of the existence result first. Suppose, for a contra-
diction, that q > L

L+c but there exists an almost direct signal structure that implements
q. From Lemma 2, there exists a direct signal structure that implements q. Let βl ≤ L

H

and βh >
L
H

be the resulting posteriors. From (3.5), βl = qc
xl(H−L) ; from (3.3), xl = βh−q

βh−βl
.

Combining the two, we get:

βl =
q
(

c
H−L

)
βh

βh − q + q
(

c
H−L

) =
q
(

c
H−L

)
1− q

βh

(
1− c

H−L

) (A.1)

Since c
H−L < 1, βl is decreasing in βh. βh ≤ 1 then implies that βl ≥

q( c
H−L)

1−q(1− c
H−L) . When

q > L
L+c , βl >

L
H

which contradicts βl ≤ L
H
. Next, for the “if” direction, it is readily verified

that when q ≤ L
L+c , the signal structure in the theorem results in posteriors βh = 1 and

βl ≤ L
H
, and it satisfies the equilibrium condition (3.5).

For optimality, it suffices to consider the set of direct signal structures (Lemma 2). For
any βh, the corresponding βl is (A.1), and the seller’s payoff, from (3.6), is V (βh) = L +
xhβhH − xhL. From (3.3) and (3.5):

xhβhH = (q − xlβl)H =
[
q − q

(
c

H−L

)]
H

xhL = q−βl
βh−βl

L =

 q−
q( c
H−L)βh

βh−q+q( c
H−L)

βl−
q( c
H−L)βh

βh−q+q( c
H−L)

L = q
βh

(
1− c

H−L

)
L

Therefore, V (βh) = L + q
(
H − L

βh

) [
1−

(
c

H−L

)]
. Since V (βh) is strictly increasing, the

optimal βh is 1, and βl = q( c
H−L)

1−q+q( c
H−L) . The seller’s payoff is V (1) = L+ q (H − L− c). The

signal structure is then backed out via π (s|H) = βsxs
q

and π (s|L) = (1−βs)xs
1−q .
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B Appendix for Section 5

Proof of Proposition 4

Proof. Statement 1: First note that the buyer obtains a zero payoff by not investing (i.e.
choosing q0 = 1), so his equilibrium payoff is weakly higher than zero. Suppose for a
contradiction that qi = 1 for an i ≥ 1. Since the seller correctly conjectures the buyer’s
strategy in equilibrium, she will set p = vi which means that the buyer’s ex-ante payoff is
−ci < 0 (contradiction). Thus, in equilibrium, either q0 = 1 or the buyer’s strategy is mixed.
Clearly the proposition is true if q0 = 1. Suppose the buyer’s strategy is mixed now. Let i be
the lowest investment action played with strictly positive probability. In the mixed strategy
equilibrium, the buyer is indifferent between playing any investment action i with qi > 0;
thus his payoff is that of choosing investment i. Since the seller correctly conjectures ~q, her
posterior belief must satisfy Pr [v < vi] = 0; thus she will never offer a price lower than vi,
which in turn implies that the buyer’s payoff is no higher than −ci. Since his payoff must
be at least 0, i must be 0 which implies q0 > 0. In turn, since the seller will never charge
p < v0, the buyer’s payoff is zero.

Statement 2: If the seller offers p = v0 , her payoff is v0 since trade is guaranteed. Thus
it suffices to show that the seller’s equilibrium strategy must involve offering p = v0 with
strictly positive probability. To show this, note that if the lowest price offered by the seller
in equilibrium is some vi > v0, the buyer must be choosing investment i > 0 with strictly
positive probability. But since the price is never below vi, the buyer’s payoff from choosing
investment i is −ci. Since the buyer’s payoff in equilibrium is 0, i must be 0.

Sufficiency of Direct Signal Structures

Fix a buyer investment strategy ~q = (q0, q1, . . . , qm) which is correctly conjectured by the
seller in equilibrium. Under an arbitrary signal structure {S, π}, the seller’s posterior upon
observing signal s ∈ S is a probability vector ~βs = (β0

s , β
1
s , . . . , β

m
s ) whereby βis is the

probability that the seller assigns to v = vi, and the updating formula is in (5.1) in the
main text. The ex-ante probability of signal s is thus xs = ∑m

i=0 q
iπ (s|vi). Let the seller’s

strategy be ~σ := {~σs}s∈S, whereby ~σs = (σ0
s , σ

1
s , . . . , σ

m
s ) is a probability vector and σis is the

probability that the seller offers price p = vi upon observing signal s.13

The signal structure has to satisfy equilibrium conditions whereby both players’ strategies
13The strategy space of the seller depends on the signal space S but we omit the argument to ease notation.
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are best responses against each other. ~σ is a best response price strategy for the seller if:

