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Abstract

We revisit the classic sequential-search model by Weitzman (1979) in which an agent is

presented with a number of boxes containing uncertain prizes, from which he selects one

prize after sequentially opening the boxes and learning the prize contained within. In our

model, each box is owned by an independent and ex-ante identical designer, whose objective

is to get the agent to select the prize of his box. Each designer persuades the agent to pick

his prize by designing the prize distribution of his box, subject to the constraints that (i)

the expected value of the distribution is a constant, and (ii) the size of prize realizations

is bounded. By focusing on symmetric equilibria, we show that for a range of parameters,

the game only has mixed-strategy equilibria. We fully characterize the symmetric equilibria,

and show that they have a simple linear structure. Moreover, we �nd that a decrease in the

agent�s search cost mitigates competition, thus bene�tting the designers.

Keywords Sequential Search, Information Design
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1 Introduction

Consider a market in which a number of �rms compete by choosing their respective product

designs. A product�s design a¤ects the distribution of each consumer�s match value (Johnson

and Myatt (2006)). A product with a boarder design has less variance in match values; a typical
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consumer would not have a strong preference or aversion towards it. On the other hand, a product

with a more niche design has a higher variance in match values; an individual consumer either likes

it a lot or extremely hates it. Consumers know the type of product designs (how board or how

niche) adopted by each �rm (possibly from �rms�images and their previous o¤ers), but they do

not know their match values with the products. To learn about the match values, consumers have

to engage in sequential search: by paying a search cost, each consumer visits a �rm and learns

about the attributes of its product. How does competition shape �rms�product designs? Would

�rms adopt a common design or di¤erent designs? How does search friction a¤ect the intensity of

competition?

To answer these questions, we adapt the classic sequential-search model of Weitzman (1979)

by assigning a designer to each of the boxes that the agent can sample. Speci�cally, our setting

consists an agent and a number of box designers. Each box designer can choose the distribution of

the prizes contained in his box, subject to two feasibility constraints. First, the sizes of the prizes

are bounded. Second, the expected value of the prize distribution is constant at some value �.

The agent selects at most one prize from the boxes she opened, and the objective of each designer

is to get the agent to select the prize from his own box. The agent knows the distributions chosen

by the designers, but not their prize realizations. By paying a search cost, she can open a box

and learn its prize realization. The agent can sequentially sample unopened boxes in any order,

and stop once she has found a satisfactory prize. We assume that the agent has a relatively high

outside option so that she does not open any box with a degenerate prize distribution at �.

Weitzman (1979) provides a full characterization to the optimal search strategy of the agent,

given the prize distributions of the boxes. Each prize distribution de�nes a reservation value, and

the agent samples boxes in descending order of the reservation values. She stops and claims the best

prize discovered if it exceeds the reservation values of all unopened boxes and her outside option. If

none of the discovered prizes and reservation values of unopened boxes exceed her outside option,

she quits the search altogether without collecting any prize. In his model, the prize distributions of

the boxes are exogenously given; we endogenize these distributions by considering the competition

among the box owners/designers.

The basic tradeo¤ facing each box designer is as follows. A box designer�s expected payo¤

depends on both the probability that his box is sampled (opened) by the agent, and the probability

that the prize of his box is eventually selected by the agent. Increasing the former probability
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calls for a more risky distribution (i.e., a distribution with higher likelihoods of extreme prizes),

which is akin to a niche product design in the opening example. Conversely, increasing the latter

probability calls for a less risky distribution, which is akin to a board design in the opening

example.

At �rst glance, choosing a prize distribution is not a straightforward problem. While o¤ering

a prize above the reservation value (and the agent�s outside option) ensures immediate acceptance

by the agent upon its realization, o¤ering a prize below the reservation value may either lead to

immediate acceptance, delayed acceptance (after the agent opens some other boxes and recalls this

previous prize), or eventual rejection. Complicating the problem is the fact any positive measure

assigned to any prize o¤er would a¤ect the box�s reservation value, and hence the order and the

probability of his box being sampled.

Our �rst result shows that the game has a simple pure-strategy equilibrium if competition is

su¢ ciently intense. In that equilirbium, all designers choose the maximum possible reservation

value by adopting the "riskiest" distribution. We then proceed to analyze the case where com-

petition is less intense, and provide a complete characterization of all symmetric mixed-strategy

equilibria. The key to our characterization is a function that describes the probability that a

designer will be sampled (at some point in the agent�s search) for di¤erent choices of reservation

values. We �nd that in every mixed-strategy equilibrium, this function must exhibit a linear

structure. This linear structure in turn implies that an individual designer�s payo¤ function of

o¤ering di¤erent prizes is also linear. Consequently, any mixed strategy over prize distributions

that supports a linear sampling probability function described above constitutes an equilibrium.

Moreover, our characterization result shows that the mixed-strategy equilibrium is unique up to

the sampling probability function. This in turn implies that the designer�s equilibrium payo¤ is

unique.

The essential uniqueness result allows us to conclude that there is a cuto¤ level of compe-

tition intensity below which the equilibrium is necessarily in mixed-strategy (and above which

the equilibrium is necessarily in pure-strategy). Our model therefore predicts that dispersion in

product designs can arise naturally in a sequential-search setting with ex-ante homogenous �rms

and consumers. This �nding is in interesting contrast to models of price competition with sequen-

tial search (such as Diamond (1971) and Wolinsky (1986)) which �nd that the only equilibrium

outcome is that all �rms charge the same price.
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The essential uniqueness of the symmetric equilibrium also allows us to obtain neat compar-

ative statics results about the e¤ect of search friction on designers�equilibrium payo¤. We �nd

that a decrease in the agent�s search cost would mitigate competition and bene�t the designers.

