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Abstract

Logical inference is an engine for human thinking, especially, for decision making in an

interdependent situation with more than one persons. We study the possibility of predic-

tion/decision making in a finite 2—person game with pure strategies, following the Nash-

Johansen noncooperative solution theory. Since some infinite regress naturally arises in this

theory, we adopt a fixed-point extension IR2 of the epistemic logic KD2, which is still a

finitary propositional logic. The base logic KD2 is adopted to capture individual decision

making from the viewpoint of logical inference. Our results differ between a game with the

interchangeable set of Nash equilibria and a game with the uninterchangeable set. For the

former, we have decidability, i.e., player  can decide whether each of his strategies is a final

decision or not. For the latter, he can neither decide it to be a possible decision nor can

disprove it. This takes the form of Gödel’s incompleteness theorem, while it is much sim-

pler. Our undecidability also is related to the self-referential structure, but its main source

is interdependence of payoffs and independent prediction/decision making.

Key words: Prediction/Decision Making, Infinite Regress, Decidability, Undecidablity, In-

completeness, Nash solution, Nash subsolution

1 Introduction

Logical inference is an engine for decision making in complex situations, in particular, in inter-

dependent situations with multiple persons like games. Decision making in such situations has

been studied in game theory, while logical inference is kept informal. To study this decision

making, we adopt a formal system of an epistemic logic; specifically, a fixed-point extension IR2

of the (propositional) epistemic logic KD2. Since prediction making is also required because

of interdependence of the players, it is more accurate to call “prediction/decision making”.

Nash [17] and Johansen [10] gave the noncooperative theory of prediction/decision making in a

non-formalized manner. We study this theory in the logic IR2

We prove the undecidability (incompleteness) result that for a game with the uninterchange-

able set of Nash equilibria, a player may reach neither a positive nor a negative decision; i.e.,
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the belief set for him is incomplete in the logic IR2. In contrast, when the set of Nash equilibria

is interchangeable, the same belief set leads him to decidability.

Our approach has various different features from the standard literatures of game theory as

well as epistemic logic. Thus, we start with explaining those features.

Fixed-point extension of KD2: As seen presently, we meet an infinite regress of beliefs of

prediction/decision making by one player and about the other player. This infinite regress occurs

in the mind of a single player,  and we need to separate one mind from the other. In order to

keep subjective thinking separately from the other’s, we adopt the epistemic logic KD2 as the

base logic for IR2 This separation has several merits, which will be explained in several places.

The concept of an infinite regress is closely related to the common knowledge (Lewis [14]

and Aumann [1]), and the logic IR2 is related to the common knowledge logic CKL (cf., Fagin,

et al. [5], and Meyer-van der Hoek [15]). Indeed, if we assume Axiom T (truthfulness) on IR2

infinite regress collapse to common knowledge, and IR2 becomes equivalent to CKR.

Proof theory and model theory: The view of regarding logical inference as an engine for

prediction/decision making leads us to a proof-theoretic system. The status of model theory

(Kripke semantics) is rather a technical support, though we need it to stabilize the choice of a

formal system. Indeed, we prove the Kripke-soundness/completeness of IR2 in a separate paper,

[8]. We emphasize that a player’s prediction/decision making is formulated in a proof theoretic

(formal) system, and rather than in a single (semantic) model1 2. The Kripke completeness

for IR2 tells that semantic validity is captured by formal provability, and soundness tells that

a counter model disproves provability. The soundness part will be used for our undecidability

theorem. but the status of model theory is still secondary for our study.

In the logic IR2 the logical ability of each player consists of the ability given by classical logic

and the knowledge about the same ability of the other, and additionally, the ability manipulating

infinite regresses.

Basic beliefs as non-logical axioms: As a mathematical theory needs its proper mathemat-

ical axioms in a formal system, a player’s prediction/decision making needs basic beliefs (under-

standing) of the situation (game) and his prediction/decision criterion; otherwise, he could only

recognize logical deducibility. The deducibility from his beliefs to a decision is expressed as

B(Γ

 ) ` B(I()) (1)

That is, player  has basic beliefs Γ in his mind, and derives I() - “ is a possible decision

for him” The negative decision is described by B(Γ

 ) ` B(¬I()). In the logic IR2 B(Γ


 ) `

B(I()) (respectively, B(Γ

 ) ` ¬B(I()) is equivalent to Γ


 ` I() (Γ ` ¬I()) This is

interpreted as meaning that the derivation of (1) is done in the mind of player  For this, our

choice of the base logic KD2 is essential (see Lemma 2.5).

Game theoretical concepts: We consider only finite 2-person (strategic) games with pure

strategies. This simple setting is enough for our considerations of undecidability for predic-

1The model-theoretic standpoint has been taken almost exclusively in the literature of epistemic logic with

applications to game theory; for example, see van Benthem et al. [22], Perea [19], in the various papers in

Brandenbuger [4], and van Benthem [21]. Some exceptions are Kaneko-Nagashima [11], Kline [13], and Suzuki

[20], where the proof-theoretic standpoint is taken.
2Many aspects involved in playing a game are considered in van Benthem et al. [22] and van Benthem [21]. In

Chap.12 of [21], matrix games are considered from the viewpoint of logic; matrix games are formulated by means

of logic. Neverrtheless, an individual thought process of prediction/decision making is only indirectly treated.
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tion/decision making.

Nash [17] distinguished between a solvable game and an unsolvable game, which will be

explained in Section 3. His theory is well suited to an interpretation of individual ex ante

prediction/decision making in a game, but he stopped at giving the distinction. Johansen [10]

discussed Nash’s theory in a more philosophical manner. He focussed on solvable games. Our

axiomatic description of prediction/decision making may be regarded as a formalization of his

argument in the formal system IR2.

Axiomatic formulation of prediction/decision making: We formulate prediction/decision

making by three axioms N0 N1 and N2, given in Section 4 They are assumed in the scope of

the mind of player  i.e., B(N012) := B(N0∧N1∧ N2) For his prediction about the other
player ’s decision making, player  should have beliefs BB(N012) where N012 is the same

as N012 with the replacement of  with  In fact, BB(N012) requires BBB(N012) and

so on. This regress generates an infinite sequence:

B(N012) BB(N012) BBB(N012)  (2)

This infinite regress is captured by the fixed-point operator as Ir(N012;N012) in the logic

IR2 It has a self-referential structure; i.e., player  has the imaginary  and this  has also

the imaginary  in his mind, and vice versa. The self-referential structure is crucial for our

undecidability result.

