Economics and Space: Unified at Last

Costas Arkolakis¹

¹Yale University and NBER

SAET

June, 2018

Economics and Space: A Love-Hate Relationship

► Economics and Space have had a love-hate relationship for a long time

Economics and Space: A Love-Hate Relationship

- Economics and Space have had a love-hate relationship for a long time
 - Even in spatial economics, space was rarely seriously considered
- International trade: Heckscher-Ohlin widespread use until mid-90's
- Geography: Krugman model created an explosion of work in geography
- Urban: Rosen-Roback model main equilibrium framework

Economics and Space: The Challenge

- Economics and Space have had a love-hate relationship for a long time
 - Even in spatial economics, space was rarely seriously considered
- ► International trade: Heckscher-Ohlin widespread use until mid-90's
- Geography: Krugman model created an explosion of work in geography
- Urban: Rosen-Roback model main equilibrium framework
 - ► Key challenge: with rich spatial frictions models become intractable
 - ... and hard to combine with data

Economics and Space: The Challenge

- Economics and Space have had a love-hate relationship for a long time
 - Even in spatial economics, space was rarely seriously considered
- ► International trade: Heckscher-Ohlin widespread use until mid-90's
- Geography: Krugman model created an explosion of work in geography
- **Urban**: Rosen-Roback model main equilibrium framework
 - Key challenge: with rich spatial frictions models become intractable
 - ... and hard to combine with data
- > The spatial model with frictions is a formidable system!
 - Best case scenario, N locations equations/unknowns + interactions
 - Labor mobility (geography), knowledge spillovers (urban) make solution a true nightmare

Developing an Alternative

Trade/geography economists recently developed a versatile alternative

Developing an Alternative

- Trade/geography economists recently developed a versatile alternative
- So-called 'gravity framework' and generalizations. It allows for
 - 1. Unified framework for trade, geography and urban
 - 2. Unified positive Analysis: A battery of mathematical tools can be used
 - $\blacktriangleright\,$ e.g. non-linear/integral equations theory, perturbation theory etc.
 - 3. Robust comparative statics
 - 4. New Estimation Methods Robust Across Variations

Developing an Alternative

- Trade/geography economists recently developed a versatile alternative
- So-called 'gravity framework' and generalizations. It allows for
 - 1. Unified framework for trade, geography and urban
 - 2. Unified positive Analysis: A battery of mathematical tools can be used
 - ▶ e.g. non-linear/integral equations theory, perturbation theory etc.
 - 3. Robust comparative statics
 - 4. New Estimation Methods Robust Across Variations
- Rapidly expanding literature:
 - Discussion based on results/model in Allen Arkolakis (AA) '14, AA Takahashi '14 (AAT), AA and Li '14 (AAL), Allen Arkolakis (AA17), Adao, Arkolakis, Esposito (AAE) '17, and earlier results by Arkolakis, Costinot Rodriguez-Clare (ACR) '12

Roadmap

- A Simple Framework and the Unified Spatial Model
- Analytical Solution of Equilibrium
- Positive Properties and Computation of the Equilibrium
- Comparative Statics
- Welfare and Applications

Generalized Spatial Economy

- We first present a special case of the Generalized Spatial Competitive Economy developed in AAE
- ► *N* locations each with differentiated commodity
 - Everything we say holds for sectors-locations
- ▶ Representative agent that allocates consumption and labor in space
- Competitive firms subject to Marshallian externalities

Generalized Spatial Economy

- We first present a special case of the Generalized Spatial Competitive Economy developed in AAE
- ► N locations each with differentiated commodity
 - Everything we say holds for sectors-locations
- ▶ Representative agent that allocates consumption and labor in space
- Competitive firms subject to Marshallian externalities
- Spatial frictions:
 - Trade costs on consumption
 - Frictions on mobility of labor
 - Frictions on knowledge spillover

Consumption

Agents in market i solve

$$\min_{C_{ij}} \sum_{i} p_{ij} C_{ij} \quad \text{s.t.} \quad \left[\sum_{i} C_{ij}^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} = 1$$

The spending share on goods of region i in j is

$$\mathbf{x}_{ij}\left(\left\{\boldsymbol{p}_{ij}\right\}_{ij}\right) = \frac{\boldsymbol{p}_{ij}^{1-\sigma}}{\sum_{o} \boldsymbol{p}_{oj}^{1-\sigma}}$$
(1)

where we define $P_{j}\equiv\sum_{o}p_{oj}^{1-\sigma}$

Labor Supply

▶ We assume labor choice written as

$$L_{i}\left(\left\{\frac{w_{i}}{P_{i}}\right\}_{i}\right) = \frac{\nu_{i}^{1/\phi}\left(\frac{w_{i}}{P_{i}}\right)^{1/\phi}}{\sum_{j}\nu_{i}^{1/\phi}\left(\frac{w_{j}}{P_{j}}\right)^{1/\phi}}$$
(2)

Many ways to micro-found e.g. assuming worker mobility (see AA, AAT)

• w_i : wage rate, ν_i : preference shifter

Firm Problem

Perfect competition and cost minimization requires

$$p_{ij}(w_i) = \frac{w_i \tau_{ij}}{A_i} \tag{3}$$

 au_{ij} : iceberg technological costs, agglomeration spillovers modeled as

$$A_i = \bar{A}_i \Psi_i \left(\{L_j\}_j \right).$$

For simplicity, $\Psi\left(\left\{L_{j}\right\}_{j}\right) \equiv L_{i}^{\psi}$

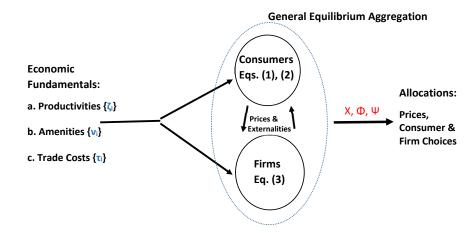
Closing the Model and Equilibrium

Labor income is given by

$$w_i L_i = \sum_j \left(x_{ij} w_j L_j \right) \tag{4}$$

- Equilibrium in this model is characterized as {w_i} that satisfy (4) by substituting x_{ij}, L_i, p_{ij} using X_{ij} ({p_{ij}}), L_i ({w_i/P_i}), Ψ({L_i}_i) (and a normalization)
- The model above can be massively generalized (see AAE)
 - Simply by considering general functions $X_{ij}(\{p_{ij}\}), L_i(\{w_i/P_i\}), \Psi(\{L_i\}_i)$