Intuitively, when the agent has a lower search cost, she is likely to sample more boxes, so the need

to o¤er a risky distribution to solicit the agent�s patronage is lower. This result is in contrast to

existing studies in sequential search (for example, Wolinsky (1986)) which �nd that a lower search

cost intensi�es price competition, thus hurting the �rms. In Section 4, we explain in greater details

that this di¤erence is mainly due to the di¤erent nature of competition in the two models.

Competition involving information design has been studied in Board and Lu (2017), and Au

and Kawai (2017). In Board and Lu (2017), �rms control the information that consumers can learn

about how well a product �ts her needs, and consumers sequentially search for this information.

Di¤erent from our model, all �rms in their model sell an homogeneous product. They show that

whether �rms can observe the agent�s search history has a signi�cant impact on the equilibrium

outcome. Our model di¤ers from theirs as designers prize distributions are independent of each

other; as such, our model can be interpreted as a market for di¤erentiated products.

Au and Kawai (2017) consider a similar model except that the agent learns all prize realizations

simultaneously and costlessly. They show that a linear structure of the payo¤ function is necessary

and su¢ cient for a pure-strategy equilibrium, and analyze the e¤ect of increasing the number

of competitors. We �nd that in a sequential-search setting, designers necessarily play a mixed

strategy when competition is mild. This feature, which can be interpreted as an equilibrium

dispersion in product design, is absent in their model. Moreover, we study the e¤ect of search

friction on designers�choice of distributions.

2 Model

A (female) agent has access to N � 2 boxes containing prizes of unknown sizes, from which she

can pick one eventually (if any). Each box i is controlled by an independent (male) designer,

whose objective is to get the agent to select the prize from his own box. For concreteness, suppose

he receives a payo¤ of 1 if his prize is being selected eventually, and a payo¤ of 0 otherwise.

He maximizes his chance of being selected by designing the distribution of the prizes of his box.

We impose only two constraints on the box designers�problem. First, the sizes of the prizes are
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bounded by some interval normalized to [0; 1]. Second, the distribution must have an expected

value of � 2 (0; 1). We say a distribution is feasible if it satis�es both constraints. The space of

all feasible distributions is denoted by � and a generic element chosen by designer i is denoted by

Fi.

The agent engages in sequential search to learn about the boxes�prizes. Before the search

begins, she observes the distributions chosen by all the designers fFigi=1;2;:::;N , but not their prize

realizations. Then she can proceed to open the boxes in any order. Opening each box requires a

�xed search cost c. By opening a box, she learns about the realized prize of the box. She can then

decide whether to pick that prize and stop the search, or continue her search by opening more

boxes. Recall of any previously discovered prize is allowed. At any stage of her search, she can

stop her search without taking any prize from the opened boxes; and in doing so, she collects her

outside option of u0. We assume that her outside option exceeds � � c.

Asssumption u0 > � � c.

The assumption implies that it is never a best response for each designer to o¤er a degenerate

prize distribution at �, as doing so would make the agent discard his box without sampling it.

We look for the subgame-perfect equilibrium in which the designers adopt a common (possibly

mixed) strategy. To this end, we need to �rst compute the agent�s optimal search strategy given

distributions fFigi=1;2;:::;N . This problem has been solved by Weitzman (1979). He shows that

the agent�s search problem has a remarkably simple solution, which is described below. First the

agent calculates the reservation value Ui of each box de�ned by the equation below:

c =

Z 1

Ui

(x� Ui) dFi (x) . (1)

Then he samples the boxes in descending order of reservation values, and stops whenever the

highest discovered prize (so far) exceeds the reservation values of all the unopened boxes. To

avoid uninteresting complications, we assume that whenever the agent is indi¤erent between several

boxes, she randomizes equally between these boxes. Moreover, she goes for the outside option only

if it is strictly optimal to do so.

As the agent�s search strategy has been pinned down, our analysis will focus on the designers�

choice of prize distribution. We say an equilibrium is symmetric if all designers adopt a common

strategy. A useful preliminary observation is that the set of possible reservation values is bounded

by the feasibility constraints on Fi.
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Lemma 1 The set of feasible reservation values of a box is in the interval
�
� � c; 1� c

�

�
.

The lower bound in the lemma above is obtained by having all the mass of the distribution

concentrated at �; whereas the upper bound is obtained by concentrating all the mass at 0 and

1 (in a way that the distribution has an expected value of �). Throughout the paper, we denote

the highest feasible reservation value by �U � 1� c
�
.

We conclude the model setup by remarking that the choice of prize distribution can be in-

terpreted as choosing a posterior distribution over a binary state. The two feasibility constraints

above correspond to the requirements that any posterior probability must be between zero and

one, and that the expected value of posterior distribution must coincide with the prior.1

3 Characterization of Equilibria

We �rst show that a symmetric pure-strategy equilibrium exists if and only if competition is

su¢ ciently intense. Moreover, this equilibrium necessarily involves all designers adopting the

reservation value �U . We then analyze symmetric mixed-strategy equilibria, and show that they

necessarily have a common linear structure to be described below.

Let�s begin with symmetric equilibria.

Proposition 1 The only symmetric pure-strategy equilibrium involves each designer choosing

reservation value �U . Moreover, such an equilibrium exists if and only if

1� (1� �)N

N (1� �)N�1
� � � c

u0
. (2)

That is, all designers adopt reservation value �U provided that �, u0, c or N is su¢ ciently high.