For all s ∈ S, if σis > 0, then
∑
k≥i

βks v
i ≥

∑
k≥j

βks v
j ∀j 6= i,

which can be equivalently written as:

For all s ∈ S, if σis > 0, then
∑
k≥i

qkπ
(
s|vk

)
vi −

∑
k≥j

qkπ
(
s|vk

)
vj ≥ 0 ∀j 6= i. (B.1)

For the buyer, for every investment played with strictly positive probability under ~q, his
expected payoff from it must be 0 (Proposition 4). This is equivalent to:

For all i ∈M , if qi > 0, then
∑
s∈S

π
(
s|vi

)∑
j≤i

σjs
(
vi − vj

)
= ci . (B.2)

Thus, a signal structure implements ~q and ~σ if the signal structure (and its resulting poste-
riors) satisfies (B.1) and (B.2). The seller’s ex-ante expected payoff in equilibrium is:

∑
s∈S

xs

[
max
i∈M

∑
k≥i

βks v
i
]
.

Let ΣS be the set of pure strategies of the seller under a signal space S – that is, if
~σ ∈ ΣS, then for all s ∈ S, there exists i ∈M such that σis = 1.

Lemma 3. Suppose that the signal structure {S, π} implements ~q and ~σ /∈ ΣS, and it gives
the seller a payoff of V . There exists a signal structure {M, π̂} that implements ~q and
~̂σ ∈ ΣM , whereby σ̂ii = 1 ∀i ∈M ; and it also gives the seller a payoff of V .

Proof. For each ŝ ∈M and i ∈M , set:

π̂
(
ŝ|vi

)
=
∑
s∈S

π
(
s|vi

)
σŝs.

For any i ∈M , ∑ŝ∈M

[∑
s∈S π (s|vi)σŝs

]
= ∑

s∈S π (s|vi) = 1, so π̂ is a valid signal structure.
~̂σ is the seller’s best response if ∀i 6= j:

∑
k≥i q

kπ̂
(
i|vk

)
vi ≥ ∑k≥j q

kπ̂
(
i|vk

)
vj

⇐⇒ ∑
k≥i q

k
[∑

s∈S π
(
s|vk

)
σis
]
vi ≥ ∑k≥j q

k
[∑

s∈S π
(
s|vk

)
σis
]
vj

⇐⇒ ∑
s∈S

[∑
k≥i q

kπ
(
s|vk

)
vi −∑k≥j q

kπ
(
s|vk

)
vj
]
σis ≥ 0
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where the last inequality holds from (B.1). Next, if playing ~q is best response for the buyer
under π̂, then for all i ∈M , if qi > 0, π̂ satisfies:

∑
j≤i π̂ (j|vi) (vi − vj) = ci

⇐⇒ ∑
j≤i [

∑
s∈S π (s|vi)σjs] (vi − vj) = ci

which holds from (B.2). Therefore, π̂ also implements ~q. To check that the seller’s pay-
off is also V under π̂, recall from Proposition 4 that the seller’s payoff is the social wel-
fare. Thus, it suffices to check that the probabilities of trade breaking down at each
valuation are the same across π and π̂. Under π, conditional on vi, the probability of
no trade is ∑s∈S π (s|vi)∑j≥i σ

j
s; under π̂, the corresponding probability is ∑j≥i π̂ (j|vi) =∑

j≥i [
∑
s∈S π (s|vi)σjs] = ∑

s∈S π (s|vi)∑j≥i σ
j
s.

This thus establishes that it is without loss to restrict attention to direct signal structures
as is done in the main text.

Proof of Theorem 2

Proof. Suppose π implements ~q; thus π satisfies (5.2) and (5.3). Consider the following signal
structure {M, π̂}:

For any i, j ∈M , π̂
(
j|vi

)
=


π (j|vi) , if j < i∑m
j′≥i π (j′|vi) , if j = i

0 , if j > i

Under π̂, the buyer’s payoff from playing investment i is
[∑m

j≤i π̂ (j|vi) (vi − vj)
]
− ci =[∑m

j≤i π (j|vi) (vi − vj)
]
− ci. Thus π̂ satisfies (5.3). Next, we check that π̂ satisfies (5.2),

which can be equivalently written as:

m∑
k≥i

qkπ
(
i|vk

)
vi ≥

m∑
k≥j

qkπ
(
i|vk

)
vj , for all i, j ∈M (B.3)