The infinite regress Ir(N012;N012) describes a property for prediction/decision making,

but there are multiple candidates to enjoy this property. Among them, we choose a candidate

formula to have exactly the property, which is formulated as Ir(WF)

Infinite-regress of preferences: The set of beliefs Ir(N012;N012) Ir(WF) is a pure de-

scription of how player  makes predictions and decisions, but yet it includes no concrete infor-

mation about a game. The corresponding beliefs of game payoffs are described as Ir(; )We

adopt the set of those three types of beliefs, ∆ = {Ir(; ) Ir(N012;N012)} ∪Ir(WF)We

consider two related questions:

(i): What decisions and predictions does ∆ recommend?

(ii): Does it, in the first place, recommend any?

These are related closely to Nash’s [17] distinction between solvable and unsolvable games. Here,

interchangeability is more directly related.

Table 11 Table 12 Table 13

s21 s22 s23
s11 2 4 2 2 4 0

s12 3 3 4 2 3 0

s13 0 0 5 5 2 6

s21 s22
s11 2 1 0 0

s12 0 0 1 2

s21 s22
s11 1−1 −1 1
s12 −1 1 1−1

Interchangeable and uninterchangeable games: In (the game of) Table 11 each player

has three strategies, and his payoff is determined in the matrix (the first entry is player 1’s

payoff). The superscript NE stands for Nash equilibrium, explained in Section 3. Table 11 has

a unique Nash equilibrium. Table 12 has two Nash equilibria. This has the uninterchangeable

set of Nash equilibria in the sense that a pair of strategies from those equilibria may not be

an equilibrium. Table 13 has the empty set of Nash equilibria. The sets of Nash equilibria
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for Tables 11 and 13 are interchangeable. Table 13 has a difficulty of no Nash equilibrium,

which is different from the difficulty caused by undecidability. We say that a game is (un-)

interchangeable if the set of Nash equilibria is (un-) interchangeable.

Positive decision, negative decisions, and undecidable: Both questions (i) and (ii) are

related to Nash’s distinction. When (the set of Nash equilibria for) a game is interchangeable

such as in Tables 11 and 13 we have the following decidability result: for any strategy  for

player 

either ∆ ` B(I()) or ∆ ` B(¬I()) (3)

Furthermore, decision I() can be expressed as a concrete formula. The set of beliefs ∆ tells

that in Table 11 s12 is a positive decision but both s11 and s13 are negative decisions In Table

13 ∆ recommends all as negative decisions.

Now, it is the main result of the paper that when a game is uninterchangeable such as Table

1.2, there is some strategy  for each player  such that

neither ∆ ` B(I()) nor ∆ ` B(¬I()) (4)

That is, player  cannot decide with the same belief set ∆ whether  is a positive or negative

decision. This holds for both strategies in Table 1.2. This entirely differs from the case where he

finds all as negatively recommended, since if so, he may look for a different criterion. However,

in the case of (4), he may not be able to notice this undecidability itself.

Relations to Gödel’s incompleteness theorem and the source for our undecidability:

The result (4) has the same form as Gödel’s incompleteness theorem (cf., Boolos [3], Mendelson

[16]), but both interpretation and source for incompleteness are different. Gödel’s theorem is

about the Peano Arithmetic and based on the self-referential structure. Ours also involves a self-

referential structure, but our undecidability arises from some discord in interpersonal thinking

in the self-referential environment.

In our problem, the minds of two players are described separately in the logic IR2 but

they have no effective differences before the description of game payoffs is given, since they

have full logical abilities and the same prediction/decision criteria. Only the infinite regress of

game payoffs Ir(; ) in ∆ differentiates the two players. This difference is the source for the

undecidability (4). A comparison with Gödel’s theorem will be discussed in Section 6.

Other epistemic axioms: To accommodate the considerations of (3) and (4), as stated, we

adopt the fixed-point extension IR2 of the epistemic logic KD2 In fact, both results of (3) and

(4) hold for a stronger system than IR2 for example, in those with Axioms T, 4, and 5 The

reason for the choice of KD2 is to keep a clear-cut structure of nested belief hierarchy of beliefs

and to keep separate subjectivity of individual minds. Nevertheless, in particular, the addition

of Axiom T is relevant and will be discussed in a few places.

Extensions to the -person case: In the present paper, we confine ourselves to the 2-person

case both for the logic and game theory. For -person case ( ≥ 3) we would meet new problems
in both epistemic logic and game theory. We will discuss those extensions in separate papers.

The format of the paper is as follows: Section 2 formulates the logic IR2. Section 3 gives

various game theoretical concepts. Section 4 gives three axioms for prediction/decision making,

and the characterization theorem for an interchangeable game. Section 5 presents the unde-

cidability result for an uninterchangeable game, and the no-formula theorem. Section 6 gives

discussions on our undecidability relative to Gödel’s incompleteness theorem.
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2 The Infinite Regress Logic IR2

We use an fixed-point extension IR2 of the epistemic logic KD2 in order to capture an infinite

regress arising in prediction/decision making in a game with two players. We formulate the logic

IR2 in Sections 2.1, 2.2, and give its semantics in Section 2.3.

2.1 Language

Let  be a nonempty finite strategy set for player  = 1 2. We adopt the atomic formulae:

atomic preference formulae: Pr(; ) for  = 1 2 and   ∈  = 1 × 2;

atomic decision formulae: I() for  ∈   = 1 2.

The atomic formula Pr(·; ·) expresses the preference relation of player ; Pr(; ) means that
player  weakly prefers the strategy pair  = (1 2) to the pair  = (1 2). The atomic formula

I() expresses the idea that, from player ’s perspective,  is a possible final decision for him.

Now we proceed to have logical connectives and epistemic operators:

logical connective symbols: ¬ (not), ⊃ (imply), ∧ (and), ∨ (or);3

unary belief operators: B1(·), B2(·);
binary infinite-regress operators: Ir1(· ·), Ir2(· ·);
parentheses: (, ).

We use a pair of formulae, (1 2), as arguments of the binary operators Ir1(· ·) and Ir2(· ·),
and the intended meaning of the formula Ir(1 2) is that player ’s subjective belief of the

infinite regress of beliefs about  and  . We stipulate that  refers to the other player than .