A Unified Spatial Model



The Simple Framework: Special Cases

The Simple Framework: Special Cases

- 1. No trade costs + No labor mobility: Neoclassical trade/macro/devo
 - ► Many factors/sectors. H-O, Foster Rosenzweig '08, Bustos et al '16
- 2. No trade costs + labor mobility: The Rosen-Roback '82 model
 - Version of celebrated Rosen Roback model, Glaeser '10, Kline Moretti '16

The Simple Framework: Special Cases

- 1. No trade costs + No labor mobility: Neoclassical trade/macro/devo
 - ▶ Many factors/sectors. H-O, Foster Rosenzweig '08, Bustos et al '16
- 2. No trade costs + labor mobility: The Rosen-Roback '82 model
 - Version of celebrated Rosen Roback model, Glaeser '10, Kline Moretti '16
- 3. Trade costs + No labor mobility: The Gravity model and extensions
 - Anderson '79, Ethier '82a, Eaton Kortum '02, Melitz '03/Chaney '08, Adao et al '17
- 4. Trade costs + labor mobility: New Economic Geography
 - Helpman '98, Allen Arkolakis '14, Redding '16, Adao Arkolakis Esposito '18
- 5. Further extensions (define transfer of resources rule)
 - Fiscal transfers: Nakamura-Stainsson '14, Chodorow-Reich '17. Assets of household: Su-Mian '13, Verner '17

Roadmap

- ► A Simple Framework and the Unified Spatial Model
- Analytical Characterization of Equilibrium
- Positive Properties and Computation of the Equilibrium
- Comparative Statics
- Welfare and Applications

Ananytically Characterizing Spatial Models

- In general, analytical characterization of spatial models is hard
 - We need to solve variables as a function of all parameters (e.g. $\nu_i, \zeta_i, \tau_{ij}$)
 - Feasible with zero trade costs or with stylized geographies
- We will next proceed by allowing for labor mobility and start with the case of no trade costs
 - That will lead to the celebrated 'urban' Rosen-Roback'82 framework (e.g. Glaeser '10, Kline Moretti '16)
 - Our version has slightly different assumption but identical outcomes
 - Key similarity: no spatial frictions!

The 'Urban Model': No Trade Costs + Labor Mobility

The equilibrium is given by

$$w_i L_i = \frac{(w_i/A_i)^{1-\sigma}}{\sum_o (w_o/A_o)^{1-\sigma}} Y$$

where
$$Y \equiv \sum_{j} w_{j}L_{j}$$
. Normalize $Y = 1$.

You can prove that

$$w_{i} = \nu_{i}^{\frac{\psi(\sigma-1)-1}{\gamma}} \bar{A}_{i}^{\frac{\phi(\sigma-1)}{\gamma}} W^{\frac{1-\psi(\sigma-1)}{\gamma}}$$
$$L_{i} = \frac{\nu_{i}^{\frac{\sigma}{\gamma}} \bar{A}_{i}^{\frac{\sigma-1}{\gamma}}}{\sum_{o} \nu_{o}^{\frac{\sigma}{\gamma}} \bar{A}_{o}^{\frac{\sigma-1}{\gamma}}} \bar{L}$$

where $\gamma \equiv 1 - \psi (\sigma - 1) - \phi \sigma$, *W* is welfare (we ll come back to that)

 Intuition: population higher when productivity and amenity are higher. Related intuition for wages.

Recap: Economics but Not Yet Space...

- In both the macro and urban examples space implies a symmetric effect to all locations
- > We imposed symmetry in either the trade costs or labor mobility
 - How do we introduce asymmetry on these links?
 - ▶ We will proceed with constant elasticity examples (e.g. AA, AAT)
 - ► AAE offer extensions to general mappings (1)-(3)
- Next: analytically characterize an example of non-zero trade costs
 - But assuming a stylized geography

Analytical Solution of a Geography Model

• Consider trade on the line $S = [-\pi, \pi]$,

- Global parameters: $\phi = \psi = 0$, $\sigma > 0$
- Kernel: $\nu(i) = \overline{A}(i) = 1$, $\tau(i,j) = e^{\tau|i-j|}$ for all $i, j \in S$.

Analytical Solution of a Geography Model

• Consider trade on the line $S = [-\pi, \pi]$,

- Global parameters: $\phi = \psi = 0$, $\sigma > 0$
- Kernel: $\nu(i) = \overline{A}(i) = 1$, $\tau(i,j) = e^{\tau|i-j|}$ for all $i,j \in S$.