Fix a i ∈ M . For any j < i, ∑m
k≥j q

kπ̂
(
i|vk

)
= ∑m

k≥i q
kπ̂
(
i|vk

)
since qkπ̂

(
i|vk

)
= 0 for

any k < i; so ∑m
k≥i q

kπ̂
(
i|vk

)
vi ≥ ∑m

k≥j q
kπ̂
(
i|vk

)
vj. Consider j > i next. Note that
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π̂
(
i|vk

)
= π

(
i|vk

)
for any k > i, while π̂ (i|vi) ≥ π (i|vi); so

m∑
k≥i

qkπ̂
(
i|vk

)
vi −

m∑
k≥j

qkπ̂
(
i|vk

)
vj

=
[
qkπ̂

(
i|vi

)
vi − qkπ

(
i|vi

)
vi
]

+
m∑
k≥i

qkπ
(
i|vk

)
vi −

m∑
k≥j

qkπ
(
i|vk

)
vj

︸ ︷︷ ︸
≥ 0 from (B.3)

≥ 0

Thus ∑m
k≥i q

kπ̂
(
i|vk

)
vi = ∑m

k≥j q
kπ̂
(
i|vk

)
vj ∀j 6= i, which hence satisfies (5.2).

This means that π̂ also implements ~q, and the ex-ante payoff of the seller is:

m∑
i=0

qi

 m∑
j≤i

π̂
(
j|vi

) (vi − ci) =
m∑
i=0

qi
(
vi − ci

)
≥

m∑
i=0

qi

 m∑
j≤i

π
(
j|vi

) (vi − ci) ;

whereby the inequality is strict if there exists j > i such that qi > 0 but π (j|vi) > 0 (i.e.∑m
j≤i π (j|vi) < 1).
The highest achievable seller payoff is the solution to the program that chooses π and ~q

to maximize (5.4) subject to constraints (5.2) and (5.3). The feasible set is clearly compact
and the objective function is continuous; thus the maximum exists. Let the maximum payoff
beW ∗ and suppose it is obtained under buyer strategy ~q∗ which is implementable by π∗. Let
ī be the highest investment action that is played with strictly positive probability under ~q∗.
It can be verified that if we move probability ε > 0 from qī∗ to q0∗, constraint (5.2) is relaxed
while constraint (5.3) is unaffected. Thus the resulting buyer strategy is still implemented
by π∗. The seller payoff achieved under the new buyer strategy is W ∗ − ε

(
vī − cī − v0

)
.

Thus, by varying ε, any payoff in the interval
[
W ∗ − qī

(
vī − cī − v0

)
,W ∗

]
is achievable. To

achieve a payoff lower thanW ∗−qī
(
vī − cī − v0

)
, we begin with the buyer strategy that has

shifted the entire qī∗ to q0∗, and induct the argument on the remaining highest investment
action. At q0 = 1, the payoff is v0; thus any payoff in [v0,W ∗] is achievable by π∗.

Proof of Proposition 5

Proof. Under the signal structure in (5.6):

∑
j≤i

π
(
j|vi

) (
vi − vj

)
− ci = π

(
i− 1|vi

) (
vi − vi−1

)
− ci = 0.
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So (5.3) is always satisfied.14 Next, a ~q and the signal structure in (5.6) jointly satisfy (5.2)
if and only if:

[qiπ (i|vi) + qi+1π (i|vi+1)] vi ≥ qi+1π (i|vi+1) vi+1 ∀i ≤ m− 1,

⇐⇒ qi ≥ [vi−vi−1]ci+1

[vi−vi−1−ci]vi q
i+1 ∀i ≤ m− 1.

Thus, (5.2) is satisfied under the signal structure in (5.6) if and only if q ∈ Q.
Next, denote θi = (vi−vi−1)ci+1

(vi−vi−1−ci)vi with the convention that v−1 = 0. So ~q ∈ Q if and only if
qi ≥ θiqi+1 ∀i ≤ m− 1. We claim that the highest seller payoff among all ~q ∈ Q is the ~q that
satisfies qi = θiqi+1 ∀i ≤ m − 1. To see this, suppose for a contradiction that qi > θiqi+1.
Denote Q = qi + qi+1, and denote qi+1 = λQ and qi = (1− λ)Q. Thus 1−λ

λ
> θi. Consider

λ̂ > λ such that 1−λ̂
λ̂

= θi, and decrease qi to q̂i =
(
1− λ̂

)
Q and increase qi+1 to q̂i+1 = λ̂Q.