We write Ir(1 2) also as Ir(;) and sometimes Ir[; ]

We define the sets of formulae, denoted by P, by the following induction:
(o) all atomic formulae are formulae;

(i) if  are formulae, then so are ( ⊃ ), (¬), B() for  = 1 2;

(ii) if A = (1 2) is a pair of formulae, then Ir(A) is also a formula;

(iii) if Φ is a finite (nonempty) set of formulae, then (∧Φ) and (∨Φ) are formulae4.
We say that a formula  is non-epistemic iff B(·) or Ir(· ·) does not occur in  for  = 1 2. We
say that  is a game formula for  iff it contains atomic formulae of the form Pr(·; ·) only, that
is, no occurrences of Pr(·; ·), I(·), or I(·); and that  is a game formula iff the atomic formulae
occurring in  are of the form Pr1(·; ·) or Pr2(·; ·). A game formula expresses a reality of the

target situation together with, potentially, beliefs about them. The atomic decision formulae

I()’s are used to describe a player’s thinking about prediction/decision making.

We write ∧{} ∧{} as ∧ ∧ ∧ etc., and ( ⊃ )∧ ( ⊃ ) as  ≡ 

We abbreviate parentheses or use different ones such as [ ] when no confusions are expected.

3Since we adopt classical logic as the base logic, we can abbreviate some of those connectives. Since, however,

our aim is to study logical inference for decision making rather than semantic contents, we use a full system.
4We presume the identity of “finite sets” in our language.

5



2.2 Proof theory of IR2

The base logic of IR2 is classical logic, formulated by five axiom (schemata) and three inference

rules: for all formulae , and finite nonempty sets Φ of formulae,

L1  ⊃ ( ⊃ );

L2 ( ⊃ ( ⊃ )) ⊃ (( ⊃ ) ⊃ ( ⊃ ));

L3 (¬ ⊃ ¬) ⊃ ((¬ ⊃ ) ⊃ );

L4 ∧Φ ⊃ , where  ∈ Φ;
L5  ⊃ ∨Φ, where  ∈ Φ;

 ⊃  


MP

{ ⊃  :  ∈ Φ}
 ⊃ ∧Φ ∧-rule { ⊃  :  ∈ Φ}

∨Φ ⊃ 
∨-rule

Now, we add two epistemic axioms and one inference rule for the belief operators B(·): for all
formulae , and for  = 1 2,

K B( ⊃ ) ⊃ (B() ⊃ B());

D ¬B(¬ ∧);

Necessitation


B()
.

Those axioms and inference rules constitute the epistemic logic KD2.

For the infinite regress operators Ir(· ·), we add one axiom and one inference rule: For

 = 1 2 and A = (1 2) D = (12) two pairs of formulae,

IRA Ir(A) ⊃ B() ∧BB() ∧BB(Ir(A));

IRI
 ⊃ B() ∧BB() ∧BB()

 ⊃ Ir(A) .

The logic IR2 is defined by adding IRA and IRI,  = 1 2, to KD
2.

Axiom IRA has a fixed-point structure in the sense that BB(Ir(A)) appears as an im-

plication of Ir(A). Replacing Ir(A) in BB(Ir(A)) with its implication B() ∧BB()

(formally with K and Nec), Ir(A) implies the following infinite regress of beliefs:

{B()BB()BBB() } (5)

Rule IRI states that Ir(A) is the logically weakest formula satisfying the property described

in IRA, that is, if  enjoys it, then  implies Ir(A). Our completeness-soundness theorem

(Theorem 2.1) shows that Ir(A) captures faithfully the set of (5).

A proof  = h;i consists of a finite tree hi and a function  :  → P with the

following requirements:

P1 for each node  ∈  () is a formula attached to ;

P2 for each leaf  in hi, () is an instance of the axiom schemata;

P3 for each non-leaf  in hi,
{() :  is an immediate predecessor of }

()
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is an instance of the above five inference rules.

We call  a proof of  iff (0) =  where 0 is the root of hi. We say that  is

provable, denoted by ` , iff there is a proof of . For a set of formulae Γ, we write Γ ` 

iff `  or there is a finite nonempty subset Φ of Γ such that ` ∧Φ ⊃ . This treatment of

non-logical assumptions is crucial in our study5.

The following are basic to classical logic and/or KD2 We use them without referring.

Lemma 2.1. Let  ∈ P, Φ a finite set of formulae, and  = 1 2. Then, (1) `  ⊃  and

`  ⊃  imply `  ⊃ ; (2) ` ( ∧ ⊃ ) ≡ ( ⊃ ( ⊃ )); (3) ` B(¬) ⊃ ¬B(); (4)

` ∨B(Φ) ⊃ B(∨Φ); (5) ` B(∧Φ) ≡ ∧B(Φ)

From Axiom IRA and Rule IRI ( = 1 2), the operators Ir(· ·)  = 1 2 may appear to be
independent of one another. However, the two operators are interdependent:

Lemma 2.2. (Epistemic content) Let A = (1 2) be a pair of formulae Then, ` Ir(A) ≡
B( ∧ Ir(A)) for  = 1 2

Proof. First, we show ` B( ∧ Ir(A)) ⊃ Ir(A). Let  = B() ∧B(Ir(A)) for  = 1 2

By IRA (and, Nec, K), we have `  ⊃ B() ∧BB() ∧BBB() ∧BBB(Ir(A))

Since the last two conjuncts are equivalent to BB() we have `  ⊃ B() ∧BB()∧
BB() Using IRI we have ` B() ∧B(Ir(A)) ⊃ Ir(A)

The above conclusion for  implies ` B() ⊃ B(Ir(A)) Hence, we have ` B() ∧
B() ⊃ B()∧B(Ir(A)) Since ` Ir(A) ⊃ B()∧B() by IRA we have ` Ir(A) ⊃
B() ∧B(Ir(A))¥

This lemma enables us to talk about the epistemic content of Ir(A);

Ir (A) :=  ∧ Ir(A) (6)

which plays a crucial role in our consideration of prediction/decision making.

Lemma 2.3. (Basic properties for (·; ·)) Let A = (1 2) and C = (1 2) be two pairs

of formulae in P and  = 1 2.