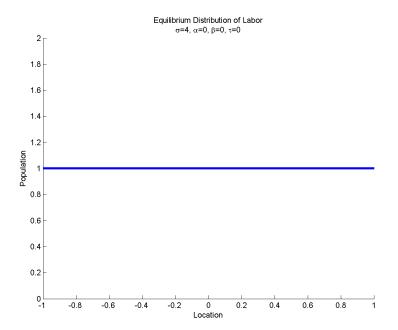
• Equilibrium written as an *integral equation* or a differential equation

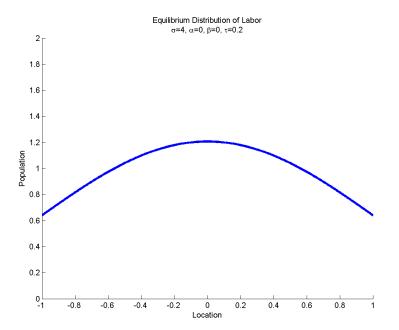
- Same differential equation in space as the pendulum in time
- Like a pendulum, strength of agglomeration force proportional to distance from center and symmetric.

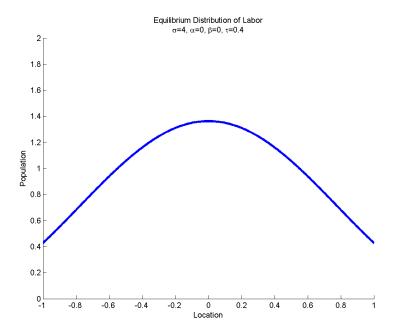
▶ In this special case, there exists a closed form solution (!):

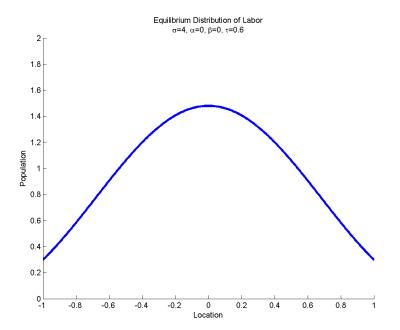
$$L(i) = c_1 \cos{(ki)^{\frac{2\sigma-1}{\sigma-1}}}$$

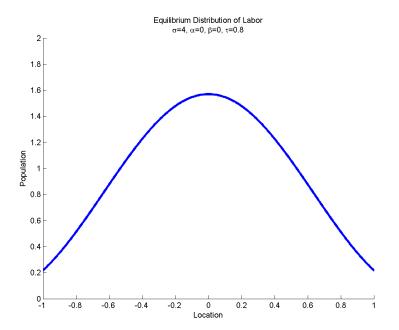
• c_1 , k depend on eigenvalue. Agglomeration force increases with τ .

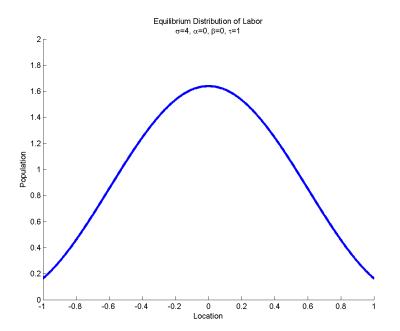








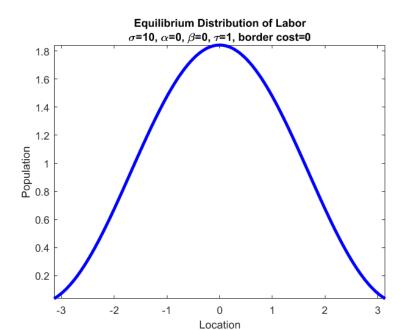


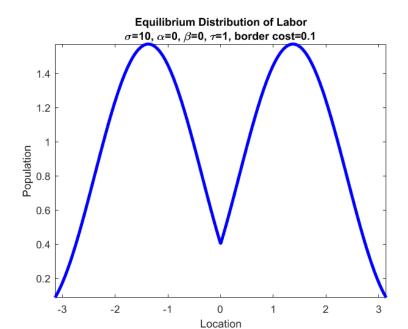


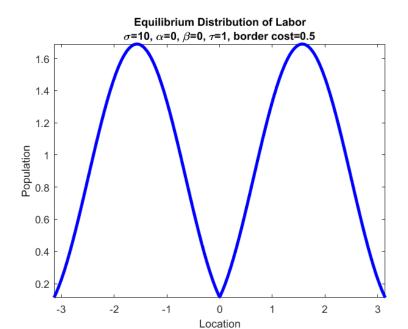
- Now add a border in the middle (on top of trade cost)
- The solution becomes

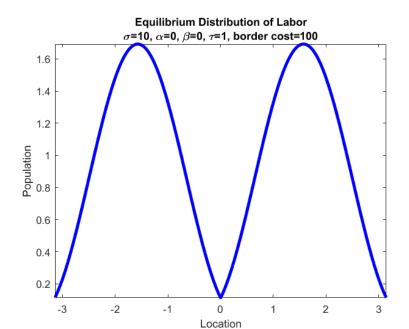
$$L(i) = (c_1 \cos(ki) + c_2 \sin(ki))^{\frac{2\sigma-1}{\sigma-1}}$$

- Same differential equation in space as the spring in time
 - Like a spring, strength of agglomeration force proportional to distance but border introduces *assymetry*.









Roadmap

- ► A Simple Framework and the Unified Spatial Model
- Analytical Characterization of the Equilibrium
- Positive Properties and Computation of the Equilibrium
- Comparative Statics
- Welfare and Applications

Spatial Models: Positive Analysis

- Having given intuition for the working elements of spatial models we next characterize positive properties
 - > Existence, uniqueness, and equilibrium computation of spatial models
- For this, functional forms are essential, as we need to impose restrictions on parameters
- We will focus on the parametric examples
 - Workhorse analysis using the gravity model.
 - Combine consumer and firm decisions bilateral trade given by

$$x_{ij} = \frac{\left(\frac{w_i \tau_{ij}}{A_i}\right)^{1-\sigma}}{\sum_{\sigma} \rho_{oj}^{1-\sigma}} = \underbrace{(\tau_{ij})^{1-\sigma}}_{\tau_{ij}^{\epsilon}} \times \underbrace{\left(\frac{w_i}{A_i}\right)^{1-\sigma}}_{\gamma_i} \times \underbrace{\frac{1}{\sum_{k} \left(\frac{w_k}{A_k} \tau_{kj}\right)^{1-\sigma}}}_{\delta_j}$$