The intuition is quite simple. First, if all other designers adopt a common prize distribution

with a reservation value U < �U , then one can do better than following them by choosing a very

similar distribution but has a slightly higher reservation value. This increases his chance of being

sampled by the agent, but has almost no impact on the probability of eventually being selected

by the agent conditional on being sampled. Only if the all other designers o¤er �U would such

a deviation be infeasible. In this case, the only possible deviation is to o¤er a lower reservation

value, and the consequence is that the designer�s box would be sampled only after the agent has

1The latter is referred to as the Bayes-plausibility condition in Kamenica and Gentzkow (2011).
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sampled all other boxes, and they all give the low prize 0. Such a deviation is unpro�table if

being sampled (in the last position) is highly unlikely, i.e., � or N is su¢ ciently high. It is also

unpro�table if u0 is su¢ ciently high, in which case the probability of realizing a prize above u0

is too low, and so is the payo¤ conditional on being sampled last. Finally, a high search cost c

discourages the deviation above because an increase in c lowers the reservation value of every prize

distribution. Therefore, to achieve u0, the designer needs to o¤er a more risky prize distribution,

which has a lower probability of realizing a prize above u0.

The rest of this section focuses on symmetric mixed-strategy equilibria. A mixed strategy

consists of a distribution over reservation value, denoted by G 2 4
��
� � c; �U

��
, and a prize

distribution for each reservation value U , denoted by FU (�). The following observations path the

way for our equilibrium construction and characterization.

Lemma 2 Let
�
G; fFUgU2supp(G)

�
be a symmetric mixed-strategy equilibrium. Then

(i) The in�mum of the support of G is u0;

(ii) G does not have any atom, except possibly at �U ; and

(iii)
R �U
U
F ~U (U) dG

�
~U
�
does not have any atom, except possibly at 0.

Proof. (i) Let U be the in�mum of the support of G. If U > u0, then the designer that adopts

reservation value U will be sampled if and only if all other designers�boxes have been sampled

and they all revealed a prize of no higher than U . Thus, the designer can strictly increase his

payo¤ by lowering his reservation value, which would increase the chance that his box reveals a

prize above U . This contradicts that U is the lower bound of G. It is immediate that U < u0 is

impossible, as designers adopting reservation value U would have a zero payo¤.

(ii) If G has an atom at some U < �U , then the expected payo¤ associated with playing slightly

above the atom would strictly exceed that of playing the atom. Let FU be the prize distribution

associated with reservation value U , and �(FU) be the expected payo¤ conditional on being

sampled. Let " > 0 and let F 0 be a mean-preserving spread of FU such that the expected payo¤

conditional on being sampled, �(F 0) > �(FU)� ". As F 0 has a higher reservation value than U ,

its probability of being sampled is strictly higher than FU . Therefore, by choosing " su¢ ciently

small, F 0 is a pro�table deviation from FU .

(iii) Suppose
R �U
U
F ~U (U) dG

�
~U
�
has an atom at some U 6= 0. Then a positive measure of

reservation values ~U > U underG has its prize distribution assigning an atom at U . It is immediate
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that assigning atom to some U 2 (0; u0) is suboptimal, so suppose U 2
�
u0; �U

�
. Conditional on

choosing such reservation value ~U > U , an individual designer�s expected payo¤ can be strictly

increased by slightly increasing the location of the atom in a way that preserves the mean and

reservation value. Speci�cally, let " > 0 and the atom size at U be a. One can replace the atom

at U with two atoms, one of size aU
U+"

at U + ", and the other of size a"
U+"

at 0. The atom at

U + " brings a strictly higher payo¤ (in expectation conditional on its realization) by no less than�
1
2
a
�N�1

, so the deviation is pro�table provided that " is su¢ ciently small. This contradicts the

optimality of prize distribution chosen by designers with reservation value on the support of G.

Consider the problem facing an individual designer, assuming all other designers use a distri-

bution G of reservation values. Suppose that the designer decides to choose a reservation value

U 2 [u0; �U). The probability that the designer�s box would be sampled at some point of the

agent�s search, denoted by � (U), is given by

� (U) =

 
G (U) +

Z �U

U

F ~U (U) dG
�
~U
�!N�1

. (3)

To understand equation (3), note that the designer�s box would be sampled if and only if no other

designers stop the agent�s search prior to him being reached. This requires that for each other

designer j, either (i) box j�s reservation value is below U (which occurs with probability G (U)),

or (ii) box j�s has a higher reservation value but its prize is revealed to be below U (which occurs

with probability
R �U
U
F ~U (U) dG

�
~U
�
).

Denote by �(p;U) the designer�s expected payo¤ of o¤ering a prize p, given the reservation

value U of his box. This expected payo¤ function is related to the sampling probability function

� (�) as follows:

�(p;U) =

8>>><>>>:
0 if p < u0

� (p) if p 2 [u0; U)

� (U) if p 2 [U; 1]

. (4)

Equation (4) is quite intuitive. If the designer o¤ers a prize p > U within a box with reservation

value U , then he is selected with certainty whenever he is sampled, so �(p;U) = � (U). On the

other hand, if the designer�s prize p is below the box�s reservation value U , he will be selected

over the prize of another designer j if either one of the following two events happen: (i) p exceeds

the reservation value Uj of designer j (which occurs with probability G (p)), or (ii) p is below

the reservation value Uj but the realized prize pj of designer j falls below p (which occurs with
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probability
R �U
p
F ~U (p) dG

�
~U
�
).