(1) If ` Ir(A) ⊃ B() for  = 1 2, then ` Ir(A) ⊃ Ir(C) In particular, if `  for

 = 1 2, then ` Ir(C)
(2) ` Ir(A) ⊃ Ir(Ir1(A) Ir2(A));
(3) ` Ir(1 ∧ 1 2 ∧ 2) ≡ Ir(A) ∧ Ir(C);
(4) ` Ir(1 ⊃ 1 2 ⊃ 2) ⊃ (Ir(A) ⊃ Ir(C)):
(5) ` Ir(¬;) ⊃ ¬Ir(;); ` Ir(;¬) ⊃ ¬Ir(;) and ` Ir(¬;¬) ⊃
¬Ir(;)

Proof. (1): Let ` Ir(A) ⊃ B() for  = 1 2 We show ` Ir(A) ⊃ B() ∧ BB() ∧
BB(Ir(A)) Once this is shown, we have, by IRI ` Ir(A) ⊃ Ir(C) First, ` B(Ir(A)) ⊃

5Since the deduction theorem (cf., Mendelson [16]) does not hold in epistemic logic, the introduction of non-

logical axioms differs from in classical logic. We adopt the classical manner.
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BB() by Nec and K. By Lemma 2.2, we have ` Ir(A) ⊃ BB() By IRA, we have

` Ir(A) ⊃ BB(Ir(A)) Thus, by ∧-rule, we have the target.
The other claims (2)-(4) follow (1). Here, we show (3). Since ` Ir(1 ∧ 1 2 ∧ 2) ⊃

B() for  = 1 2 we have, by (1), ` Ir(1 ∧ 1 2 ∧ 2) ⊃ Ir(A) Similarly, ` Ir(1 ∧
1 2 ∧ 2) ⊃ Ir(C) Hence, we have the one direction. Consider the converse. We have

` Ir(A)∧Ir(C) ⊃ B(∧) for  = 1 2We have ` Ir(A)∧Ir(C) ⊃ BB(∧) and `
Ir(A)∧Ir(C) ⊃ BB(Ir(A)∧Ir(C)) Then, by IRI ` Ir(A)∧Ir(C) ⊃ Ir(1∧1 1∧2)
(5): Consider only the first one. Since ` Ir(¬;) ⊃ B(¬) we have ` Ir(¬;) ⊃
¬B() Then, using the contrapositive of IRA, i.e., ` ¬[B()∧BB()∧BB(Ir(A))] ⊃
¬Ir(A) we have ` Ir(¬;) ⊃ ¬Ir(A)¥

The following statements for Ir (·; ·) correspond to IRA and IRI for Ir(·; ·)
Lemma 2.4. (Admissible formulae and inference) Let A = (;) and  be any for-

mulae. Then,

(IRA
 ) ` Ir (A) ⊃  ∧B() ∧BB(Ir


 (A));

(IRI ) If `  ⊃  ∧B() ∧BB() then `  ⊃ Ir (;)

Proof. (IRA
 ): By (6), ` Ir (A) ⊃  ∧ Ir(A) By Lemma 2.2 for  we have ` Ir (A) ⊃

 ∧B() ∧B(Ir(A)) which is (1).

(IRI ): Suppose `  ⊃  ∧ B() ∧ BB() Since `  ⊃ BB() and `  ⊃ 

we have `  ⊃ BB() Thus, `  ⊃ B() ∧ BB() ∧ BB() By IRI we have

`  ⊃ Ir(;) Thus, `  ⊃  ∧ Ir(;) which is `  ⊃ Ir (;)¥

The main undecidability result of the paper holds in a stronger system than IR2 such as that

obtained from IR2 by adding Axiom T (truthfulness): B() ⊃ ; Axiom 4 (positive introspec-

tion): B() ⊃ BB(); and Axiom 5 (negative introspection): ¬B() ⊃ B(¬B()) The

reason for our choice of IR2 is to have a clear-cut description of each player’s logical inference.

This is stated by Lemma 2.5 (change of scopes), which is specific to IR2 Nevertheless, Axiom

T helps us understand the fixed-point formula Ir(1 2).

Now, let us see the common knowledge logic CKL (cf., Fagin et al. [5] and Meyer-van der

Hoek [15]). The logic CKL uses only one operator, C(·), and adds the following axiom and rule

to KD2:

CKA: C() ⊃  ∧B1(C()) ∧B2(C());

CKI:
 ⊃  ∧B1() ∧B2()

 ⊃ C() .

Axiom CKA and Rule CKI are interpreted as meaning that C() describes the common knowl-

edge of  from the outside observer’s perspective; on the other hand, Ir(A) describes player

’s subjective beliefs from his perspective. This difference is reflected by the counterpart of (5)

in CKL, i.e., C() captures the entire set:

{B1()B2()B1B2()B2B1()B1B2B2() } (7)

This set of formulae having all finite sequences of B2B1 including the repetitive ones such as

B1B2B2, while each in (5) has the outer B(·) and all BB  are alternating
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Let us look at IR2 with Axiom T. The logical system obtained from IR2 by adding Axiom

T is denoted by IR2(T) Since ` Ir1(1 2) ≡ Ir2(1 2) in IR2(T) by Lemma 2.2, we can
denote Ir(1 2) by C

∗(1 ∧2) Then, in IR2(T) we have, for any formulae 1 2 and 

cka: ` C∗(1 ∧2) ⊃ (1 ∧2) ∧B1C∗(1 ∧2) ∧B2C∗(1 ∧2);
cki: if `  ⊃ (1 ∧2) ∧B1() ∧B2() then `  ⊃ C∗(1 ∧2)

These mean that in IR2(T) CKA and CKI are derived formulae and admissible rule for C∗(1∧
2). Thus, C

∗(1 ∧2) (= Ir(1 2)) means the common knowledge of 1 ∧2
We will use the belief eraser 0 : the formula 0() ∈ P is obtained from  ∈ P by

eliminating all occurrences of B1(·)B2(·) and replacing Ir(1 2) by 0(1) ∧ 0(2) Then,
we have

`  implies `0 0() (8)

where `0 is the provability relation of classical logic in P . This is proved by induction on a
proof of  from leaves (Kaneko-Nagashima [11]).

2.3 Kripke semantics and the soundness/completeness of IR2

Here, we report the soundness/completeness for IR2 with respect to the Kripke semantics. We

use the soundness part for the main undecidability result.

A Kripke frame h ;1 2i consists of a nonempty set  of possible worlds and an acces-

sibility relation  for player  = 1 2. We say that a frame h ;1 2i is serial iff for  = 1 2
and for all  ∈ ,  for some  ∈ . A truth assignment  is a function from  × to

{>⊥}, where  is the set of atomic formulae. A pair  = (h ;1 2i ) is called a model.
When h ;1 2i is serial, we say that  is a serial model.

We say that h(0 0)  (  ) +1i ( ≥ 0) is an alternating sequence from (0 0) iff

−1 6=  for  = 1   and −1−1 for  = 1   + 1 The alternating structure

corresponds to the set given by (5). This is used for evaluating the truth values of formulae

Ir(1 2),  = 1 2.