• Equilibrium is trade gravity+market clearing.

$$w_i L_i = \sum_i x_{ij} w_j L_j \implies$$

$$w_i L_i = \sum_{i} \frac{\left(\frac{w_i \tau_{ij}}{A_i}\right)^{1-\sigma}}{\sum_{o} \left(\frac{w_o \tau_{oj}}{A_o}\right)^{1-\sigma}} w_j L_j$$

• Equilibrium is trade gravity+market clearing.

$$w_i L_i = \sum_i x_{ij} w_j L_j \implies$$

$$w_i L_i = \sum_{i} \frac{\left(\frac{w_i \tau_{ij}}{A_i}\right)^{1-\sigma}}{\sum_{\sigma} \left(\frac{w_o \tau_{oj}}{A_o}\right)^{1-\sigma}} w_j L_j$$

Solve w_i, P_i using

$$w_{i}^{\sigma} = \sum_{j} (\tau_{ij})^{1-\sigma} L_{i}^{-1} A_{i}^{\sigma-1} L_{j} w_{j} P_{j}^{\sigma-1}$$
$$P_{i}^{1-\sigma} = \sum_{j} (\tau_{ji})^{1-\sigma} A_{j}^{\sigma-1} (w_{j})^{1-\sigma}$$

- ▶ In trade models (with no deficit) we have $E_i = Y_i$
- Equilibrium is trade gravity+market clearing+**no** labor mobility $(L_i = \overline{L}_i)$
 - ► Solve *w_i*, *P_i* using

$$w_{i}^{\sigma} = \sum_{j} (\tau_{ij})^{1-\sigma} L_{i}^{-1} A_{i}^{\sigma-1} \nu_{j}^{\sigma-1} L_{j} w_{j} P_{j}^{\sigma-1}$$
$$P_{i}^{1-\sigma} = \sum_{j} (\tau_{ji})^{1-\sigma} A_{j}^{\sigma-1} (w_{j})^{1-\sigma}$$

- ▶ In trade models (with no deficit) we have $E_i = Y_i$
- Equilibrium is trade gravity+market clearing+**no** labor mobility $(L_i = \overline{L}_i)$
 - ► Solve *w_i*, *P_i* using

$$w_{i}^{\sigma} = \sum_{j} (\tau_{ij})^{1-\sigma} L_{i}^{-1} A_{i}^{\sigma-1} \nu_{j}^{\sigma-1} L_{j} w_{j} P_{j}^{\sigma-1} P_{i}^{\sigma-1} P_{i}^{1-\sigma} = \sum_{j} (\tau_{ji})^{1-\sigma} A_{j}^{\sigma-1} (w_{j})^{1-\sigma}$$

- ► We intentionally avoided substituting the price index.
 - Crucial to write it this way, as it is much easier to characterize

Geography Model: Equilibrium Equations

Equilibrium is trade gravity+market clearing+

$$L_{j} = \frac{\nu_{j}^{1/\phi} (w_{j}/P_{j})^{1/\phi}}{\sum_{j} \nu_{j}^{1/\phi} (w_{j}/P_{j})^{1/\phi}}$$

Solve w_i, L_i, W using

$$W^{\sigma-1} w_{i}^{\sigma} L_{i}^{1-\psi(\sigma-1)} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} \bar{A}_{i}^{\sigma-1} \nu_{j}^{\sigma-1} w_{j}^{\sigma} L_{j}^{1+\phi(\sigma-1)}$$
$$W^{\sigma-1} w_{i}^{1-\sigma} L_{i}^{\phi(1-\sigma)} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} \nu_{i}^{\sigma-1} \bar{A}_{j}^{\sigma-1} w_{j}^{1-\sigma} L_{j}^{\psi(\sigma-1)}$$
where $W \equiv \left[\sum_{j} \nu_{j}^{1/\phi} \left(w_{j}/P_{j}\right)^{1/\phi}\right]^{\phi(\sigma-1)}$.

- Existence and uniqueness in AA and AAT: notice same mathematical structure as in the trade model.
 - Except now welfare is the eigenvalue of the system

Geography Model: The Linear Case

Equilibrium is trade gravity+market clearing+

$$L_{j} = \frac{\nu_{j}^{1/\phi} (w_{j}/P_{j})^{1/\phi}}{\sum_{j} \nu_{j}^{1/\phi} (w_{j}/P_{j})^{1/\phi}}$$

• Assume
$$\phi = \psi \rightarrow 0$$

$$W^{\sigma-1}w_i^{\sigma}L_i = \sum_{j=1}^N \tau_{ij}^{1-\sigma}\bar{A}_i^{\sigma-1}\nu_j^{\sigma-1}w_j^{\sigma}L_j$$
$$W^{\sigma-1}w_i^{1-\sigma} = \sum_{j=1}^N \tau_{ji}^{1-\sigma}\nu_i^{\sigma-1}\bar{A}_j^{\sigma-1}w_j^{1-\sigma}$$
where $W \equiv \left[\sum_j \nu_j^{1/\phi} (w_j/P_j)^{-1/\phi}\right]^{-\phi(\sigma-1)}$.

