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Abstract

We consider stability concepts for random matchings where agents have preferences over

objects and objects have priorities for the agents. When matchings are deterministic,

the standard stability concept also captures the fairness property of no (justified) envy.

When matchings can be random, there are a number of natural stability / fairness

concepts that coincide with stability / no envy whenever matchings are deterministic.

We formalize known stability concepts for random matchings for a general setting that

allows weak preferences and weak priorities, unacceptability, and an unequal number of

agents and objects. We then present a clear taxonomy of the stability concepts and

identify logical relations between them. Furthermore, we provide no envy / claims

interpretations for some of the stability concepts that are based on a consumption

process interpretation of random matchings. Finally, we present a transformation from

the most general setting to the most restricted setting, and show how almost all our

stability concepts are preserved by that transformation.
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1 Introduction

We consider a model of matching agents to objects in which agents have preferences over

objects and objects have priorities for the agents. This general model has many applications,

e.g., for school choice (Abdulkadiroğlu and Sönmez, 2003): in Boston (Abdulkadiroğlu,

Pathak, Roth, and Sönmez, 2005) and New York (Abdulkadiroğlu, Pathak, and Roth, 2005),

centralized matching schemes are employed to assign students to schools on the basis of

students’ preferences over schools and students’ priorities to be admitted to any given school.

A school’s priority for a student might include issues such as geographical proximity and

whether the student has a sibling at the school already, among others. Two surveys on school

choice can be found in Abdulkadiroğlu (2013) and Pathak (2011).

Stability and no envy: For the most basic model we discuss in Section 2, the fundamental

stability concern is the following: no agent i should prefer an object o matched to another

agent j who has lower priority for the object than i. In school choice, this notion of stability

can be interpreted as the elimination of justified envy (Abdulkadiroğlu and Sönmez, 2003;

Balinski and Sönmez, 1999): a student can justifiably envy the match of another student

to a school if he likes that school better than his own match and he has a higher priority

(with a lower priority, envy might be present as well but is not justifiable). For the most

general model we discuss in Section 3, (weak) stability is equivalent to individual rationality,

non-wastefulness, and no justified envy. To simplify language, we from now on will refer to no

justified envy simply as no envy. While the important role of stability in matching problems

has long been recognized,1 no envy, which is a relaxation of stability, has only recently gained

independent interest. In particular, no envy has been considered in constrained matching

models (Ehlers, Halafir, Yenmez, and Yildirim, 2003; Kamada and Kojima, 2017) and in

senior level labor markets (Blum, Roth, and Rothblum, 1997) and shown to have similar

structural properties as stability (Wu and Roth, 2016). The well-known deferred-acceptance

algorithm (Gale and Shapley, 1962) computes a deterministic matching that is (weakly)

stable and hence envy free.

Random and fractional matchings: Most articles on school choice and similar models

have considered deterministic matchings. Instead, we consider random matchings that specify

the probability of each agent being matched to the various objects. Random matchings are

1See, e.g., the advanced information document for the Sveriges Riksbank Prize in Economic Sciences in
Memory of Alfred Nobel 2012 awarded to A.E. Roth and L.S. Shapley “for the theory of stable allocations
and the practice of market design” URL: Advanced Information “Nobel Prize 2012”.
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useful to consider for several reasons. Firstly, randomization allows for a much richer space of

possible outcomes and may be essential to achieve fairness properties such as anonymity2 and

(ex-ante) equal-treatment-of-equals.3 It thus allows for a richer set of mechanisms with the

possibility of better properties: as pointed out by Kesten and Ünver (2015), a broader view of

fairness has largely been ignored in prior work. Secondly, the framework of random matchings

also helps to reason about fractional matchings that capture time sharing arrangements

(Roth, Rothblum, and Vande Vate, 1993; Teo and Sethuraman, 1998; Doğan and Yildiz,

2016). For example, an agent may allocate his time among several of his matches rather than

exclusively being matched to a single object. Mathematically, we then simply consider the

probability of an agent getting an object as the match of a corresponding fraction of time

to the object. Thirdly, randomization has proved to be useful to circumvent impossibility

results in social choice (Bogomolnaia and Moulin, 2001; Brandl et al., 2016; Dobzinski et al.,

2006; Gibbard, 1977).

Whereas particular stability concepts for random / fractional matchings have been

introduced and studied in various papers, the picture of how exactly they relate to each

other and how their formulations change for various models (allowing for indifferences,

unacceptability, and a different number of agents / objects) has, to the best of our knowledge,

not been studied until now. This gap in the literature is especially important to address with

the renewed interest in recent years in random matching mechanisms.

Overview of the article: We consider some existing stability concepts (ex-post and

fractional stability, Roth et al., 1993, and Teo and Sethuraman, 1998; ex-ante / strong

stability, Roth et al., 1993, and Kesten and Ünver, 2015; and claimwise stability, Afacan,

2015) and also propose a new one, robust ex-post stability, that is nested between ex-ante

stability and ex-post stability. Many of the concepts have been defined and then subsequently

studied only for restricted settings that use one, some, or all of the following restrictions:

(1) preferences are strict, (2) priorities are strict, (3) there is an equal number of agents

and objects, (4) all objects and agents are acceptable to each other. We generalize all the

stability concepts mentioned above to the general random matching setting that allows for

indifferences in preferences and priorities, and allows for unacceptability as well as for an

unequal number of agents and objects. The general setting includes as a special case the

hospital-resident setting in which hospitals have multiple positions but residents are indifferent

2An anonymous mechanism does not depend on the names of the agents.
3A mechanism satisfies (ex-ante) equal-treatment-of-equals if two equal agents (with the same preferences)

receive the same (ex-ante) allocation.

3



among all such positions at the same hospital; another example is the previously mentioned

school choice setting. The general model and our insights into the corresponding stability

notions will provide a crucial stepping stone for further work on axiomatic, algorithmic, and

market design aspects of random stable matching.

In particular, we present a taxonomy of the stability concepts for random matching of

objects when objects have priorities for agents. Our study helps clarify the relations between

the different stability / fairness concepts mentioned above. This taxonomy also points the

market designer to consider a scale of criteria of different “stability-strengths” while designing

mechanisms, which additionally could also satisfy other properties (e.g., efficiency or strategic

robustness). Furthermore, we provide no envy / claims interpretations for some of the stability

concepts that are based on a consumption process interpretation of random matching. Finally,

we present a transformation from the most general setting (without any restrictions) to the

most restricted setting (with restrictions (1) – (4)), and show how almost all our stability

concepts are preserved by that transformation.

The article proceeds as follows. In Section 2 we introduce the base model in which: (1)

preferences are strict, (2) priorities are strict, (3) there is an equal number of agents and

objects, (4) all objects and agents are acceptable to each other. For this model, stability

and no envy coincide. We introduce the random stability concepts ex-ante stability, robust

ex-post stability, ex-post stability, fractional stability, and claimwise stability and provide

consumption process interpretations for fractional and claimwise stability that are based on

specific envy / claim notions. We discuss the convexity of the stability concepts for random

matchings and present a complete taxonomy of the stability concepts for our base model (see

Figure 1).

Then, we extend the base model in two ways. First, in Section 2.3, we drop model

assumptions (1) and (2) and allow preferences and priorities to be weak. The switch from

strict preferences / priorities to weak ones requires various adjustments in definitions and the

consumption process interpretation, but once these adjustments are made, results change

very little (see Figure 2). Second, we drop model assumptions (3) and (4) and [allow for

an unequal number of agents and objects] and [that agents / objects find some objects /

agents unacceptable]. With this change, we add the well-known criteria of non-wastefulness

and individual rationality: for the general model that is considered now, (weak) stability is

equivalent with no envy, non-wastefulness, and individual rationality. We then formalize all

stability concepts with the appropriate additional requirements of non-wastefulness and/or

individual rationality when necessary to preserve the hierarchy we established in the base
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model. We use a transformation from the most general setting to the most restricted setting

for random matchings to show how almost all our stability concepts are preserved by that

transformation4 and to establish a complete taxonomy of stability concepts for the general

model (see Figure 4).

2 The base model

Let N be a set of n agents and O be a set of n objects . Each agent i ∈ N has preferences

�i over O and each object o ∈ O has priorities �o for N (although using the same notation,

the reason we use the term priorities instead of the term preferences is that objects are not

considered as economic agents in our model). Agents’ preferences are strict orders over O

and objects’ priorities are strict orders over N .

We’ll explain later on how the model and results extend when preferences and priorities

can be weak (Section 2.3) and when allowing for unacceptability as well as different numbers

of agents and objects (Section 3).

A random matching p is a bistochastic n× n matrix [p(i, o)]i∈N,o∈O, i.e.,

for each pair (i, o) ∈ N ×O, p(i, o) ≥ 0, (1)

for each i ∈ N,
∑
o∈O

p(i, o) = 1, and (2)

for each o ∈ O,
∑
i∈N

p(i, o) = 1. (3)

Random matchings are often also referred to as fractional matchings (Roth et al., 1993;

Teo and Sethuraman, 1998). For each pair (i, o) ∈ N × O, the value p(i, o) represents the

probability of object o being matched to agent i and agent i’s match is the probability vector

p(i) = (p(i, o))o∈O. A random matching p is deterministic if for each pair (i, o) ∈ N ×O,

p(i, o) ∈ {0, 1}. Alternatively, a deterministic matching is an integer solution to linear

inequalities (1), (2), and (3).

By Birkhoff (1946) and Von Neumann (1953), each random matching can be represented

as a convex combination of deterministic matchings: a decomposition of a random matching

4With one exception: due to some lack of symmetry in the definition of claimwise (weak) stability, full
equivalence under the transformation fails (Proposition 30 and Example 7).
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p into deterministic matchings Pj (j ∈ {1, . . . , k}) equals a sum p =
∑k

j=1 λjPj such that for

each j ∈ {1, . . . , k}, λj ∈ (0, 1] and
∑k

j=1 λj = 1.

2.1 Stability concepts

Definition 1 (No envy / stability for deterministic matchings). A deterministic

matching p has no envy or is stable if there exists no agent i who is matched to object o′

but prefers object o while object o is matched to some agent j with lower priority than i, i.e.,

there exist no i, j ∈ N and no o, o′ ∈ O such that p(i, o′) = 1, p(j, o) = 1, o �i o′, and i �o j.

Stability was first introduced for two-sided matching markets by Gale and Shapley (1962).

The terminology of no justified envy is usually used in the context of the so-called school

choice model (Balinski and Sönmez, 1999; Abdulkadiroğlu and Sönmez, 2003). Note that we

use the shorter expression no envy for the somewhat more precise no justified envy (see also

Wu and Roth, 2016).

A deterministic matching p is stable if and only if it satisfies the following inequalities

(Roth et al., 1993):5 for each pair (i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′�io

p(i, o′) +
∑
j:j�oi

p(j, o) ≥ 1. (4)

The well-known deferred-acceptance algorithm (Gale and Shapley, 1962) computes a

deterministic matching that is stable.

We now define five stability concepts for random matchings that all coincide with deter-

ministic stability when the random matching is deterministic.

The first stability concept for random matchings we consider was discussed by Roth et al.

(1993) under the name of strong stability for the marriage market matching model. Recently,

for a school choice model, Kesten and Ünver (2015) obtained the same stability concept by

extending no envy from matched whole objects to matched probability shares of objects;

the intuition here is that a higher priority agent i envies a lower priority agent j for any

probability share of object o that agent j has if he would like to get a higher probability of

it himself. We will discuss and prove later in this section that Aharoni and Fleiner (2003)

introduced a stability concept for a more general model of so-called hypergraphic preference

systems that coincides with ex-ante stability.

5Roth et al. (1993) consider a more general model that lies between the models we discuss in Section 2.3
and Section 3. We here use the restriction of their original inequalities to our base model.
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Definition 2 (No ex-ante envy / ex-ante stability). A random matching p has no

ex-ante envy or is ex-ante stable if there exists no agent i who is matched with positive

probability to object o′ but prefers object o to object o′ while object o is matched with

positive probability to some agent j with lower priority than i, i.e., there exist no i, j ∈ N
and no o, o′ ∈ O such that p(i, o′) > 0, p(j, o) > 0, o �i o′, and i �o j.

Although normatively appealing, the notion of ex-ante stability is demanding. It follows

from Roth et al. (1993, Corollary 21) that each agent can receive probability shares of, at

most, two objects and vice versa, each object is assigned with positive probability to at

most two agents. In other words, an ex-ante stable random matching is almost deterministic.

Schlegel (2016) generalizes this result to the more general set-up with quotas and priority

ties as follows: ex-ante stable random matchings have small support, meaning that only

few agent-object pairs have a positive probability of being matched. The number of pairs

in the support depends on how many indifferences in the priorities the random matching

exploits. In the extreme case where no object is matched with positive probability to two

equal priority agents, the probability distribution is almost deterministic. Otherwise, the

size of the support is completely determined by the size of the lowest priority classes at

which agents are matched to the respective objects. This result can be interpreted as an

impossibility result: with ex-ante stability one cannot go much beyond randomly breaking

ties and implementing a (deterministically) stable matching with respect to the broken ties.

The second stability concept for random matchings we consider is ex-post stability.

Definition 3 (Ex-post stability). A random matching p is ex-post stable if it can be

decomposed into deterministic stable matchings.

For a one-to-one marriage market setup, Doğan and Yildiz (2016) show that for each ex-

post stable random matching, there is a utility profile consistent with the ordinal preferences

such that no group of agents consisting of equal numbers of men and women can deviate

to a random matching among themselves and make each member better off in an expected

utility sense. For real world applications, ex-post stability has the desirable feature that a

deterministic stable matching can be drawn from the existing probability distribution and be

implemented. Various authors (Vande Vate, 1989; Rothblum, 1992; Roth et al., 1993) proved

that ex-post stability is in fact characterized by inequalities (1), (2), (3), and (4): the extreme

points of the polytope defined by these linear inequalities are exactly the (incidence vectors of

the) deterministically stable matchings. A random matching is hence ex-post stable if it is a

(not necessarily integer) solution to the linear inequalities. However, the fact that an ex-post
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stable matching is also a solution to a system of inequalities and vice versa is not a trivial

result and one can use the inequalities (1), (2), (3), and (4) to define a separate stability

concept. This leads to our third stability concept for random matchings, fractional stability.