The valuation in (), denoted by () |=, is defined over P by induction on the length
of a formula as follows:

V0 for any  ∈  , () |= ⇐⇒ () = >;
V1 () |= ¬⇐⇒ () 2 ;

V2 () |=  ⊃  ⇐⇒ () 2  or () |= ;

V3 () |= ∧Φ⇐⇒ () |=  for all  ∈ Φ;
V4 () |= ∨Φ⇐⇒ () |=  for some  ∈ Φ;
V5 () |= B()⇐⇒ () |=  for all  with ;

V6 () |= Ir(1 2) ⇐⇒ (+1) |=  for any alternating sequence h(0 0) 
(  ) +1i with (0 0) = ( ).

The steps other than V6 are standard. V6 is similar to the valuation for the common

knowledge operator in CKL; the only difference is to use alternating reachability for two formulae,
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instead of simple rearchability (cf., Fagin et al. [5], Meyer-van der Hoek [15]).

We have the following soundness/completeness theorem.

Theorem 2.1. (Soundness and Completeness) Let  ∈ P. Then, `  in IR2 if and only

if () |=  for all serial models  = (h ;1 2i ) and any  ∈ .

Soundness (only-if) will be used to prove our undecidability result (Theorem 5.1). It is

proved as follows: Let  = (;) be a proof of  Then, by induction on the tree structure

of () from its leaves we show that for any  ∈  ` () implies |= () The two new

steps are : (1) |=  for any instance  of IRA; and (2) the validity relation |= satisfies IRA

Both steps follow V6. The proof of completeness is given in Hu-Kaneko [8].

Theorem 2.1 shows that our fixed-point operator Ir(A) faithfully captures the set of (5).

The alternating structure in the semantics implies that if Ir(A) holds at a world  and if ,

then  and Ir(A) hold at world  which corresponds to Lemma 2.2, further if , then

Ir(A) holds at world  which corresponds to IRA These reflect the self-referential structure

shared by Ir(A) and Ir(A).

The following lemma requires the logic IR2 with its base logic KD2 which is proved by both

soundness and completeness of Theorem 2.1. The lemma does not hold for IR2 with any addition

of Axioms T, 4 and 5; counter examples are given in Hu-Kaneko [8].

Lemma 2.5. (Change of Scopes) (1): B(Γ

 ) ` B()⇐⇒ Γ ` ;

(2): B(Γ

 ) ` ¬B()⇐⇒ B(Γ


 ) ` B(¬)

In our application, Ir(1 2) is used as a premise of a statement of the form Ir(1 2) `
B(). By Lemmas 2.2 and 2.5, this is equivalent to Ir


 (1 2) ` . This is interpreted as

meaning that Ir (1 2) `  is obtained in the mind of player .

3 Game Theoretic Concepts

First, we give a few game theoretic concepts relevant for our discussions. Then, we formulate

them in the language of the logic IR2. We also mention some decidability (completeness) for

comparisons with the main undecidability result.

3.1 Preliminary definitions

Let  = ({1 2} {1 2} {1 2}) be a finite 2-person game, where {1 2} is the set of players,
 = 1×2 is the set of strategy pairs, and  :  → R is the payoff function for player  = 1 2.
We write (; ) for  = (1 2) ∈ . A strategy  for player  is a best-response against  iff

(; ) ≥ (; ) for all  ∈ . A strategy pair  = (; ) is a Nash equilibrium in  iff 
is a best response against  for  = 1 2. We denote () the set of all Nash equilibria in .

The set () may be empty. We say that  is a Nash strategy iff (; ) is a Nash equilibrium

for some  ∈  . The game of Table 1.1 has a unique Nash equilibrium, and Table 1.2 have

two, indicated by the superscript . Table 1.3 has no Nash equilibria.

A subset  of  is interchangeable (Nash [17]) iff

for all  0 ∈  (; 
0
) ∈  for  = 1 2 (9)
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This is equivalent to  = 1 ×2 where  = { ∈  : (; ) ∈  for some }  = 1 2. Let
E = { :  ⊆ () and  satisfies (9)} A nonempty subset  of  is the (Nash) solution iff

 is the greatest set in E i.e., 0 ⊆  for any 0 ∈ E. The Nash solution, when it exists, is
unique and coincides with (). The game  is solvable iff  has the Nash solution; otherwise,

it is unsolvable. A nonempty set  ⊆  is a subsolution iff  is a maximal set in E i.e., there is

no 0 ∈ E such that (0. When  has a unique subsolution, it is the solution (). Table

1.1 is solvable with the solution {(s12 s21)}. Table 1.2 is unsolvable, and has two subsolutions:
{(s11 s21)} and {(s12 s22)}. Table 1.3 has no subsolution.

Nash [17] assumed the mixed strategies, and proved the existence of a Nash equilibrium.

Here, some games have no Nash equilibria For our considerations, it would be more convenient

to separate the games with interchangeable () from the other games. Therefore, we call  an

interchangeable game iff () is interchangeable. A game is interchangeable if and only if it has

no subsolution or the unique subsolution; and  an uninterchangeable game iff it has multiple

subsolutions.

Hu-Kaneko [7] derived the Nash (sub)solutions from the following decision criteria: Let 

be a subset of  for  = 1 2

Na1: for any 1 ∈ 1, 1 is a best response against all 2 ∈ 2;

Na2: for any 2 ∈ 2, 2 is a best response against all 1 ∈ 1.

In Na,  describes the set of possible final decisions for player , and  describes ’s prediction

about ’s possible final decisions. Here ’s prediction comes from his thinking about ’s inference

from ’s basic beliefs. Specifically, player  assumes that ’s basic beliefs consist of the decision

criterion Na and the game structure. In epistemic terms, when  makes his prediction based

on  , elements in  occur in the scope of ’s thinking, and this whole statement occurs in the

scope of ’s thinking. In the present language, we cannot make distinguish between ’s and ’s

thinking, which are all interpretational. We will formalize this distinction in our logic IR2.

The following proposition was proved in Hu-Kaneko [7].

Proposition 3.1. Let () 6= ∅ and  a nonempty subset of  for  = 1 2.

(1) Suppose that  is solvable. Then  = 1 × 2 is the Nash solution of  if and only if

(1 2) is the greatest pair satisfying Na1-Na2.
6

(2) Suppose that  is unsolvable. Then  = 1 × 2 is a Nash subsolution if and only if

(1 2) is a maximal pair satisfying Na1-Na2.

These two cases correspond basically to the decidability and undecidability results to be

discussed in the subsequent sections. Here, we avoided unnecessary complication for the case of

() = ∅ In the subsequent sections, we treat that case, too.