(Practically) a linear system. Perron-Frobenius speaks to its solution
Unique positive solution. Notice 'eigenvalues' not guaranteed the same

Summary of GE Gravity Trade & Geography Models

• GE gravity trade (Anderson '79: solve for w_i, P_i)

$$w_i^{\sigma} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} A_i^{\sigma-1} L_j w_j P_j^{\sigma-1}$$
$$P_i^{1-\sigma} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} A_j^{\sigma-1} w_j^{1-\sigma}$$

• GE geography (AA: welfare equalizes, solve for W, w_i, L_i)

$$W^{\sigma-1}w_{i}^{\sigma}L_{i}^{1-\psi(\sigma-1)} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma}\bar{A}_{i}^{\sigma-1}\nu_{j}^{\sigma-1}w_{j}^{\sigma}L_{j}^{1+\phi(\sigma-1)}$$
$$W^{\sigma-1}w_{i}^{1-\sigma}L_{i}^{\phi(1-\sigma)} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma}\nu_{i}^{\sigma-1}\bar{A}_{j}^{\sigma-1}w_{j}^{1-\sigma}L_{j}^{\psi(\sigma-1)}$$

Comparison: Kernel

• GE gravity trade (Anderson '79: solve for w_i, P_i)

$$w_i^{\sigma} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} A_i^{\sigma-1} L_j w_j P_j^{\sigma-1}$$
$$P_i^{1-\sigma} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} A_j^{\sigma-1} w_j^{1-\sigma}$$

• GE geography (AA: welfare equalizes, solve for W, w_i, L_i)

$$W^{\sigma-1}w_{i}^{\sigma}L_{i}^{1-\psi(\sigma-1)} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma}\bar{A}_{i}^{\sigma-1}\nu_{j}^{\sigma-1}w_{j}^{\sigma}L_{j}^{1+\psi(\sigma-1)}$$
$$W^{\sigma-1}w_{i}^{1-\sigma}L_{i}^{\phi(1-\sigma)} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma}\bar{A}_{j}^{\sigma-1}\nu_{i}^{\sigma-1}w_{j}^{1-\sigma}L_{j}^{\phi(\sigma-1)}$$

Comparison: Global Parameters

• GE gravity trade (Anderson '79: solve for w_i, P_i)

$$w_i^{\sigma} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} A_i^{\sigma-1} L_j w_j P_j^{\sigma-1}$$
$$P_i^{1-\sigma} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} A_j^{\sigma-1} w_j^{1-\sigma}$$

• GE geography (AA: welfare equalizes, solve for W, w_i, L_i)

$$W^{\sigma-1}w_{i}^{\sigma}L_{i}^{1-\psi(\sigma-1)} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma}\bar{A}_{i}^{\sigma-1}\nu_{j}^{\sigma-1}w_{j}^{\sigma}L_{j}^{1+\phi(\sigma-1)}$$
$$W^{\sigma-1}w_{i}^{1-\sigma}L_{i}^{\phi(1-\sigma)} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma}\bar{A}_{j}^{\sigma-1}\nu_{i}^{\sigma-1}w_{j}^{1-\sigma}L_{j}^{\psi(\sigma-1)}$$

Comparison: Eigenvalues

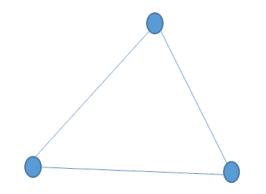
• GE gravity trade (Anderson '79: solve for w_i, P_i)

$$1 w_{i}^{\sigma} = \sum_{j=1}^{N} \tau_{ij}^{1-\sigma} A_{i}^{\sigma-1} L_{j} w_{j} P_{j}^{\sigma-1}$$
$$1 P_{i}^{1-\sigma} = \sum_{j=1}^{N} \tau_{ji}^{1-\sigma} A_{j}^{\sigma-1} w_{j}^{1-\sigma}$$

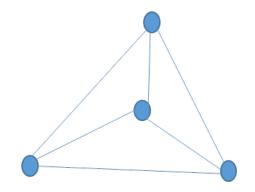
• GE geography (AA: welfare equalizes, solve for W, w_i, L_i)

$$W^{\sigma-1} w_i^{\sigma} L_i^{1-\psi(\sigma-1)} = \sum_{j=1}^N \tau_{ij}^{1-\sigma} \bar{A}_i^{\sigma-1} \nu_j^{\sigma-1} w_j^{\sigma} L_j^{1+\phi(\sigma-1)}$$
$$W^{\sigma-1} w_i^{1-\sigma} L_i^{\phi(1-\sigma)} = \sum_{j=1}^N \tau_{ji}^{1-\sigma} \bar{A}_j^{\sigma-1} \nu_i^{\sigma-1} w_j^{1-\sigma} L_j^{\psi(\sigma-1)}$$

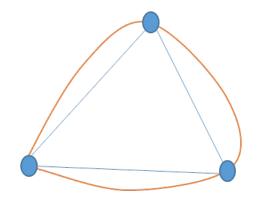
Visualization of the Spatial Links



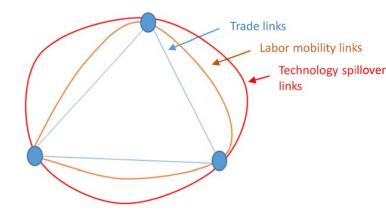
Visualization of Adding Locations



Visualization of Adding Spatial Links



Visualization of Adding Spatial Links



A Generalized Gravity 'Model'

Suppose equilibrium of a model reduces to a system of eqns where we denote locations (or sectors/location-sectors) with *i*, *j* ∈ {1, ..., *N*}, eqns with *k*, type of variable with *h*; *k*, *h* ∈ {1, ..., *H*}

$$\lambda^{k} \prod_{h=1}^{H} (x_{i}^{h})^{\gamma_{kh}} = \sum_{j=1}^{N} \mathcal{K}_{ij}^{k} \left[\prod_{h=1}^{H} (x_{j}^{h})^{\beta_{kh}} \right]$$
(5)