Definition 4 (Fractional stability and violations of fractional stability). A random

matching p is fractionally stable if for each pair (i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′�io

p(i, o′) +
∑
j:j�oi

p(j, o) ≥ 1, 6 (4)

or more compactly, ∑
o′:o′�io

p(i, o′) ≥
∑
j:j≺oi

p(j, o). (5)

A violation of fractional stability occurs if there exists a pair (i, o) ∈ N ×O such that∑
j:j≺oi

p(j, o) >
∑
o:o′�io

p(i, o′). (6)

We next explain fractional stability as a no envy notion. To this end, we first need to

explain what we mean by the term consumption process.

Consumption process: an agent i’s match p(i) can be obtained by the following (step-

wise) consumption process. We imagine that each object is represented by one unit of a

homogeneously divisible pie that agents can consume and each agent wants exactly one unit

of pie in total. The probability shares agents receive at p are the fractions of the pies that

the agents receive when they eat from one pie at a time, at equal speed, and in decreasing

preference order, i.e., we imagine the match of each agent is the result of a consumption

process at which they first consume the best object with positive probability share at p, then

the second best object with positive probability share at p, etc. For example, consider an

agent i with �i: x y z and p(i, x) = 1
8
, p(i, y) = 1

2
, and p(i, z) = 3

8
. Then, in the consumption

process, agent i consumes first 1
8

of object pie x, second 1
2

of object pie y, and third 3
8

of

object pie z.

Inequality (6) implies
∑

o′:o′%io
p(i, o′) < 1, i.e., agent i receives some fraction of an object

in his strict lower contour set at o (if not, this would imply that
∑

o′:o′�io p(i, o
′) + p(i, o) = 1

6If inequalities (4) hold, Roth et al. (1993) have also shown that for each pair (i, o) ∈ N ×O, p(i, o) > 0
implies p(i, o) +

∑
o′:o′�io

p(i, o′) +
∑

j:j�oi
p(j, o) = 1.
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and hence,
∑

j:j≺oi p(j, o) + p(i, o) > 1; a contradiction to feasibility). Thus, agent i would

want to consume more of object o. Inequality (6) also implies
∑

j:j%oi
p(j, o) < 1, i.e., object

o receives some fraction of an agent in its strict lower contour set at i. Thus, object o would

want to consume more of agent i. Moreover, strict inequality (6) encodes the following envy

notion: using consumption process language, as long as agent i consumes objects that are

better than o he does not envy the set of lower priority agents to jointly consume fractions

of o, however, once the lower priority agents have consumed as much of o as agent i’s strict

upper contour set at o, agent i starts having envy towards them for any additional amounts

of o (unless agent i can fill his remaining probability quota with object o).

Remark 1 (A symmetric reformulation of fractional stability and its violations).

In the definition of fractional stability by inequalities (5) and of a violation of fractional

stability by inequality (6) we have taken the viewpoint of an agent who considers the

consumptions of lower priority agents for an object. The symmetric formulations when taking

the viewpoint of an object that “considers” the matches of lower preferred objects to an agent

are as follows. A random matching p is fractionally stable if for each pair (i, o) ∈ N ×O,∑
j:j�oi

p(j, o) ≥
∑

o′:o′≺io

p(i, o′). (5’)

We can write a violation of fractional stability as, there exists a pair (i, o) ∈ N ×O such that∑
o′:o′≺io

p(i, o′) >
∑
j:j�oi

p(j, o). (6’)

�

Aharoni and Fleiner (2003) introduced a stability concept that they also called fractional

stability for a more general model of so-called hypergraphic preference systems. Biró and

Fleiner (2016) extended the Aharoni-Fleiner notion of fractional stability to an even more

general model of NTU coalition formation games. We note here that fractional stability

as defined by Aharoni and Fleiner (2003) and Biró and Fleiner (2016) is not equivalent to

fractional stability considered in this paper. In fact, it is equivalent to ex-ante stability.

Definition 5 (Aharoni-Fleiner fractional stability). A random matching p is Aharoni-

Fleiner fractionally stable if for each pair (i, o) ∈ N ×O,∑
o′:o′%io

p(i, o′) = 1 or
∑
j:j%oi

p(j, o) = 1.
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Proposition 1. A random matching is Aharoni-Fleiner fractionally stable if and only if it

has no ex-ante envy.

Proof. Suppose random matching p has ex-ante envy. Then, there exist i, j ∈ N and

o, o′ ∈ O such that p(i, o′) > 0, p(j, o) > 0, o �i o′, and i �o j. Thus, there exists a pair

(i, o) ∈ N × O such that
∑

o′′:o′′%io
p(i, o′′) < 1 and

∑
k:k%oi

p(k, o) < 1. Hence, p is not

Aharoni-Fleiner fractionally stable.

Suppose random matching p is not Aharoni-Fleiner fractionally stable. Then, there exists

a pair (i, o) ∈ N × O such that
∑

o′′:o′′%io
p(i, o′′) < 1 and

∑
k:k%oi

p(k, o) < 1. Thus, there

exist i, j ∈ N and o, o′ ∈ O such that p(i, o′) > 0, p(j, o) > 0, o �i o′, and i �o j. Hence, p

has ex-ante envy.

Our fourth stability concept for random matchings is based on a new stability concept

suggested by Afacan (2015) for a model with weak priorities. Here, we focus exclusively on

the strict priority part of his stability concept even though we use the same name (Afacan has

some additional conditions addressing equal priority agents that capture aspects of “equal

treatment of equals” that are not related to stability). According to Afacan (2015), an agent

i ∈ N has a claim against an agent j ∈ N , if there exists an object o ∈ O such that i �o j
and

p(j, o) >
∑

o′:o′�io

p(i, o′). (7)

A random matching is claimwise stable if it does not admit any claim.

Definition 6 (Claimwise stability). A random matching p is claimwise stable if for

each pair (i, o) ∈ N ×O and each j ∈ N such that i �o j,∑
o′:o′�io

p(i, o′) ≥ p(j, o). (8)

Claimwise stability is a no envy notion based on having a claim. Inequality (7) implies∑
o′:o′%io

p(i, o′) < 1, i.e., agent i receives some fraction of an object in his strict lower

contour set at o (if not, this would imply that
∑

o′:o′�io p(i, o
′) + p(i, o) = 1 and hence,

p(j, o) + p(i, o) > 1; a contradiction to feasibility). Thus, agent i would want to consume

more of object o. Moreover, strict inequality (7) encodes the following envy notion: using

consumption process language, as long as agent i consumes objects that are better than o he

10



does not envy lower priority agent j to consume fractions of o, however, once agent j has

consumed as much of o as agent i’s strict upper contour set at o, agent i starts having envy

towards him for any additional amounts of o (unless agent i can fill his remaining probability

quota with object o).

Our fifth stability concept for random matchings, robust ex-post stability, is a natural

strengthening of ex-post stability.7

Definition 7 (Robust ex-post stability). A random matching p is robust ex-post stable

if all its decompositions are into deterministic and stable matchings.

It follows easily that if we restrict attention to deterministic matchings, then all the

stability concepts for random matchings coincide with stability / no envy (Definition 1). For

completeness, we provide a short proof of Proposition 2 at the end of Section 2.2.

Proposition 2. For deterministic matchings, all the stability concepts for random matchings

coincide with stability / no envy for deterministic matchings.

Next, we say that a stability concept ∗ is convex if the convex combination of ∗-stable

matchings is ∗-stable as well (∗-stability stands for any of our stability concepts for random

matchings). Since the stability constraints for fractional and claimwise stability are linear,

there are simple (linear) arguments why both stability concepts are convex. We will later

show that ex-ante stability and robust ex-post stability are not convex.

Lemma 1. Fractional stability is convex.

Proof. Let p and q be fractionally stable random matchings. Then, by Inequality (5), for

each pair (i, o) ∈ N ×O, ∑
o′:o′�io

p(i, o′) ≥
∑
j:j≺oi

p(j, o)

and ∑
o′:o′�io

q(i, o′) ≥
∑
j:j≺oi

q(j, o).

7Kesten and Ünver (2015) pointed out that “Although ex post stability is a meaningful interpretation of
fairness for deterministic outcomes, for lottery mechanisms such as those used for school choice, its suitability
as the right fairness notion is less clear.” They then proceed to analyze the stronger stability concept of
ex-ante stability, which is a very strong stability requirement. We show that robust ex-post stability is weaker
than ex-ante stability and stronger than ex-post stability and hence it is a good compromise between these
competing stability concepts. Robust ex-post stability strengthens ex-post stability in a similar way as robust
ex-post efficiency (Aziz et al., 2015) strengthens ex-post efficiency.
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Then it follows that for each λ ∈ [0, 1],

λ
[ ∑
o′:o′�io

p(i, o′)
]

+ (1− λ)
[ ∑
o′:o′�io

q(i, o′)
]
≥ λ

[ ∑
j:j≺oi

p(j, o)
]

+ (1− λ)
[ ∑
j:j≺oi

q(j, o)
]

and ∑
o′:o′�io

[
λp+ (1− λ)q

]
(i, o′) ≥

∑
j:j≺oi

[
λp+ (1− λ)q

]
(j, o).

The proof for the convexity of claimwise stability is similar and we omit it.

Lemma 2. Claimwise stability is convex.

Remark 2 (Core and stability concepts based on stochastic dominance and vNM

preferences / priorities). A deterministic matching is in the core if no coalition of agents

and objects can improve by rematching among themselves, i.e., a deterministic matching p

is in the core if there exists no set N ′ ∪ O′ ⊆ N ∪ O and no deterministic matching p′ 6= p

such that (i) for each i′ ∈ N ′,
∑

o∈O′ p′(i′, o) = 1, (ii) for each o′ ∈ O′,
∑

i∈N ′ p′(i, o′) = 1,

and (iii) for all i′ ∈ N ′, i ∈ N , o′ ∈ O′, and o ∈ O, [if p(i′, o) = 1 and p′(i′, o′) = 1, then

o′ %i′ o] and [if p(i, o′) = 1 and p′(i′, o′) = 1, then i′ %o′ i]. It is well known that for the base

model (and its extension with strict preferences / priorities), the core equals the set of stable

deterministic matchings.

For random matchings, one can extend preferences / priorities over objects / agents to

random matches via von Neumann-Morgenstern (vNM) utilities or the (incomplete) first

order stochastic dominance extension. Manjunath (2013) studies various extensions of

stability and the core from deterministic to random matchings using vNM utilities, stochastic

dominance requiring comparability, and stochastic dominance without requiring comparability.

Manjunath (2013) points out that for strict preferences / priorities an ex-post stable random

matching is a “weak stochastic dominance core matching” (Manjunath, 2013, Proposition 3).

The same observation also follows from Theorem 2 of Doğan and Yildiz (2016).

We prove in Appendix A two new results that clarify the relation of strong and weak

dominance stability as defined in Manjunath (2013) with some of our stability properties:

(1) a random matching is a “strong stochastic dominance stable matching” if and only if it

is ex-ante stable and (2) a random matching that is claimwise stable is a “weak stochastic

dominance stable matching”.

Our approach is complementary to that of Manjunath (2013) in that we focus on existing

stability concepts with some focus on their underlying linear programming origin and possible
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fairness interpretations while he introduces new stability and core concepts based on how

preferences / priorities are extended from deterministic to random matchings. �

2.2 Relations between stability concepts

We now provide a complete taxonomy of the stability concepts for random matchings we

have introduced (see Figure 1).

Section 2.2 results: For random matchings we have

ex-ante stability (Def. 2)

robust ex-post stability (Def. 7)

ex-post stability (Def. 3)

fractional stability (Def. 4)

claimwise stability (Def. 6)

Prop. 3

Prop. 5

Prop. 7

Prop. 9

Prop. 4

Prop. 6

Prop. 8

Prop. 10

Figure 1: Relations between stability concepts for random matchings.

Proposition 3. Ex-ante stability implies robust ex-post stability.

Proof. Consider a random matching p that is not robust ex-post stable. This means that p

can be decomposed into deterministic matchings such that one of them is not stable. Let q

be such an unstable deterministic matching. Since q is unstable, there exist agents i, j ∈ N
and objects o, o′ ∈ O such that q(i, o′) = 1, q(j, o) = 1, o �i o′, and i �o j. Since q is part

of a decomposition of p (with positive weight), it follows that then p(i, o′) > 0, p(j, o) > 0,

o �i o′, and i �o j. Hence, p is not ex-ante stable.
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The following example shows that even if a random matching is ex-ante stable (and hence

robust ex-post stable), the decomposition into stable deterministic matchings need not be

unique.

Example 1. Let N = {1, 2, 3, 4} and O = {w, x, y, z}. Consider the following preferences

and priorities:

�1: w x y z

�2: x w z y

�3: y z w x

�4: z y x w

�w: 2 1 4 3

�x: 1 2 3 4

�y: 4 3 2 1

�z: 3 4 1 2

There are four deterministic stable matchings:

p1 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 p2 =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0



p3 =


0 1 0 0

1 0 0 0

0 0 1 0

0 0 0 1

 p4 =


0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0


It is easy to check that the following random matching is ex-ante and hence also robust

ex-post stable:

q =


1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

 .

There exist exactly two decompositions of q into (stable) deterministic matchings:

q =
1

2
p1 +

1

2
p4 =

1

2
p2 +

1

2
p3.

Hence, the decomposition of q into stable deterministic matchings is not unique. �

Proposition 4. Robust ex-post stability does not imply ex-ante stability.
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Proof. Let N = {1, 2, 3} and O = {x, y, z}. Consider the following preferences and priorities;

they are the same as in Roth et al. (1993, Example 2) but we use them to prove a different

statement:

�1: x y z

�2: y z x

�3: z x y

�x: 2 3 1

�y: 3 1 2

�z: 1 2 3

Then, consider pA, which is the deterministic agent optimal stable matching,8

pA =

1 0 0

0 1 0

0 0 1

 �1: x y z

�2: y z x

�3: z x y

and consider pO, which is the deterministic object optimal stable matching,9

pO =

0 0 1

1 0 0

0 1 0

 �1: x y z

�2: y z x

�3: z x y.

Let q = 1
2
pA + 1

2
pO. Thus,

q =

1/2 0 1/2

1/2 1/2 0

0 1/2 1/2

 .