3.2 Game formulae in IR2 and some decidabilities

For the description of a game  = h{1 2} {1 2} {1 2}i in the language of IR2, it suffices to
express the payoff functions 1 and 2 because the players and strategies are already included

in the language The payoff functions are expressed in terms of atomic preference formulae as

6The “greatest” and “maximal” are relative to the componentwise set-inclusions.
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follows:

 = ∧ [{Pr(; ) : () ≥ ()} ∪ {¬Pr(; ) : ()  ()}]  (10)

We call  the formalized payoffs associated with  for  = 1 2. Since the latter part consists

negative preferences, it holds that for all   ∈   ` Pr(; ) or  ` ¬Pr(; ) i.e.,  gives a
complete preference relation.

Consistency of 1 ∧ 2 can be shown by constructing a truth assignment. The infinite

regress Ir(1 2) is consistent in IR
2 is obtained by applying the belief eraser 0 : Suppose

that Ir(1 2) ` ¬ ∧  for some nonepistemic formula  Applying 0 to this we have

1 ∧ 2 `0 ¬∧ by (8) which is impossible because of the consistency of 1 ∧ 2. Consistency
of Ir (1 2) in IR

2 follows too These are listed for reference.

Ir(1 2) and Ir

 (1 2) are consistent in IR

2 (11)

We formalize best response and Nash equilibrium: The statement “ ∈  is a best response

to  ∈ ” is given as bst(; ) := ∧∈Pr(  ;  ) The statement “ = (1 2) ∈  is a

Nash equilibrium” is given as nash() := bst1(1; 2)∧bst2(2; 1)
The formulae defined above are game formulae. The atomic formulae I() and I() are

not included in them; they are used to describe prediction/decision making. Later, we will ask

whether those are described directly by game formulae; this question is important in interpreting

our undecidability as well as decidability.

We should assume that player  has enough beliefs, in order for the undecidability question

to make sense. Undecidability could be an easy conclusion, if a belief set for player  has a weak

content. As far as game formulae are concerned, the infinite regress of the formalized payoffs

Ir(1 2) contains sufficient information to prove or to disprove them.

Lemma 3.1. Let  be a nonepistemic game formula for  = 1 2. Let  be a game and

g = (1 2) the formalized payoffs. Then,

(1)  `  or  ` ¬ for  = 1 2;

(2) the following three are equivalent

(a) Ir(g) ` Ir(A) for  = 1 2; (b) Ir (g) ` Ir (A) for  = 1 2; (c)  `  for  = 1 2.

Proof. (1) Let Pr(; ) be any atomic formula. Recall that  ` Pr(; ) or  ` ¬Pr(; ) We
can extend this result to other nonepistemic game formulae for  by induction on their lengths.

(2) (() =⇒ () =⇒ ()): Suppose that  ` , i.e., `  ⊃  for  = 1 2. It follows from

Lemma 2.3.(1) that ` Ir(1 ⊃ 1 2 ⊃ 2). By Lemma 2.3 (4), Ir(g) ` Ir(A) for  = 1 2

Since `  ⊃  we have  ∧ Ir(g) `  ∧ Ir(A) which implies Ir (g) ` Ir (A)
(() =⇒ ()): We show the contrapositive. Suppose that 1 0 1 or 2 0 2. By (1),  ` ¬

or  ` ¬ or both. We only consider the case where  `  and  ` ¬ . Using the

same arguments as above, Ir (g) ` Ir (;¬). By Lemma 2.4.(1), Ir

 (g) ` B(¬) and

hence, Ir (g) ` ¬B(). But by Lemma 2.4.(1), ` Ir (A) ⊃ B() and hence ` ¬B() ⊃
¬Ir (A). Therefore, Ir (g) ` ¬Ir (;). By (11), we have Ir


 (g) 0 Ir


 (;). In the other

cases, we have similar arguments.¥

Theorem 3.1 states that Ir(g) is enough for decidability as far as an infinite regress of

nonepistemic game formulae concerned. It states this in terms of the epistemic content Ir (·; ·)
for coherency of the later aim.
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Theorem 3.1. (Decidability for the infinite regress of game formulae) Let  be a game

and g = (1 2) the formalized payoffs. Let  be a nonepistemic game formula for  = 1 2.

Then, either Ir (g) ` Ir (A) or Ir (g) ` ¬Ir (A) which implies either Ir(g) ` Ir(A) or
Ir(g) ` ¬Ir(A)

Proof. Since  `  or  ` ¬ for  = 1 2 we should consider the four cases. Here, we consider

only the case where  ` ¬ for  = 1 2 By (6), Ir (g) ` ¬ Using the contrapositive of

Lemma 2.4.(1), we have ` ¬ ⊃ ¬Ir (;) Thus, Ir

 (g) ` ¬Ir (;)¥

Theorem 3.1 will be used for a positive result. We will discuss a negative result, too: For

this purpose, we strengthen the logic to IR2(T) by adding Axiom T. This theorem will be used

for the no-formula theorem (Theorem 5.2).

Theorem 3.2. (Decidability for any game formula in IR2(T)) Let  be a game and

g = (1 2) the formalized payoffs. For any game formula  either Ir(g) `  or Ir(g) ` ¬
in IR2(T)

Proof. We prove the claim Ir (g) `  or Ir (g) ` ¬ by induction on the length of . This

implies Ir(g) ` B() or Ir(g) ` B(¬); then we have the assertion by Axiom T. Let  be

an atomic formula. Then, 1 ∧ 2 `  or 1 ∧ 2 ` ¬. Then, Ir (g) ` 1 ∧ 2 by (6) and Axiom
T. Thus, Ir (g) `  or Ir (g) ` ¬

Let  be nonatomic, and suppose the inductive hypothesis that decidability holds for the

immediate subformulae of  Let  =  ⊃  By the inductive hypothesis, decidability holds

for  and  Using this, we have Ir (g) `  or Ir (g) ` ¬ Similar arguments apply to
connectives ∧∨ and ¬.

Let  = B(). The hypothesis is: Ir

 (g) `  or Ir (g) ` ¬. Let Ir (g) `  Then,

B(Ir

 (g)) ` B(). By IRA


 and Axiom T, Ir (g) ` B(Ir


 (g)) and Ir


 (g) ` B(Ir


 (g))

Thus, Ir (g) ` B(). Now, let Ir

 (g) ` ¬. By the same arguments, we have Ir (g) `

B(¬), and, by Axiom D, Ir (g) ` ¬B().