It is readily seen that condition (5.5) for all other j 6= i will still be satisfied after this change,
so this new buyer strategy is still in Q. Since vi+1− vi− ci+1 > 0 ∀i ≤ m− 1, it implies that
vi+1− ci+1 > vi− ci, thus the change increases the payoff since the probability of taking the
better investment action i+ 1 increases at the expense of the inferior action i. Therefore the
highest seller payoff among all buyer strategy in Q is achieved under the strategy such that
qi = 1

θi−1 q
i−1 ∀i ≥ 1. We can write the probability of taking each investment action i as:

qi = 1
θi−1 q

i−1 = . . . =
( 1
θi−1 ×

1
θi−2 × · · · ×

1
θ0

)
q0 =

i−1∏
j=0

(vj − vj−1 − cj) vj
(vj − vj−1) cj+1︸ ︷︷ ︸

αi

q0

Note that q0 = 1 − ∑m
i=1 q

i = 1 − ∑m
i=1 α

iq0; thus q0 = 1
1+
∑m

j=1 α
j . Let α0 = 1 and we

have qi = αi∑m

j=0 α
j ∀i. The seller’s payoff under this buyer strategy is thus ∑m

i=0 q
i (vi − c) =∑m

i=0
αi∑m

j=0 α
j (vi − ci). Following the argument behind Theorem 2.2, any seller payoff in the

interval
[
v0,

∑m
i=0

αi∑m

j=0 α
j (vi − ci)

]
is achievable by the signal structure in (5.6).

Proof of Proposition 6

Proof. As established in the main text, constraint (5.11) can be ignored. Since this is a
linear program, the solution must lie on a vertex. It is readily verified that q2 = 0 is never
optimal under any γ. Moreover, by writing (5.10) as q1

(
v1−v0−c1

v1−v0

)
≥ q2f (γ) (v2 − v1), if

14If qi = 0, then π
(
·|vi
)
does not affect the equilibrium conditions (5.2) and (5.3).
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q1 = 0, then q2 = 0; thus q1 = 0 also cannot be optimal. This implies that at least two of
constraints (5.8) to (5.10) must bind at the solution.

Next, if
[
q1
(

c1

v1−v0

)
+ q2γ

]
v1 ≥ q2γv2 ⇐⇒ q1

q2 ≥
γ(v2−v1)

c1
v1−v0

, then constraint (5.8) subsumes

(5.9). On the other hand, constraint (5.10) requires that q1

q2 ≥
f(γ)(v2−v1)
v1−v0−c1
v1−v0

. So if f(γ)(v2−v1)
v1−v0−c1
v1−v0

≥

γ(v2−v1)
c1

v1−v0
⇐⇒ γ ≤ c1c2

(v1−v0)(v2−v1+c1) , then constraint (5.9) is always subsumed by (5.8) and

(5.10), so the solution is q1 and q2 such that (5.8) and (5.10) bind. Let:

γ̂ := c1c2

(v1 − v0) (v2 − v1 + c1) .

The following follows from the previous argument and some algebra:

Lemma 4. When γ ≤ γ̂, the solution to program P (γ) is

q1 =
(

v0

1 + [c1 + v0]h (γ)

)
h (γ)

q2 =
(

v0

[1 + [c1 + v0]h (γ)]

)
1

[γ (v1 − v0) + v0]

where h (γ) = [c2−γ(v2−v0)][v1−v0]
[γ(v1−v0)+v0][v1−v0−c1]v1 . The value is:

W (γ) = v0 +
(

v0

[1 + [c1 + v0]h (γ)]

)[
h (γ)

(
v1 − v0 − c1

)
+ v2 − v0 − c2

γ (v1 − v0) + v0

]
,

and

dW (γ)
dγ

=
v0v1(v1−v0)(v1−v0−c1)

v0v1(v1+c2−c1)−v2((v0+c1)(v0+c2)+v1(v1−c1))+(v0+c1)(v2)2


[c1(v0v1+γ(v1−v0)(v2+v1−v0)−c2(v1−v0))−(v1−v0)(v0c2+v0v1+γ((v0)2+(v1)2−v0(v1+v2)))]2 .

