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Philosophers seemingly agree:

A liar should have a good memory.

—Quintilian

If you tell the truth, you don’t have to remember anything.

—Twain

The least initial deviation from truth is multiplied later thousandfold.

—Aristotle

Do statisticians and economists agree as well?



A More Concrete Example

A regulated monopoly privately observes its cost over time.

The regulator sees the sequence of reports (or decisions, prices,...)



A More Concrete Example

A regulated monopoly privately observes its cost over time.

The regulator sees the sequence of reports (or decisions, prices,...)

What restrictions should the regulator impose on this sequence?
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We are given a finite Markov chain (sn).

Let λ denote the invariant measure (by extension, the measure on (ss ′),. . . ).

Denote the initial distribution ν ∈ ∆(S).



s1 s2 s3 s4 s5 s6 s7 s8 ✲

✲a1 a2 a3 a4 a5 a6 a7 a8

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄



s1 s2 s3 s4 s5 s6 s7 s8 ✲

✲a1 a2 a3 a4 a5 a6 a7 a8

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

Here and throughout today, A ≡ S.



s1 s2 s3 s4 s5 s6 s7 s8 ✲

✲a1 a2 a3 a4 a5 a6 a7 a8

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

Here and throughout today, A ≡ S.

Reduced-form payoff u(s , a) [think of it as r (s , φ(a))].



s1 s2 s3 s4 s5 s6 s7 s8 ✲

✲a1 a2 a3 a4 a5 a6 a7 a8

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

Here and throughout today, A ≡ S.

Reduced-form payoff u(s , a) [think of it as r (s , φ(a))].

Total payoff:

1

N

N∑

n=1

u(sn, an).



s1 s2 s3 s4 s5 s6 s7 s8 ✲

✲a1 a2 a3 a4 a5 a6 a7 a8

❄ ❄ ❄ ❄ ❄ ❄ ❄ ❄

Here and throughout today, A ≡ S.

Reduced-form payoff u(s , a) [think of it as r (s , φ(a))].

Total payoff:

lim inf
N→+∞
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Jackson & Sonnenschein (’07): Force the agent to report in

Σ0 :=

{

(σ, ν)

∣
∣
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∣
∣

∀s : lim
N→+∞

1

N

N∑

n=1

#{an = s} = λ(s), Pσ,ν −a.s.

}

.

Money is memory: There exists t : A → R s.t. truthtelling is
optimal in the game with payoff u(s, a) + t(a) iff σtt is best in Σ0.
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As an example, consider the process with t.f.

s ′
1 s ′

2 s ′
3









s1 1/2 1/2 0
s2 0 3/4 1/4
s3 1/2 0 1/2

The invariant distribution is λ = (1/4, 1/2, 1/4).
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µx =

a1 a2 a3








s1
1
4 − x x 0

s2 0 1
2 − x x

s3 x 0 1
4 − x

Note that
margAµx = margSµx = λ.

There exists σ ∈ Σ0 such that, for all (s, a),

lim
N→+∞

1

N

N∑

n=1

#{(sn, an) = (s, a)} = µx (s, a), Pσ −a.s.
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ā = a3

s = s2



Are pairs the answer? Consider now:

µ 1
6

=

a1 a2 a3








s1 1/12 1/6 0
s2 0 1/3 1/6
s3 1/6 0 1/12

Suppose:
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a3 a1








s1 0 1
s2 1 0
s3 0 1

ā = a3
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ā = a1

a2 a3
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

s1 1 0
s2 7/8 1/8
s3 0 1

ā = a2

This strategy yields the desired frequency λ(s, s ′).
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ā = a3 a = a3



Yet, we can spot such a lie.

µ 1
6

=

a1 a2 a3








s1 1/12 1/6 0
s2 0 1/3 1/6
s3 1/6 0 1/12

Suppose:
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Conditional on (ā, a) = (a3, a3), the next report is a3 too often.
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Is this example non-generic?
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With two states, checking frequencies is enough.

This does not mean that either:

Truthtelling is guaranteed by checking frequencies;

More complicated tests cannot deter additional strategies.

For instance, with an i.i.d. fair process:

Truthtelling is impossible if systematic mis-reporting is better;

Additional 0-1 laws could be tested (e.g., average run length).

But:

If, given the preferences, truthtelling is achieved by some test,
testing frequencies is enough;

Those strategies that pass the frequency test, but fail some
other test, do not affect the set of distributions µ ∈ ∆(S × A).
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Testing singletons is enough iff the process is (pseudo-)renewal.

With three states:

Checking frequencies (almost) never suffices (given the t.f. P,
there exists u such that truth-telling obtains with pairs, but
not with singletons).

Checking pairs suffices (fails to suffice) for an open set of P.