Using equation (4), the designer�s optimization problem can be stated as follows:

max
fF2�:c=R 1U (x�U)dF (x)g

Z 1

0

�(p;U) dF (p) . (5)

Note that the problem above (and hence its solution) depends on the designer�s choice of U .

Using the notations and observations above,
�
G; fFUgU2supp(G)

�
is a symmetric equilibrium

if for all U on the support of G (i) FU solves problem (5); and (ii)
R 1
0
�(p;U) dFU (p) gives the

designer�s equilibrium payo¤. The proposition below states that a speci�c linear structure on the

sampling probability function � (�) is necessary and su¢ cient for a symmetric equilibrium.

Proposition 2 There exists a pair of values � 2 (0; 1] and Û 2 [u0; �U) such that
�
G; fFUgU2supp(G)

�
is a symmetric mixed-strategy equilibrium strategy if and only if

(i) G has an atom � at �U ;

(ii) G has a support
h
u0; Û

i
[
�
�U
	
;

(iii) for all U 2 supp (G), FU assigns a zero measure to (0; u0); and

(iv) the implied probability of being sampled by o¤ering reservation U (de�ned in equation 3)

satis�es

� (U) =

8>>>>>><>>>>>>:

0 if U < u0

U (1���)N�1

Û
if U 2

h
u0; Û

i
(1� ��)N�1 if U 2 (Û ; �U)
1�(1���)N

N��
if U = �U

. (6)

According to Proposition 2, while there can be multiple symmetric equilibria, these equilibria

are necessarily quite similar. First, they all share a common support, as well as a common atom at

the top, in the reservation-value distribution. Second, the sampling probability � (U) are common

to all equilibria.

In the proof of the proposition, we �rst show that the symmetric equilibrium payo¤ is unique.

This consequently pins down the unique atom � of reservation-value distribution G. We use this

fact to show that any equilibrium payo¤function �(p;U)must be linear; for otherwise, the implied

payo¤would di¤er from the unique equilibrium payo¤. As the sampling probability function � (U)

is related to �(p;U) according to (4), it is necessary that � (U) has a particular linear structure in

equilibrium. In the converse direction, we note that when facing a linear payo¤ function induced
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by the sampling probability (6), any prize distribution that does not assign any measure on (0; u0)

is optimal. Moreover, reservation values in the interval
�
Û ; �U

�
is suboptimal, as lowering it to Û

would not a¤ect the probability of being sampled but would strictly increase the payo¤conditional

on being sampled.

A particularly simple class of strategies involves all designers adopting prize distribution with

binary support of the form
�
0; �U

��c
	
, where U is the box�s reservation value. The corollary below

states that there exists a symmetric equilibrium in which all designers adopt these simple prize

distributions.

Corollary 1 There exists a symmetric mixed-strategy equilibrium in which every designer adopts

a prize distribution with a binary support of the form
�
0; �U

��c
	
, for some U 2

h
u0; Û

i
[
�
�U
	
and

Û 2 [u0; �U).

In the equilibrium described by the corollary above, the agent�s search behavior is quite simple.

As each box contains a lottery that either a positive prize with some probability, she samples the

boxes in descending order of the size of the prize. She stops once she receives some positive prize,

and collects the outside option if all boxes reveal a zero prize.

Next, by inspecting the equilibrium conditions in Proposition 2, we can show that � = 0 and

Û = u0 if and only if inequality (1) holds.

Corollary 2 If inequality (1) holds, then the unique symmetric equilibrium involves each designer

choosing reservation value �U . On the other hand, if inequality (1) does not hold, the symmetric

equilibrium is necessarily mixed.

According to Corollary 2, the symmetric equilibria necessarily involve mixed strategies when

the agent�s outside option u0, and her search cost c are relatively small, and when there are

relatively few competing designers. By interpreting the choice of prize distribution as a �rm�s

choice of product design, Corollary 2 implies that even if all �rms are ex-ante identical, dispersion

in product design necessarily arises in equilibrium when competition is not too intense. This result

stands in interesting contrast to models of price competition with sequential search. The classic

Diamond paradox (Diamond (1971)) states that if consumers have to pay a positive search cost

to learn about the price a �rm charges, the only equilibrium outcome is that all �rms charge the

monopoly price. Reinganum (1979) shows that price dispersion can arise if �rms have di¤erent
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marginal costs. Stahl (1989) shows that equilibrium price dispersion can be obtained if a certain

fraction of consumers is assumed to have a zero search cost. Considering �xed-sample search,

Burdett and Judd (1983) show that equilibrium price dispersion can arise even if consumers

and �rms are ex-ante identical. Our analysis shows that when �rms compete in product design,

dispersion in product design can arise even if consumer�s search is sequential, and all �rms and

consumers are ex-ante identical.