We first show that q’s only decomposition into deterministic matchings is the one with respect

to pA and pO: if the decomposition involves a deterministic matching in which agent 1 gets

object x, then the only deterministic matching consistent with q is pA (because q(2, z) = 0); if

the decomposition involves a deterministic matching in which agent 1 gets object z, then the

only deterministic matching consistent with q is pO (because q(3, x) = 0); since q(1, y) = 0,

no deterministic matching consistent with q allows for agent 1 to get object y. Hence, we

have proven that a convex decomposition of q can only involve deterministic matchings pA

and pO. Since both pA and pO are stable, it follows that q is robust ex-post stable.

Second, we show that q is not ex-ante stable. Note that for agents 1, 2 ∈ N and objects

z, y ∈ O we have that q(1, z) > 0, q(2, y) > 0, 1 �y 2, and y �1 z, i.e., agent 1 ex-ante envies

agent 2 for his probability share of object y. Hence, q is not ex-ante stable.

8The deterministic agent optimal stable matching can be computed by using the agent proposing deferred-
acceptance algorithm (Gale and Shapley, 1962).

9The deterministic object optimal stable matching can be computed by using the object proposing
deferred-acceptance algorithm (Gale and Shapley, 1962).
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Thus, q is robust ex-post stable but not ex-ante stable.

Proposition 5. Robust ex-post stability implies ex-post stability.

Proof. By definition, if all decompositions of the random matching involve deterministic

stable matchings, then there exists at least one decomposition that involves only deterministic

stable matchings.

Proposition 6. Ex-post stability does not imply robust ex-post stability.

Proof. Our example and proof is the same as in Roth et al. (1993, Example 2). Let

N = {1, 2, 3} and O = {x, y, z}. Consider the following preferences and priorities:

�1: x y z

�2: y z x

�3: z x y

�x: 2 3 1

�y: 3 1 2

�z: 1 2 3

Then, consider pA, which is the deterministic agent optimal stable matching,

pA =

1 0 0

0 1 0

0 0 1

 �1: x y z

�2: y z x

�3: z x y

and consider pO, which is the deterministic object optimal stable matching,

pO =

0 0 1

1 0 0

0 1 0

 �1: x y z

�2: y z x

�3: z x y.

The only other deterministic stable matching is

p =

0 1 0

0 0 1

1 0 0

 �1: x y z

�2: y z x

�3: z x y.

Let q be the uniform random matching. Thus,

q =

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 .
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Note that

q =
1

3

1 0 0

0 1 0

0 0 1

+
1

3

0 0 1

1 0 0

0 1 0

+
1

3

0 1 0

0 0 1

1 0 0

 =
1

3
pA +

1

3
pO +

1

3
p.

Since q can be decomposed into deterministic stable matchings, it is ex-post stable.

We now show that the uniform random matching q is not robust ex-post stable. Note that

q =
1

3

0 1 0

1 0 0

0 0 1

+
1

3

0 0 1

0 1 0

1 0 0

+
1

3

1 0 0

0 0 1

0 1 0


where all the deterministic matchings in the decomposition are unstable. Hence, q is not

robust ex-post stable.

Thus, q is ex-post stable but not robust ex-post stable.

Next, as already mentioned when introducing fractional stability, fractional stability is

equivalent to ex-post stability (see Roth et al., 1993; Teo and Sethuraman, 1998). This

equivalence is based on the insight by Vande Vate (1989) that both stability concepts are

convex with deterministic stable matchings as extreme points (we show in Proposition 17

that once preferences and priorities can be weak, this statement isn’t correct anymore for

the convex set of fractionally weakly stable random matchings). We add the proofs for

completeness.

Proposition 7. Ex-post stability implies fractional stability.

Proof. If a random matching is ex-post stable then by definition it can be written as a convex

combination of deterministic stable matchings. All of these deterministic stable matchings

are fractionally stable. Since the set of fractionally stable matchings is convex (Lemma 1), a

convex combination of deterministic stable matchings is fractionally stable.

Proposition 8. Fractional stability implies ex-post stability.

Proof. As already mentioned when introducing fractional stability, for strict priorities,

the extreme points of the polytope defined by the linear inequalities (1), (2), (3), and (4)

are exactly the (incidence vectors of the) deterministically stable matchings (Vande Vate,

1989; Rothblum, 1992; Roth et al., 1993). Since, by definition, fractionally stable random
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matchings are solutions to the linear inequalities, a fractionally stable random matching can

be decomposed into deterministic stable matchings, which implies that a fractionally stable

random matching is ex-post stable.

Proposition 9. Fractional stability implies claimwise stability.

Proof. Consider a random matching p that is not claimwise stable. Then, for some pair

(i, o) ∈ N ×O and some j ∈ N such that i �o j, strict inequality (7) applies:

p(j, o) >
∑

o′:o′�io

p(i, o′),

i.e., agent i has a claim against agent j with respect to object o. But this implies that∑
k:k≺oi

p(k, o) >
∑

o′:o′�io

p(i, o′).

Hence, p is not fractionally stable. Thus, fractional stability implies claimwise stability.

Proposition 10. Claimwise stability does not imply ex-post / fractional stability.

Proof. Let N = {1, 2, 3} and O = {x, y, z}. Consider the following preferences and priorities:

�1: x z y

�2: y x z

�3: z x y

�x: 2 3 1

�y: 1 3 2

�z: 2 1 3

Then, consider pA, which is the deterministic agent optimal stable matching,

pA =

1 0 0

0 1 0

0 0 1

 �1: x z y

�2: y x z

�3: z x y

and consider pO, which is the deterministic object optimal stable matching,

pO =

0 0 1

1 0 0

0 1 0

 �1: x z y

�2: y x z

�3: z x y.

Let q be the uniform random matching. Thus,

q =

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 .
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First, since pO is the deterministic object optimal stable matching, agent 1 does not get

y in any deterministic stable matching. Hence, random matching q is not ex-post stable.

Alternatively, we can check that fractional stability is violated and inequality (6) holds for

agent 2 and object x:
2

3
=
∑
j:j≺x2

q(j, x) >
∑

o′:o′�2x

q(2, o′) =
1

3
.

Second, we show that random matching q is claimwise stable by checking if there are claims

of an agent i against an agent j, i.e., are there (i, o) ∈ N × O and j ∈ N such that i �o j
and q(j, o) >

∑
o′:o′�io q(i, o

′)? We show that there are no claims.

• For an agent i ∈ N , a claim for a higher probability for his most preferred object against

any of the other agents is not justified because all other agents have higher priority for

that object.

• For an agent i ∈ N , a claim for a higher probability for his second preferred object

against any of the other agents is not justified because he gets an object in the strict

upper contour set of his second preferred object with probability 1/3 whereas any other

agent also gets that object with probability 1/3 (a probability that is not higher).

• No agent i ∈ N would claim a higher probability for his least preferred object (because

he gets an object in the strict upper contour set of his least preferred object with

probability 2/3 whereas any other agent only gets that object with probability 1/3).

We conclude with a proof of Proposition 2. We show that for deterministic matchings,

all the stability concepts for random matchings coincide with stability for deterministic

matchings.

Proof of Proposition 2. Let deterministic matching p be stable and note that for deter-

ministic matchings no envy implies ex-ante stability (as also noted by Kesten and Ünver,

2015). By Proposition 3, p is robust ex-post stable; by Proposition 5, p is ex-post stable; by

Proposition 7, p is fractionally stable; and by Proposition 9, p is claimwise stable. We are

done if we can show that any deterministic claimwise stable matching is stable. Assume, by

contradiction, that there exists a deterministic matching q that is claimwise stable but not

stable. Then, there exist i, j ∈ N and o, o′ ∈ O such that q(i, o′) = 1, q(j, o) = 1, o �i o′, and

i �o j. But then, 1 = q(j, o) >
∑

o′′:o′′�io p(i, o
′′) = 0 and agent i has a claim against agent j.

Afacan (2015) also proved that any deterministic claimwise stable matching is stable.

19



We next extend our base model and corresponding results in two steps. First adding

weak preferences and weak priorities (Section 2.3) and second allowing for unacceptability

and a different number of agents and objects (Section 3) allows us to separately show the

required adjustments in the stability concepts and the associated proof techniques required

when (stepwise) extending the base model.

2.3 Weak preferences and weak priorities

Recall that with strict preferences and strict priorities, a deterministic matching p is stable if

for each pair (i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′�io

p(i, o′) +
∑
j:j�oi

p(j, o) ≥ 1. (4)

If preferences or priorities can be weak, i.e., agents’ preferences are weak orders over O

and objects’ priorities are weak orders over N , then various deterministic stability notions

with varying degrees of strength are possible (see Irving, 1994). A deterministic matching p

is weakly stable if there is no strict blocking agent-object pair such that, by being matched,

each would be strictly better off than at their current matches at p. In the case of strong

stability, there is no weak blocking agent-object pair such that, by being matched, one of them

is strictly better off, whilst the other must be no worse off than at their current matches at p.

While for weak preferences and weak priorities, weakly stable deterministic matchings always

exist, it is well known that the set of strongly stable deterministic matchings may be empty.

Furthermore, we consider the absence of strict blocking pairs as the most natural no envy /

stability notion and therefore focus on weak stability.

Definition 8 (No envy / weak stability for deterministic matchings). A deterministic

matching p has no envy or is weakly stable if there exists no agent i who is matched to

object o′ but prefers object o while object o is matched to some agent j with lower priority

than i, i.e., there exist no i, j ∈ N and no o, o′ ∈ O such that p(i, o′) = 1, p(j, o) = 1, o �i o′,
and i �o j.

A deterministic matching p is weakly stable if it satisfies the following inequalities: for

each pair (i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′%io;o′ 6=o

p(i, o′) +
∑

j:j%oi;j 6=i

p(j, o) ≥ 1. (9)
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If one breaks all preference and priority ties, then the well-known deferred-acceptance

algorithm (Gale and Shapley, 1962) computes a deterministic matching that is weakly stable.

The definitions of ex-ante, ex-post, and robust ex-post stability essentially remain the

same as before.

Definition 9 (No ex-ante envy / ex-ante weak stability). A random matching p has

no ex-ante envy or is ex-ante weakly stable if there exists no agent i who is matched

with positive probability to object o′ but prefers a higher probability for object o while object

o is matched with positive probability to some agent j with lower priority than i, i.e., there

exists no i, j ∈ N and no o, o′ ∈ O such that p(i, o′) > 0, p(j, o) > 0, o �i o′, and i �o j.

Note that the definition of Aharoni-Fleiner fractional stability (Definition 5) remains the

same and its equivalence to no ex-ante envy follows as before.

Definition 10 (Ex-post weak stability). A random matching p is ex-post weakly stable

if it can be decomposed into deterministic weakly stable matchings.

Definition 11 (Robust ex-post weak stability). A random matching p is robust ex-

post weakly stable if all its decompositions are into deterministic weakly stable matchings.

Next, the definition of deterministic weak stability leads to the following associated

stability concept (by relaxing the “integer solution requirement” for inequalities (9)).

Definition 12 (Fractional weak stability and violations of fractional weak stabil-

ity). A random matching p is fractionally weakly stable if for each pair (i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′%io;o′ 6=o

p(i, o′) +
∑

j:j%oi;j 6=i

p(j, o) ≥ 1, (9)

or more compactly, ∑
o′:o′%io;o′ 6=o

p(i, o′) ≥
∑
j:j≺oi

p(j, o). (10)

A violation of fractional weak stability occurs if there exists a pair (i, o) ∈ N ×O
such that ∑

j:j≺oi

p(j, o) >
∑

o′:o′%io;o′ 6=o

p(i, o′). (11)

Inequality (11) implies
∑

o′:o′%io
p(i, o′) < 1, i.e., agent i receives some fraction of an object

in his strict lower contour set at o (if not, this would imply that
∑

o′:o′%io;o′ 6=o p(i, o
′)+p(i, o) = 1
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and hence,
∑

j:j≺oi p(j, o) + p(i, o) > 1; a contradiction to feasibility). Thus, agent i would

want to consume more of object o. Inequality (11) also implies
∑

j:j%oi
p(j, o) < 1, i.e., object

o receives some fraction of an agent in its strict lower contour set at i. Thus, object o would

want to consume more of agent i. Moreover, strict inequality (11) encodes the following

envy notion: using consumption process language, as long as agent i consumes objects that

are different from and not worse than o he does not envy the set of lower priority agents to

jointly consume fractions of o, however, once the set of lower priority agents have consumed

as much of o as agent i’s weak upper contour set at o (not including o), agent i starts having

envy towards them for any additional amounts of o (unless agent i can fill his remaining

probability quota with object o).

Remark 3 (A symmetric reformulation of fractional weak stability and its viola-

tions). In the definition of fractional weak stability by inequalities (10) and of a violation

of fractional weak stability by inequality (11) we have taken the viewpoint of an agent who

considers the consumptions of lower priority agents for an object. The symmetric formulations

when taking the viewpoint of an object that “considers” the matches of lower preferred

objects to an agent are as follows. A random matching p is fractionally weakly stable if for

each pair (i, o) ∈ N ×O, ∑
j:j%oi;j 6=i

p(j, o) ≥
∑

o′:o′≺io

p(i, o′). (10’)

We can write a violation of fractional weak stability as, there exists a pair (i, o) ∈ N × O
such that ∑

o′:o′≺io

p(i, o′) >
∑

j:j%oi;j 6=i

p(j, o). (11’)

�

The following lemma follows from the definition of fractional weak stability via linear

inequalities.

Lemma 3. Fractional weak stability is convex.

When preferences can be weak, then the notion of a claim can be adjusted as follows:

using consumption process language, as long as agent i consumes objects that are different

from and not worse than o he does not envy lower priority agent j to consume fractions of o,

however, once agent j has consumed as much of o as agent i’s weak upper contour set at o

(not including o), agent i starts having envy towards him for any additional amounts of o
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(unless agent i can fill his remaining probability quota with object o). An agent i ∈ N has a

claim against an agent j ∈ N , if there exists an object o ∈ O such that i �o j and

p(j, o) >
∑

o:o′%io;o′ 6=o

p(i, o′). (12)

Inequality (12) implies
∑

o′:o′%io
p(i, o′) < 1, i.e., agent i receives some fraction of an object in

his strict lower contour set at o (if not, this would imply that
∑

o′:o′%io;o′ 6=o p(i, o
′) + p(i, o) = 1

and hence, p(j, o) + p(i, o) > 1; a contradiction to feasibility). Thus, agent i would want to

consume more of object o.