Let  = Ir(1 2). The induction hypothesis is that decidability holds for 1 and 2

Now, suppose Ir (g) ` 1 ∧ 2. As remarked in the end of Section 2.2, Ir

 (g) ` Ir(g) and

Ir(g) ` Ir (g) Hence, Ir(g) `  for  = 1 2. Thus, Ir(g) ` B() for  = 1 2 By

Lemma 2.3 (1), Ir(g) ` Ir(1 2) for  = 1 2 Since Ir (g) ` Ir(g) for  = 1 2 by (6) and
Axiom T, we have Ir (g) ` Ir(1 2)

Let Ir (g) ` (¬) ∧   By the same argument, we have Ir

 (g) ` Ir(¬;) By Lemma

2.3.(5), Ir (g) ` ¬Ir(;)The same argument can be applied to the case of Ir

 (g) `  ∧

(¬) and Ir

 (g) ` (¬) ∧ (¬)¥

4 Prediction/Decision Making in the Logic IR2

We give three axioms for player ’s prediction/decision making, including some predictions about

player ’s decisions. We also assume the symmetric axioms for player ’s prediction about player

’s prediction/decision making. These lead to an infinite regress of those axioms, unless we stop

at an arbitrary level. In this section, we show, for an interchangeable game, that the infinite

regress of those axioms can be fully explicated, and obtain the decidability result.
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4.1 Axioms for Prediction/Decision Making

We start with the following three axioms. These are described in the mind of player , i.e., in

the scope of B(·);
N0 (Optimization against all predictions): ∧∈ [I() ∧B(I()) ⊃ bst(; )]
N1 (Necessity of predictions): ∧∈hI() ⊃ ∨∈B(I())i
N2 (Predictability): ∧∈hI() ⊃ BB(I())i.

For each  = 1 2, let N = N0 ∧N1 ∧N2, and let N = (N1N2).

The first axiom corresponds to Na. The second requires player  to have a prediction for

his decision. It corresponds to the nonemptiness of 1 and 2 in Proposition 3.1, while N1
allows both to be empty. The third states that in the mind of player , his decision is correctly

predicted by player  We find a similar structure in Axiom IRA but note that N2 and IRA

have different orders of applications of B and B  Indeed, I() does not include the scope of

B(·) while Ir(· ·) can be regarded as including the outer B(·) shown as in Lemma 2.2
Axioms N and N are interdependent: N is assumed in the mind of player  i.e., B(N)

Since B(N) includes B(I()) player  needs to predict what  would choose. This prediction

is made by the criterion BB(N) Then, B(I()) is included in BB(N) and it requires

BBB(N) and so on. These are captured by the infinite regress formula Ir(N) = Ir(N;N)

The above and their infinite regress Ir(N) in the logic IR
2 may be seen from Johansen’s

[10] interpretation of Nash equilibrium. This will be discussed in Section 6.

The infinite regress Ir(N;N) describes a necessary property for I() and I(). We may

find some candidates for such I()’s ( = 1 2) : for each  ∈ 

∗() := ∨∈Ir [bst(; );bst( ; )] (12)

The nonepistemic content of ∗() is given as 0(∗ ()) = ∨∈ hbst(; ) ∧bst( ; )i =
∨∈nash(; ) That is, 0(∗ ()) means “ is a Nash strategy”. Also, in the logic IR2(T)
assuming Axiom T we have ` ∗() ≡ ∨∈C∗(nash(; )) i.e., ∗()means “ is a common
knowledge Nash strategy”.

We have the following result, which will be proved in the end of this subsection.

Theorem 4.1. (Necessity) For  = 1 2

Ir(N) ` B(() ⊃ ∗ ()) for all  ∈  (13)

That is, player  infers ∗ () as a necessary condition for a decision. By the theorem

and Lemma 2.2, we have also Ir(N) ` B[B(I()) ⊃ B(
∗
 ())] for all  ∈  ; player 

infers B(
∗
() as a necessary conditions for a prediction. By Lemma 2.3.(1), we have, also,

Ir(N) ` Ir[I() ⊃ ∗ ();I() ⊃ ∗ ()] for all  ∈  That is, those necessary conditions

form an infinite regress, too. From now on, we talk about the statement of the form of (13).

With the remark on 0(
∗
 ()) Theorem 4.1 may be interpreted as meaning that a Nash

equilibrium is derived. However, our target is prediction/decision making by a player. A possible

decision resulting from this process is described by I() and 
∗
 () is only a necessary condition

for it. In addition, (13) is a purely solution-theoretic statement in the sense that it uses no specific
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structure of payoffs. Also, necessary condition (13) for I() does not give a positive answer to

I() even if payoffs, e.g., Ir(1 2) are specified; that is, (13), or its contrapositive, may give

only a negative decision ¬I() from ¬∗ ()
In Sections 4.2, 4.3, and Section 5.1, we discuss the converse of (13) under the assumption

of Ir(1 2) Then we can discuss whether player  can make a decision or not.

We show the following lemma. Theorem 4.1 follows (2) of the lemma, and (1) does not need

N1 We write N0 ∧N2 N0 ∧N1 ∧N2 as N02, N012 for  = 1 2
Lemma 4.1. For  = 1 2 and  = (; ) ∈ 

(1): Ir [N02;N02 ] ` I() ∧B(I()) ⊃ Ir [bst(; );bst(; )];
(2): Ir [N012;N012 ] ` I() ⊃ ∗()

Proof. (1): Let ( ) := Ir

 [N02N02 ]∧I() ∧B(I()) Here, we show, for  = 1 2

` ( ) ⊃ bst(; ) ∧B(bst( ; )) ∧BB(( )) (14)

Once this is shown, we have, by Lemma 2.4.(2), ` ( ) ⊃ Ir [bst(; )bst(; )] which
implies the assertion

The first part, ` ( ) ⊃ bst(; ) of (14) comes from N0 and I()∧B(I()) Con-

sider the second part. Since ` ( ) ⊃B(N02) and ` B(N02)∧B(I())∧BB(I()) ⊃
B(bst( ; )) we have ` ( )∧B(I())∧BB(I()) ⊃ B(bst( ; )) The B(I())

is included in ( ) and the BB(I()) is derived from I() in ( ) by N2 Hence,

` ( ) ⊃ B(bst( ; )). Now, consider the third part of (14). By Lemma 2.4.(1),

` Ir [N02;N02 ] ⊃ BB(Ir

 [N02;N02 ]) Using N2 we have ` Ir [N02;N012 ]∧I() ⊃

BB(I()) and, using B(N2) in Ir

 [N02;N02 ] we have ` Ir [N02;N02 ] ∧ B(I()) ⊃

BBB(I()) Hence, we have ` ( ) ⊃ BB(( ))