- Equilibrium variables x_i^h : # to be solved $H \times N$ (wage, price, labor etc)
- Eigenvalue λ^k : Its role across models varies (typically welfare)
- Kernel $K_{ij}^k \ge 0$: spatial links (trade/commuting costs, productivity decay etc)
- Global parameters γ_{kh} , $\beta_{kh} \ge 0$:(EoS, Frechet elast., spillovers etc)

•
$$\mathbf{\Gamma} = \{\gamma_{kh}\}, \mathbf{B} = \{\beta_{kh}\}$$
 are the corresponding matrices

Theorem: Allen Arkolakis Li '15

Theorem

Consider the system of equations (5). If Γ is invertible then:

(i) If $K_{ij}^k > 0$, then there **exists** a strictly positive solution, $\left\{x_i^h, \lambda^k\right\}$

Define $\mathbf{A} \equiv \mathbf{B}\mathbf{\Gamma}^{-1}$, with element $A_{ij} \& \mathbf{A}^p \equiv \{|A_{ij}|\}$ (ii) If $K_{ij}^k \geq 0$ and the maximum of the eigenvalues of \mathbf{A}^p , $\rho(\mathbf{A}^p) \leq 1$, then there exists **at most one** strictly positive solution (up-to-scale) (iii) If $\rho(\mathbf{A}^p) > 1$ then there exists some K_{ij}^k that generates multiple strictly positive solutions Theorem: Allen Arkolakis Li '15

Theorem

Consider the system of equations (5). If Γ is invertible then:

(i) If $K_{ij}^k > 0$, then there **exists** a strictly positive solution, $\left\{x_i^h, \lambda^k\right\}$

Define $\mathbf{A} \equiv \mathbf{B}\mathbf{\Gamma}^{-1}$, with element $A_{ij} \& \mathbf{A}^p \equiv \{|A_{ij}|\}$ (ii) If $K_{ij}^k \ge 0$ and the maximum of the eigenvalues of \mathbf{A}^p , $\rho(\mathbf{A}^p) \le 1$, then there exists at most one strictly positive solution (up-to-scale) (iii) If $\rho(\mathbf{A}^p) > 1$ then there exists some K_{ij}^k that generates multiple strictly positive solutions

(iv) If $K_{ij}^k > 0$ and $\rho(\mathbf{A}^p) < 1$ the unique (up-to-scale) solution can be computed by a simple **iterative** procedure

Application on Geography and Urban Model

- ► Note: Convenient conditions on global parameter vector not on Kernel
 - Can handle large dimensionality (many locations etc) like a charm
- > The theorem is extremely powerful for economic geography model
 - In AA you can prove that equilibrium always exists; is unique if $\phi+\psi\leq 0$
 - With no trade costs, uniqueness holds under the same conditions

Roadmap

- ► A Simple Framework and the Unified Spatial Model
- Analytical Characterization of the Equilibrium
- Positive Properties and Computation of the Equilibrium
- Comparative Statics
- Welfare and Counterfactuals
- Applications

How Changes in Fundamentals ('Economic Shocks') Affect Markets?

▶ Question: Characterize comparative statics/policy elasticities

$$\epsilon_{ij}^{W} = \frac{d \ln W}{d \ln \tau_{ij}}, \ \epsilon_{ij}^{w_l} = \frac{d \ln w_l}{d \ln \tau_{ij}}$$

How Changes in Fundamentals ('Economic Shocks') Affect Markets?

▶ **Question:** Characterize comparative statics/policy elasticities

$$\epsilon_{ij}^W = rac{d \ln W}{d \ln au_{ij}}, \; \epsilon_{ij}^{w_l} = rac{d \ln w_l}{d \ln au_{ij}}$$

- GE theory instills pessimism. Yet, we can obtain two results
 - Express policy elasticities solely in terms of 'deep' elasticities, observed data
 - Characterize counterfactuals solely in terms of *deep* elasticities, observed data, and economic shocks
 - Characterization requires harnessing network effects in spatial models

- Let us consider richer spatial interactions
 - We assume no trade cost but following, AAE

$$\hat{L}_i = \sum_j \phi_{ij} \hat{w}_j, \quad \hat{A}_i = \hat{A}_i + \psi \hat{L}_i$$

Using (4) we obtain

$$-\sigma \hat{w}_i + \sum_j \phi_{ij} \hat{w}_j + (\sigma - 1) \psi \sum_j \phi_{ij} \hat{w}_j = (1 - \sigma) \hat{\eta}_i + d$$

where *d* is a mixture of common GE terms and $\hat{\eta}_i \equiv \hat{A}_i - \sum_o x_o \hat{A}_o$

- Let us consider richer spatial interactions
 - We assume no trade cost but following, AAE

$$\hat{L}_i = \sum_j \phi_{ij} \hat{w}_j, \quad \hat{A}_i = \hat{\bar{A}}_i + \psi \hat{L}_i$$

Using (4) we obtain

$$-\sigma \hat{w}_i + \sum_j \phi_{ij} \hat{w}_j + (\sigma - 1) \psi \sum_j \phi_{ij} \hat{w}_j = (1 - \sigma) \hat{\eta}_i + d$$

where *d* is a mixture of common GE terms and $\hat{\eta}_i \equiv \hat{A}_i - \sum_o x_o \hat{A}_o$

Multiple interactions: Space is kicking in!