A random matching is claimwise weakly stable if it does not admit any claim.

Definition 13 (Claimwise weak stability). A random matching p is claimwise weakly

stable if for each pair (i, o) ∈ N ×O and each j ∈ N such that i �o j,∑
o′:o′%io;o′ 6=o

p(i, o′) ≥ p(j, o). (13)

The following lemma follows from the definition of claimwise weak stability via linear

inequalities.

Lemma 4. Claimwise weak stability is convex.

It follows easily that if we restrict attention to deterministic matchings, then all the weak

stability concepts for random matchings coincide with standard weak stability / no envy

(Definition 8). The proof of Proposition 11 follows the same arguments as the proof of our

previous Proposition 2 and we therefore omit it.

Proposition 11. For deterministic matchings, all the weak stability concepts for random

matchings with weak preferences and weak priorities coincide with weak stability / no envy

for deterministic matchings.

Our taxonomy of the stability concepts for random matchings with weak preferences and

weak priorities now looks as follows (see Figure 2).
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Section 2.3 results: For random matchings we have

ex-ante weak stability (Def. 9)

robust ex-post weak stability (Def. 11)

fractional weak stability (Def. 12)

ex-post weak stability (Def. 10)

claimwise weak stability (Def. 13)

Prop. 12

Prop. 14

Prop. 16

Prop. 18

Prop. 13

Prop. 15

Prop. 17

Prop. 19

Figure 2: Relations between stability concepts for random matchings with weak preferences
and weak priorities.

The arguments in the proofs of Propositions 3 and 4 remain valid to prove that ex-ante

weak stability implies robust ex-post weak stability but not vice versa.

Proposition 12. Ex-ante weak stability implies robust ex-post weak stability.

Proposition 13. Robust ex-post weak stability does not imply ex-ante weak stability.

The arguments in the proofs of Propositions 5 and 6 remain valid to prove that robust

ex-post weak stability implies ex-post weak stability but not vice versa.

Proposition 14. Robust ex-post weak stability implies ex-post weak stability.

Proposition 15. Ex-post weak stability does not imply robust ex-post weak stability.

The arguments in the proof of Proposition 7 remain valid to prove that ex-post weak

stability implies fractional weak stability.

Proposition 16. Ex-post weak stability implies fractional weak stability.
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However, Proposition 8 does not extend to weak preferences and weak priorities. The

example to prove this is due to Battal Doğan.

Proposition 17. Fractional weak stability does not imply ex-post weak stability.

Proof. Let N = {1, 2, 3} and O = {x, y, z}. Consider the following preferences and priorities

(the brackets indicate indifferences):

�1: [x y z]

�2: y x z

�3: [x y z]

�x: [2 3] 1

�y: [1 2 3]

�z: [1 2 3]

Consider random matching q, which is fractionally weakly stable because agents 1 and 3

only get best objects and from agent 2’s perspective no agent with a lower priority consumes

his best object y, which he receives with probability 1
2
, and agent 2, who does have a lower

priority for object x does not consume more that 1
2

of x,

q =

1/2 0 1/2

0 1/2 1/2

1/2 1/2 0

 .

Note that random matching q has a unique decomposition into the deterministic matchings

p1 =

1 0 0

0 0 1

0 1 0

 p2 =

0 0 1

0 1 0

1 0 0


such that q = 1

2
p1 + 1

2
p2. However, deterministic matching p1 is weakly unstable because

agent 2 justifiably envies agent 1. Hence, random matching q is not ex-post weakly stable.

The arguments in the proofs of Propositions 9 and 10 remain valid to prove that fractional

weak stability implies claimwise weak stability but not vice versa.

Proposition 18. Fractional weak stability implies claimwise weak stability.

Proposition 19. Claimwise weak stability does not imply fractional weak stability.
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3 Generalized random matchings: weak preferences,

weak priorities, unacceptability, and different num-

bers of agents and objects

We now further generalize the model and consider the setting where there is a set of n agents

N = {1, . . . , n} (in lexicographic order 1, . . . , n) and a set of m objects O = {o1, . . . , om} (in

lexicographic order o1, . . . , om) where m can be less than, equal to, or more than n. We also

now allow the agents and objects to partition the other side into acceptable and unacceptable

entities. An agent / object would rather be unmatched than to be matched to an unacceptable

object / agent. As in Section 2.3, preferences and priorities can be weak.

We still assume that agents would like to consume (up to) one object, but with different

numbers of agents and objects and taking acceptability into account we relax the notion of

a random matching as follows. A generalized random matching p is a n ×m matrix

[p(i, o)]i∈N,o∈O such that

for each pair (i, o) ∈ N ×O, p(i, o) ≥ 0. (14)

for each i ∈ N,
∑
o∈O

p(i, o) ≤ 1, and (15)

for each o ∈ O,
∑
i∈N

p(i, o) ≤ 1. (16)

Hence, a random matching is a special case of a generalized random matching. A generalized

random matching p is deterministic if for each pair (i, o) ∈ N ×O, p(i, o) ∈ {0, 1}.

Each generalized random matching can be represented as a convex combination of

generalized deterministic matchings. The statement follows from the fact that every doubly

substochastic matrix is a finite convex combination of partial permutation matrices (Horn,

1986, Section 3.2, pp. 164-165). Kojima and Manea (2010) also give an explicit argument

for the same statement in Proposition 1 of their paper. A decomposition of a generalized

random matching p into generalized deterministic matchings Pj (j ∈ {1, . . . , k}) equals a

sum p =
∑k

j=1 λjPj such that for each j ∈ {1, . . . , k}, λj ∈ (0, 1] and
∑k

j=1 λj = 1.

At a generalized deterministic matching, it can now happen that an agent gets no object

at all or that an object is not assigned to any agent. We now adjust the no envy definition to
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take the first of these issues into account when defining no envy.

Definition 14 (No envy for generalized deterministic matchings). A generalized

deterministic matching p has no envy if there exists no agent i who is matched to object

o′ or does not receive an object but prefers object o while object o is matched to some

agent j with lower priority than i, i.e., there exist no i, j ∈ N and no o ∈ O such that∑
o′:o′%io

p(i, o′) = 0 (agent i does not receive o or any better object), p(j, o) = 1, and i �o j.

Two additional properties for generalized random matchings will play an important role.

The first is a minimal efficiency requirement that assures that no agents would rather like to

obtain a higher probability for any object that isn’t (fully) allocated.

Definition 15 (Non-wastefulness). A generalized random matching p is non-wasteful

if there is no acceptable pair (i, o) ∈ N ×O,
∑

o′:o′%io
p(i, o′) < 1 (i would like to have more

of o), and
∑

j∈N p(j, o) < 1 (o is not fully allocated).

Note that in our previous model, non-wastefulness was built into the definition of a

random matching. Furthermore, the role of agents and objects in the definitions of no envy

and non-wastefulness is not symmetric.

The second property is a voluntary participation property that ensures that no agent /

object is ever matched to an unacceptable object / agent (not even partially).

Definition 16 (Individual rationality). A generalized random matching p is individually

rational if for each pair (i, o) ∈ N ×O such that at least one of i and o considers the other

unacceptable it follows that p(i, o) = 0.

Since in our previous models all agents / objects were acceptable, individual rationality

was automatically satisfied. We differ a bit in our terminology from Wu and Roth (2016) in

that we do not include individual rationality in our definition of no envy.

Next we show that any “general instance” with an unequal number of agents and objects

and with unacceptability can be transformed into an “associated instance” in which the

number of agents and objects is equal and all entities are acceptable. The purpose of this

approach is to obtain a better understanding of our general model in connection with the base

model and to show how almost all our stability concepts are preserved by that transformation

(in fact, all but one of the stability concepts are even equivalent under our transformation).

This approach will also be crucial in establishing a taxonomy of stability concepts for the

general model (see Figure 4).
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To formalize a general instance, let the empty set ∅ symbolize the so called null object

which stands for being unmatched (or possibly an outside option). All objects / agents that

are ranked above the null object are acceptable and all objects / agents ranked below are

unacceptable. We now assume that agents’ preferences and objects’ priorities are weak

orders over O ∪ {∅} and N ∪ {∅} respectively. Furthermore, no object is indifferent with the

null object for any agent and no agent has the same priority as the null object for any object,

i.e., for each pair (i, o) ∈ N × O, [either o �i ∅ or ∅ �i o] and [either i �o ∅ or ∅ �o i]. A

general instance is denoted by the set of agents, the set of objects and the corresponding

preferences and priorities: I = (N,O,%). If at a general instance all agents and objects are

acceptable, then the null object is the least preferred entity in all preferences and priorities.

Our model does include so called school choice instances as special cases: the set of

agents equals a set of students, the set of objects equals a set of school seats where each

school provides a fixed capacity of seats, students strictly rank schools but don’t care which

seat at a school they are matched to, and each school seat is allocated with the priority of the

associated school (recent surveys on school choice are Abdulkadiroğlu, 2013; Pathak, 2011).

Next, we introduce a transformation from any general instance to an instance in which

the number of agents and objects is equal and all entities are acceptable and such that almost

all our stability concepts are preserved / equivalent under the transformation.

Transforming an instance with unequal number of agents and objects and with

unacceptability to one in which the number of agents and objects is equal and

all entities are acceptable: Consider a general instance I = (N,O,%). Then, we can

transform I into an associated instance I ′ = (N ′, O′,%′) of the standard setting with

weak preferences and weak priorities (Section 2.3) where |N ′| = |O′| and all objects and

agents are acceptable as follows.

N ′ = N ∪D (17)

where D = {d1, . . . , dm} is a set of dummy agents (in lexicographic order d1, . . . , dm).

O′ = O ∪ Φ (18)

where Φ = {φ1, . . . , φn} is a set of null objects (in lexicographic order φ1, . . . , φn).

Note that |N ′| = |O′| = n+m.

Next, we extend preferences / priorities from the general instance I to the associated
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instance I ′ as follows. For any subset B of N or O, we denote the restriction of preference /

priority of agent / object α, %α, to set B by %α(B). Furthermore, for any subset B of set N ,

D, O, or Φ, we denote the lexicographic order of B by lex(B). The main idea of extending

preferences and priorities from general instance I to associated instance I ′ is that each agent

i ∈ N has a default personal null object φi that is less preferred than all acceptable objects,

more preferred than all the unacceptable objects, and that ranks agent i as its highest priority

agent. Furthermore, each object oj ∈ O has a default personal dummy agent dj who has

lower priority than all the acceptable agents, higher priority than all unacceptable agents,

and who most prefers object oj.

Each agent i ∈ N extends his preferences %i by replacing the null object ∅ by the set of null

objects Φ such that agent i’s null object φi is more preferred than all other null objects (in

strict lexicographic order) - each comma below indicates strict preferences at %′i:

%′i=%i ({o ∈ O : o �i ∅}) , φi, lex (Φ \ {φi}) , %i ({o ∈ O : ∅ �i o)}). (19)

Each object oj ∈ O extends its priorities by replacing the null object ∅ by the set of dummy

agents D such that object oj’s dummy agent dj is more preferred than all other dummy

agents (in strict lexicographic order) - each comma below indicates strict priorities at %′oj :

%′oj=%oj

(
{i ∈ N : i �oj ∅}

)
, dj, lex (D \ {dj}) , %oj

(
{i ∈ N : ∅ �oj i}

)
. (20)

Each dummy agent dj first prefers object oj, then all other objects in O \ {oj} (in strict

lexicographic order), and finally dummy agent dj ranks the null objects in Φ exactly as object

oj ranks the agents in N , i.e., for all i, k ∈ N , φi %′dj φk if and only if i %oj k - each comma

below indicates strict preferences at %′dj :

%′dj= oj, lex (O \ {oj}) , %′dj (Φ). (21)

Each null object φi first ranks agent i as the highest priority agent, then all the other agents

in N \ {i} (in strict lexicographic order), and finally null object φi ranks the dummy agents

in D exactly as agent i ranks the objects in O, i.e., for all oj, ok ∈ O, dj %′φi dk if and only if

oj %i ok - each comma below indicates strict priorities at %′φi :

%′φi= i, lex(N \ {i}), %′φi (D). (22)
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Consider a generalized random matching p for a general instance I = (N,O,%). Then, we

defined the associated random matching p′ for instance I ′ = (N ′, O′,%′) as follows:

• for each pair (i, oj) ∈ N ×O, p′(i, oj) = p(i, oj) ,

• for each pair (dj, φi) ∈ D × Φ, p′(dj, φi) = p(i, oj),

• for each pair (i, φi) ∈ N × Φ, p′(i, φi) = 1−
∑

o∈O p(i, o),

• for each pair (dj, oj) ∈ D ×O, p′(dj, oj) = 1−
∑

i∈N p(i, oj), and

• for all remaining pairs (a, b) ∈ (N ∪D)× (O ∪ Φ), p′(a, b) = 0.

The associated random matching p′ looks as follows:

o1 . . . om φ1 . . . φn



1 p(1, o1) . . . p(1, om) | p(1, ∅) 0
...

...
... | . . .

n p(n, o1) . . . p(n, om) | 0 p(n, ∅)
— — — — — — —

d1 p(∅, o1) 0 | p(1, o1) . . . p(n, o1)
...

. . . | ...
...

dm 0 p(∅, om) | p(1, om) . . . p(n, om)

where

• for each i ∈ {1, . . . , n}, p(i, ∅) := 1−
∑

o∈O p(i, o) and

• for each j ∈ {1, . . . ,m}, p(∅, oj) := 1−
∑

i∈N p(i, oj).

Definition 17 (Associated random matching p′ respecting non-wastefulness). Let

p be a generalized random matching and p′ its associated random matching. Then, p′ respects

non-wastefulness (of p) if p is non-wasteful; i.e., there is no acceptable pair (i, oj) ∈ N ×O
such that [

∑
o′:o′%ioj

p′(i, o′) < 1 and
∑

j∈N p
′(j, oj) < 1].

Definition 18 (Associated random matching p′ respecting individual rationality).

Let p be a generalized random matching and p′ its associated random matching. Then, p′

respects individual rationality (of p) if p is individually rational; i.e., for any unacceptable

pair (i, oj) ∈ N ×O, p′(i, oj) = p(i, oj) = 0 and p′(dj, φi) = p(i, oj) = 0.
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Example 2 (Transforming a general instance and a generalized random matching).