Checking k-tuples suffices (fails to suffice), but checking
k − 1-tuples does not, for an open set of P.
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Implications

Dynamic interactions allow for richer behavior than with transfers
in the one-shot game;
–in fact, there is no a priori upper bound on the memory required.

Recursive methods in repeated games (no such formulation here).

Implementation (cyclical monotonicity in dynamic contexts).
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Statistics/Econometrics : Hidden Markov chains.

Blackwell Koopmans (1957).
Connault (2016).

Difference:

Identification

Covariates with given laws.

vs.

Strategic behavior in reporting.

Verifiable information: Cherrypicking data?



Other Literature

Economics Cyclical Monotonicity (Rochet 1987).

Dynamic games with changing types (Athey
Bagwell 2001; Renault Solan Vieille 2013;
Escobar Toikka 2013; H. Takahashi Vieille
2015).

Linking Incentives (Jackson Sonnenschein 2007).

Dynamic implementation and mechanism design
(Athey Segal 2013; Mezzetti Renou 2015).
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We divide the analysis into three steps:

Given a test:

1. Which distributions (over S × A) are undetectable?

2. When is truthtelling optimal, given u?

Sufficiency of a test:

3. When is a distribution detectable/truthtelling optimal for
some test iff it is so with a given test? (A property of P)
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∣
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∣
∣

∀ (s , . . . , s ′)
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:

lim
N→+∞

1

N

N∑

n=1

#{(an−k , . . . , an) = (s , . . . , s ′)} = λ(s , . . . , s ′), Pσ,ν −a.s .

}

.

Strategies in Σk match the frequency of strings of length k + 1.

Truthtelling is k-optimal if

sup
(σ,ν)∈Σk

lim inf
N→∞

Eσ,ν

[

1

N

N∑

n=1

u(sn, an)

]

≤ Eµtt
[u(s, a)] .



Undetectability

Define

Σk =







σ

∣
∣
∣
∣
∣
∣
∣

σn(~sn,~an, sn) = σ(an−k , . . . , an−1

︸ ︷︷ ︸

k terms

, sn)







.

Strategies in Σk have memory k.
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{
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∣
∣
∣ ∃σ ∈ Σk , µ = µσ, margAk+1νσ = λ

}

.

Note that µtt ∈ Mk ∀k.
In the example, µ 1

4
∈ M0 \ M1, µ 1

6
∈ M1 \ M2.

Given (σ, ν), let

µN
σ,ν

(s, a) = Eσ,ν

[

1

N

N∑

n=1

#{(sn, an) = (s, a)}
]

.

Proposition

For every µ ∈ Mk , and ν ∈ ∆(S), there is σ ∈ Σk s.t.

lim
N→∞

µN
σ,ν

= µ.

For every (σ, ν) ∈ Σk s.t. µ := lim
N→∞

µN
σ,ν

exists, µ ∈ Mk .
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Incentives

Since Mk is the set of undetectable deviations, it follows:

Proposition

Truthtelling is k-optimal iff µtt ∈ argmax
µ∈Mk

Eµ[u(s, a)].

So Mk = M∞ is sufficient, but not necessary, for:

∀u ∈ R|S|×|A| : µtt ∈ argmax
µ∈Mk

Eµ[u(s, a)] ⇔ µtt ∈ argmax
µ∈M∞

Eµ[u(s, a)].



Mk

µtt Mk+1

u(·, ·)
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What matters to the economist is the cone:

Ck :=
{
µ ∈ ∆(S × A)

∣
∣µ = µtt + α(µ′ − µtt), some α ≥ 0, µ′ ∈ Mk

}
.

In our earlier example, M2 6= M1, yet C1 = C∞ := ∩kCk .

Ck 6= Ck+1 ⇒ ∃u ∈ R|S|×|A| :

Eµtt
[u(s, a)] = max

µ∈Mk+1

Eµ[u(s, a)] < max
µ∈Mk

Eµ[u(s, a)].
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Sufficiency

When is Mk = M∞?

When is Ck = C∞?

These are properties of the Markov matrix P only.
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When is memory 0 sufficient?

Intuitively clear for perfectly persistent and i.i.d.

(sn) is pseudo-renewal if s 6= s ′ implies pss′ = αs′ , for some αs′ .

Proposition

C0 = C∞ (or: M0 = M∞) iff (sn) is pseudo-renewal.

Every two-state Markov chain is pseudo-renewal.

It is a non-generic property for |S| ≥ 3.
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With two states, checking frequencies is enough.

This does not mean that either:

Truthtelling is guaranteed by checking frequencies;

More complicated tests cannot deter additional strategies.

For instance, with an i.i.d. fair process:

Truthtelling is impossible if systematic mis-reporting is better;

Additional 0-1 laws could be tested (e.g., average run length).