Thus dW (γ)
dγ
≤ 0 if and only if:

v0v1 (v1 + c2 − c1)− v2 ((v0 + c1) (v0 + c2) + v1 (v1 − c1)) + (v0 + c1) (v2)2 ≤ 0

⇐⇒ v2−v0−c2

v1−v0−c1 ≤
c2(v1−v0)+v0(v2−v0)

(c1+v0)(v2−v0)−(v1−v0−c1)v1 = ξ.
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Next, consider γ > γ̂. Suppose for a contradiction that constraint (5.9) does not bind;
then this implies that constraints (5.8) and (5.10) must bind. The binding (5.10) implies
that q1

q2 = f(γ)(v2−v1)
v1−v0−c1
v1−v0

<
γ(v2−v1)

c1
v1−v0

where the inequality follows from γ > γ̂. This implies that[
q1
(

c1

v1−v0

)
+ q2γ

]
v1 < q2γv2, so if constraint (5.8) binds, then constraint (5.9) must be

violated. Contradiction.
Therefore, if γ > γ̂, then constraint (5.9) is binding under the solution of program P (γ).

There are then two cases to consider:

Case A: Constraints (5.8) and (5.9) bind. Let (q1
A (γ) , q2

A (γ)) be the solution to the
system of equations whereby (5.8) and (5.9) hold with equality. Solving it, we have:

q1
A (γ) = γv0 (v1 − v0) (v2 − v1)

γv2 (c1 + v0) (v1 − v0) + v0v1 (c1 − γ (v1 − v0))

q2
A (γ) = v0v1c1

γv2 (c1 + v0) (v1 − v0) + v0v1 (c1 − γ (v1 − v0))

Under (q1
A (γ) , q2

A (γ)) , the value is:

WA (γ) :=v0 + q1
A (γ)

(
v1 − v0 − c1

)
+ q2

A (γ)
(
v2 − v0 − c2

)
=v

0v1 [γ (v1 − v0) (v2 − v1) + c1 (v2 − c2 + γ (v1 − v0))]
γv2 (v0 + c1) (v1 − v0)− v0v1 (γ (v1 − v0)− c1) ,

and it can be verified that WA (γ) is strictly decreasing:

dWA (γ)
dγ

= −c
1v0v1 (v1 − v0) [v0 (v2 − v1) (v2 − v1 − c2) + c1 (v2 (v2 − c2)− v0v1)]

[v0 (c1 + γ (v0 − v1)) v1 − γ (c1 + v0) (v0 − v1) v2]2

< −c
1v0v1 (v1 − v0) [v0 (v2 − v1) (v2 − v1 − c2) + c1v2 (v2 − v0 − c2)]

[v0 (c1 + γ (v0 − v1)) v1 − γ (c1 + v0) (v0 − v1) v2]2
< 0

Case B: (5.9) and (5.10) bind. Let (q1
B (γ) , q2

B (γ)) be the solution to the system of
equations whereby (5.9) and (5.10) hold with equality. Solving it, we have:

q1
B (γ) = v0 (v1 − v0) (c2 + γ (v2 − v0))

(v1 − v0 − c1) [v0c2 + v0v1 + γ (v1 − v0) (v2 − v0)]

q2
B (γ) = v0v1

v0c2 + v0v1 + γ (v1 − v0) (v2 − v0)
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Under (q1
B (γ) , q2

B (γ)) , the value is:

WB (γ) :=v0 + q1
B (γ)

(
v1 − v0 − c1

)
+ q2

B (γ)
(
v2 − v0 − c2

)
= v0v1v2

c2v0 + v0v1 + γ (v1 − v0) (v2 − v0) ;

It is immediate that WB (γ) is strictly decreasing.
If constraints (5.8) and (5.9) bind, then

[
q1
(

c1

v1−v0

)
+ q2γ

]
v1 = q2γv2 ⇐⇒ q1

q2 =
γ(v2−v1)

c1
v1−v0

>
f(γ)(v2−v1)
v1−v0−c1
v1−v0

, where the last inequality follows from γ > γ̂. The last inequality

would imply constraint (5.10).
If, instead, constraints (5.9) and (5.10) bind, then the binding (5.10) implies that q1

q2 =
f(γ)(v2−v1)
v1−v0−c1
v1−v0

<
γ(v2−v1)

c1
v1−v0

. The last inequality q1

q2 <
γ(v2−v1)

c1
v1−v0

implies that
[
q1
(

c1

v1−v0

)
+ q2γ

]
v1 <

q2γv2 which means that constraint (5.8) is satisfied.
Therefore, for any γ > γ̂, both WA (γ) and WB (γ) are attainable. The following result

then follows:

Lemma 5. When γ > γ̂, the value function of program P (γ) isW (γ) = max {WA (γ) ,WB (γ)}.
Since both WA and WB are strictly decreasing, W is also strictly decreasing.

The proposition then follows from Lemma 4 and 5.
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