We conclude this section by discussing a related �nding in our previous work. Au and Kawai

(2017) consider a setting in which the prizes realizations of all boxed are simultaneously and

costlessly revealed to the agent, and show that a certain linear structure of payo¤ function is

necessary for an equilibrium. The key di¤erence between the current study and Au and Kawai

(2017) is the nature of competition. Speci�cally, whereas designers in Au and Kawai (2017)

compete only in getting selected by the agent, designers in the current setting compete in two

fronts: getting sampled by the agent, and getting selected by the agent. This multi-dimensional

competition complicates the analysis as a designer can beat another designer not by o¤ering a

prize exceeding that of the other designer, but exceeding the reservation value of the other designer

(so that the other designer�s o¤er would not be inspected at all). The di¤erence in the nature

of competition results in a remarkable di¤erence in the resulting equilibrium: designers in the

current setting necessarily play a mixed strategy whenever inequality (1) does not hold; whereas

senders in Au and Kawai (2017) can always play a pure strategy in equilibrium. Intuitively, if

all designers adopt a common prize distribution with reservation value below �U , it is pro�table

for an individual designer to deviate to o¤er a box with a higher reservation value so that the

agent would necessarily sample him before other designers. Also, our search setting allows us to

investigate the e¤ect of search friction on designers�equilibrium behavior, which we address in the

next section.

4 Comparative Statics

In this section, we study how the degree of competition a¤ects the equilibrium outcome. Specif-

ically, we analyze how the equilibrium responds to changes in the agent�s search environment,

including the number of boxes N , her outside option u0, and her search cost c.

Our main comparative statics result is as follows.
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Proposition 3 The designer�s equilibrium payo¤ decreases if

(i) the number of designers N increases;

(ii) the agent�s outside option u0 increases; or

(iii) the agent�s search cost c increases.

The increases above are strict whenever (1) does not hold.

Part (i) and (ii) of the proposition are quite intuitive. An increase in the number of designers

lowers the chance that each individual designer is selected. An increase in the agent�s outside

option lowers the likelihood that each designer�s realized prize can outperform the outside option.

More interestingly, part (iii) of Proposition 3 states that an increase in the agent�s search cost

would also harm the designers. The intuition is as follows. As the agent�s search cost goes up, she

is less willing to sample many boxes. As a result, the designers must improve their o¤ers by raising

the reservation values of their boxes. However, a high reservation value lowers the likelihood that

a good prize realizes, thus hurting the designer�s payo¤.

Our result that an increase in search cost intensify competition stands in interesting contrast to

existing studies in consumer search. In the setting of Wolinsky (1986) and Anderson and Renault

(1999), consumers sequentially search for products that give them high match values, and �rms

compete by choosing prices (rather than the match-value distribution). It is found that an increase

in consumers�search cost raises the equilibrium price and thus the �rms�pro�t. Intuitively, a high

search cost mitigates competition among �rms: knowing that the consumers are less willing to

search for competing products in the market, each sampled �rm e¤ectively face a larger demand

and can a¤ord to charge a higher price.

While both our model and the consumer-search model involve agent/consumer searching se-

quentially for an satisfactory prize/match value, the nature of competition in the two models are

markedly di¤erent. In our model, the designers�choices of prize distributions direct the agent�s

search. Therefore, designers compete through prize distributions, which must be appealing enough

(i.e., having a high reservation value) to stand a good chance of being sampled and inspected. On

the other hand, consumers in Wolinsky�s model conduct a random search, and the prices chosen

by �rms do not a¤ect consumer�s search behavior. As a result, a high search cost is bad news for

designers in our setting as the agent is less inclined to search, and the designers must improve

their o¤ers in reservation value. On the other hand, a high search cost is good news to �rms in

Wolinsky�s model, as they know that conditional on being sampled, the consumer is less likely to
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go for a competing product.

We conclude this section by specifying how the reservation-value distribution responds to

changes considered in Proposition 3.

Corollary 3 If either N , u0, or c increases, the reservation-value distribution has a larger atom

� at the top, while its support
h
u0; Û

i
[
�
�U
	
shrinks.

Corollary 3 is in accord with the intuition described above. When either the number of de-

signers, the agent�s outside option or search cost increases, the competition among the designers

intensi�es, inducing them to o¤er more aggressive reservation values for their boxes. Bar-Isaac,

Caruana, and Cuñat (2012) �nd that when search cost decreases, a fraction of �rms respond by

switching from board designs to niche designs. In contrast, Corollary 3 �nds that when search

cost decreases, designers respond by lowering the probability of adopting risky distributions.

5 Concluding Remarks

In this paper, we consider a sequential-search setting in which a number of designers compete by

choosing prize distributions. When competition is relatively mild, only mixed-strategy equilibria

exist, suggesting that dispersion in product designs can naturally arise in equilibrium. We also

show that a linear structure of the sampling probability function is necessary and su¢ cient for

symmetric equilibria. This characterization result allows us to conduct comparative statics, and

we �nd that the competition among designers is mitigated if search friction decreases.

There are a couple of promising directions for future research. First, our analysis assumes that

the agent�s outside option is so high that boxes with a degenerate distribution will not be sampled.

Future studies can consider the case where the agent has a lower outside option. While it is clear

that the linear structure we identify remains a su¢ cient condition for an equilibrium, whether

it is also necessary requires further investigation. Second, our model only considers competition

over product designs, while abstracting away any form of price competition. A model in which

�rms compete both in price and product design may explain price (and product design) dispersion

without assuming heterogenous consumers or �rms.
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Appendix

Proof of Lemma 1: It is a standard result that if F 0 is a mean-preserving spread of F , then

the reservation value of F 0 exceeds that of F . Thus, the maximum reservation value is obtained

by a distribution that assigns probability � to prize 0 and probability 1 � � to prize 1, as there

does not exist any strict mean-preserving spread of such a distribution. Likewise, the minimum

reservation value is obtained by a distribution that assigns probability 1 to prize �, as there does

not exist any strict mean-preserving contraction of such a distribution.