But:

If, given the preferences, truthtelling is achieved by some test,
testing frequencies is enough;

Those strategies that pass the frequency test, but fail some
other test, do not affect the set of distributions µ ∈ ∆(S × A).
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The sets Mk

Let #S = 3.

Proposition

Fix k ∈ N. For an open set of transition matrices, Mk 6= Mk+1.

When are pairs sufficient?

Proposition

Assume p11 ≥ p22 ≥ p33 ≥ max{p21, p31} ≥ max{p12, p32} ≥
max{p13, p23}, and p11 + p22 ≤ 1. Then M1 = M∞.

Proposition

Fix a neighborhood N of the t.f. for (sn) i.i.d. and uniform. There
exists N ′

, N ′′ ⊆ N s.t.

for all P ∈ N ′

, M1 = Mk for all k;

for all P ∈ N ′′

, M1 6= Mk for some k.
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The sets Ck

Let #S = 3.

Proposition

Fix k ≥ 1. For an open set of transition matrices, Mk 6= M∞, yet
Ck = C∞.

Proposition

Fix k ∈ N. For an open set of transition matrices, Ck 6= Ck+1.

Proposition

C1 = C∞ if pss′ ≤ Φ for all s, s ′, where Φ is the golden ratio
conjugate (Φ = (

√
5 − 1)/2 ≃ 0.618).
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Linked Incentives

The following equivalence result generalizes JS:

t(~an) has memory k if it only depends on (an−k , . . . , an)
︸ ︷︷ ︸

k+1 terms

.

Proposition

There exists t with memory k s.t. σtt is best, given payoff

lim inf
N→+∞

1

N

∑

n≤N

(u(sn, an) + t(~an)),

iff σtt is best in Σk .
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Implementation (Rochet ’87)

r(s, y), y ∈ Y : utility function.

φ : A → Y : decision rule.

u(s, a) := r(s, φ(a)): utility given s, a.

Question: Does there exist t : A → R s.t. truthtelling is optimal:

∀s : s ∈ argmax
a

(u(s, a) + t(a)) .

If so, φ is incentive compatible (IC).
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Theorem (Afriat, Rochet, Rockafellar)

φ is IC iff u is cyclically monotone: for every permutation π of S,

∑

s∈S

(u(s, π(s)) − u(s, s)) ≤ 0.

Equivalently, as is easy to show:

φ is IC iff µtt ∈ argmax
µ∈M0

Eµ[u(s, a)].

Taken together, we obtain the following generalization:

Proposition

The map φ is IC using transfers of memory k iff

µtt ∈ argmax
µ∈Mk

Eµ[u(s, a)].



Repeated Agency and Repeated Games

An important literature reduces the analysis of such games to
static games with transfers (with side constraints):

Repeated games: Shapley (’53), APS (’90), FLM (’94),...

Agency: Spear-Srivastava (’87), Thomas-Worrall (’90),...



Repeated Agency and Repeated Games

An important literature reduces the analysis of such games to
static games with transfers (with side constraints):

Repeated games: Shapley (’53), APS (’90), FLM (’94),...

Agency: Spear-Srivastava (’87), Thomas-Worrall (’90),...

An implication of our “negative” result is that this is impossible
when values are interdependent and types are independent.
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Fix k ∈ N. We compare the maximum eq’m surplus between:

- an infinitely repeated game with incomplete information

- a finitely repeated game with transfers.

Given ν ∈ ∆(S), t : Ak → RI , and a strategy profile σ, i ’s
expected payoff in the finitely repeated game is:

v i(σ, ν) = Eσ,ν

[

1

k

k∑

κ=1

ui(sκ, aκ) + t i(a1, . . . , ak)

]

.

Let Ek(t, ν) be the set of Nash equilibria of this game. Compute

M := sup
t:Ak →RI

σ∈Ek (t,ν)
ν∈∆(S)

∑

i

v i(σ, ν)

s.t.
∑

i t i(a1, . . . , ak) ≤ 0, ∀(a1, . . . , ak).

We prove that M is bounded below the highest eq’m surplus in the
RPII as δ → 1.



Does the Dynamic Set-Up Matter?

JS point out that their results extend to the dynamic case.

Yet the static case has “many more” incentive constraints.



Does the Dynamic Set-Up Matter?

JS point out that their results extend to the dynamic case.

Yet the static case has “many more” incentive constraints.

Limited foresight erases all benefits from sophisticated tests.

The agent is k-prophetic if he sees the next k states in advance.



Does the Dynamic Set-Up Matter?

JS point out that their results extend to the dynamic case.

Yet the static case has “many more” incentive constraints.

Limited foresight erases all benefits from sophisticated tests.

The agent is k-prophetic if he sees the next k states in advance.

Lemma
Suppose the agent is (#S + 1)-prophetic. Then truthtelling is
optimal for some test iff it is optimal when testing singleton states.
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