Consider the following general instance I = (N,O,�) with strict preferences and strict

priorities: N = {1, 2, 3}, O = {x, y},

�1: x y ∅
�2: y x ∅
�3: x ∅ y

�x: 2 3 1 ∅
�y: 1 2 ∅ 3

and the generalized random matching

p =

1/3 1/2

0 1/2

2/3 0

 .

The associated instance equals I ′ = (N ′, O′,�′) with strict preferences and strict priorities

such that N ′ = {1, 2, 3, dx, dy}, O′ = {a, b, φ1, φ2, φ3}, and

�′1: x y φ1 φ2 φ3

�′2: y x φ2 φ1 φ3

�′3: x φ3 φ1 φ2 y

�′dx : x y φ2 φ3 φ1

�′dy : y x φ1 φ2 φ3

�′x: 2 3 1 dx dy

�′y: 1 2 dy dx 3

�′φ1 : 1 2 3 dx dy

�′φ2 : 2 1 3 dy dx

�′φ3 : 3 1 2 dx dy.

The associated random matching equals

p′ =

x y φ1 φ2 φ3



1 1/3 1/2 | 1/6 0 0

2 0 1/2 | 0 1/2 0

3 2/3 0 | 0 0 1/3

— — — — — —

dx 0 0 | 1/3 0 2/3

dy 0 0 | 1/2 1/2 0

.

�

In the sequel, whenever preferences and priorities are strict, then weak stability (Defini-

tion 8) can be simply referred to as stability. The reason why we need to be more careful in

terminology when preferences and priorities are weak is the fact that we use strict blocking

when defining weak stability while other blocking notions are theoretically also possible (see

also Section 2.3).
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Next, we show that for each generalized deterministic matching p, no envy, individual ra-

tionality, and non-wastefulness are equivalent to weak stability of the associated deterministic

matching p′.

Proposition 20. The generalized deterministic matching p has no envy and is individually

rational and non-wasteful if and only if the associated deterministic matching p′ is weakly

stable.

Proof. Part 1: Let p be a generalized deterministic matching and p′ its associated de-

terministic matching. We first show that p being individually irrational, or wasteful, or

having envy implies that p′ is not weakly stable. We do so via the following table that for

any of the possible violations for p lists an associated no-envy violation for p′. In Table 1,

(i, oj) ∈ N ×O:

Table 1: Violations for p and associated no-envy violation for p′.
IIR = individually irrational, W = wasteful, E = envy.

violation for p associated no-envy violation for p′

IIR agent i’s match is an unacceptable object: E agent i envies dj for φi:

p(i, oj) = 1 and ∅ �i oj p′(i, oj) = 1, p′(dj, φi) = 1,

φi �′i oj, i �′φi dj
IIR object oj’s match is an unacceptable agent: E agent dj envies i for oj:

p(i, oj) = 1 and ∅ �oj i p′(i, oj) = 1, p′(dj, φi) = 1,

oj �′dj φi, dj �
′
oj
i

W agent i gets ∅ and wants unassigned object oj: E agent i envies dj for oj:

i �oj ∅, oj �i ∅, p′(i, φi) = 1, p′(dj, oj) = 1,∑
l∈N p(l, o) = 0,

∑
o′∈O p(i, o

′) = 0 oj �′i φi, i �′oj dj
W agent i gets o′ and wants unassigned object oj: E agent i envies dj for oj:

i �oj ∅, oj �i ∅, p′(i, o′) = 1, p′(dj, oj) = 1,∑
l∈N p(l, o) = 0, p(i, o′) = 1 oj �′i o′, i �′oj dj

E agent i gets o′ and envies k for oj: E agent i envies k for oj:

p(i, o′) = 1, p(k, oj) = 1, p′(i, o′) = 1, p′(k, oj) = 1,

oj �i o′, i �oj k oj �′i o′, i �′oj k
E agent i gets ∅ and envies k for oj: E agent i envies k for oj:∑

o′∈O p(i, o
′) = 0, p(k, oj) = 1, p′(i, φi) = 1, p′(k, oj) = 1,

oj �i ∅, i �oj k oj �′i φi, i �′oj k
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Part 2: We show that p′ not being weakly stable implies that p is individually irrational, or

wasteful, or has envy, or that the weak stability violation at p′ was not possible. Assume that

at p′ some agent a envies an agent b for object c. Then, p′(a, d) = 1, p′(b, c), c �′a d, and a �′c b.
Depending on the specifications of a, b, c, and d, different violations can be identified for p.

The following tables list all no-envy violations for p′ and for p associates individual irrationality,

wastefulness, or envy (Table 2) or explains why the no-envy violations of p′ cannot occur

given its definition (Table 3). Note that since (a, d), (b, c) ∈ {N ×O,N × Φ, D ×O,D × Φ}
we have in total 16 different cases to discuss.

Table 2: No-envy violations for p′ and associated violation for p.
IIR = individually irrational, W = wasteful, E = envy.

no-envy violation for p′ associated violation for p

E agent a envies agent b for c: E agent i envies agent j for o:

(a, d), (b, c) ∈ N ×O,

(a, d) = (i, o′), (b, c) = (j, o),

p′(i, o′) = 1, p′(j, o) = 1, p(i, o′) = 1, p(j, o) = 1,

o �′i o′, i �′o j. o �i o′, i �o j.
E agent a envies agent b for c: agent i is individually irrational

(a, d) ∈ N ×O, (b, c) ∈ D ×O, or object o is wasted:

(a, d) = (i, o′), (b, c) = (dj, oj),

p′(i, o′) = 1, p′(dj, oj) = 1, p(i, o′) = 1,
∑

k∈N p(k, oj) = 0,

oj �′i o′, i �′oj dj, oj �i o′, i �oj ∅,
(a) φi �′i oj, (a) IIR ∅ �i oj,
(b) oj �′i φi. (b) W oj �i ∅.
E agent a envies agent b for c: IIR agent i is individually irrational:

(a, d) ∈ N ×O, (b, c) ∈ D × Φ,

(a, d) = (i, o′), (b, c) = (dj, φk),

in particular, p′(i, o′) = 1, φk �′i o′. p(i, o′) = 1, ∅ �i o′.
E agent a envies agent b for c: W object oj is wasted:

(a, d) ∈ N × Φ, (b, c) ∈ D ×O,

(a, d) = (i, φi), (b, c) = (dj, oj),

p′(i, φi) = 1, p′(dj, oj) = 1,
∑

o′∈O p(i, o
′) = 0,

∑
k∈N p(k, oj) = 0,

oj �′i φi, i �′oj dj. oj �i ∅, i �oj ∅.
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E agent a envies agent b for c: E agent l envies agent k for oi:

(a, d), (b, c) ∈ D × Φ,

(a, d) = (di, φk), (b, c) = (dj, φl),

p′(di, φk) = 1, p′(dj, φl) = 1, p(k, oi) = 1, p(l, oj) = 1,

φl �′di φk, di �
′
φl
dj. l �oi k, oi �l oj.

E agent a envies agent b for c: JE agent i envies agent j for o:

(a, d) ∈ N × Φ, (b, c) ∈ N ×O,

(a, d) = (i, φi), (b, c) = (j, o),

p′(i, φi) = 1, p′(j, o) = 1,
∑

o′:o′%o p(i, o
′) = 0, p(j, o) = 1,

o �′i φi, i �′o j. o �i ∅, i �o j.
E agent a envies agent b for c: IIR object o is individually irrational:

(a, d) ∈ D ×O, (b, c) ∈ N ×O,

(a, d) = (di, oi), (b, c) = (j, o),

in particular, p′(j, o) = 1, di �′o j. p(j, o) = 1, ∅ �o j.
E agent a envies agent b for c: IIR object o is individually irrational:

(a, d) ∈ D × Φ, (b, c) ∈ N ×O,

(a, d) = (di, φk), (b, c) = (j, o),

in particular, p′(j, o) = 1, di �′o j. p(j, o) = 1, ∅ �o j.

Table 3: No-envy violations of p′ that are not possible.
E = envy, IP = impossibility.

no-envy violation for p′ why this no-envy violation for p′ is not possible

E agent a envies agent b for c:

(a, d) ∈ N ×O, (b, c) ∈ N × Φ, IP i �′φj j is not possible

(a, d) = (i, o′), (b, c) = (j, φj), because by the definition of p′,

in particular, i �′φj j. j �′φj i.
E agent a envies agent b for c:

(a, d) ∈ N × Φ, (b, c) ∈ N × Φ, IP φj �′i φi is not possible

(a, d) = (i, φi), (b, c) = (j, φj), because by the definition of p′,

in particular, φj �′i φi. φi �′i φj.
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E agent a envies agent b for c:

(a, d) ∈ N × Φ, (b, c) ∈ D × Φ, IP φk �′i φi is not possible

(a, d) = (i, φi), (b, c) = (dj, φk), because by the definition of p′,

in particular, φk �′i φi. φi �′i φk.
E agent a envies agent b for c:

(a, d) ∈ D ×O, (b, c) ∈ D ×O, IP oj �′di oi is not possible

(a, d) = (di, oi), (b, c) = (dj, oj), because by the definition of p′,

in particular, oj �′di oi. oi �′di oj.
E agent a envies agent b for c:

(a, d) ∈ D ×O, (b, c) ∈ D × Φ, IP φk �′di oi is not possible

(a, d) = (di, oi), (b, c) = (dj, φk), because by the definition of p′,

in particular, φk �′di oi. oi �′di φk.
E agent a envies agent b for c:

(a, d) ∈ D ×O, (b, c) ∈ N × Φ, IP φj �′di oi is not possible

(a, d) = (di, oi), (b, c) = (j, φj), because by the definition of p′,

in particular, φj �′di oi. oi �′di φj.
E agent a envies agent b for c:

(a, d) ∈ D × Φ, (b, c) ∈ N × Φ, IP di �′φj j is not possible

(a, d) = (di, φk), (b, c) = (j, φj), because by the definition of p′,

in particular, di �′φj j. j �′φj di.
E agent a envies agent b for c:

(a, d) ∈ D × Φ, (b, c) ∈ D ×O, IP di �′oj dj is not possible

(a, d) = (di, φk), (b, c) = (dj, oj), because by the definition of p′,

in particular, di �′oj dj. dj �′oj di.

Example 3 (No-envy, individual rationality, and non-wastefulness are logically

independent). Consider the following general instance I = (N,O,�) with strict preferences

and strict priorities: N = {1, 2}, O = {x, y},

�1: x ∅ y

�2: x y ∅
�x: 2 1 ∅
�y: 1 2 ∅

and the generalized deterministic matchings
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p1 =

(
0 0

0 0

)
, p2 =

(
0 1

1 0

)
, p3 =

(
1 0

0 1

)
, p4 =

(
0 0

1 0

)
.

Then, p1 has no envy, is individually rational, but it is wasteful; p2 has no envy, is non-wasteful,

but it is individually irrational; p3 is individually rational, non-wasteful, but it has envy; p4 is

the only generalized deterministic matching for this instance that has no envy, is individually

rational, and is non-wasteful. �

The classic definition of weak stability for generalized deterministic matchings in our

model is the following.

Definition 19 (Weak stability for generalized deterministic matchings). A general-

ized deterministic matching p is weakly stable if it is individually rational and there exist

no agent and no object that would prefer each other to their current match, i.e., there exists

no pair (i, o) ∈ N × O such that
∑

o′:o′%io
p(i, o′) = 0 (agent i would like to have o) and∑

j:j%oi
p(j, o) = 0 (object o would like to be matched to i).

The well-known deferred-acceptance algorithm (Gale and Shapley, 1962) computes a

generalized deterministic matching that is weakly stable.

Whenever preferences and priorities are strict, then weak stability (Definition 19) can be

simply referred to as stability. It is easy to check that the following now holds.

Proposition 21. A generalized deterministic matching is weakly stable if and only if it is

individually rational, non-wasteful, and has no envy.

Proof. Let p be a generalized deterministic matching that is individually rational. Assume

p is weakly stable, i.e., there exists no pair (i, o) ∈ N × O such that
∑

o′:o′%io
p(i, o′) = 0

and
∑

j:j%oi
p(j, o) = 0. Since p is deterministic, this is equivalent to there being no pair

(i, o) ∈ N ×O such that
∑

o′:o′%io
p(i, o′) = 0 and (a)

∑
j∈N p(j, o) = 0 or (b) for some agent

j ∈ N , i �o j and p(j, o) = 1. This in turn is equivalent to p being (a) non-wasteful and (b)

having no envy.

Propositions 20 and 21 now imply the following (see Figure 3).

Proposition 22. A generalized deterministic matching p is weakly stable if and only if the

associated deterministic matching p′ is weakly stable.
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Propositions 20, 21, and 22: For any generalized deterministic matching p and its
associated deterministic matching p′, we have

no envy,
p non-wastefulness,

individual rationality
(Defs. 14, 15, and 16)

no envy
p′ = weakly stable

(Def. 8)

p weakly stable
(Def. 19)

Prop. 20

Prop. 22

Prop. 21

Figure 3: Relations between weak stability, no envy, individual rationality, and non-
wastefulness for generalized deterministic matchings.

By Proposition 21, a generalized deterministic matching p is weakly stable if it is indi-

vidually rational, non-wasteful, and has no envy. Recall that no envy implies that there

exist no i, j ∈ N and no o ∈ O such that
∑

o′:o′%io
p(i, o′) = 0, p(j, o) = 1, and i �o j. The

latter is equivalent to the following inequalities being satisfied:10 for each acceptable pair

(i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′%io;o′ 6=o

p(i, o′) +
∑

j:j%oi;j 6=i

p(j, o) ≥ 1. (23)

We now adapt all previous stability concepts introduced in Section 2.3 to generalized

random matchings. First, we adjust the property of no ex-ante envy to generalized random

matchings.

Definition 20 (No ex-ante envy for generalized random matchings). A generalized

random matching p has no ex-ante envy if there exists no agent i who prefers a higher

probability for object o while object o is matched with positive probability to some agent j with

lower priority than i, i.e., there exist no i, j ∈ N and no o ∈ O such that
∑

o′:o′%o p(i, o
′) < 1

(agent i would like to have more of o), p(j, o) > 0 (agent j has some of o), o �i o′, and i �o j.
10For instances with strict preferences and strict priorities, this characterization of stable matchings is due

to Rothblum (1992) (see also Roth et al., 1993).
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For generalized random matchings the definition of Aharoni-Fleiner fractional stability

(Definition 5) remains the same and its equivalence to no ex-ante envy follows as before.