Next, note that any reservation value in the interval
�
� � c; 1� c

�

�
can be attained by some

Fi.To see this, consider a distribution function that concentrates all masses on prizes 0 and r, with

Pr (r) = �
r
. The reservation value of such a distribution is (� � c) r

�
. By varying r in the interval

[�; 1], all reservation values in the interval
�
� � c; 1� c

�

�
can be attained. Q.E.D.

Proof of Proposition 1: Suppose it is a symmetric pure-strategy equilibrium for each de-

signer to adopt F . Suppose also that the reservation value of F is U < �U . An individual designer�s

equilibrium payo¤ is the product of following two terms: (i) the probability of being drawn, and

(ii) the expected payo¤ conditional on being drawn. Given that all designers o¤er an identical

distribution, the probability of being drawn is at most

1

N
+
1

N
F (U) +

1

N
F (U)2 + :::+

1

N
F (U)N�1 =

1

N

1� F (U)N

1� F (U) ,

which is strictly less than 1. Next, denote by �(p) the designer�s expected payo¤ conditional

on being drawn and prize p realizing. His expected payo¤ conditional on being drawn is thusR 1
0
�(p) dF (p).

Let " > 0 and F 0 be a mean-preserving spread of F such that
R 1
0
�(p) dF 0 (p) >

R 1
0
�(p) dF (p)�

". By deviating to F 0, the designer�s box is drawn with probability 1 and the expected payo¤ con-

ditional on being drawn decreases by no more than ". Therefore, for " su¢ ciently small, such a

deviation is de�nitely pro�table. As a result, if a symmetric pure-strategy equilibrium exists, its

associated reservation value is necessarily the maximum possible, which equals �U .

Next we identify conditions under which it is an equilibrium for all designers to choose a reserva-

tion value Ui = �U . The payo¤of following the candidate equilibrium strategy is 1
N

�
1� (1� �)N

�
.

The most pro�table deviation is to choose a distribution that maximizes the probability of being

selected by the agent, conditional on being the last box opened. Note that the conditioning event

14



occurs if and only if all other boxes have a realized prize of 0. Therefore, the deviation maxi-

mizes the probability that a prize no less than u0 realizes, and the corresponding payo¤ is thus

(1� �)N�1� ��c
u0
. The condition for such a strategy to constitute a symmetric equilibrium is thus

inequality (2). It is straightforward to verify that the left-hand side of the inequality is strictly

convex in �, equal to 0 if � = 0, and negative if � is su¢ ciently small. Therefore, the inequality

holds if and only if � � �̂ for some �̂. The e¤ects of an increase in c, u0, and N are immediate.

Q.E.D.

Proof of Proposition 2: We begin with a simple observation that the support of any

equilibrium distribution of reservation values takes the form
h
u0; Û

i
[
�
�U
	
for some Û 2 [u0; �U).

Lemma 3 The support of any symmetric-equilibrium reservation-value distribution takes the formh
u0; Û

i
[
�
�U
	
for some Û 2 [u0; �U).

Proof. Suppose I is a maximal open interval in
h
u0; Û

i
over which the equilibrium reservation-

value distribution assigns a zero measure. Then reservation value sup I necessarily gives a strictly

lower pro�t than that of inf I, as they are both associated with the same probability of being

sampled, but the latter is associated with a strictly higher probability of being selected conditional

on being sampled. This is because there is a mean-preserving contraction of Fsup I that allows the

designer to receive a higher expected payo¤ conditional on being sampled than that of Fsup I .

To see this, one can modify Fsup I as follows. Let "; "0 > 0 and take a small positive measure

B � fp : p < sup Ig such that Fsup I (B) < " and a small positive measure A � fp : p � sup Ig

such that Fsup I (A) < "0. Now if "0 is large relative to ", the two measures can be merged to form

an atom at some U 0 > inf I. This strictly increases the probability of being selected conditional

on the realization of B without a¤ecting that of A. This contradicts that both sup I and inf I are

on the support of G.

The lemma below establishes that the designer�s (ex-ante) payo¤ in every symmetric equilib-

rium is identical.

Lemma 4 The symmetric equilibrium payo¤ of a designer is unique.

Proof. Suppose inequality (2) does not hold so that there are only mixed-strategy equilibria.

Suppose there are two distinct equilibria
�
G; fFUgU2supp(G)

�
and

�
G0; fF 0UgU2supp(G0)

�
with distinct

payo¤s � and �0 such that �0 > �. Denote by � (�) and �0 (�) the respective probabilities of being
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sampled in these equilibria. By Lemma 2, reservation value u0 is on the supports of both equilibria.

As boxes with reservation value u0 is sampled if and only if all other boxes have a prize realization

below u0, we have N� = 1 � (� (u0))
N

N�1 . Therefore, � (u0) > �0 (u0). On the other hand, it

is optimal for a designer with reservation value u0 to maximize the probability of realization of

prizes above u0, which can be achieved by the prize distribution with binary support
�
0; �u0

��c
	
.

Therefore, � = � (u0) ��cu0 and �
0 = �0 (u0)

��c
u0
, which implies that �0 (u0) > � (u0), a contradiction.

Next, if inequality (2) holds, a pure-strategy equilibrium in which all designers choose prize dis-

tribution with support f0; 1g exists. In this equilibrium, the designers�payo¤is� = 1
N

�
1� (1� �)N

�
.

Suppose there is another mixed-strategy equilibrium that gives a payo¤�0 > � = 1
N

�
1� (1� �)N

�
.