• Inverting implies $\mathbf{w} = \mathbf{M}^{-1}\mathbf{A}$ where $M_{ij} = -1_{i=j}\sigma + [1 + (\sigma - 1)\psi]\phi_{ij}$

- Let us consider richer spatial interactions
 - We assume no trade cost but following, AAE

$$\hat{L}_i = \sum_j \phi_{ij} \hat{w}_j, \quad \hat{A}_i = \hat{\bar{A}}_i + \psi \hat{L}_i$$

Using (4) we obtain

$$-\sigma \hat{w}_i + \sum_j \phi_{ij} \hat{w}_j + (\sigma - 1) \psi \sum_j \phi_{ij} \hat{w}_j = (1 - \sigma) \hat{\eta}_i + d$$

where *d* is a mixture of common GE terms and $\hat{\eta}_i \equiv \hat{A}_i - \sum_o x_o \hat{A}_o$

Multiple interactions: Space is kicking in!

- Inverting implies $\mathbf{w} = \mathbf{M}^{-1}\mathbf{A}$ where $M_{ij} = -1_{i=j}\sigma + [1 + (\sigma 1)\psi]\phi_{ij}$
- Fun (+useful) fact: M⁻¹ can be written as Neumann series of power terms of M:

- Let us consider richer spatial interactions
 - We assume no trade cost but following, AAE

$$\hat{L}_i = \sum_j \phi_{ij} \hat{w}_j, \quad \hat{A}_i = \hat{\bar{A}}_i + \psi \hat{L}_i$$

Using (4) we obtain

$$-\sigma \hat{w}_i + \sum_j \phi_{ij} \hat{w}_j + (\sigma - 1) \psi \sum_j \phi_{ij} \hat{w}_j = (1 - \sigma) \hat{\eta}_i + d$$

where *d* is a mixture of common GE terms and $\hat{\eta}_i \equiv \hat{A}_i - \sum_o x_o \hat{A}_o$

Multiple interactions: Space is kicking in!

- Inverting implies $\mathbf{w} = \mathbf{M}^{-1}\mathbf{A}$ where $M_{ij} = -1_{i=j}\sigma + [1 + (\sigma 1)\psi]\phi_{ij}$
- Fun (+useful) fact: M⁻¹ can be written as Neumann series of power terms of M: The network effects of trade!

Roadmap

- ► A Simple Framework and the Unified Spatial Model
- Analytical Solution of Equilibrium
- Positive Properties and Computation of the Equilibrium
- Comparative Statics
- Welfare and Applications

Welfare and Policy

- What about welfare?
 - ▶ We may distinguish the ex-post and ex-ante evaluation of a policy change
- Ex-post: Evaluate welfare after policy is implemented looking at the two equilibria
 - Robust 'macro' formula across trade geography models (Arkolakis, Costinot, Rodriguez-Clare '12)
 - Robust to changes in preferences, intermediate inputs/sectors, market structure (Costinot Rodriguez-Clare, ACDR, Midrigan Xu)
 - Ex-post welfare $d \ln W_j = -\frac{d \ln \lambda_{jj}}{\epsilon}$ (note: welfare equalizes in econ geography)
- **Ex-ante:** Evaluate policy elasticity (counterfactuals)

Welfare Counterfactuals

CES-demand trade models simple derivative (Atkeson Burstein, Lai et al)

• $\frac{d \ln W}{d \ln \tau_{ij}} = \frac{X_{ij}}{Y^W}$ (*W* here is expenditure weighted welfare, Y^W : world GDP)

Much harder characterization in geography models because of eigenvalue
Need to use basics of perturbation theory (AA17)

- If there is no spillovers $(\psi + \phi \neq 0)$ we obtain the same result
- With spillovers obtain a formula with an adjustment factor

- Now we can evaluate impact of real-world infrastructure policies
 - Consider a weighted graph with infrastructure matrix T = {t_{ij}} denoting the cost of two connected points.
 - Bilateral trade costs τ_{ij} depends on t_{kl} on the realized path

• e.g.
$$\tau_{ij} = t_{i1} \times t_{1k} \times ... \times t_{lj}$$

Example: Infrastructure Investment. Want to measure

$$\frac{d \ln W}{d \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{d \ln W}{d \ln \tau_{kl}} \times \frac{d \ln \tau_{kl}}{d \ln t_{ij}}$$

- Now we can evaluate impact of real-world infrastructure policies
 - Consider a weighted graph with infrastructure matrix T = {t_{ij}} denoting the cost of two connected points.
 - Bilateral trade costs τ_{ij} depends on t_{kl} on the realized path

• e.g.
$$\tau_{ij} = t_{i1} \times t_{1k} \times ... \times t_{lj}$$

Example: Infrastructure Investment. Want to measure

$$\frac{d \ln W}{d \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{d \ln W}{d \ln \tau_{kl}} \times \frac{d \ln \tau_{kl}}{d \ln t_{ij}}$$

• We have an analytical characterization of all $\frac{d \ln W}{d \ln \tau_{kl}}$.

• What about
$$\frac{d \ln \tau_{kl}}{d \ln t_{ij}}$$
? Two ways to tackle this.

- Now we can evaluate impact of real-world infrastructure policies
 - Consider a weighted graph with infrastructure matrix T = {t_{ij}} denoting the cost of two connected points.
 - Bilateral trade costs τ_{ij} depends on t_{kl} on the realized path

• e.g.
$$\tau_{ij} = t_{i1} \times t_{1k} \times ... \times t_{lj}$$

Example: Infrastructure Investment. Want to measure

$$\frac{d \ln W}{d \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{d \ln W}{d \ln \tau_{kl}} \times \frac{d \ln \tau_{kl}}{d \ln t_{ij}}$$

• We have an analytical characterization of all $\frac{d \ln W}{d \ln \tau_{kl}}$

What about d ln t_{ij}? Two ways to tackle this.
1. Black box (but cool): Djikstra (Donaldson), Fast Marching Method (AA)

- Now we can evaluate impact of real-world infrastructure policies
 - Consider a weighted graph with infrastructure matrix T = {t_{ij}} denoting the cost of two connected points.
 - Bilateral trade costs τ_{ij} depends on t_{kl} on the realized path

• e.g.
$$\tau_{ij} = t_{i1} \times t_{1k} \times ... \times t_{lj}$$

Example: Infrastructure Investment. Want to measure

$$\frac{d \ln W}{d \ln t_{ij}} = \sum_{k=1}^{N} \sum_{l=1}^{N} \frac{d \ln W}{d \ln \tau_{kl}} \times \frac{d \ln \tau_{kl}}{d \ln t_{ij}}$$

• We have an analytical characterization of all $\frac{d \ln W}{d \ln \tau_{kl}}$

• What about $\frac{d \ln \tau_{kl}}{d \ln t_{ii}}$? Two ways to tackle this.

