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Abstract

Logical inference is an engine for human thinking, especially, for decision making in an
interdependent situation with more than one persons. We study the possibility of predic-
tion/decision making in a finite 2—person game with pure strategies, following the Nash-
Johansen noncooperative solution theory. Since some infinite regress naturally arises in this
theory, we adopt a fixed-point extension IR? of the epistemic logic KD?, which is still a
finitary propositional logic. The base logic KD? is adopted to capture individual decision
making from the viewpoint of logical inference. Our results differ between a game with the
interchangeable set of Nash equilibria and a game with the uninterchangeable set. For the
former, we have decidability, i.e., player ¢ can decide whether each of his strategies is a final
decision or not. For the latter, he can neither decide it to be a possible decision nor can
disprove it. This takes the form of Godel’s incompleteness theorem, while it is much sim-
pler. Our undecidability also is related to the self-referential structure, but its main source
is interdependence of payoffs and independent prediction/decision making.

Key words: Prediction/Decision Making, Infinite Regress, Decidability, Undecidablity, In-
completeness, Nash solution, Nash subsolution

1 Introduction

Logical inference is an engine for decision making in complex situations, in particular, in inter-
dependent situations with multiple persons like games. Decision making in such situations has
been studied in game theory, while logical inference is kept informal. To study this decision
making, we adopt a formal system of an epistemic logic; specifically, a fixed-point extension IR?
of the (propositional) epistemic logic KD2. Since prediction making is also required because
of interdependence of the players, it is more accurate to call “prediction/decision making”.
Nash [17] and Johansen [10] gave the noncooperative theory of prediction/decision making in a
non-formalized manner. We study this theory in the logic IR2.

We prove the undecidability (incompleteness) result that for a game with the uninterchange-
able set of Nash equilibria, a player may reach neither a positive nor a negative decision; i.e.,
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the belief set for him is incomplete in the logic IR?. In contrast, when the set of Nash equilibria
is interchangeable, the same belief set leads him to decidability.

Our approach has various different features from the standard literatures of game theory as
well as epistemic logic. Thus, we start with explaining those features.

Fixed-point extension of KD?: As seen presently, we meet an infinite regress of beliefs of
prediction/decision making by one player and about the other player. This infinite regress occurs
in the mind of a single player, i, and we need to separate one mind from the other. In order to
keep subjective thinking separately from the other’s, we adopt the epistemic logic KD? as the
base logic for IR?. This separation has several merits, which will be explained in several places.

The concept of an infinite regress is closely related to the common knowledge (Lewis [14]
and Aumann [1]), and the logic IR? is related to the common knowledge logic CKL (cf., Fagin,
et al. [5], and Meyer-van der Hoek [15]). Indeed, if we assume Axiom T (truthfulness) on IR?,
infinite regress collapse to common knowledge, and IR? becomes equivalent to CKR.

Proof theory and model theory: The view of regarding logical inference as an engine for
prediction/decision making leads us to a proof-theoretic system. The status of model theory
(Kripke semantics) is rather a technical support, though we need it to stabilize the choice of a
formal system. Indeed, we prove the Kripke-soundness/completeness of IR? in a separate paper,
[8]. We emphasize that a player’s prediction/decision making is formulated in a proof theoretic
(formal) system, and rather than in a single (semantic) model’:>. The Kripke completeness
for IR? tells that semantic validity is captured by formal provability, and soundness tells that
a counter model disproves provability. The soundness part will be used for our undecidability
theorem. but the status of model theory is still secondary for our study.

In the logic IR?, the logical ability of each player consists of the ability given by classical logic
and the knowledge about the same ability of the other, and additionally, the ability manipulating
infinite regresses.

Basic beliefs as non-logical axioms: As a mathematical theory needs its proper mathemat-
ical axioms in a formal system, a player’s prediction/decision making needs basic beliefs (under-
standing) of the situation (game) and his prediction/decision criterion; otherwise, he could only
recognize logical deducibility. The deducibility from his beliefs to a decision is expressed as

B;(I'7) F Bi(Li(si))- (1)

That is, player i has basic beliefs I'{ in his mind, and derives I;(s;) - “s; is a possible decision
for him”. The negative decision is described by B;(I'?) F B;(=1;(s;)). In the logic IR?, B;(I'?) +-
B;(Li(s;)) (respectively, B;(I'?) = =B;(L;(s;)) is equivalent to I'Y = I;(s;) (I'Y = —I;(s;)). This is
interpreted as meaning that the derivation of (1) is done in the mind of player ¢. For this, our
choice of the base logic KD? is essential (see Lemma 2.5).

Game theoretical concepts: We consider only finite 2-person (strategic) games with pure
strategies. This simple setting is enough for our considerations of undecidability for predic-

!'The model-theoretic standpoint has been taken almost exclusively in the literature of epistemic logic with
applications to game theory; for example, see van Benthem et al. [22], Perea [19], in the various papers in
Brandenbuger [4], and van Benthem [21]. Some exceptions are Kaneko-Nagashima [11], Kline [13], and Suzuki
[20], where the proof-theoretic standpoint is taken.

*Many aspects involved in playing a game are considered in van Benthem et al. [22] and van Benthem [21]. In
Chap.12 of [21], matrix games are considered from the viewpoint of logic; matrix games are formulated by means
of logic. Neverrtheless, an individual thought process of prediction/decision making is only indirectly treated.



tion/decision making.

Nash [17] distinguished between a solvable game and an unsolvable game, which will be
explained in Section 3. His theory is well suited to an interpretation of individual ex ante
prediction/decision making in a game, but he stopped at giving the distinction. Johansen [10]
discussed Nash’s theory in a more philosophical manner. He focussed on solvable games. Our
axiomatic description of prediction/decision making may be regarded as a formalization of his
argument in the formal system IR2.

Axiomatic formulation of prediction/decision making: We formulate prediction/decision
making by three axioms N0;, N1;, and N2;, given in Section 4. They are assumed in the scope of
the mind of player 4, i.e., B;(N012;) := B;(NO;AN1;A N2;). For his prediction about the other
player j’s decision making, player ¢ should have beliefs B;B;(N012;), where N012; is the same
as N012; with the replacement of ¢ with j. In fact, B;B;(N012;) requires B;B;B;(N012;), and
so on. This regress generates an infinite sequence:

Bz‘(N()lQi), BiBj(N012j)7 BiBjBi(NOIQi),... (2)

This infinite regress is captured by the fixed-point operator as Ir;(N012;;N012;) in the logic
IR?. It has a self-referential structure; i.e., player ¢ has the imaginary j, and this j has also
the imaginary ¢ in his mind, and wvice versa. The self-referential structure is crucial for our
undecidability result.

The infinite regress Ir;(N012;;N012;) describes a property for prediction/decision making,
but there are multiple candidates to enjoy this property. Among them, we choose a candidate
formula to have exactly the property, which is formulated as Ir;(WF).

Infinite-regress of preferences: The set of beliefs Ir;(N012;;N012;), Ir;(WF) is a pure de-
scription of how player ¢ makes predictions and decisions, but yet it includes no concrete infor-
mation about a game. The corresponding beliefs of game payoffs are described as Ir;(g;; g;). We
adopt the set of those three types of beliefs, A; = {Ir;(g;; g;), Ir;(N012;N012;) } UIr;(WF). We
consider two related questions:

(i): What decisions and predictions does A; recommend?
(ii): Does it, in the first place, recommend any?

These are related closely to Nash’s [17] distinction between solvable and unsolvable games. Here,
interchangeability is more directly related.

Table 1.1 Table 1.2 Table 1.3
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Interchangeable and uninterchangeable games: In (the game of) Table 1.1, each player
has three strategies, and his payoff is determined in the matrix (the first entry is player 1’s
payoff). The superscript NE stands for Nash equilibrium, explained in Section 3. Table 1.1 has
a unique Nash equilibrium. Table 1.2 has two Nash equilibria. This has the uninterchangeable
set of Nash equilibria in the sense that a pair of strategies from those equilibria may not be
an equilibrium. Table 1.3 has the empty set of Nash equilibria. The sets of Nash equilibria



for Tables 1.1 and 1.3 are interchangeable. Table 1.3 has a difficulty of no Nash equilibrium,
which is different from the difficulty caused by undecidability. We say that a game is (un-)
interchangeable if the set of Nash equilibria is (un-) interchangeable.

Positive decision, negative decisions, and undecidable: Both questions (¢) and (ii) are
related to Nash’s distinction. When (the set of Nash equilibria for) a game is interchangeable
such as in Tables 1.1 and 1.3, we have the following decidability result: for any strategy s; for
player 4,

either A; - Bi(L(SZ)) or A; F Bl(—\IZ(Si)) (3)

Furthermore, decision I;(s;) can be expressed as a concrete formula. The set of beliefs A; tells
that in Table 1.1, s19 is a positive decision but both s;; and s;3 are negative decisions. In Table
1.3, A; recommends all as negative decisions.

Now, it is the main result of the paper that when a game is uninterchangeable such as Table
1.2, there is some strategy s; for each player ¢ such that

neither A; - BZ(L(&)) nor A;F BZ(—\L(SZ)) (4)

That is, player ¢ cannot decide with the same belief set A; whether s; is a positive or negative
decision. This holds for both strategies in Table 1.2. This entirely differs from the case where he
finds all as negatively recommended, since if so, he may look for a different criterion. However,
in the case of (4), he may not be able to notice this undecidability itself.

Relations to Gdédel’s incompleteness theorem and the source for our undecidability:
The result (4) has the same form as Godel’s incompleteness theorem (cf., Boolos [3], Mendelson
[16]), but both interpretation and source for incompleteness are different. Godel’s theorem is
about the Peano Arithmetic and based on the self-referential structure. Ours also involves a self-
referential structure, but our undecidability arises from some discord in interpersonal thinking
in the self-referential environment.

In our problem, the minds of two players are described separately in the logic IR2, but
they have no effective differences before the description of game payoffs is given, since they
have full logical abilities and the same prediction/decision criteria. Only the infinite regress of
game payoffs Ir;(g;; g;) in A; differentiates the two players. This difference is the source for the
undecidability (4). A comparison with Godel’s theorem will be discussed in Section 6.