Then the same argument as above implies that �0 (u0) < (1� �)N�1, so �0 = �0 (u0)
��c
u0

<

(1� �)N�1 ��c
u0
. However, by inequality (2), (1� �)N�1 ��c

u0
� �, a contradiction. Next sup-

pose �0 < 1
N

�
1� (1� �)N

�
. Then �0 (u0) > (1� �)N�1. However, this is impossible as the

probability that all N � 1 boxes fail to deliver a prize above u0 is maximized at (1� �)N�1.

It follows from Reny (1999) that the game between the designers admit a symmetric equi-

librium. Using Lemma 4, there is a unique symmetric-equilibrium payo¤, let�s denote it by ��.

Let
�
G; fFUgU2supp(G)

�
be a symmetric mixed-strategy equilibrium. We show below that it must

satis�es conditions (i) to (iv) in the proposition statement.

First, we show that G must have an atom at �U of size �, implicitly de�ned by

�� =
1� (1� ��)N

N�
. (7)

To see this, note that by choosing reservation value �U (thus o¤ering prize distribution with support

f0; 1g), a designer is competing e¤ectively only against other designers that adopt the same prize

distribution. The corresponding payo¤ is thus

�

26666666666664

(1� �)N�1 + (N � 1)� (1� �)N�2 1
2
+

0@ N � 1

2

1A�2 (1� �)N�3 1
3
+ :::+ �N�1 1

N

+

0@(N � 1)� (1� �)N�2 1
2
+

0@ N � 1

2

1A�2 (1� �)N�3 1
3
+ ::::+ �N�1 1

N

1A (1� �)
+

0@0@ N � 1

2

1A�2 (1� �)N�3 1
3
+ ::::+ �N�1 1

N

1A (1� �)2 + :::::+ �N�1 1
N
(1� �)N�1

37777777777775
.

In the payo¤ expression above, the �rst line in the bracket is the probability that the designer

is the �rst one being sampled, and the second line is the probability that he is the second one
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being sampled, and the other terms can be similarly interpreted. Moreover, conditional on being

sampled, he is selected with probability � (the size of atom at prize 1). Straightforward algebra

shows that we can simplify the expression above into 1�(1���)N
N�

. This proves that all symmetric

equilibrium must satisfy condition (i) in the proposition statement, with � implicitly de�ned in

equation (7).

Recall that in a symmetric equilibrium
�
G; fFUgU2supp(G)

�
, the probability � (U) of being

sampled by o¤ering a box of reservation value U is given by equation (3). We explain below that

this function necessarily takes the following form.

�� (U) =

8>>>>>><>>>>>>:

0 if U < u0
��

��cU if U 2
h
u0; Û

i
��

��c Û if U 2 (Û ; �U)
1�(1���)N

N��
if U = �U

: (8)

where � is de�ned in equation (7), and Û = sup
�
supp (G) n

�
�U
	�
.

Suppose �rst that � (�) = �� (�). De�ne an individual designer�s payo¤ function �� (p;U)

of o¤ering prize p within a box of reservation U using equation (4). Consider the designer�s

optimization problem (5) for some U 2
h
u0; Û

i
. We show below that the optimized value is

exactly ��. The Lagrangian of the problem is

L =

Z 1

0

[�� (p;U) + � (max f0; p� Ug � c)] dF (p) , (9)

where � is the Lagrange multiplier. As shown in Kamenica and Gentzkow (2011), given a �, the

problem of maximizing the Lagrangian can be solved by �nding the concave closure (in p) of the

function �� (p;U) + � (max f0; p� Ug � c). If � > ��

��c , then the Lagrangian is maximized by a

binary prize distribution with support f0; 1g, contradicting that U < �U . On the other hand, if

� < ��

��c , then the only distributions that maximize the Lagrangian assign a zero measure to prizes

above U , but these distributions give reservation values strictly below U ; again a contradiction.

Therefore, it is necessary that � = ��

��c . Now with � = ��

��c , the concave closure of of the

function �� (p;U) + � (max f0; p� Ug � c) is simply ��

��c (p� c), so the maximized value of the

Lagrangian is simply ��. Therefore, the maximized value of problem (5) is ��. Note that as

�� (p;U)+� (max f0; p� Ug � c) < �� over the interval (0; u0), it is strictly suboptimal to assign a

positive measure over prizes (0; u0). Note also that payo¤�� can be achieved by a prize distribution

with binary support
�
0; �U

��c
	
.
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We show that it is necessary that � (U) = �� (U) for all U 2
h
u0; Û

i
. Suppose �rst that

� (U) > �� (U) for some U 2
h
u0; Û

i
. Then as �� = � (U)

R 1
0
�(p;U)
�(U)

dFU (p), we must haveR 1
0
�(p;U)
�(U)

dFU (p) <
��

��(U) =
��c
U
. However, this is impossible as a designer o¤ering a reserva-

tion value U can always guarantee himself a payo¤ of ��c
U
conditional on being sampled, simply

by o¤ering a prize distribution with binary support
�
0; �U

��c
	
.

Next suppose � (U) < �� (U) for some U 2
h
u0; Û

i
. Then there must exist a p 2 [u0; U)

such that �(p;U) > �� (p;U) for otherwise,
R 1
0
�(p;U) dF (U) <

R 1
0
�� (p;U) dF (U) for all F ,

which implies
R 1
0
�(p;U) dF (U) < ��. By equation (4), � (p) > �� (p). Moreover, by Lemma 3,

p 2 supp (G). This is, however, impossible as shown in the last paragraph.