- 1. Black box (but cool): Djikstra (Donaldson), Fast Marching Method (AA)
- 2. Analytical characterization (but super cool): New AA

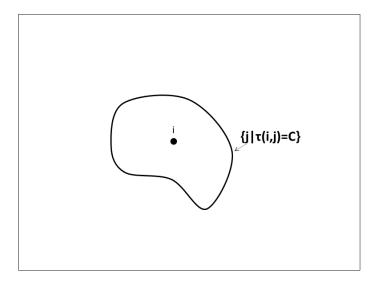
Applications

- ► Basically, hundreds of applications undertaken with this setup in trade.
 - New wave of applications in economic geography, urban (AA, Ahlfedlt et al '15, Monte et al, Redding 16, AAL15, Caliendo Parro Rossi-Hansberg '14, Faber Gaubert '15 etc)

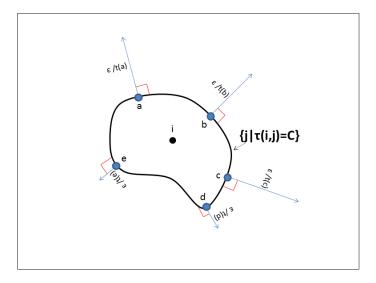
Applications

- ► Basically, hundreds of applications undertaken with this setup in trade.
 - New wave of applications in economic geography, urban (AA, Ahlfedlt et al '15, Monte et al, Redding 16, AAL15, Caliendo Parro Rossi-Hansberg '14, Faber Gaubert '15 etc)
- Can we use this setup to think about trade cost/commuting costs etc?
 - Fast marching method (AA) ideally fit for the job (Generalization of Dijkstra for continuous space).

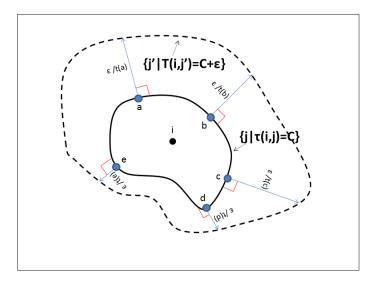
1. The Fast Marching Method for Spatial Economics



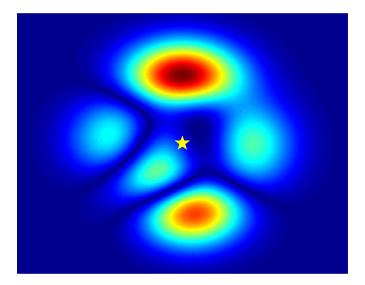
1. The Fast Marching Method for Spatial Economics



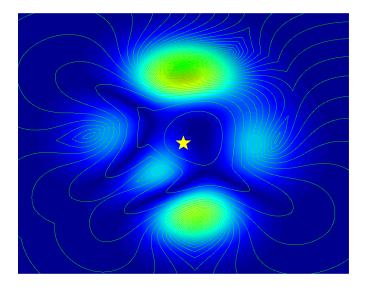
1. The Fast Marching Method for Spatial Economics



1. The Fast Marching Method with an Example

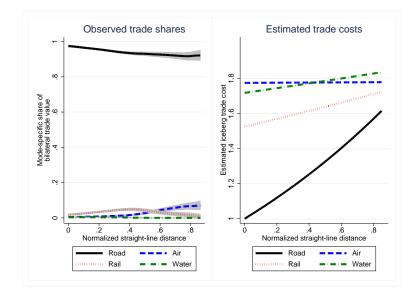


1. The Fast Marching Method with an Example

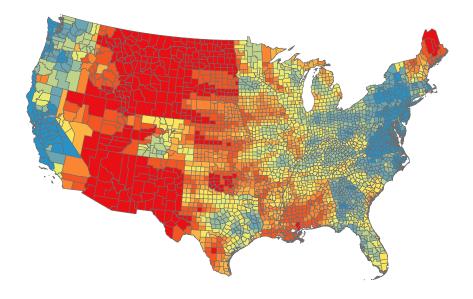


1. Trade costs with FMM: transportation networks

Estimating trade costs with FMM: mode-specific trade



Removing the IHS: Estimated increase in P



Removing the IHS: Cost-benefit analysis

- Estimated annual cost of the IHS: \approx \$100 billion
- Annualized cost of construction: \approx \$30 billion (\$560 billion @5%/year) (CBO, 1982)
- Maintenance: \approx \$70 billion (FHA, 2008)
- Estimated annual gain of the IHS: $\approx\$150-200$ billion
- Welfare gain of IHS: 1.1 1.4%.
- Given homothetic preferences and holding prices fixed, can multiply welfare gain by U.S. GDP.
- Suggests gains from IHS substantially greater than costs.

Conclusion

- We developed a unified spatial GE framework
 - Tight connection to data
 - Many tools and methods to use!
 - Can combine with modern IO/macro/theory tools

Conclusion

- We developed a unified spatial GE framework
 - Tight connection to data
 - Many tools and methods to use!
 - Can combine with modern IO/macro/theory tools

There is unbounded demand for good theorists to work on spatial topics!