Other epistemic axioms: To accommodate the considerations of (3) and (4), as stated, we
adopt the fixed-point extension IR? of the epistemic logic KD?. In fact, both results of (3) and
(4) hold for a stronger system than IR2, for example, in those with Axioms T, 4, and 5. The
reason for the choice of KD? is to keep a clear-cut structure of nested belief hierarchy of beliefs
and to keep separate subjectivity of individual minds. Nevertheless, in particular, the addition
of Axiom T is relevant and will be discussed in a few places.

Extensions to the n-person case: In the present paper, we confine ourselves to the 2-person
case both for the logic and game theory. For n-person case (n > 3), we would meet new problems
in both epistemic logic and game theory. We will discuss those extensions in separate papers.

The format of the paper is as follows: Section 2 formulates the logic IR?. Section 3 gives
various game theoretical concepts. Section 4 gives three axioms for prediction/decision making,
and the characterization theorem for an interchangeable game. Section 5 presents the unde-
cidability result for an uninterchangeable game, and the no-formula theorem. Section 6 gives
discussions on our undecidability relative to Godel’s incompleteness theorem.



2 The Infinite Regress Logic IR?

We use an fixed-point extension IR? of the epistemic logic KD?, in order to capture an infinite
regress arising in prediction/decision making in a game with two players. We formulate the logic
IR? in Sections 2.1, 2.2, and give its semantics in Section 2.3.

2.1 Language

Let S; be a nonempty finite strategy set for player ¢ = 1,2. We adopt the atomic formulae:
atomic preference formulae: Pr;(s;t) for i = 1,2 and s,t € S = S1 X So;
atomic decision formulae: 1;(s;) for s; € S;, 1 =1,2.

The atomic formula Pr;(-;-) expresses the preference relation of player i; Pr;(s;¢) means that
player i weakly prefers the strategy pair s = (s1, s2) to the pair ¢t = (¢1,t2). The atomic formula
I;(si) expresses the idea that, from player i’s perspective, s; is a possible final decision for him.

Now we proceed to have logical connectives and epistemic operators:
logical connective symbols: = (not), D (imply), A (and), V (or);?
unary belief operators: Bi(-), Ba(+);

binary infinite-regress operators: Iri(-,-), Ira(-,-);

parentheses: (, ).

We use a pair of formulae, (A1, A2), as arguments of the binary operators Iry(-,-) and Ira(-,-),
and the intended meaning of the formula Ir;(A;, A2) is that player i’s subjective belief of the
infinite regress of beliefs about A; and A;. We stipulate that j refers to the other player than 7.
We write Ir;(A;, A2) also as Ir;(A;; A;) and sometimes Ir;[A;; A;].

We define the sets of formulae, denoted by P, by the following induction:

(o) all atomic formulae are formulae;

(i) if A, B are formulae, then so are (4 D B), (=A), B;(A) for i = 1,2;

(ii) if A = (A3, Ag) is a pair of formulae, then Ir;(A) is also a formula;

(iii) if @ is a finite (nonempty) set of formulae, then (A®) and (V®) are formulae?.

We say that a formula A is non-epistemic iff B;(-) or Ir;(-,-) does not occur in A for i = 1,2. We
say that A; is a game formula for i iff it contains atomic formulae of the form Pr;(-;-) only, that
is, no occurrences of Pr;(-;-), I;(+), or I;(-); and that A is a game formula iff the atomic formulae
occurring in A are of the form Pr;i(;-) or Pra(+;-). A game formula expresses a reality of the
target situation together with, potentially, beliefs about them. The atomic decision formulae
I;(s;)’s are used to describe a player’s thinking about prediction/decision making.

We write A{A, B}, N{A,B,C} as ANB, ANBAC, etc., and (A D B)A(B D A) as A= B.
We abbreviate parentheses or use different ones such as [,] when no confusions are expected.

3Since we adopt classical logic as the base logic, we can abbreviate some of those connectives. Since, however,
our aim is to study logical inference for decision making rather than semantic contents, we use a full system.
1We presume the identity of “finite sets” in our language.



2.2 Proof theory of IR?

The base logic of IR? is classical logic, formulated by five axiom (schemata) and three inference
rules: for all formulae A, B, C, and finite nonempty sets ® of formulae,

L1 AD(BDA);

L2 (AD(BDC))D((ADB)D(ADCQ));
L3 (WAD>-B)D ((mADB)DA);

L4 A® D A, where A € O;

L5 A D V®, where A € ®;

ADB AMP {ADB:BG@}/\_rule {BD>A:Becd}

B ADANAD vd D A

Now, we add two epistemic axioms and one inference rule for the belief operators B;(-): for all
formulae A, B, and for i = 1,2,

K B;(AD B) > (B;(4) D By(B));
D —|BZ‘(—|A/\A);

V-rule.

A
Necessitation ———.
Bi(4)
Those axioms and inference rules constitute the epistemic logic KD?.

For the infinite regress operators Ir;(-,-), we add one axiom and one inference rule: For
i=1,2,and A = (A1, A2), D = (D1, D3) two pairs of formulae,

IRA,; Irl(A) D) BZ(AZ) A BZB](A]) A BiB]aI‘Z(A)),
D; D Irz(A) '
The logic IR? is defined by adding IRA; and IRI;, i = 1,2, to KD?.

IRI;

Axiom IRA; has a fixed-point structure in the sense that B;B;(Ir;(A)) appears as an im-
plication of Ir;(A). Replacing Ir;(A) in B;B;(Ir;(A)) with its implication B;(A4;) A B;B;(A4;)
(formally with K and Nec), Ir;(A) implies the following infinite regress of beliefs:

Rule IRI; states that Ir;(A) is the logically weakest formula satisfying the property described
in IRA;, that is, if D; enjoys it, then D; implies Ir;(A). Our completeness-soundness theorem
(Theorem 2.1) shows that Ir;(A) captures faithfully the set of (5).

A proof P = (X, <;1) consists of a finite tree (X, <) and a function ¢ : X — P with the
following requirements:

P1 for each node z € X, ¥(z) is a formula attached to x;
P2 for each leaf = in (X, <), ¢(x) is an instance of the axiom schemata;

P3 for each non-leaf z in (X, <),

{¢(y) : y is an immediate predecessor of z}

()

6




is an instance of the above five inference rules.

We call P a proof of A iff ¥(xg) = A, where xg is the root of (X, <). We say that A is
provable, denoted by + A, iff there is a proof of A. For a set of formulae I', we write I' - A
iff F A or there is a finite nonempty subset ® of I' such that H A® > A. This treatment of
non-logical assumptions is crucial in our study?®.

The following are basic to classical logic and/or KD?. We use them without referring.

Lemma 2.1. Let A € P, ® a finite set of formulae, and i = 1,2. Then, (1) - A D B and
FBDOC imply- ADC; (2)F(AANBDC)=(AD(BDC)); (3)F Bi(—A) D -Bi(4); (4)
FVB;(®) D B;(V®); (5) F B;(A®) = AB;(D).

From Axiom IRA; and Rule IRI; (i = 1, 2), the operators Ir;(+,-), i = 1,2 may appear to be
independent of one another. However, the two operators are interdependent:

Lemma 2.2. (Epistemic content) Let A = (A1, A2) be a pair of formulae. Then, - Ir;(A) =
B1<Az VAN II‘]<A)) fori=1,2.

Proof. First, we show - B;(A4; AIrj(A)) D Ir;(A). Let D; = B;(A4;) AB;(Irj(A)) for i =1,2.
By IRAJ (and, Nec, K), we have - D; D Bz(Al) VAN BZBJ(AJ) VAN BZBsz(AZ) VAN BZBsz(II‘J(A))
Since the last two conjuncts are equivalent to B;B;(D;), we have - D; D B;(A4;) A B;B;(A4;)A
B;B;(D;). Using IRI;, we have - B;(A4;) A B;(Irj(A)) D Ir;(A).

The above conclusion for j implies - B;(D;) D B;(Ir;(A)). Hence, we have - B;(A4;) A
B;(D;) D B;(A;) AB;(Irj(A)). Since F Ir;(A) D B;(A;) AB;(D;) by IRA;, we have F Ir;(A) D

This lemma enables us to talk about the epistemic content of Ir;(A);
II‘?(A) = A; A Ir; (A), (6)
which plays a crucial role in our consideration of prediction/decision making.

Lemma 2.3. (Basic properties for Ir;(-;-)) Let A = (A1, Az) and C = (C1, Cs) be two pairs
of formulae in P and i = 1,2.

(1) If - Irg(A) D Bi(Ck) for k = 1,2, then b Ir;(A) D Ir;(C). In particular, if = C; for
i=1,2, then - Ir;(C).

(2) F1Ir;(A) D Ir;(Ir{ (A), Irg(A));

(3) F1Ir;(A1 A C1, A2 A Co) = Iri(A) A (C);

(4) FIri(A; D Ci, Ay D C) D (Iry(A) D Ir(C)):

(5) F Iri(—Ai; Aj) D —Iri(Ais Aj); F Ir(A;—A) D —Iri(Ai Aj) and F Iri(=A;;-A5) D
—Ir; (A Aj).

Proof. (1): Let - Iry(A) D By(Cy) for k = 1,2. We show F Ir;(A) D B;(C;) AB;B;(C)) A
B;B;(Ir;(A)). Once this is shown, we have, by IRI;, - Ir;(A) D Ir;(C). First, - B;(Ir;(A)) D

?Since the deduction theorem (cf., Mendelson [16]) does not hold in epistemic logic, the introduction of non-
logical axioms differs from in classical logic. We adopt the classical manner.



B;B;(Cj) by Nec and K. By Lemma 2.2, we have - Ir;(A) D B;B;(C}). By IRA;, we have
- 1Ir;(A) D B;B;(Ir;(A)). Thus, by A-rule, we have the target.