Next, for each generalized random matching p, no ex-ante envy, individual rationality,

and non-wastefulness are equivalent to ex-ante weak stability of the associated random

matching p′.

Proposition 23. The generalized random matching p has no ex-ante envy and is individually

rational and non-wasteful if and only if the associated random matching p′ is ex-ante weakly

stable.

Proof. The proof follows exactly along the lines of the proof of Proposition 20. The only

difference is that in that proof no envy, individual rationality, non-wastefulness, and weak

stability all are defined for probabilities 1 and 0 to receive an object and when we now

consider no ex-ante envy, individual rationality, non-wastefulness, and ex-ante weak stability,

these definitions pertain to any probability of receiving an object: all arguments that were

using an agent receiving an object with probability 1 now apply for an agent receiving a

positive probability of that object.

Ex-ante weak stability for generalized random matchings is naturally defined as follows.

Definition 21 (Ex-ante weak stability for generalized random matchings). A gen-

eralized random matching p is ex-ante weakly stable if it is individually rational and there

exist no agent and no object that would prefer a higher probability for each other, i.e., there

exist no pair (i, o) ∈ N ×O such that
∑

o′:o′%io
p(i, o′) < 1 (agent i would like to have more

of o) and
∑

j:j%oi
p(j, o) < 1 (object o would like to be matched more to i).

It is easy to check that the following now holds.

Proposition 24. A generalized random matching is ex-ante weakly stable if and only if it

has no ex-ante envy and it is individually rational and non-wasteful.

Proof. Let p be a generalized random matching that is individually rational. Assume p is

ex-ante weakly stable, i.e., there exists no pair (i, o) ∈ N ×O such that
∑

o′:o′%io
p(i, o′) < 1

and
∑

j:j%oi
p(j, o) < 1. This is equivalent to there being no pair (i, o) ∈ N × O such that∑

o′:o′%io
p(i, o′) < 1 and (a)

∑
j∈N p(j, o) < 1 or (b) for some agent j ∈ N , i �o j and

p(j, o) > 0. This in turn is equivalent to p being (a) non-wasteful and (b) having no ex-ante

envy.
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Propositions 23 and 24 now imply the following (see the top part of Figure 4).

Proposition 25. The generalized random matching p is ex-ante weakly stable if and only if

the associated random matching p′ is ex-ante weakly stable.

Next, we adjust the properties of ex-post weak stability and robust ex-post weak stability

to generalized random matchings.

Recall that each generalized random matching can be represented as a convex combination

of generalized deterministic matchings. We now establish three results concerning the

decomposition of an individually rational, respectively non-wasteful, generalized random

matching.

Lemma 5. A generalized random matching is individually rational if and only if in each of

its decompositions all generalized deterministic matchings are individually rational.

Proof. Part 1: Suppose that generalized random matching p is individually irrational. Then,

for some (i, o) ∈ N ×O, p(i, o) > 0 and agent i or object o considers the other unacceptable.

Then, in any decomposition of p into generalized deterministic matchings, there exists a

generalized deterministic matching q such that q(i, o) = 1 and q is individually irrational.

Part 2: Suppose that at some decomposition of p there exists an individually irrational

generalized deterministic matching q, i.e., for some (i, o) ∈ N × O, q(i, o) = 1 and agent

i or object o considers the other unacceptable. Then, p(i, o) > 0 and p is individually

irrational.

Lemma 6. If a generalized random matching is non-wasteful, then in each of its decomposi-

tions all generalized deterministic matchings are non-wasteful.

Proof. Suppose that at some decomposition of p there exists a wasteful generalized determinis-

tic matching q, i.e., there exists an acceptable pair (i, o) ∈ N×O such that
∑

o′:o′%io
q(i, o′) = 0

(i would like to have object o) and
∑

j∈N q(j, o) = 0 (object o is not allocated). Then it

follows that
∑

o′:o′%io
p(i, o′) < 1 and

∑
j∈N p(j, o) < 1. Hence, p is wasteful.

The following example shows that the converse statement in Lemma 6 does not hold.

Example 4 (A wasteful generalized random matching that can be decomposed

into generalized deterministic (non-wasteful) weakly stable matchings). Consider

the following general instance I = (N,O,%) with strict preferences and weak priorities (the

brackets indicate indifferences): N = {1, 2, 3}, O = {x, y, z},
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%1: x y z ∅
%2: z y x ∅
%3: x y ∅ z

%x: [1 3] 2 ∅
%y: 2 1 ∅ 3

%z: 1 2 3 ∅

Consider the generalized random matching

p =

1/2 0 1/2

0 1/2 1/2

1/2 0 0


and note that it is wasteful: agent 1 would like to have more of object y that is not fully

allocated. However, matching p can be decomposed into two generalized deterministic

non-wasteful and weakly stable matchings as follows:

p =
1

2
q1 +

1

2
q2

where

q1 =

1 0 0

0 0 1

0 0 0


and

q2 =

0 0 1

0 1 0

1 0 0

 .

Note that q1 and q2 are non-wasteful and weakly stable: at q1 both agents 1 and 2 are matched

to their most preferred objects and the unassigned object y finds agent 3 unacceptable; agent 3

cannot block with x since x has maximal priority for agent 1 and agent 3 cannot block with

z since z has higher priority for agent 2. At q2 objects y and z will not block because they

are matched respectively to their highest priority agents; agent 1 would like to block with x

but x has maximal priority for agent 3. �

Example 4 illustrates why in the next two definitions it is important to add non-

wastefulness.

Definition 22 (Ex-post weak stability for generalized random matchings). A gen-

eralized random matching p is ex-post weakly stable if it is non-wasteful and can be

decomposed into generalized deterministic weakly stable matchings.
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Definition 23 (Robust ex-post weak stability for generalized random matchings).

A generalized random matching p is robust ex-post weakly stable if it is non-wasteful

and all of its decompositions are into generalized deterministic weakly stable matchings.

We have the following equivalences for ex-post weak stability and robust ex-post weak

stability for generalized random matchings and their associated random matchings.

Proposition 26. The generalized random matching p is ex-post weakly stable if and only if

the associated random matching p′ is ex-post weakly stable and respects non-wastefulness.

Proof. Let p be a generalized random matching and p′ its associated random matching.

Part 1: Let p be an ex-post weakly stable generalized matching. Recall that the non-

wastefulness of p is equivalent to p′ respecting non-wastefulness. Furthermore, p can be

decomposed into generalized deterministic weakly stable matchings. By Proposition 22, each

generalized deterministic weakly stable matching in the decomposition corresponds to an

associated deterministic weakly stable matching. The induced decomposition consisting of

the associated deterministic weakly stable matchings is a decomposition of the associated

random matching p′. Hence, p′ is ex-post weakly stable.

Part 2: Recall that from any associated random matching p′ we can obtain the original

generalized random matching p by taking its first n rows and its first m columns (|N | = n

and |O| = m). Let the associated random matching p′ of p be ex-post weakly stable and

respect non-wastefulness. Then, p′ can be decomposed into deterministic weakly stable

matchings. Note that by taking the first n rows and the first m columns of each of the

deterministic weakly stable matchings in the decomposition, we can derive a decomposition

of p into generalized deterministic weakly stable matchings (Proposition 22). Furthermore,

since p′ respects non-wastefulness, p is non-wasteful. Hence, p is ex-post weakly stable.

Proposition 27. The generalized random matching p is robust ex-post weakly stable if

and only if the associated random matching p′ is robust ex-post weakly stable and respects

non-wastefulness.

Proof. Let p be a generalized random matching and p′ its associated random matching.

By Proposition 26, p is ex-post weakly stable if and only if p′ is ex-post weakly stable and

respects non-wastefulness.

Part 1: Let p be an ex-post weakly stable generalized matching that is not robust ex-

post weakly stable. Hence, p has a decomposition into generalized deterministic matchings
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that is not weakly stable, i.e., at least one of the generalized deterministic matchings in

the decomposition is not weakly stable. By Proposition 22, each generalized deterministic

matching in the decomposition corresponds to an associated deterministic matching and the

weakly unstable generalized deterministic matching leads to a weakly unstable associated

deterministic matching. The induced decomposition consisting of the associated deterministic

matchings is a decomposition of the associated random matching p′. Hence, p′ has a

decomposition into deterministic matchings that are not all weakly stable and p′ is not robust

ex-post weakly stable.

Part 2: Recall that from any associated random matching p′ we can obtain the original

generalized random matching p by taking its first n rows and its first m columns (|N | = n

and |O| = m). Let the associated random matching p′ of p respect non-wastefulness and be

ex-post weakly stable but not robust ex-post weakly stable. Hence, p′ has a decomposition

into deterministic matchings that is not weakly stable, i.e., at least one of the deterministic

matchings in the decomposition is not weakly stable. Note that by taking the first n rows

and the first m columns of each of the deterministic matchings in the decomposition, we

can derive a decomposition of p into generalized deterministic matchings and the weakly

unstable associated deterministic matching leads to a weakly unstable generalized determin-

istic matching (Proposition 22). The induced decomposition consisting of the generalized

deterministic matchings is a decomposition of the generalized random matching p. Hence, p

has a decomposition into generalized deterministic matchings that are not all weakly stable

and p is not robust ex-post weakly stable.

Next, we adjust the properties of fractional weak stability and claimwise weak stability to

generalized random matchings.

Fractional weak stability is again obtained by relaxing the “integer solution requirement”

for the inequalities that define weak stability for generalized deterministic matchings (23).

Given a generalized random matching p and an object o, recall that by p(∅, o) we denote the

amount of object o that is unassigned, i.e., p(∅, o) = 1−
∑

i∈N p(i, o).

Definition 24 (Fractional weak stability and violations of fractional weak stability

for generalized random matchings). A generalized random matching p is fractionally

weakly stable if p is individually rational, non-wasteful, and for each acceptable pair

(i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′%io;o′ 6=o

p(i, o′) +
∑

j:j%oi;j 6=i

p(j, o) ≥ 1, (23)
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or more compactly, ∑
o′:o′%io;o′ 6=o

p(i, o′) ≥
∑
j:j≺oi

p(j, o) + p(∅, o). (24)

A violation of fractional weak stability occurs if there exists a pair (i, o) ∈ N ×O such

that ∑
j:j≺oi

p(j, o) + p(∅, o) >
∑

o′:o′%io;o′ 6=o

p(i, o′). (25)

Inequality (25) implies
∑

o′:o′%io
p(i, o′) < 1, i.e., agent i receives some fraction of an

object in his strict lower contour set at o or i is not fully matched (if not, this would imply

that
∑

o′:o′%io;o′ 6=o p(i, o
′) + p(i, o) = 1 and hence,

∑
j:j≺oi p(j, o) + p(∅, o) + p(i, o) > 1; a

contradiction). Thus, agent i would want to consume more of object o. Inequality (25)

also implies
∑

j:j%oi
p(j, o) < 1, i.e., object o receives some fraction of an agent in its strict

lower contour set at i or o is not fully allocated. Thus, object o would want to consume

more of agent i. Moreover, strict inequality (25) encodes the following envy notion: using

consumption process language, as long as agent i consumes objects that are different and not

worse than o he does not envy the set of lower priority agents to jointly consume fractions

of o and he does not mind fractions of o to be unassigned, however, once the unassigned

amounts of o plus the amounts lower priority agents have consumed reach agent i’s weak

upper contour set at o (not including o), agent i starts either having envy or complaining

about wastefulness (unless agent i can fill his remaining probability quota with object o).

Remark 4 (A symmetric reformulation of fractional weak stability for generalized

random matchings and its violations). In the definition of fractional weak stability for

generalized random matchings by inequalities (24) and of a violation of fractional weak

stability for generalized random matchings by inequality (25) we have taken the viewpoint

of an agent who considers the consumptions of lower priority agents for an object and the

amount of the object that is unassigned. The symmetric formulations when taking the

viewpoint of an object that “considers” the matches of lower preferred objects to an agent

and the amount of an agent he is not matched at are as follows. Given a generalized random

matching p and an agent i, recall that by p(i, ∅) we denote the amount of agent i that is

not matched, i.e., p(i, ∅) = 1 −
∑

o∈O p(i, o). Then, a generalized random matching p is

fractionally weakly stable if for each acceptable pair (i, o) ∈ N ×O,∑
j:j%oi;j 6=i

p(j, o) ≥
∑

o′:o′≺io

p(i, o′) + p(i, ∅). (24’)
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We can write a violation of fractional weak stability as, there exists an acceptable pair

(i, o) ∈ N ×O such that ∑
o′:o′≺io

p(i, o′) + p(i, ∅) >
∑

j:j%oi;j 6=i

p(j, o). (25’)

�

Interestingly, if preferences and priorities are strict, then inequalities (23) imply non-

wastefulness.

Proposition 28. Let p be an individually rational generalized random matching such that

for each acceptable pair (i, o) ∈ N ×O,

p(i, o) +
∑

o′:o′%io;o′ 6=o

p(i, o′) +
∑

j:j%oi;j 6=i

p(j, o) ≥ 1.

If preferences and priorities are strict, then p satisfies non-wastefulness.

Proof. Roth et al. (1993) show that in the general model with strict preferences and priorities,

any individually rational generalized random matching satisfying inequalities (23) can be

decomposed into non-wasteful and stable generalized deterministic matchings. On top of

that, the rural hospital theorem (Roth, 1986) implies that the set of matched agents and

objects is always the same in all stable generalized deterministic matchings. Now suppose, by

contradiction, that a convex combination of non-wasteful and stable generalized deterministic

matchings q1, . . . , qm leads to a wasteful generalized random matching p. By definition of

wastefulness, there is an acceptable pair (i, o) ∈ N×O such that
∑

o′:o′%io
p(i, o′) < 1 (i would

like to have more of o) and
∑

j∈N p(j, o) < 1 (o is not fully allocated). Then, the object o

that is wasted at generalized random matching p is not assigned to any agent in at least one

of the generalized deterministic stable matchings qj in the convex combination. Thus, by the

rural hospital theorem, o is not assigned to any agent in any stable generalized deterministic

matching in {q1, . . . , qm}. Since
∑

o′:o′%io
p(i, o′) < 1, it follows that in at least one of the

stable generalized deterministic matchings qk,
∑

o′:o′%io
qk(i, o′) = 0 and

∑
j∈N q

k(j, o) = 0.