We show below that Û is necessarily equal to ��c
�� (1� ��)

N�1. We have shown above that

conditional on o¤ering a box with reservation value U 2
h
u0; Û

i
, an optimal prize distribution

is one that has a binary support
�
0; �U

��c
	
, yielding a conditional payo¤ of ��c

U
. As a box with

reservation value Û has a probability (1� ��)N�1 of being sampled, the expected payo¤ of such

a box is therefore (1� ��)N�1 ��c
Û
. Equating it with �� gives Û = ��c

�� (1� ��)
N�1.

We have thus shown that every symmetric equilibrium must satisfy condition (ii) and (iv) in

the proposition statement, with � de�ned in equation (7), and Û = ��c
�� (1� ��)

N�1. As the

equilibrium sampling probability is �� (�), and thus the payo¤ function is �� (p;U), we know that

any optimal prize distribution for U 2
h
u0; Û

i
must assign a zero measure to prizes (0; u0), thus

proving condition (iii) is necessary in equilibrium.

It remains to show that a strategy
�
G; fFUgU2supp(G)

�
that satis�es conditions (i) to (iv)

is an equilibrium. To this end, it su¢ ces to note that if all other designers adopt strategy�
G; fFUgU2supp(G)

�
that satis�es conditions (i) to (iv), it is optimal for a designer to follow as

well.

Consider �rst the choice of reservation values. Consider problem (5) with �(p;U) = �� (p;U),

and U 0 2
�
Û ; �U

�
. It has a Lagrangian given by (9). As U 0 > Û , it is necessary that the Lagrange

multiplier � equals ��

��c
1�Û
1�U 0 . The optimized payo¤ conditional on reservation value U

0 is thus

��c+ ��

��c� =
��

��c

�
� � 1�Û

1�U 0 c
�
< ��.

In contrast, we have already shown above that if U 2
h
u0; Û

i
, the Lagrange multiplier for

problem (5) is ��

��c . The designer�s problem is thus equivalent to �nding the concave closure of the

function
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�� (p;U) +
��

� � c (max f0; p� Ug � c) =

8<: � ��

��cc if p < u0
��

��c (p� c) if p 2 [u0; 1]
.

It is thus clear that any prize distribution that delivers a reservation value U and assigns a zero mea-

sure to (0; u0) would achieve an expected payo¤of ��. Similarly, as � satis�es equation (7), o¤ering

reservation value �U would also bring an expected payo¤ of ��. Therefore,
�
G; fFUgU2supp(G)

�
is

a best response to other designers playing
�
G; fFUgU2supp(G)

�
. Q.E.D.

Proof of Corollary 1: By Proposition 2, it su¢ ces to show that there exists a reservation-

value distribution G such that when coupled with the set of prize distributions described in the

proposition statement, equation (6) holds. Using equation (3), this means that we need a function

G such that for U 2
h
u0; Û

i
(1� ��)N�1

Û
U =

 
G
�
Û
�
�
Z Û

U

� � c
~U
dG
�
~U
�
+ � (1� �)

!N�1
.

Di¤erentiating both sides of the equation above with respect to p and rearranging, we get dG(U)
dU

=

1���
��c

1
N�1

�
U

Û

� 1
N�1
. Therefore, G takes the form:

G (U) =
1� ��
� � c

1

NÛ
1

N�1

�
U

N
N�1 � u

N
N�1
0

�
. (10)

Q.E.D.

Proof of Corollary 2: By Proposition 2 and 1, it is without loss to focus on prize distribution

with binary support
�
0; �U

��c
	
. Recall from the proof of Proposition 2 that the equilibrium payo¤

of o¤ering a reservation value Û can be expressed as �� = ��c
Û
(1� ��)N�1. Substituting Û =

��c
�� (1� ��)

N�1 into equation (10) and using the fact that G
�
Û
�
= 1� �, we have

N

 �
�

1� (1� ��)N
� N

N�1

�
�

�

1� (1� ��)N
� 1

N�1
!N�1

N

=
u0
� � c . (11)

It can be shown that the left-hand side of equation (11) above is increasing and continuous

in �,2 equals 0 when � = 0, and equals N (1��)N�1

1�(1��)N when � = 1. Therefore, for any u0 2

2To see the left-hand side of equation is increasing, note that �
1�(1���)N is increasing in �, and the left-hand

side is increasing in the term �
1�(1���)N .
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�
� � c; (� � c) N(1��)

N�1

1�(1��)N

�
, equation (11) admits a solution in the interval (0; 1). On the other

hand, if inequality (2) holds, u0 � (� � c) N(1��)
N�1

1�(1��)N , and equation (11) admits no solution.

Proof of Proposition 3: Using equation (7), equation (11) can be re-written as

�
1

��
�N

�N�1
N
�
1

��

� 1
N

=
u0
� � c . (12)

It is immediate that the left-hand side of equation (12) is decreasing in ��, and is increasing in

N . Consequently, the solution of equation in �� is decreasing in u0, c, and N . Q.E.D.

Proof of Corollary 3: Recall the left-hand side of equation (11) is increasing in �. An

increase in c therefore increases the solution of equation (11) in �.

Next, recall from the proof of Proposition 2 that Û = ��c
�� (1� ��)

N�1. Together with equation

(7), we have Û = N (� � c) �(1���)
N�1

1�(1���)N . As sgn
�
@Û
@�

�
= sgn

�
1�(1���)N

N�
� �

�
= sgn (�� � �) is

negative, an increase in c necessarily lowers Û . Q.E.D.
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