The other claims (2)-(4) follow (1). Here, we show (3). Since - Iri(A; A C1, A2 A C2) D
Bi(Ag) for k = 1,2, we have, by (1), F Irg (A1 A C1, Ax A C2) D Ir;(A). Similarly, - Irg (A A
Ci,A3 A C2) D Iri(C). Hence, we have the one direction. Consider the converse. We have
FIrg (A)AIrg(C) D Bi(AxACy) for k = 1,2. We have - Ir;(A)Alr;(C) D BiBj(Aj/\Cj), and
II‘I(A)/\II‘z(C) D BzBJ (II‘Z(A)/\II‘Z(C)) Then, by IRIL;, - II'Z(A)/\II‘Z(C) D II‘Z'(Al/\Cl, Aq /\CQ).

(5): Consider only the first one. Since - Ir;(—A;; Aj) O B(—A4;), we have = Ir;(—A4;; A5) D
—B(A4;). Then, using the contrapositive of IRA;, i.e., - =[B;(4;) AB;B;(4;) AB;B;(Ir;(A))] D
—Ir;(A), we have - Ir;(—A4;; A;) D —Ir;(A). 1R

The following statements for Ir{(-;-) correspond to IRA; and IRI; for Ir;(-;-).

Lemma 2.4. (Admissible formulae and inference) Let A = (A;; A;) and D; be any for-
mulae. Then,

(IRA;)) F II‘ZO(A) DA N Bj(Aj) A BjBi(Irf(A));
(IRI;)) If-D; D A; A BJ(AJ) A BJBz(Dz), then - D; D II‘;?(A,L'; AJ)

Proof. (IRAY?): By (6), F Ir{(A) D A; Alr;(A). By Lemma 2.2 for j, we have - Ir{(A) D
A; A Bj(Aj) A Bj(II‘i(A)), which is (1).

(IRI;’) Suppose - D; D A; A Bj(Aj) AN B]Bz(DZ) Since F D; D B]BZ(DZ) and - D; D A,
we have - D; D B;B;(4;). Thus, - D; D B;(A4;) A B;B;(4;) A B;B;(D;). By IRI;, we have
FD; D II‘j(AZ'; AJ) Thus, - D; D A; A II‘j(Ai; Aj), which is - D; D II';?(AZ‘; AJ).

The main undecidability result of the paper holds in a stronger system than IR?, such as that
obtained from IR? by adding Axiom T (truthfulness): B;(A4) D A; Axiom 4 (positive introspec-
tion): B;(A) D B;B;(A); and Axiom 5 (negative introspection): —B;(A) D B;(—B;(A)). The
reason for our choice of IR? is to have a clear-cut description of each player’s logical inference.
This is stated by Lemma 2.5 (change of scopes), which is specific to IR?. Nevertheless, Axiom
T helps us understand the fixed-point formula Ir;(A;, A2).

Now, let us see the common knowledge logic CKL (cf., Fagin et al. [5] and Meyer-van der
Hoek [15]). The logic CKL uses only one operator, C(+), and adds the following axiom and rule
to KD%:

CKA: C(A) > AAB;(C(A)) ABy(C(A));

D> AAB(D) ABy(D)
CKI: RS

Axiom CKA and Rule CKI are interpreted as meaning that C(A) describes the common knowl-
edge of A from the outside observer’s perspective; on the other hand, Ir;(A) describes player
i’s subjective beliefs from his perspective. This difference is reflected by the counterpart of (5)
in CKL, i.e., C(A) captures the entire set:

{A,B1(4),B2(4),B1B2(A), B3:B1(A), B1B;By(A), ...} (7)

This set of formulae having all finite sequences of BaBj... including the repetitive ones such as
B1B2B,, while each in (5) has the outer B;() and all B;B;... are alternating.



Let us look at IR? with Axiom T. The logical system obtained from IR? by adding Axiom
T is denoted by IR?(T). Since - Iry(Ay, As) = Iry(Ag, A2) in IR?(T) by Lemma 2.2, we can
denote Ir; (A1, As) by C*(A; A As). Then, in IR?(T), we have, for any formulae A;, Ay and D,

cka: C*(Al VAN AQ) D (Al VAN Ag) VAN Blc*(Al A Ag) VAN BQC*(Al VAN Ag);
cki: if F D O (A1 A As) A By(D) A Ba(D), then - D > C*(A; A Ay).

These mean that in IR?(T), CKA and CKI are derived formulae and admissible rule for C*(A; A
Ay). Thus, C*(A; A A2) (= Ir;j(A1, A2)) means the common knowledge of A; A As.

We will use the belief eraser g¢ : the formula £9(A) € Py is obtained from A € P by
eliminating all occurrences of Bi(-), Ba(:) and replacing Ir;(A;, A2) by €o(A1) A g0(As2). Then,
we have

- A implies kg g9(4), (8)

where ¢ is the provability relation of classical logic in Py. This is proved by induction on a
proof of A from leaves (Kaneko-Nagashima [11]).

2.3 Kripke semantics and the soundness/completeness of IR?
Here, we report the soundness/completeness for IR? with respect to the Kripke semantics. We
use the soundness part for the main undecidability result.

A Kripke frame (W; Ry, Rg) consists of a nonempty set W of possible worlds and an acces-
sibility relation R; for player i = 1,2. We say that a frame (W; Ry, Rg) is serial iff for i = 1,2
and for all w € W, wR;u for some uw € W. A truth assignment 7 is a function from W x AF to
{T, L}, where AF is the set of atomic formulae. A pair M = ((W; Ry, Ra), 7) is called a model.
When (W; Ry, Re) is serial, we say that M is a serial model.

We say that ((wo,i0), ..., (Wy, 1), wy+1) (¥ > 0) is an alternating sequence from (wy,ig) iff
ik—1 # 4, for k = 1,..,v and w1 R;, ,wy for k = 1,...,v + 1. The alternating structure
corresponds to the set given by (5). This is used for evaluating the truth values of formulae
II'Z'(Al, AQ), 1= 1, 2.

The valuation in (M, w), denoted by (M, w) =, is defined over P by induction on the length
of a formula as follows:

VO for any A € AF, (M,w) F A<= 1(w,A) =T,

V1 (M,w) E —A <= (M,w) ¥ A;

V2 (M,w)EADB<+<— (M,w)¥ Aor (M,w) | B;
V3 (M,w) E AP <= (M,w) = A for all A € ®;

V4 (M,w) EV® <= (M,w) = A for some A € ®;

V5 (M,w) E B;(A) < (M,v) | A for all v with wR;v;

V6 (M,w) = Irj(A;1, A2) <= (M, wy4+1) = A;, for any alternating sequence ((wo, i), ..,
(wy,iy), wyt1) with (wo,i9) = (w, 7).

, W

The steps other than V6 are standard. V6 is similar to the valuation for the common
knowledge operator in CKL; the only difference is to use alternating reachability for two formulae,



instead of simple rearchability (cf., Fagin et al. [5], Meyer-van der Hoek [15]).

We have the following soundness/completeness theorem.

Theorem 2.1. (Soundness and Completeness) Let A € P. Then, - A in IR? if and only
if (M,w) = A for all serial models M = ((W; R, R2),7) and any w € W.

Soundness (only-if) will be used to prove our undecidability result (Theorem 5.1). It is
proved as follows: Let P = (X, <;1) be a proof of A. Then, by induction on the tree structure
of (X, <) from its leaves, we show that for any x € X, F ¢ (z) implies = ¢(z). The two new
steps are : (1) = C for any instance C' of IRA;; and (2) the validity relation |= satisfies IRA;.
Both steps follow V6. The proof of completeness is given in Hu-Kaneko [8].

Theorem 2.1 shows that our fixed-point operator Ir;(A) faithfully captures the set of (5).
The alternating structure in the semantics implies that if Ir;(A) holds at a world w and if wR;u,
then A; and Ir;(A) hold at world w, which corresponds to Lemma 2.2, further if uR;v, then
Ir;(A) holds at world v, which corresponds to IRA;. These reflect the self-referential structure
shared by Ir;(A) and Ir;(A).

The following lemma requires the logic IR? with its base logic KD?, which is proved by both
soundness and completeness of Theorem 2.1. The lemma does not hold for IR? with any addition
of Axioms T, 4 and 5; counter examples are given in Hu-Kaneko [8].

Lemma 2.5. (Change of Scopes) (1): B;(I'?) - B;(A) <= T F A;
(2): Bi(I'?) - —B;(A) <= B;(I'?) F B;(-A).

In our application, Ir;(A;, As) is used as a premise of a statement of the form Ir;(Aq, A2) F
B;(C). By Lemmas 2.2 and 2.5, this is equivalent to Iry(A;, A2) = C. This is interpreted as
meaning that Ir?(A;, A2) F C' is obtained in the mind of player i.

3 Game Theoretic Concepts

First, we give a few game theoretic concepts relevant for our discussions. Then, we formulate
them in the language of the logic IR?. We also mention some decidability (completeness) for
comparisons with the main undecidability result.

3.1 Preliminary definitions

Let G = ({1,2}, {S1, S2}, {h1, ha}) be a finite 2-person game, where {1, 2} is the set of players,
S = 81 x Sy is the set of strategy pairs, and h; : S — R is the payoff function for player ¢ = 1, 2.
We write (s;;55) for s = (s1,s2) € S. A strategy s; for player i is a best-response against s; iff
hi(si;sj) > hi(ti;s;) for all ¢; € S;. A strategy pair s = (s;;5;) is a Nash equilibrium in G iff s;
is a best response against s; for ¢ = 1,2. We denote E(G) the set of all Nash equilibria in G.
The set E(G) may be empty. We say that s; is a Nash strategy iff (s;;s;) is a Nash equilibrium
for some s; € S;. The game of Table 1.1 has a unique Nash equilibrium, and Table 1.2 have
two, indicated by the superscript NE. Table 1.3 has no Nash equilibria.