Hence, qk is wasteful; a contradiction.

A statement along the lines of Proposition 28 is not true anymore when preferences and

priorities can be weak, as the following example demonstrates.
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Example 5 (A wasteful and individually rational generalized random matching

that satisfies inequalities (23)). Consider the following general instance I = (N,O,%)

with weak preferences and weak priorities: N = {1, 2, 3}, O = {x, y, z},

%1: [x y] ∅ z

%2: [y z] ∅ x

%3: [x z] ∅ y

%x: [1 3] ∅ 2

%y: [1 2] ∅ 3

%z: [2 3] ∅ 1.

Then, the generalized random matching

p =

1/3 1/3 0

0 1/3 1/3

1/3 0 1/3


is wasteful, individually rational, and satisfies inequalities (23). �

We have the following equivalence for fractional weak stability for generalized random

matchings and their associated random matchings.

Proposition 29. The generalized random matching p is fractionally weakly stable if and

only if the associated random matching p′ is fractionally stable and respects non-wastefulness.

Proof. Let p be a generalized random matching and p′ its associated random matching.

Part 1: Let p be a fractionally weakly stable generalized random matching. Thus, p is

non-wasteful, individually rational, and satisfies inequalities (23). Then, p′ respects non-

wastefulness and individual rationality. Suppose, by contradiction, that p′ is not fractionally

weakly stable. Then, for some pair (a, b) ∈ N ′ ×O′,∑
a′:a′≺′

ba

p′(a′, b) >
∑

b′:b′%′
ab;b

′ 6=b

p′(a, b′).

In particular, ∑
a′:a′≺′

ba

p′(a′, b) > 0.

Furthermore, recall that
∑

b′:b′%′
ab
p′(a, b′) < 1 and hence,

∑
b′:b′≺′

ab

p′(a, b′) > 0.
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Case 1. Suppose that b = oj ∈ O. Recall that

%′oj=%oj

(
{k ∈ N : k �oj ∅}

)
, dj, lex (D \ {dj}) , %oj

(
{k ∈ N : ∅ �oj k}

)
.

By the definition of %′ and p′ and individual rationality (of p), for all dk ∈ D \ {dj},
p′(dk, oj) = 0 and for all l ∈ N such that l ≺oj ∅, p′(l, oj) = 0. Thus, if a -′oj dj, then∑

a′:a′≺′
oj
a p
′(a′, oj) = 0; a contradiction. Hence, a �′oj dj and a = i ∈ N is an acceptable

agent. By a symmetric argument, starting with a = i ∈ N and

%′i=%i({o ∈ O : o �i ∅}) , φi, lex (Φ \ {φi}) , %i({o ∈ O : ∅ �i o}) ,

we obtain b �′i φi and that b = oj ∈ O is an acceptable object.

Then, by the definition of %′ and p′ (recall that p′(dj, oj) = p(∅, oj)),

i = a �′oj dj implies
∑

a′:a′≺′
oj
i

p′(a′, oj) =
∑

k:k≺oj i

p(k, oj) + p(∅, oj)

and

oj = b �′i φi implies
∑

b′:b′%′
ioj ;b

′ 6=oj

p′(i, b′) =
∑

o′:o′%ioj ;o′ 6=oj

p(i, o′).

Hence, inequality
∑

a′:a′≺′
ba
p′(a′, b) >

∑
b′:b′%′

ab;b
′ 6=b p

′(a, b′) for a = i ∈ N and b = oj ∈ O can

be rewritten as ∑
k:k≺oj i

p(k, oj) + p(∅, oj) >
∑

o′:o′%ioj ;o′ 6=oj

p(i, o′),

which contradicts that p was fractionally weakly stable.

Since in Case 1 we have shown that b ∈ O implies a ∈ N and vice versa, the only

remaining case to discuss is (a, b) ∈ D × Φ.

Case 2. Suppose that a = dj ∈ D and b = φi ∈ Φ. Recall that

%′dj= oj, lex (O \ {oj}) , %′dj (Φ).

By the definition of %′dj and p′, for all l,m ∈ N , φl %′dj φm if and only if l %oj m and

p′(dj, oj) = p(∅, oj). Then, we have∑
b′:b′%′

dj
φi;b′ 6=φi

p′(dj, b
′) =

∑
k:φk%′

dj
φi;k 6=i

p′(dj, φk) + p′(dj, oj) =
∑

k:k%oj i;k 6=i

p(k, oj) + p(∅, oj).
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Next, recall that

%′φi= i, lex (N \ {i}) , %′φi (D).

By the definition of %′φi , for all x, y ∈ O, dx %′φi dy if and only if x %i y. Then, by the

definition of %′φi and p′, we have∑
a′:a′≺′

φi
dj

p′(a′, φi) =
∑

dl:dl≺′
φi
dj

p′(dl, φi) =
∑

ol:ol≺ioj

p(i, ol).

Hence, inequality
∑

a′:a′≺′
ba
p′(a′, b) >

∑
b′:b′%′

ab;b
′ 6=b p

′(a, b′) for a = dj ∈ D and b = φi ∈ Φ can

be rewritten as ∑
ol:ol≺ioj

p(i, ol) >
∑

k:k%oj i;k 6=i

p(k, oj) + p(∅, oj).

This implies
∑

ol:ol≺ioj p(i, ol) > 0 and individual rationality implies that agent i finds

object oj acceptable. Similarly it follows that
∑

k:k%oj i;k 6=i
p(k, oj) + p(∅, oj) < 1, therefore∑

k:k-oj i
p(k, oj) > 0, and by individual rationality, object oj finds agent i acceptable. Hence,

(i, oj) ∈ N×O is an acceptable pair. Furthermore, recall that
∑

b′:b′%′
ab
p′(a, b′) < 1 and hence,∑

ol:ol%ioj
p(i, ol) < 1. Thus, by non-wastefulness, p(∅, oj) = 0. Therefore, for the acceptable

pair (i, oj) ∈ N ×O, ∑
ol:ol≺ioj

p(i, ol) >
∑

k:k%oj i;k 6=i

p(k, oj)

and therefore also ∑
ol:ol≺ioj

p(i, ol) + p(i, ∅) >
∑

k:k%oj i;k 6=i

p(k, oj);

contradicting that p was fractionally weakly stable.

Part 2: Let p′ be a fractionally stable random matching that respects non-wastefulness. Thus,

p is non-wasteful. We first show that p is individually rational. Consider an unacceptable

pair (i, oj) ∈ N × O. Assume that object oj finds agent i unacceptable, i.e., ∅ �oj i. Now

consider the pair (dj, oj) ∈ N ′ ×O′. Fractional stability of p′ requires∑
b′:b′%′

dj
oj ;b′ 6=oj

p′(dj, b
′) ≥

∑
a′:a′≺′

oj
dj

p′(a′, oj).

Since object oj is the best object for dj at %′dj , it follows that
∑

b′:b′%′
idj ;b

′ 6=dj p
′(dj, b

′) = 0.

Hence,
∑

a′:a′≺′
oj
dj
p′(a′, oj) = 0 and for each a′ ≺′oj dj, p

′(a′, oj) = 0. Next, a′ ≺′oj dj if

and only if a′ ∈ D \ {dj} or [a′ ∈ N and ∅ �oj a′]. Thus, by the definition of p′, for each
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a′ ∈ N such that ∅ �oj a′, p(a′, oj) = p′(a′, oj) = 0. Symmetrically, starting from agent i

finding agent oj unacceptable, i.e., ∅ �oj i, we obtain that for each b′ ∈ O such that ∅ �i b′,
p(i, b′) = p′(i, b′) = 0. Hence, the generalized random matching p is individually rational.

Next suppose, by contradiction, that p violates one of the inequalities (23). Then, for

some acceptable pair (i, oj) ∈ N ×O,∑
k:k≺oj i

p(k, oj) + p(∅, oj) >
∑

o′:o′%ioj ;o′ 6=oj

p(i, o′).

Recall that

%′oj=%oj

(
{k ∈ N : k �oj ∅}

)
, dj, lex (D \ {dj}) , %oj

(
{k ∈ N : ∅ �oj k}

)
and

%′i=%i({o ∈ O : o �i ∅}) , φi, lex (Φ \ {φi}) , %i({o ∈ O : ∅ �i o}) .

Then, by the definition of %′ and p′ (recall that p(∅, oj) = p′(dj, oj)),

i �oj ∅ implies
∑

k:k≺oj i

p(k, oj) + p(∅, oj) =
∑

a′:a′≺′
oj
i

p′(a′, oj)

and

oj �i ∅ implies
∑

o′:o′%ioj ;o′ 6=oj

p(i, o′) =
∑

b′:b′%′
ioj ;b

′ 6=oj

p′(b′, i).

Hence, inequality
∑

k:k≺oj i
p(k, oj) + p(∅, oj) >

∑
o′:o′%ioj ;o′ 6=oj p(i, o

′) can be rewritten as

∑
a′:a′≺′

oj
i

p′(a′, oj) >
∑

b′:b′%′
ioj ;b

′ 6=oj

p′(b′, i),

which contradicts that p′ was fractionally stable.

The following example demonstrates why we had to impose that p′ respects non-

wastefulness in Proposition 29.

Example 6 (A wasteful and fractionally weakly stable associated random match-

ing p′). We consider the general instance I = (N,O,%) with weak preferences and weak

priorities (the brackets indicate indifferences) that we already have discussed in Example 5:

N = {1, 2, 3}, O = {x, y, z},
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%1: [x y] ∅ z

%2: [y z] ∅ x

%3: [x z] ∅ y

%x: [1 3] 2 ∅
%y: [1 2] 3 ∅
%z: [2 3] 1 ∅.

Then, the generalized random matching

p =

1/3 1/3 0

0 1/3 1/3

1/3 0 1/3


is wasteful, individually rational, and satisfies inequalities (23) in the definition of fractional

weak stability.

The associated instance (N ′, O′,%′) is such that N ′ = {1, 2, 3, dx, dy, dz}, O′ =

{x, y, z, φ1, φ2, φ3} with preferences and priorities (the brackets indicate indifferences):

%′1: [x y] φ1 φ2 φ3 z

%′2: [y z] φ2 φ1 φ3 x

%′3: [x z] φ3 φ1 φ2 y

%′x: [1 3] 2 dx dy dz

%′y: [1 2] 3 dy dx dz

%′z: [2 3] 1 dz dx dy

%′φ1 : 1 2 3 [dx dy] dz

%′φ2 : 2 1 3 [dy dz] dx

%′φ3 : 3 1 2 [dx dz] dy

%′dx : x y z [φ1 φ3] φ2

%′dy : y x z [φ1 φ2] φ3

%′dz : z x y [φ2 φ3] φ1

The associated random matching equals

p′ =

x y z φ1 φ2 φ3



1 1/3 1/3 0 | 1/3 0 0

2 0 1/3 1/3 | 0 1/3 0

3 1/3 0 1/3 | 0 0 1/3

— — — — — — —

dx 1/3 0 0 | 1/3 0 1/3

dy 0 1/3 0 | 1/3 1/3 0

dz 0 0 1/3 | 0 1/3 1/3

and does not respect non-wastefulness.

One can now check for each (a, b) ∈ N ′ × O′ that the fractional stability inequalities

(9) are satisfied and hence p′ is fractionally stable. However, since p is wasteful, it is not

fractionally weakly stable. �
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Next, in order to define claimwise weak stability for generalized random matchings, the

notion of a claim can be adjusted as follows: using consumption process language, as long

as agent i consumes objects that are different from and not worse than o he does not envy

lower priority agent j to consume fractions of o and he does not mind fractions of o to

be unassigned, however, once the unassigned amounts of o plus the amount lower priority

agent j has consumed reach agent i’s weak upper contour set at o (not including o), agent i

either envies agent j or complains about wastefulness (unless agent i can fill his remaining

probability quota with object o). An agent i ∈ N has a claim against an agent j ∈ N , if

there exists an object o ∈ O such that (i, o) is an acceptable pair, i �o j, and

p(j, o) + p(∅, o) >
∑

o′:o′%io;o′ 6=o

p(i, o′). (26)

Inequality (26) implies
∑

o′:o′%io
p(i, o′) < 1, i.e., agent i receives some fraction of an object

in his strict lower contour set at o or i is not fully matched (if not, this would imply that∑
o′:o′%io;o′ 6=o p(i, o

′) + p(i, o) = 1 and hence, p(j, o) + p(∅, o) + p(i, o) > 1; a contradiction).

Thus, agent i would want to consume more of object o.

A generalized random matching is claimwise weakly stable if it is individually rational,

non-wasteful, and does not admit any claim.

Definition 25 (Claimwise weak stability for generalized random matchings). A

generalized random matching p is claimwise weakly stable if p is individually rational,

non-wasteful, and for each acceptable pair (i, o) ∈ N ×O and each j ∈ N such that i �o j,∑
o′:o′%io;o′ 6=o

p(i, o′) ≥ p(j, o) + p(∅, o). (27)

With the next proposition and example we show that only one direction of the trans-

formation between the base model and the most general model preserves claimwise weak

stability, while the other does not. The intuitive reason that an equivalence result as in the

case of fractional weak stability (Proposition 29) does not hold for claimwise weak stability

(Proposition 30) is as follows: fractional weak stability is a symmetric notion in that a

violation that involves agent i who would like more of object o when facing lower priority

agents is equivalent to a violation that involves object o wanting more of agent i when facing

lower preferred objects while, in contrast, a claim is one-sidedly defined by an agent i wanting
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more of object o when facing one lower priority agent without any implications for object o

wanting more of agent i when facing one lower preferred object.

Proposition 30. The generalized random matching p is claimwise weakly stable if the

associated random matching p′ is claimwise stable and respects non-wastefulness and individual

rationality.

Proof. Let p be a generalized random matching and p′ its associated random matching. Let

p′ be claimwise stable and respect non-wastefulness and individual rationality. Thus, p is

non-wasteful and individual rational. Suppose, by contradiction, that p violates one of the

inequalities (27). Then, for some acceptable pair (i, oj) ∈ N ×O and some agent k ∈ N such

that k ≺oj i,
p(k, oj) + p(∅, oj) >

∑
o′:o′%ioj ;o′ 6=oj

p(i, o′).