A subset E of S is interchangeable (Nash [17]) iff
for all s,5" € E, (s;;8)) € Efori=1,2. 9)
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This is equivalent to E = Ey x Ey, where E; = {s; € S; : (s4;5;) € E for some s;}, i = 1,2. Let
E ={E: E C E(G) and E satisfies (9)}. A nonempty subset E of S is the (Nash) solution iff
E is the greatest set in E, i.e., E' C E for any E' € E. The Nash solution, when it exists, is
unique and coincides with E(G). The game G is solvable iff G has the Nash solution; otherwise,
it is unsolvable. A nonempty set F' C S is a subsolution iff F'is a maximal set in E, i.e., there is
no E' € E such that FCE’. When G has a unique subsolution, it is the solution E(G). Table
1.1 is solvable with the solution {(si12,s21)}. Table 1.2 is unsolvable, and has two subsolutions:
{(s11,s21)} and {(s12,s22)}. Table 1.3 has no subsolution.

Nash [17] assumed the mixed strategies, and proved the existence of a Nash equilibrium.
Here, some games have no Nash equilibria. For our considerations, it would be more convenient
to separate the games with interchangeable F(G) from the other games. Therefore, we call G an
interchangeable game iff E(G) is interchangeable. A game is interchangeable if and only if it has
no subsolution or the unique subsolution; and G an uninterchangeable game iff it has multiple
subsolutions.

Hu-Kaneko [7] derived the Nash (sub)solutions from the following decision criteria: Let E;
be a subset of S; for i = 1,2.

Najy: for any s; € F1, s1 is a best response against all so € Eo;
Nay: for any so € Fa, s is a best response against all s; € Ej.

In Na;, F; describes the set of possible final decisions for player 7, and E; describes 4’s prediction
about j’s possible final decisions. Here ¢’s prediction comes from his thinking about j’s inference
from j’s basic beliefs. Specifically, player ¢ assumes that j’s basic beliefs consist of the decision
criterion Na; and the game structure. In epistemic terms, when 7 makes his prediction based
on Ej;, elements in E; occur in the scope of j’s thinking, and this whole statement occurs in the
scope of #’s thinking. In the present language, we cannot make distinguish between 4’s and j’s
thinking, which are all interpretational. We will formalize this distinction in our logic IR?.

The following proposition was proved in Hu-Kaneko [7].

Proposition 3.1. Let E(G) # 0, and E; a nonempty subset of S; for i =1,2.
(1) Suppose that G is solvable. Then E = FEy X Eg is the Nash solution of G if and only if
(E1, E5) is the greatest pair satisfying Naj-Nag.

(2) Suppose that G is unsolvable. Then E = Ej x Es is a Nash subsolution if and only if
(E1, E2) is a maximal pair satisfying Nai-Nag.

These two cases correspond basically to the decidability and undecidability results to be
discussed in the subsequent sections. Here, we avoided unnecessary complication for the case of
E(G) = 0. In the subsequent sections, we treat that case, too.

3.2 Game formulae in IR? and some decidabilities

For the description of a game G' = ({1, 2}, {S1, S2}, {h1, h2}) in the language of IR?, it suffices to
express the payoff functions hy and hs, because the players and strategies are already included
in the language. The payoff functions are expressed in terms of atomic preference formulae as

®The “greatest” and “maximal” are relative to the componentwise set-inclusions.
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follows:

gi = N{Pri(s;t) : hi(s) > hi(t)} U{=Pri(s;t) : hi(s) < hi(t)}]. (10)
We call g; the formalized payoffs associated with h; for ¢ = 1,2. Since the latter part consists
negative preferences, it holds that for all s,t € S, g; F Pri(s;t) or g; F —Pr;(s;1), i.e., g; gives a
complete preference relation.

Consistency of g1 A g2 can be shown by constructing a truth assignment. The infinite
regress Ir;(g1,go) is consistent in IR? is obtained by applying the belief eraser o : Suppose
that Ir;(g1,92) F —-A A A for some nonepistemic formula A. Applying €¢ to this, we have
g1 N ga Fo 7A A A by (8), which is impossible because of the consistency of g1 A g2. Consistency
of Ir%(g1, g2) in IR? follows, too. These are listed for reference.

Ir;(g1,92) and Ir%(g1, g2) are consistent in TR2. (11)

We formalize best response and Nash equilibrium: The statement “s; € S; is a best response
to s; € S;7 is given as bst;(s;; 55) := Ay;es,Pri(si, 553 ti, 55). The statement “s = (s1,52) € S'is a
Nash equilibrium” is given as nash(s) := bsty(s1; s2) Absta(s2; $1).

The formulae defined above are game formulae. The atomic formulae I;(s;) and I;(s;) are
not included in them; they are used to describe prediction/decision making. Later, we will ask
whether those are described directly by game formulae; this question is important in interpreting
our undecidability as well as decidability.

We should assume that player ¢ has enough beliefs, in order for the undecidability question
to make sense. Undecidability could be an easy conclusion, if a belief set for player ¢ has a weak
content. As far as game formulae are concerned, the infinite regress of the formalized payoffs
Ir;(g1, g2) contains sufficient information to prove or to disprove them.

Lemma 3.1. Let A; be a nonepistemic game formula for i = 1,2. Let G be a game and
g = (g1, 92) the formalized payoffs. Then,

(1) git- A; or gi = —A; fori=1,2;
(2) the following three are equivalent
(a) Iry(g) F Ir;(A) fori=1,2; (b) Ir{(g) F Ir{(A) fori=1,2; (c) g; b A; fori=1,2.

Proof. (1) Let Pr;(s;t) be any atomic formula. Recall that g; - Pr;(s;t) or g; b —Pr;(s;t). We
can extend this result to other nonepistemic game formulae for ¢ by induction on their lengths.

(2) ((¢) = (a) = (b)): Suppose that g; - A;, ie., b g D A; for i = 1,2. It follows from
Lemma 2.3.(1) that - Ir;(g1 D A1,92 D Az). By Lemma 2.3 (4), Irj(g) F Ir;(A) for i = 1,2.
Since F g; D A;, we have g; AIrj(g) - A; AIr;(A), which implies Ir§(g) F Ir{(A).

((b) = (¢)): We show the contrapositive. Suppose that gi ¥ A; or g2 ¥ As. By (1), ¢; - —A;
or g; = —A; or both. We only consider the case where g; = A; and g; = —A;. Using the
same arguments as above, Ir{(g) - Iry(A;; ~A;). By Lemma 2.4.(1), Iry(g) F B;(—4;) and
hence, Irf(g) - -B;(A4;). But by Lemma 2.4.(1), - Ir{(A) D B;(4;), and hence - =B;(4;) D
—Ir§(A). Therefore, Irf(g) - —Ir7(A;; A;). By (11), we have Irf(g) ¥ Ir§(A;; Aj). In the other
cases, we have similar arguments.ll

Theorem 3.1 states that Ir;(g) is enough for decidability as far as an infinite regress of
nonepistemic game formulae concerned. It states this in terms of the epistemic content Irf(-;-)
for coherency of the later aim.
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Theorem 3.1. (Decidability for the infinite regress of game formulae) Let G be a game
and g = (g1,92) the formalized payoffs. Let A; be a nonepistemic game formula for i = 1,2.
Then, either Ir?(g) F Ir?(A) or Iry(g) F —Ir{(A), which implies either Ir;(g) + Ir;(A) or
Ir;(g) F —Ir;(A).

Proof. Since g; F A; or g; - —A; for i = 1,2, we should consider the four cases. Here, we consider
only the case where g; - —A; for i = 1,2. By (6), Iry(g) - —A,. Using the contrapositive of
Lemma 2.4.(1), we have F =A; D —Ir{(A4;; 4;). Thus, Irf(g) - —Irf(A;; A;).A

Theorem 3.1 will be used for a positive result. We will discuss a negative result, too: For
this purpose, we strengthen the logic to IR?(T) by adding Axiom T. This theorem will be used
for the no-formula theorem (Theorem 5.2).

Theorem 3.2. (Decidability for any game formula in IR?*(T)) Let G be a game and
g = (g1, 92) the formalized payoffs. For any game formula A, either Ir;(g) = A or Ir;(g) - A
in IR?*(T).

Proof. We prove the claim Iry(g) F A or Ir{(g) - —A by induction on the length of A. This
implies Ir;(g) - B;(A) or Ir;(g) F B;j(—A); then we have the assertion by Axiom T. Let A be
an atomic formula. Then, g1 Aga F A or g1 A g2 F —A. Then, Ir{(g) - g1 A g2 by (6) and Axiom
T. Thus, Irf(g) F A or Ir(g) - —A.

Let A be nonatomic, and suppose the inductive hypothesis that decidability holds for the
immediate subformulae of A. Let A = C D D. By the inductive hypothesis, decidability holds
for C' and D. Using this, we have Ir{(g) - A or Ir{(g) - —A. Similar arguments apply to
connectives A,V and —.

Let A = Bi(C). The hypothesis is: Iry(g) - C or Ir{(g) - —C. Let Iry(g) - C. Then,
B (Irf(g)) - Br(C). By IRA? and Axiom T, Irj(g) + B;(Ir7(g)) and Iry(g) - B;(Ir{(g)).
Thus, Irf(g) F Bi(C). Now, let Ir{(g) - —-C. By the same arguments, we have Ir{(g)
B (—C), and, by Axiom D, Ir{(g) - =B (C).

Let A = Irg(Cy,C2). The induction hypothesis is that decidability holds for C; and Cs.
Now, suppose Ir(g) = C1 A C. As remarked in the end of Section 2.2, Ir{(g) I Irf(g) and
Ir(g) + Ir{(g). Hence, Irf(g) F Cy for k = 1,2. Thus, Irk(g) = Bx(Ck) for & = 1,2. By
Lemma 2.3 (1), Irg(g) F Irg(C1, Cq) for k = 1,2. Since Ir{(g) - Irk(g) for k = 1,2 by (6) and
Axiom T, we have Ir{(g) - Iry(C1, Ca).

Let Iry(g) - (=C;) A Cj. By the same argument, we have Ir{(g) F Ir;(=C}; C;). By Lemma
2.3.(5), Irf(g) F —Ir;(Cj; Cj).The same argument can be applied to the case of Irj(g) - C; A
(=Cj) and Irj(g) - (—C;) A (=C;).1

4 Prediction/Decision Making in the Logic IR?

We give three axioms for player i’s prediction/decision making, including some predictions about
player j’s decisions. We also assume the symmetric axioms for player ¢’s prediction about player
j’s prediction/decision making. These lead to an infinite regress of those axioms, unless we stop
at an arbitrary level. In this section, we show, for an interchangeable game, that the infinite
regress of those axioms can be fully explicated, and obtain the decidability result.
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4.1 Axioms for Prediction/Decision Making

We start with the following three axioms. These are described in the mind of player i, i.e., in
the scope of B;();

NO; (Optimization against all predictions): Ascs[Li(s;) AB;(Li(s5)) D bst;(si;s;)].
N1; (Necessity of predictions): Ages,(li(si) D Vs;es,B;(Li(s5)))-
N2; (Predictability): Ascs; (Ii(si) D B;B;i(Li(s:))).

For each i = 1,2, let N; = NO; A N1; AN2;, and let N = (N;,N»).

The first axiom corresponds to Na;. The second requires player ¢ to have a prediction for
his decision. It corresponds to the nonemptiness of F; and F, in Proposition 3.1, while N1;
allows both to be empty. The third states that in the mind of player ¢, his decision is correctly
predicted by player j. We find a similar structure in Axiom IRA;, but note that N2; and TRA;
have different orders of applications of B; and B;. Indeed, I;(s;) does not include the scope of
B, (), while Ir;(-,-) can be regarded as including the outer B;(:), shown as in Lemma 2.2.

Axioms N; and Nj; are interdependent: N; is assumed in the mind of player 4, i.e., B;(N;).
Since B;(N;) includes B;(1;(s;)), player ¢ needs to predict what j would choose. This prediction
is made by the criterion B;B;(N;). Then, B;(I;(s;)) is included in B;B;(N;), and it requires
B;B;B;(N;), and so on. These are captured by the infinite regress formula Ir;(IN) = Ir,(N;;N;).

The above and their infinite regress Ir;(IN) in the logic IR? may be seen from Johansen’s
[10] interpretation of Nash equilibrium. This will be discussed in Section 6.

The infinite regress Ir;(N;;N;) describes a necessary property for I;(s;) and I;(s;). We may
find some candidates for such I;(s;)’s (i = 1,2) : for each s; € S;,

A*(SZ) = Vijes; Irf[bsti(si; tj); bst; (t]‘; SZ)] (12)

The nonepistemic content of A*(s;) is given as eo(A7(si)) = Vi es; (bsti(si;t;) Abst;(ty;si)) =
Vi, es,nash(s;;t;). That is, e9(A](s;)) means “s; is a Nash strategy”. Also, in the logic IR*(T)
assuming Axiom T, we have = A*(s;) = Vi,es,C*(nash(s;;t5)), i.e., A*(s;) means “s; is a common
knowledge Nash strategy”.

We have the following result, which will be proved in the end of this subsection.

Theorem 4.1. (Necessity) Fori=1,2,

Ir;(N) F B;(Zi(si) D Aj(s;)) for all s; € S;. (13)

That is, player i infers Af(s;) as a necessary condition for a decision. By the theorem
and Lemma 2.2, we have also Ir;(N) = B;[B;(L;(s;)) D B;(4j(s;))] for all s; € Sj; player i
infers Bj(A;-(Sj) as a necessary conditions for a prediction. By Lemma 2.3.(1), we have, also,
Ir;(N) F Ir[Li(s;) D A (si);1j(s5) D Aj(s;)] for all s € S. That is, those necessary conditions
form an infinite regress, too. From now on, we talk about the statement of the form of (13).

With the remark on eg(A}(s;)), Theorem 4.1 may be interpreted as meaning that a Nash
equilibrium is derived. However, our target is prediction/decision making by a player. A possible
decision resulting from this process is described by I;(s;), and Af(s;) is only a necessary condition
for it. In addition, (13) is a purely solution-theoretic statement in the sense that it uses no specific
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structure of payoffs. Also, necessary condition (13) for I;(s;) does not give a positive answer to
I;(s;) even if payoffs, e.g., Ir;(g1, g2), are specified; that is, (13), or its contrapositive, may give
only a negative decision —I;(s;) from —A*(s;).

In Sections 4.2, 4.3, and Section 5.1, we discuss the converse of (13) under the assumption
of Ir;(g1, g2). Then we can discuss whether player ¢ can make a decision or not.

We show the following lemma. Theorem 4.1 follows (2) of the lemma, and (1) does not need
N1;. We write NO; A N2;, NO; A N1; A N2; as N02;, NO12; for ¢ = 1, 2.

Lemma 4.1. For i =1,2, and s = (s;;55) € 5,
(1): Irf[NO2;NO2;| = Li(si) ABj(1i(s5)) D Irg[bsti(si; s5);0st(si5 85)];
(2) II‘ZQ[NOZ,%;NOIQJ‘] H Iz(sz) D) A*(SZ)

Proof. (1): Let 6;(s;, s;) := Ir§[N02;,N02;]AL;(s;) A B;(I;(s;)). Here, we show, for i =1, 2,
H 91‘(81‘, Sj) D bsti(si; Sj) A Bj(bstj(sj; Sz)) A BjBZ’<9¢(SZ‘, Sj)). (14)

Once this is shown, we have, by Lemma 2.4.(2), - 6;(s;, s;) D Ir§[bst;(s;;s;),bst;(s;; s5)], which
implies the assertion.

The first part, - 6;(s;, s;) D bst;(s;;s;), of (14) comes from NO; and I;(s;) AB;(I;(s;)). Con-
sider the second part. Since - 6;(s;, s;) D B;(N02;) and - B;(N02;)AB;(L;(s;))AB;B; ( i(si)) D
Bj(bStj(S]‘; SZ‘)), we have - 97;(57;7 S]‘)ABj(I]‘(Sj))ABjBi(Ii(Si)) D Bj(bstj(sj, )) The B; ( ( ]))
is included in 6;(s;, sj), and the B;B;(I;(s;)) is derived from I;(s;) in 6;(s;, s;) by N2;. Hence,
F 0i(si,s5) D Bj(bstj(sj;s:)). Now, consider the third part of (14). By Lemma 2.4.(1),
- Ir?[N02;;N02,] O B;B;(Ir?[N02;N02;]). Using N2;, we have - Ir¢[N02;N012;]AL(s;) O
B;B;(I;(s;)), and, using B;(N2;) in Ir{[N02;N02;], we have - Ir{[N02;N02;] A B;(L;(s;)) D
B;B;B;(I;(s;)). Hence, we have - 0;(s;, 5;) D B;B;(0:(ss, 55))-

(2): It follows from (1) that Iry[N02;;N02;] - 1;(s;)AB;(Li(s;)) D Vi es,;Irf [bsti(s; t5);bst;(E5; si)]-
This is equivalent to Iry[N02;N02;] = B;(I;(s5)) D (Ii(si) D Aj(ss)). Hence Ir§[N02;;N02;] F
Vi;es;Bj(1i(t5)) D (Li(si) D Aj(si)). Adding N1; to Irf[N02;,N02;], we delete the first disjunctive
formula, i.e., Ir{[N012;;N012;] - I;(s;) D AZ(s;).H

4.2 Choice of the deductive weakest formulae for N; and N;

There are some concrete formulae A;(s;) and A;(s;) enjoying the properties described by N;
and N;. We, however, find some unintended candidates for those axioms. For example, the
contradictory formulae L(s;) := =(pi(s;) D pi(si)), si € S; are trivial candidates for them,
where p;(s;) := Vi,e5,Pri(si,t; 8, ;). Indeed, the class of formulae {1 (s;)}s;es, makes NO12;
trivially hold with "the substitution of 1 (s;) for each I;(s;) in N;. We need to choose a class of
formulae A; = {A;(si)}s;es, and Aj = {A;(s;)}s;es;, having only the properties N; and Nj.

Let A= (A;; A;) be a pair of candidate families indexed by s; € S; and s; € Sj. Let N;(A)
be the formula obtained from N; by substituting (A;(s1), Aa(s2)) for (I1(s1),I2(s2)) for each
s = (s1,52) € S. We denote the following formula by WF;(.A):

Ni(A) AB;(N;(A) A[Ases{li(si) AB;(Ii(s5)) D Ai(si) AB;(A;(s;))}] (15)
) /\SiGSi{A%(S%) ) I%( %)}
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Let WF(A) = (WF1(A),WF2(A)). We denote, by Ir;(WF), the set {Ir;( WF(A)) : A =
(A1, Az) is a pair of candidate families of formulae}.

The formula WEF;(A) contains an additional premise Ages{Li(s;) A B;(Li(s5)) D Ai(si) A
B;(A;(s;))}. A sole use of WF;(.A) is not meaningful since I;(s;) AB;(I;(s;)) have no properties,
yet. We assume Ir;(WF) together with Ir;(IN). Then, the premise avoids some double cross of
Li(s;) ABj(Li(s;) and A;(s;) ABj(A;(s;)), both of which satisfy N; and Nj.

The additional premise is of the same nature as the term “maximal” used in the definition
of a subsolution in Section 3; we cannot use the term “largest” for a subsolution. If we drop the
additional premise, (15) becomes

WE(A) = Ni(A) AB;(N;(A) D Ases {Ailsi) D Lilsi)}- (16)

This is stronger than W F;(.A), since it has a weaker premise. This strengthening WFI*(A)
works only for an interchangeable game, but not for an uninterchangeable game, while W F;(A)
in (15) works for any game.

We study implications from {Ir;(N)} U Ir;(WF) under the infinite regress of formalized
payoffs Ir;(g) = Ir;(g;;g;). The entire set of axioms is denoted by A; := {Ir;(g),Ir;(N)} U
Ir;(WF). We have the following lemma, which will be proved in the proof of Lemma 5.1.

Lemma 4.2. (Consistency of the belief set) A; is consistent for any game G.

In fact, A} = {Ir;(g), Ir;(N) }UIr;(WFT) is consistent if and only if G is an interchangeable
game, and Af is equivalent to A; for any interchangeable G.

4.3 Characterization and decidability for interchangeable games

Here, we show that our axioms characterize the possible final decisions for an interchangeable
game. A proof of this theorem is given in the end of this subsection.