Furthermore,
∑

o′:o′%io
p(i, o′) < 1 and hence, by non-wastefulness, p(∅, oj) = 0. Recall that

%′oj=%oj

(
{k ∈ N : k �oj ∅}

)
, dj, lex (D \ {dj}) , %oj

(
{k ∈ N : ∅ �oj k}

)
and

%′i=%i({o ∈ O : o �i ∅}) , φi, lex (Φ \ {φi}) , %i({o ∈ O : ∅ �i o}) .

Then, by the definition of %′ and p′ (recall that p(∅, oj) = p′(dj, oj) = 0),

k ≺′oj i and p(k, oj) + p(∅, oj) = p′(k, oj)

and

oj �i ∅ implies
∑

o′:o′%ioj ;o′ 6=oj

p(i, o′) =
∑

b′:b′%′
ioj ;b

′ 6=oj

p′(b′, i).

Hence, inequality p(k, oj) + p(∅, oj) >
∑

o′:o′%ioj ;o′ 6=oj p(i, o
′) can be rewritten as

p′(k, oj) >
∑

b′:b′%′
ioj ;b

′ 6=oj

p′(b′, i),

which contradicts that p′ was claimwise stable.

Example 7 (A non-wasteful, individually rational, and claimwise weakly stable

generalized random matching p but p′ is not claimwise stable). We reconsider the

example used in the proof of Proposition 10. Let N = {1, 2, 3} and O = {x, y, z}. Consider

the following preferences and priorities:
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�1: x z y ∅
�2: y x z ∅
�3: z x y ∅

�x: 2 3 1 ∅
�y: 1 3 2 ∅
�z: 2 1 3 ∅

Let p be the uniform random matching. Thus,

p =

1/3 1/3 1/3

1/3 1/3 1/3

1/3 1/3 1/3

 .

Random matching p is claimwise stable (see proof of Proposition 10), individually rational,

and non-wasteful.

The associated instance is I ′ = (N ′, O′,%′) where N ′ = {1, 2, 3, dx, dy, dz}, O′ =

{x, y, z, φ1, φ2, φ3}, with preferences and priorities:

%′1: x z y φ1 φ2 φ3

%′2: y x z φ2 φ1 φ3

%′3: z x y φ3 φ1 φ2

%′x: 2 3 1 dx dy dz

%′y: 1 3 2 dy dx dz

%′z: 2 1 3 dz dx dy

%′φ1 : 1 2 3 dx dz dy

%′φ2 : 2 1 3 dy dx dz

%′φ3 : 3 1 2 dz dx dy

%′dx : x y z φ2 φ3 φ1

%′dy : y x z φ1 φ3 φ2

%′dz : z x y φ2 φ1 φ3

The associated random matching is

p′ =

x y z φ1 φ2 φ3



1 1/3 1/3 1/3 | 0 0 0

2 1/3 1/3 1/3 | 0 0 0

3 1/3 1/3 1/3 | 0 0 0

— — — — — — —

dx 0 0 0 | 1/3 1/3 1/3

dy 0 0 0 | 1/3 1/3 1/3

dz 0 0 0 | 1/3 1/3 1/3

.

By definition, p′ respects non-wasteful and individually rational with respect to p. However,

p′ is not claimwise stable: agent dx has a justified claim against dz for φ2 because dx �φ2 dz,
p′(dz, φ2) = 1/3 and

∑
o′:o′�dxφ2

p′(i, o′) = 0. �
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Example 6 can also be used to demonstrate why we had to impose that p′ respects

non-wastefulness in Proposition 30: the associated random matching p′ in the example is

also claimwise weakly stable and does not respect non-wastefulness. Hence, the underlying

generalized random matching p is wasteful and hence not weakly claimwise stable. The

following example demonstrates why we had to impose that p′ respects individual rationality

in Proposition 30.

Example 8 (An individually irrational and claimwise weakly stable associated

random matching p′). Let N = {1, 2} and O = {x, y}. Consider the following preferences

and priorities:

�1: x ∅ y

�2: [x, y] ∅
�x: [1, 2] ∅
�y: [1, 2] ∅

Let p be the uniform random matching. Thus,

p =

(
1/2 1/2

1/2 1/2

)
.

Random matching p is individually irrational, non-wasteful and satisfies inequalities (27) in

the definition of claimwise weak stability.

The associated instance is I ′ = (N ′, O′,%′) where N ′ = {1, 2, dx, dy}, O′ = {x, y, φ1, φ2},
with preferences and priorities:

%′1: x φ1 φ2 y

%′2: [x, y] φ1 φ2

%′x: [1, 2] dx dy

%′y: [1, 2] dy dx

%′φ1 : 1 2 dx dy

%′φ2 : 2 1 [dx, dy]

%′dx : x y [φ1, φ2]

%′dy : y x [φ1, φ2]

The associated random matching equals

p′ =

x y φ1 φ2


1 1/2 1/2 | 0 0

2 1/2 1/2 | 0 0

— — — — —

dx 0 0 | 1/2 1/2

dy 0 0 | 1/2 1/2
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and does not respect individual rationality. We argue that p′ is claimwise stable. Agent 1

gets 1/2 of x and thus does not have a justified claim for φ1 or φ2 against dx or dy. Agent 2

gets a best possible outcome and thus has no justified claim. Agents dx or dy cannot have a

justified claim against agent 1 or 2 because the latter have higher priority. Finally, agents dx

and dy have no justified claim against each other. �

It follows easily that if we restrict attention to generalized deterministic matchings, then

all the stability concepts for generalized random matchings coincide with standard weak

stability (Definition 19). The proof of Proposition 31 follows the same arguments as the proof

of our previous Propositions 2 and 11 and we therefore omit it.

Proposition 31. For generalized deterministic matchings, all the stability concepts for

generalized random matchings with weak preferences and weak priorities coincide with weak

stability for deterministic matchings.

Our previous results (Figure 2 together with Propositions 26 – 30) now imply the following

taxonomy of the stability concepts for generalized random matchings and their associated

random matching in Figure 4.
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Section 3 results: For any generalized random matching p and its associated random
matching p′, we have

no ex-ante envy,
p and non-wastefulness,

individual rationality
(Defs. 20, 15, and 16)

p′ ex-ante weakly stable (Def. 9)

p′ robust ex-post weakly stable (Def. 11)
and non-wasteful

p′ ex-post weakly stable (Def. 10)
and non-wasteful

p′ fractionally weakly stable (Def. 12)
and non-wasteful

p′ claimwise weakly stable (Def. 13),
non-wasteful and individually rational

p ex-ante weakly stable (Def. 21)

p robust ex-post weakly stable (Def. 23)

p ex-post weakly stable (Def. 22)

p fractional weakly stable (Def. 24)

p claimwise stable (Def. 25)

Prop. 23

Prop. 25

Prop. 27

Prop. 26

Prop. 29

Ex. 7

Prop. 30

Prop. 24

Figure 4: Relations between stability concepts for generalized random matchings with
weak preferences and weak priorities and equivalences of stability concepts for associated
random matchings.
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4 Conclusion

We presented a taxonomy of stability concepts (ex-ante; robust ex-post, ex-post, fractional,

and claimwise) for the most well-studied but restricted setting in which (1) preferences are

strict, (2) priorities are strict, (3) there is an equal number of agents and objects, (4) all

objects and agents are acceptable to each other. The formalization lead to a clear picture of

the hierarchy of stability concepts. We then extended these concepts to the most general

model that has none of the restrictions (1) – (4). We formalized the stability concepts with

the appropriate additional requirements of non-wastefulness and/or individual rationality

when necessary to preserve the hierarchy we established in the base model. We found that it

was an extremely subtle task to identify when additionally requiring individual rationality

or non-wastefulness is redundant or when it is critical to preserve the logical relations

and characterizations that were identified in the base model. We also took these factors

into account when obtaining our characterization results for preserving stability concepts

when transforming the most general model to the base model. Throughout the paper, we

complement our results with minimal examples where converse statements do not hold or

when a certain characterization cannot be extended. We are hopeful that the groundwork in

this paper will provide the base for further market design and axiomatic work on probabilistic

matching under priorities.

A Appendix: Weak and strong stochastic dominance

stability (Manjunath, 2013) re-examined

In this section, we point out connections with weak and strong stochastic dominance (sd)

stable matchings as studied by Manjunath (2013) for the base model as introduced in Section 2

(with an equal number of agents and objects and strict preferences / priorities). Note that

our model involves ordinal preferences of agents over objects and ordinal priorities of objects

over agents. These preferences / priorities can be extended to preferences / priorities over

random allocations via the first order stochastic dominance relation.
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Definition 26 (First order stochastic dominance). Given two random matchings p and

q and an agent i ∈ N with preference o1 �i o2 �i . . . �i on over O = {o1, . . . , on}, we say

that agent i sd-prefers match p(i) to match q(i), denoted by p(i) %sd
i q(i), if and only if,

p(i, o1) ≥ q(i, o1)

p(i, o1) + p(i, o2) ≥ q(i, o1) + q(i, o2)

p(i, o1) + p(i, o2) + p(i, o3) ≥ q(i, o1) + q(i, o2) + q(i, o3)
...

If p(i) %sd
i q(i) and p(i) 6= q(i), then p(i) �sd

i q(i).

Given two random matchings p and q and an object o ∈ O with priorities i1 �o i2 �o
. . . �o in over N = {i1, . . . , in}, we say that object o sd-prioritizes match p(o) to match

q(o), denoted by p(o) %sd
o q(o), if and only if

p(i1, o) ≥ q(i1, o)

p(i1, o) + p(i2, o) ≥ q(i1, o) + q(i2, o)

p(i1, o) + p(i2, o) + p(i3, o) ≥ q(i1, o) + q(i2, o) + q(i2, o)
...

If p(o) %sd
o q(o) and p(o) 6= q(o), then p(o) �sd

o q(o).

The definitions of Manjunath’s weak and strong stochastic dominance stability are based

on the following two pairwise blocking notions.

Definition 27 (Weak and strong (pairwise) sd-blocking; Manjunath, 2013). A

random matching p is weakly sd-blocked by pair (i, o) ∈ N×O if there exists a corresponding

deterministic matching q 6= p such that q(i, o) = 1 and

neither p(i) �sdi q(i) nor p(o) �sdo q(o).

A random matching p is strongly sd-blocked by pair (i, o) ∈ N × O if there exists a

corresponding deterministic matching q 6= p such that q(i, o) = 1 and

q(i) �sdi p(i) and q(o) �sdo p(o).

Definition 28 (Weak and strong sd-stability; Manjunath, 2013). A random matching

p is weakly sd-stable if there exists no pair (i, o) ∈ N ×O that strongly sd-blocks p.
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A random matching p is strongly sd-stable if there exists no pair (i, o) ∈ N ×O that

weakly sd-blocks p.

Proposition 32. A random matching is strongly sd-stable if and only if it is ex-ante stable.

Proof. Suppose random matching p has ex-ante envy. Then, there exist i, j ∈ N and o, o′ ∈ O
such that p(i, o′) > 0, p(j, o) > 0, o �i o′, and i �o j. Consider a corresponding deterministic

matching q 6= p such that q(i, o) = 1. Thus, neither p(i) �sdi q(i) nor p(o) �sdo q(o). Hence, p

is weakly sd-blocked by pair (i, o) and not strongly sd-stable.

Suppose random matching p is not strongly sd-stable. Then, there exists a pair (i, o) ∈
N ×O that weakly sd-blocks p, i.e., there exists a corresponding deterministic matching q 6= p

such that q(i, o) = 1 and neither p(i) �sdi q(i) nor p(o) �sdo q(o). Note
∑

o′:o′%io
p(i, o′) =

1 would imply p(i) �sdi q(i) and
∑

j:j%oi
p(j, o) = 1 would imply p(o) �sdo q(o). Thus,∑

o′:o′%io
p(i, o′) < 1 and

∑
j:j%oi

p(j, o) < 1. Then, there exist j ∈ N and o′ ∈ O such that

p(i, o′) > 0, p(j, o) > 0, o �i o′, and i �o j. Hence, p is not ex-ante stable.

Proposition 33. If a random matching p is claimwise weakly stable, then it is weakly

sd-stable.

Proof. Suppose random matching p is not weakly sd-stable. Then, there exists a pair

(i, o) ∈ N × O that strongly sd-blocks p, i.e., there exists a corresponding deterministic

matching q 6= p such that q(i, o) = 1 and q(i) �sdi p(i) and q(o) �sdo p(o). Note that

q(o) �sdo p(o) implies
∑

j:k�oi p(k, o) = 0 and p(i, o) < 1. Hence, there exists an agent j ∈ N
such that i �o j and p(j, o) > 0. Furthermore, q(i) �sdi p(i) implies

∑
o′:o′�io p(i, o

′) = 0.

Thus, p(j, o) >
∑

o′:o′�io p(i, o
′) and agent i has a claim against agent j and p is not claimwise

stable.

Proposition 34. Weak sd-stability does not imply claimwise stability.

Proof. Let N = {1, 2, 3} and O = {x, y, z}. Consider the following preferences and priorities:

�1: x z y

�2: y x z

�3: z x y

�x: 2 3 1

�y: 1 3 2

�z: 2 1 3

Consider the random matching

p =

1/4 1/2 1/4

1/4 1/4 1/2

1/2 1/4 1/4

 .
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First, note that agent 2 wants more of object x, 2 �x 3, and p(3, x) = 1
2
> 1

4
=
∑

o:o�2x
p(2, o).

Hence, agent 2 has a claim against agent 3 and p is not claimwise stable.

Second, we show that random matching p is weakly sd-stable by checking that for no

pair (i, o) ∈ N × O with corresponding deterministic matching q 6= p such that q(i, o) = 1,

q(i) �sdi p(i) and q(o) �sdo p(o).

• For an agent i ∈ N and his most preferred object o ∈ O, q(o) 6�sdo p(o) because all other

agents have higher priority for that object.

• For an agent i ∈ N and his second or third preferred object, q(i) 6�sdi p(i) because agent

i receives his best object with positive probability.
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Abdulkadiroğlu, A., P. A. Pathak, A. E. Roth, and T. Sönmez (2005). The Boston public

school match. American Economic Review 95 (2), 368–371.
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