Theorem 4.2. (Characterization I) Let G be an interchangeable game and g = (g1,92) its
formalized payoffs. Then, fori=1,2,

This is interpreted as meaning that player i infers from his beliefs A; that his possible
decision and prediction are fully expressed by Af(s;) and A7(s;) for an interchangeable game
G. As remarked above, in the logic IR*(T), A%(s;) is equivalent to Vi,es,C*(Nash(s;; t5)), and
Theorem 4.2 becomes A; = I;(s;) = Vi,;es,C*(Nash(s;;¢;)). That is, a possible decision s; is the
Nash strategy with common knowledge. This corresponds to the result given in Kaneko [12].

Then, player ¢ can even decide whether a given strategy s; is a final decision for him or not.
This is described by the following theorem.

Theorem 4.3. (Positive or negative decisions) Let G be an interchangeable game and
g = (g1, 92) its formalized payoffs. Then, for i =1,2 and each s; € S;,

either Az H BZ(IZ(SZ)) or Az H BZ(_‘[Z(SZ)) (18)
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Proof. We show (18). Since bst;(s;;s;) is a nonepistemic game formula for ¢, it follows from
Lemma 3.1.(2) that Ir{(g) F Ir[bst;(s;; s5); bstj(s;;s:)] if and only if g; F bst;(s;;s;) and g5 F
bst;(s;;s;). By Lemma 3.1.(1), Ir{(g) F Ir{[bst;(s;; sj);bst;(s;;s:)] or Irf(g) = —Ir][bst;(si; s5);
bStj(Sj; si)].

If s; is a Nash strategy for G, then Ir{(g) F Vi Ir{[bst;(si;t;);bst;(t;5:)], ie., Irf(g)
A%(si), and otherwise, Then, Ir{(g) = = Vy, Irf[bst;(si;t;);bst;(t5; 8:)], i.e., Irf(g) = —A7(s;).
Thus, we have Ir;(g) - B;(A}(si)) or Ir;(g) F B;(—=Af(s;)). By (17), we have A; - B;(L;(s;)) or

By Theorem 4.3 and Lemma 2.3.(1), we have also, for each strategy s; € S,
either A,L H BZBJ(IJ(SJ)) or Az H BiBj(—'Ij(Sj)). (19)
Thus, player ¢ can predict whether a given strategy for j is a decision for him for not.

Since €9 Aj(si) = Vi;es,nash(s;;t;), the positive or negative decision in (18) corresponds to
whether s; is a Nash strategy or not. For the negative case, we need to add only Ir;(g) to Ir;(N)
of Theorem 4.1, that is, if s; is not a Nash strategy, then

This result is independent of the interchangeability of the game G. For the positive case, we
need the full set A; = {Ir;(g), Ir;(IN)} UIr;(WF) and the interchangeability of G.

Since Table 1.1 is an interchangeable game, Theorem 4.3 is applied to it, and the belief set
A, recommends strategy si12 as a positive decision, but s;1, s13 as negative decisions. By (19),
player 2 would choose so21, and denies the others. Table 1.2 has an uninterchangeable game;
Theorem 4.2 is not applicable. (20) is applied to Table 1.3, and recommends any strategy as a
negative decision.

Let us prove Theorem 4.2. First, we show the following lemma.

Lemma 4.3. Let G be a 2-person game.
(0): Let G be interchangeable. Then, Ir{(gi; g;) = Af(si) A Bj(A7(s5)) D bsti(si; s5).
(1): = Af(s:) D Vijes; Bji(A5 (L))

Proof. (0): Since bst;(s;; s5) is a game formula for 4 = 1,2, we have, for each s € S, Ir{(g;; g;) F
Ir§ (bst;(si; 55);bstj(s;;8:)) or Irf(gi; g5) B —Ir§(bst;(si; s5); bstj(s;s; s:)) by Theorem 3.1. Hence,
for each s; € S;, Ir{ (g5 95) F Aj(ss) or Ir§(gi; g5) F — A7 (s;). Using Lemma 2.2, we have, for each
sj € S, Irf(gi; 9;) F Bj(A5(s))) or Irf(gi; 9;) F =B (A5 (s;)). Also, for each s € S, Ir7(gi; g;)
bsti(si;85) or Ir(gi; g5) = —bsti(si; s;). Thus, Irf(gi; 95) B Aj (s:) A Bj(Aj(s5)) D bsti(si;s;) or
Ir?(gi; g;) = —[A7 (si) AB;(A3(s5)) D bst;(si;s5)]. If the latter held, then, applying the epistemic
eraser ¢ to this, we would have g;Ag; F =[(V¢;es;nash(si, tj)) A(Vies,nash(s;, t;)) D bsti(si; s5)],
which is impossible since G is an interchangeable game. Hence, we have the assertion.

(1): By Lemma 2.2, we have b Ir7[bst;(si; s5);bst;(s5;8:)] O Bj(Irf[bst;(sy;si); bsti(si;sj)])-
Hence, = Ir?[bst;(si; 5;7); bst;(s5;8:)] D Bj(Vi,es,Ir7[bst;(sj5t:); bsti(sis t))]), i-e., b Irf [bst;(si; s5);
bst;(sj;51)] O Bj(Aj(s;)). Hence, = Irf[bst;(s;; s;);bst;(s);8:)] D Vises;Bj(Af(t;)). Then, -
\/tjengI‘ﬂbSti(Si;tj),bstj(tj; Sl)] D) vtjGSij(A;f(tj))y ie., F A:‘(SZ) D vt]-GS]-Bj(A;(tj))-
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(2): Since = Ir{[bst;(si; 57);bst; (s5; 8:)] D By (Irg[bst;(s;; 5:); bsti(si; s5)]) and = By (Irg[bst;(s;; s:);
bst;(si;s5)]) D B;Bi(Irg[bsti(si;sj); bstj(sj;si)]),  we have b Ir{[bst;(s;;s;);bst;(ss;8:)] D
B;B;(Ir7[bst;(si; s5);bst;(s;; 5:)]). We take disjunctions from the latter to the former with respect
to sj, and have = Vi g, Ir[bsti(si;t;),bstj(ts;5:)] D Vies,BiBi(Iry[bst;(sist;),bst;(t;;5:)]).
Then, the former is A (s;), and the latter implies B;jB;(V¢,es,Irf[bst;(si;t;),bst;(t;5:)]), i-e.,
B;Bi(Aj(s:)) ®

Proof of Theorem 4.2. It follows from Lemma 4.3 that Ir7(g;; g;) - N;(A*) for i = 1, 2. Hence,
Ir{(gi; g5) F Ni(A*) AB;(N;(A¥)). It follows from Theorem 4.1 that Iry(N;;N;) F Ases([Li(si) A
B,(Ij(s;)) > AZ(s:) A B, (A2(5;))]. We have r(gi; g;), Tr?(N), Ir?(WF) b [4£(s0) > L) A
[B,(42(50)) > By (1j(s))]. Hence, Tx? (g5 g;), Tr?(N), Tr?(WF) F T?[ A% (1) 5 Ts0); A%(55) STi(s5,))]
Using Theorem 4.1 and Lemma 2.3.(3), we have Ir;(g;;g;),Ir;(N), Ir;(WF) F Ir;[Af(s;) =
Li(si); A7 (s5) = Li(s5))]. ™

5 Undecidability for Uninterchangeable Games

The situation for an uninterchangeable game differs entirely from that for an interchangeable
game. For an interchangeable G, we show the undecidability result that for some strategy s; for
player i, he cannot infer from his belief set A; = {Ir;(g;; g;), Ir;(N) } UIr;(WF) whether s; is a
final decision or not. We give three other results related to this theorem.

5.1 Undecidability theorem and related theorems

Theorem 5.1. (Undecidability of prediction/decision making) Let G be an uninter-
changeable game, g = (g1, g2) its formalized payoffs, and i = 1,2. Then, there is an s; € S; such
that

neither A; = Bi(Ii(s;)) nor A;F Bi(=Ii(si)). (21)

This will be proved in Section 5.2. First, we note that we have some s; so that neither
A; +B;B;(L;(sj)) nor A; - B;B;(—I;(s;)), i.e., player ¢ cannot predict whether s; is a decision
or not for player j. This is also obtained in the proof of Theorem 5.1. Now, we concentrate on
(21) for player i.

The following theorem states that the decision I;(s;) cannot be expressed in terms of a
concrete formula if (21) holds for s;, which is proved in Section 5.2.

Theorem 5.2. (No-formula) Let G be an uninterchangeable game, g = (g1, g2) its formalized
payoffs, and i = 1,2. Let s; € S; be a strategy for which (21) holds. Then, there is no game
formula A; such that

Theorems 5.1 and 5.2 hold even for IR? with the additional axioms T, 4 and 5. We will

prove Theorem 5.2 for IR?(T), which implies the result for IR2.

The undecidability result differs from the negative result for a game with no Nash equilibria:
For such a game, Theorem 4.3 states that player ¢ can deny any strategy for his decision. In
this case, he may think about some other criterion such as the default criterion that the first
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strategy for him should be chosen. However, undecidability means that he can not reach such a
conclusion.

The negative decision given in (20) holds for a non-Nash strategy s; for any game G. Hence,

s; for (21) is a Nash strategy. In fact, it is a sufficient (in fact, necessary, too) condition for (21)
that

s; is a Nash strategy but s; ¢ F; for some subsolution F} x Fy, (23)

which is shown in Lemma 5.1. The battle of the sexes (Table 1.2) has two subsolutions
{(s11,821)}, {(s12,822)}. Since (23) holds for each of s;; and s;a, we have undecidability (21)
for both strategies of both players.

Table 5.1

S21 S22
si | F(LD)E | (0,1)F
s12 | £ (1,0) (0,0)

Even when G is uninterchangeable, there may be some case where player ¢ has a positive
decision. Table 5.1 has two subsolutions F' = {(s11,821), (s12,821)} and F? = {(s11,s21),
(s11,822)}. Since (s11,s21) belongs to both subsolutions, (23) does not hold for s;;.

To consider what would happen when the subsolutions have a nonempty intersection, we
extend Theorem 4.2 to an uninterchangeable game G. Let G be any game with its subsolutions
F1. .. F* We denote the intersection ﬂleFZ by F. We stipulate that k = 0 and ' = () if G has
no Nash equilibria. If G is solvable, then k = 1 and F! is the set of all Nash equilibria E(G).
We note that this intersection F' satisfies interchangeability; so it can be written as By x By,

Here, we modify the target formulae {A}(s;)}ies,, i = 1,2,as follows:

A (sy) := Vieh Ir{[bst;(ss; t5); bst;(ty;s:)]. (24)

This differs from A*(s;) with the domain of disjunction F’  instead of S;. In this sense, it depends
upon the specification of the payoff functions.

We define the candidate formulae C; = {C(s;)}s,es,,7 = 1,2 as follows:

A:‘*<Sz) if s; € Fz
C’l*(sz) = A:(Sl) if S; §§ E(G)Z (25)
Li(si) otherwise.

Then, we have the following characterization theorem, which will be proved in Section 5.2.

Theorem 5.3. (Characterization II) Let G be any game with its subsolutions F*, o FE

g = (g1, 92) its formalized payoffs, and i = 1,2. Then, - B;(L;(s;) = C}(si)) for all s; € S;.
The following theorem is a corollary.

Theorem 5.4. (Positive Decision) Let G be any game, g = (g1, g2) its formalized payoffs,

and © = 1,2. Then, for all s; € S;, Aj FBy(Li(si)) if and only if s; € F;.

This has various implications: When G has no Nash equilibria, i.e., F=0 A gives no
positive decisions; When G is solvable, it gives a positive decision. When G has a multiple
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subsolutions, there are two cases; if F= (), then it gives no positive decision; and if F # 0, it
gives a positive decision, i.e., s; € Fj.

It may be informative to state the semantic counterpart of Theorem 5.1, but since this goes
to a sidetrack, we do not give a proof.

Theorem 5.5. (Semantic counterpart): Let G be a game with E(G) # 0 and g = (g1, 92)
its associated formalized payoffs. Let M = ((W; Ry, Ra),T) be any KD-model and w any world
in W. Suppose that (M,w) = Ir;(g) ANIr;(N) and (M, w) = Ir;(WF(A)) for all A. Then, there
exists a subsolution F' = Fy x Fy in G such that

(M,w) = Iri(Li(s1), I2(s1)) for any s € F, (26)

(M,w) = Iri(=L(s1), 7 L(s1)) for any s € (S1 — F1) x (S2 — F3) . (27)

When G has no Nash equilibria, the theorem is modified as stating the the claimed F' is
empty: Only (27) is applied.

Theorem 5.5 describes how a subsolution F' occurs in one model. It states that in the world
w € W, only s; and s; from the subsolution F' are a decision and a prediction for player ¢. From
the viewpoint of a single model, this resolves the difficulty caused by our undecidability result.
However, we take the viewpoint that player ¢’s inference is described in the formal system of IR?.
The soundness/completeness theorem (Theorem 2.1) implies that for each model, a subsolution
may be a possible solution but the choice of a model remains.

5.2 Proof of the theorems

We stipulate that when E(G) = (), then the subsolution F' is empty and F} = F» = (). Lemma
4.2 follows this lemma and soundness for IR2.

Lemma 5.1. Let G be any game. Then, for any subsolution F = Fy x Fs in G, there is a
KD-model M = ((W; R1, R2),7) and a world w € W such that

(M, w) = Iri(g) ANr;(N) and (M,w) | Ir;(WF(A)) for all A; (28)

for any s; € Si, (M,w) = Bi(Ii(s;)) & (M,w) E Ii(s;) & s; € F;. (29)

Proof. We construct a model M = ((W; Ry, Ra), T) satisfying (28) and (29). Let F' = Fy X Fy
be a subsolution. Let (W; Ry, Re) be the frame given by W = {w} and Ry = {(w,w)} for
k =1,2, i.e., it has a single world, and Ry, is reflexive. Hence, this is a frame for Axiom T (and
4, 5), too. Define 7 by, for k = 1,2,

for any s;s" € S, T(PRi(s;8")) = T & hg(s) > hy(s'); (30)

T(w,Ig(sg)) = T < s € Fy. (31)

That is, the preferences true relative to hy are given by 7; and Ip(sg) is true if and only if
sk € Fj. By (30), we have (M, w) = g1 A g2. Also, since W = {w}, we have, for any formula C
and k=1, 2,

(M,w) | C & (M,w) = By(C). (32)
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Now, because F' is a subsolution and (M, w) = g1 A g2, it follows that (M, w) = bst;(s;;s5)
for all (s;;s5) € F and for ¢ = 1,2. Thus, (M,w) = NO;. Also, (M,w) = N1; by (31), and
(M,w) = N2; by W = {w}. Thus, (M, w) = Ir;(IN) for both ¢ =1, 2.

Let us show (M, w) [= Ir;y(WF(A)) for all A. Let Ay = {Ar(sk)}sies,. k = 1,2 be given.
Let By = {sx € S : (M,w) = Ag(sg)} for k = 1,2. First, notice, using (32), that if (M, w) =
=[Ny (A) A No(A)], then (M,w) E WF;(A). Thus, we can assume that (M,w) E Ni(A) A
Ny (A). Using NO;(A)AN02(A), we have, for any (s1;82) € S, (M,w) & Ai(s1) A Az2(s2) D
bsty(s1; s2)Absta(s2; 1), i.e., E1 X Ea C E(G). Consider two cases.

(i) Suppose that Ey x Ep C F. Then, by (31), for k = 1,2, (M, w) = As,es, [Ak(sk) D Le(sk)],
and hence (M,w) = WEF;(A).

(ii) Suppose that Ey X Fs — F # (). Because F is a subsolution, it is maximal having the
form of FF = F; x Fy. Also by Ey x Ey C E(G), we have F — E # (). Let (s},s5) € F — E.
Then, (M, w) = [Ii(s7)AI2(s3)] A ~[A1(s7) A Aa(s3)] and hence for i = 1,2, (M, w) = —[Li(s) A
B;(L;(s7)) D Ai(s7) AB;j(A5(s)))]. Thus, (M,w) F WEF;(A) fori=121

Proof of Theorem 5.1: Let G be an uninterchangeable game, and let F, F’ be two subsolutions
with (s;;s5) € F but (s;;55) ¢ F'. By Lemma 5.1, there are two models M and M’ so that (28)
and (29), respectively, for F' and F’. Hence, (M, w) = B;(I;(s;)) but (M',w') ¥ B;(L;(s;)). By
soundness for IR?, we have A; ¥ —B;(I;(s;)) and A; ¥ B;(I;(s;)).1

Since the model given in Lemma 5.1 has a single world, it is a model for Axioms T, 4 and 5.
Hence, Theorem 5.1 holds for IR? with those axioms. In the following proof, we use Theorem
5.1 holds for IR?(T).

Proof of Theorem 5.2. Suppose that there is a game formula A such that (22) holds in the
logic IR?; a fortiori, (22) holds for IR?(T).Theorem 3.2 claims that in IR?(T), Ir;(g) - B;(A) or
Ir;(g) - Bi(—A). This and the supposition imply A; - B;(L;(s;)) or A; - B;(=1;(s;)) in IR?(T).
This is impossible since Theorem 5.1 holds for IR?(T).H

Proof of Theorem 5.3: When s; € Fj, we have Ir?(g) - A
Li(si) D A¥*(s;). In the other cases, by Lemma 4.1.(2), Ir?(N) -

**(si), which implies Ir{(g) +
I;(s;) D C#(s;). Thus,

Irf(g), Ir{(N) F Li(s;) D C;(s;) for all s; € S;. (33)

Now, consider the converse of (33).

We modify Lemma 4.3 as follows: for any (s;;s;) € S,

(07): Ir?(g), Irf(N) b= 7 () A B;(C5 (55)) D bsti(si; 55)-

(1%): Ird(g), Ir9(N) - C(s1) D Vi,es,Bi(C(t))).

(2%): Ir2(N) - G (s;) D B;Bi(Cf(s1)).-

(07): If CF(si) = Af(si) or Cf(sy) = Af(s;), then Ir?(g) = =7 (si) or Irf(g) = Bj(=C7(s;));

so, the assertion holds. Let Cf(sg) = A7*(si) and C7(s;) = Aj*(sj). So, we have Irj(g) -
bsti(si; sj); so, we have the assertion. Let C}(sx) = A7*(s;) and C7(s;) = Lj(s;). Then, for any
E=1,..,1 (si;tj) € FF for some tj, and also, for some ko, (s;;t;) € FFko for some tj. Hence,
we have (si;s;) € F* i.e., (si;s;) is a Nash equilibrium. Hence, Ir¢(g) I bst;(s;; s;). The case
where C} (s) = Li(s;) and C7(s;) = A7*(s;) is similar.

(1*): First, let C7(s;) = Li(si). By N1;, = CF (si) D Vi,e5,B;(15(t;)). Then, since Ir{(g), Ir(N) F
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Irj(g)AIr;(IN) by (6), we use (33) for j and get Irf(g), Irf (N) - Vi, e5,B;(1;(t5)) D Vies,B;(C5 (25)).
Thus, Ir(g), Iry(N) = Cf(si) D Vi;es;B;(C; (¢)). Second, let Cf(s;) = Aj(si). Then, Irf(g)
—C7(si), and hence, Irf(g) F C7(s;) D Vies;B;(C;(t;)). Third, let Cf(s;) = Aj*(si). Let

sj € Fj. Then, since - Ir(bst;(s;; s;);bst;(s;; 5:)) D Irj(bst (s;8i);bsti(si;s5)) by (6), we have

S CE(s) D Vi By(Ct): Then, b Ci(si) o [V, ep Bi(CHEN] V [V, g i Bi(CHE),
equivalently, = C7(si) D Vi,es,B;(C} (L))

(2%): If Cf(si) = Af(si), we have = Cf(s;) D B;B;(C}(s;)) by Lemma 4.3.(2). The case for
C#(si) = AX*(s;) is similar. If CF(s;) = Li(si), then F C(si) D B;B;(Cf(s:)) by N2;.1
), T

The above three statements imply Ir7(g),Irf(N) = N;(C*) A B;(N;(C*)), and also, by (33),
we have Ir?(g),Ir{(IN) F Ases(Ti(si)A B (L (sj)) D CH(si) N B (C*(sj))). Then, we using

Ir{(WF(C*)), we have Ir{(g), Ir{(N), Iry (WF(C*)) - C*(sla Li(s;).1

Proof of Theorem 5.4: (Only-if): Suppose (si;s;) ¢ F for any s; € S;. Let s; be not a
Nash strategy. Then, A; - B;(—1I;(s;)) by (20); so A; F =B;(Li(s;)) by Axiom D. Since A; is
consistent by Lemma 4.2, we have A; ¥ B;(I;(s;)). Let s; be a Nash strategy. Then, s; ¢ le for
some subsolution F} x Fi. Thus, A; ¥ B;(I;(s;)) by (23).

(If): If (si;5;) € F for some s;, then Ir¢(g) F A**(s;). Hence, A? I I;(s;) by Theorem 5.3, which
implies A; - B;(I;(s;)).W

6 Conclusions

We have considered prediction/decision making by player i in a finite 2-person game G. His
decision criterion constitutes of the three axioms, N; = NO;AN1;AN2;, which are described in
the mind of player i, and we require the same for the other player j. Therefore, player i is led to
an infinite regress consisting of N; and N;. This infinite regress is captured by Ir;(N;;N;) in the
fixed-point extension IR? of the epistemic logic KD?. We adopted this Ir;(N) = Ir;(N;N;) and
the additional infinite regresses, Ir;(WF') and Ir;(g). For an interchangeable game G, the belief
set A; = {Ir;(g), Ir;(N)} UIr;(WF) determine I;(s;) to the some specific formula A*(s;), while
the situation for an uninterchangeable G is entirely different. Here, we discuss various relevant
points for our results on decidability and undecidability.

Positive, negative decisions, and undecidable: Suppose that G has the interchangeable
set of Nash equilibria. Our decidability result states that player ¢ finds his Nash strategy to be
a possible decision, and disproves any non-Nash strategy as a negative decision. Player ¢ may
find multiple possible decisions, but can use any for his play. Our theory is silent for this choice.

Suppose that G has no Nash equilibria. The decidability result states that player ¢ denies any
strategies as negative decisions. Then, the negative decisions may lead player ¢ to a different
decision criterion such as a default criterion, e.g., the first strategy should be chosen, to the
necessity of communication.

On the other hand, when G has multiple subsolutions, we presented the undecidability result
that player ¢ cannot find any positive decision, unless the entire subsolutions has a nonempty
intersection. In this case, he can reach neither a positive nor a negative decision. Then, he
cannot go to a new criterion, since he himself does not notice undecidability.

A way out? We may regard communication between the two players as a way out. Technically,
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if they can communicate with each other, a specifying a subsolution to be chosen would resolve
undecidability. Again, difficulty is that player ¢ does not notice this necessity.

Two independent minds and a discord in Ir;(g): Godel’s theorem is caused by the self-
referential structure of Peano Arithmetic. That is, the entire theory of Peano Arithmetic can
be described inside the theory; the contradiction-freeness of Peano Arithmetic is one important
example. Our framework includes also a self-referential structure; the infinite regress operator
Ir;(+;-) describes Ir;(-;-), and vice versa in the logic IR?. This gives an environment for our
undecidability, but does not directly generate it. For example, the prediction/decision criterion
{Ir;(IN)} UIr;(WF) treats the two minds of the players equally in that each is embedded into
the other. In fact, a discord between the two players is included only in the infinite regress of
the game Ir;(g). This discord is the real source for our undecidability.

The self-referential involved in our framework serves an environment for undecidability, since
it gives simultaneous decisions and predictions for the two players. In the end of this section,
we discuss other environments where non-simultaneous decisions are made and where we have
only decidability results.

Johansen’s [10] argument: He gave the following four postulates for prediction/decision mak-
ing and asserted that the Nash noncooperative solution could be derived from them for solvable
games. He assumed (p.435) that the game has the unique Nash equilibrium.

Postulate J1 (Closed world): A player makes his decision s; € S; on the basis of, and only
on the basis of information concerning the action possibility sets of two players S1,S2 and their
payoff functions Ay, he.

Postulate J2 (Symmetry in rationality): In choosing his own decision, a player assumes
that the other is rational in the same way as he himself is rational.

Postulate J3 (Predictability): If any’ decision is a rational decision to make for an individ-
ual player, then this decision can be correctly predicted by the other player.

Postulate J4 (Optimization against “for all” predictions): Being able to predict the
actions to be taken by the other player, a player’s own decision maximizes his payoff function
corresponding to the predicted actions of the other player.

Those are connected to our requirements NO;AN1;AN2; and NO;AN1;AN2;. J1 requires player
i’s prediction/decision criterion to be described by game formulae. J3 corresponds to N2; and
N2;, and J4 to NO; and NO;. Here, J2 should be interpreted as symmetry between NO; AN1; AN2;
and NO;AN1;AN2; together with the symmetric treatment of two minds in IR2. Complete sym-
metry is obtained in terms of infinite regresses {Ir;(IN)} UIr;(WF), while keeping the identities
of two minds. Once Ir;(g) is introduced, it may contain some discord, which may generate
undecidability. Johansen himself did not discuss this part at all.

Other undecidability in game theory: The undecidability result given in Kaneko-Nagashima
[11] takes the same form as our undecidability®. They gave a 3-person game having a unique
Nash equilibrium in mixed strategies. It is assumed that the game structure and real number
theory ®,.s (real closed field theory) are common knowledge among the players. They proved the
provability of C(3zNash(z)) from their common knowledge of G and ®,.r. However, from the
same common knowledge assumption, neither 3xC(Nash(z)) nor -3xC(Nash(z)) is provable.
That is, the players commonly know the abstract existence of a Nash equilibrium, but do not

"This “any” was “some” in Johansen’s orginal Posutlate 3. According to logic, this should be “any”. However,
this is expressed as “some” by many scientists (even mathematicians).
8There are some literature on uncomputability on optimal strategies in a simple extensive game
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find a concrete one; hence they cannot play the specific Nash equilibrium strategy.

This is related to neither a self-referential structure nor the interdependence of the situation.
It is caused by the lack of the names of irrational numbers such as v/51 in their language, which
is involved in the Nash equilibrium in the 3-person game with rational payoffs”. The main reason
for this difficulty is to give a name to a concept, but not the self-referential structure.

Other solution concepts in game theory: Theorem 4.1 appears related to Aumann-
Brandenburger [2] in that “Nash equilibrium” is derived there in a game model. It would
be difficult make a direct comparison with their model in that it is a game model of decision
making following the Bayesian-game theory tradition, but not a model in the sense of logic. As
remarked, our target is a possible decision but Nash equilibrium is a realization of it. Anyhow,
since it is a single model, it is incapable of talking about undecidability like ours. Also, it is
worth mentioning that a solution function there describing a decision is single-valued, while
we consider a possible decision, to be interpreted as a set-(possibly empty)-valued function.
Therefore, the Nash solution theory was not questioned in [2].

The game theory literature has various “solution concepts” other than the Nash solution
theory. As far as we have checked, confining to finite games with pure strategies, there are no
solution concepts for undecidability other than the Nash solution theory.

For example, the theory of “rationalizable strategies” (cf., Osborne-Rubinstein [18]) can be
formulated by a similar axiomatization to Na;—Nas, except that “for all predictions” is replaced
by “some prediction”. Then, a variant of NO; and N0y can axiomatize “rationalizable strategies”.
The full axiomatization including beliefs can be done in the infinitary logic in Hu, at al. [9]'°.
Here, when an appropriate belief set of payoffs is given, we have the decidability.

Dominant strategy criterion: Let us see the dominant strategy criterion. In addition to NO;
as the basic axiom, and we assume the following axiom for predictions, instead of N1; and N2;:

Dm; (Giving up prediction): Ayes.[B;(Li(s;))].
It states that player ¢ gives up predicting j’s decision by accepting any strategy for j as a possible
decision. Player i’s thinking is already closed in NO; and Dm;, i.e., B;(NO;ADm;).

We consider the formula dm;(s;) := Ay;es;bsti(si; ;) expressing “s; is a dominant strategy”.
Then, B;(NO;ADm;) - B;(I;(s;)) D Bi(dm;(s;)) for all s; € S;. The converse can be formulated
in the similar manner as WF;(A4;) in Section 4.2: Let WF™ = {Dm;(A) D Ases[Ai(si) D
Li(si)] : Ai = {Ai(si)}s,es; - Then, we have the following theorem:

B;(NO; A Dm;), B;(WF%™) - B, (L;(s;) = dmy(s;)). (34)

This has two important points: First, the epistemic depth for this result is 1; no interdepen-
dency between the two players are involved. Second, Theorem 3.1 (decidability) implies also
decidability.

The result (34) is extended in various manners: We may specify some strategies only for
predictions. Or, player ¢ assumes that player j follows Dm;; then interpersonal interdependence

9Classical game theory for the 2-person case can be done only in rational numbers. For the 3-person case, any
algebraic real numbers in [0, 1] are involved as some mixed strategy equilibria Nevertheless, if they are assumed
to be expressed by constants, which is possible, we can avoid the undecidability in [11].

Y0 A fixed-point logic approach is also possible, but it needs a specific formulation, and is more cumbersome
than IR? of this paper. The infinitary logic approach gives a unified way for the Nash theory and rationalizability
theory.
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of degree 2 is required. Still, we can formulate those criteria without conceptual difficulties.
For those case, we have decidability as far as the beliefs of payoffs are given in an appropriate
manner. More generally, if we start with the same argument in a finite but repeated way, we
have only decidability. We, however, emphasize that those extensions do not give a completely
symmetric environment. In this sense, the self-referential structure for the two players is crucial
for our undecidability result.
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