(2): It follows from (1) that Ir [N02;N02 ] ` I()∧B(I()) ⊃∨∈Ir [bst(; );bst( ; )]
This is equivalent to Ir [N02;N02 ] ` B(I()) ⊃ (I() ⊃ ∗ ()) Hence Ir


 [N02;N02 ] `

∨∈B(I()) ⊃ (I() ⊃ ∗ ()) Adding N1 to Ir

 [N02N02 ] we delete the first disjunctive

formula, i.e., Ir [N012;N012 ] ` I() ⊃ ∗ ()¥

4.2 Choice of the deductive weakest formulae for N and N

There are some concrete formulae () and () enjoying the properties described by N

and N  We, however, find some unintended candidates for those axioms. For example, the

contradictory formulae ⊥() := ¬(() ⊃ ())  ∈  are trivial candidates for them

where () := ∨∈Pr(  ;  ) Indeed, the class of formulae {⊥()}∈ makes N012
trivially hold with the substitution of ⊥() for each I() in N We need to choose a class of

formulae A = {()}∈ and A = {()}∈ having only the properties N and N 

Let A = (A;A) be a pair of candidate families indexed by  ∈  and  ∈  . Let N(A)
be the formula obtained from N by substituting (1(1) 2(2)) for (I1(1)I2(2)) for each

 = (1 2) ∈ . We denote the following formula by WF(A):

N(A) ∧B(N(A)) ∧ [∧∈{I() ∧B(I()) ⊃ () ∧B(())}] (15)

⊃ ∧∈{() ⊃ I()}
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Let WF(A) = (WF1(A)WF2(A)). We denote, by Ir(WF) the set {Ir(WF(A)) : A =

(A1A2) is a pair of candidate families of formulae}.
The formula WF(A) contains an additional premise ∧∈{I() ∧ B(I()) ⊃ () ∧

B(())} A sole use of WF(A) is not meaningful since I()∧B(I()) have no properties,

yet. We assume Ir(WF) together with Ir(N) Then, the premise avoids some double cross of

I() ∧B(I() and () ∧B(()) both of which satisfy N and N 

The additional premise is of the same nature as the term “maximal” used in the definition

of a subsolution in Section 3; we cannot use the term “largest” for a subsolution. If we drop the

additional premise, (15) becomes

+ (A) = N(A) ∧B(N(A)) ⊃ ∧∈{() ⊃ I()} (16)

This is stronger than (A) since it has a weaker premise. This strengthening + (A)
works only for an interchangeable game, but not for an uninterchangeable game, while (A)
in (15) works for any game.

We study implications from {Ir(N)} ∪ Ir(WF) under the infinite regress of formalized

payoffs Ir(g) = Ir(; ) The entire set of axioms is denoted by ∆ := {Ir(g) Ir(N)} ∪
Ir(WF) We have the following lemma, which will be proved in the proof of Lemma 5.1.

Lemma 4.2. (Consistency of the belief set) ∆ is consistent for any game .

In fact, ∆+ = {Ir(g) Ir(N)}∪Ir(WF+) is consistent if and only if  is an interchangeable

game, and ∆+ is equivalent to ∆ for any interchangeable 

4.3 Characterization and decidability for interchangeable games

Here, we show that our axioms characterize the possible final decisions for an interchangeable

game. A proof of this theorem is given in the end of this subsection.

Theorem 4.2. (Characterization I) Let  be an interchangeable game and g = (1 2) its

formalized payoffs. Then, for  = 1 2

∆ ` B(I() ≡ ∗ ()) for all  ∈  (17)

This is interpreted as meaning that player  infers from his beliefs ∆ that his possible

decision and prediction are fully expressed by ∗ () and ∗() for an interchangeable game
 As remarked above, in the logic IR2(T), ∗ () is equivalent to ∨∈C∗(Nash(; )) and
Theorem 4.2 becomes ∆ ` I() ≡ ∨∈C∗(Nash(; )). That is, a possible decision  is the

Nash strategy with common knowledge. This corresponds to the result given in Kaneko [12].

Then, player  can even decide whether a given strategy  is a final decision for him or not.

This is described by the following theorem.

Theorem 4.3. (Positive or negative decisions) Let  be an interchangeable game and

g = (1 2) its formalized payoffs. Then, for  = 1 2 and each  ∈ ,

either ∆ ` B(I()) or ∆ ` B(¬I()) (18)
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Proof. We show (18). Since bst(; ) is a nonepistemic game formula for , it follows from

Lemma 3.1.(2) that Ir (g) ` Ir [bst(; );bst( ; )] if and only if  ` bst(; ) and  `
bst( ; ) By Lemma 3.1.(1), Ir


 (g) ` Ir [bst(; );bst( ; )] or Ir (g) ` ¬Ir [bst(; );

bst( ; )]

If  is a Nash strategy for , then Ir

 (g) ` ∨Ir [bst(; );bst( ; )] i.e., Ir (g) `

∗ () and otherwise, Then, Ir

 (g) ` ¬ ∨ Ir [bst(; );bst( ; )] i.e., Ir (g) ` ¬∗ ()

Thus, we have Ir(g) ` B(
∗
 ()) or Ir(g) ` B(¬∗ ()) By (17), we have ∆ ` B(I()) or

∆ ` B(¬I())¥
By Theorem 4.3 and Lemma 2.3.(1), we have also, for each strategy  ∈  

either ∆ ` BB(I()) or ∆ ` BB(¬I()) (19)

Thus, player  can predict whether a given strategy for  is a decision for him for not.

Since 0
∗
 () = ∨∈nash(; ) the positive or negative decision in (18) corresponds to

whether  is a Nash strategy or not. For the negative case, we need to add only Ir(g) to Ir(N)

of Theorem 4.1 that is, if  is not a Nash strategy, then

Ir(g) Ir(N) ` B(¬I()) (20)

This result is independent of the interchangeability of the game  For the positive case, we

need the full set ∆ = {Ir(g) Ir(N)} ∪ Ir(WF) and the interchangeability of .

Since Table 1.1 is an interchangeable game, Theorem 4.3 is applied to it, and the belief set

∆1 recommends strategy s12 as a positive decision but s11 s13 as negative decisions By (19),

player 2 would choose s21 and denies the others. Table 1.2 has an uninterchangeable game;

Theorem 4.2 is not applicable. (20) is applied to Table 1.3, and recommends any strategy as a

negative decision.

Let us prove Theorem 4.2. First, we show the following lemma.

Lemma 4.3. Let  be a 2-person game.

(0): Let  be interchangeable. Then, Ir (; ) ` ∗ () ∧B(
∗
 ()) ⊃ bst(; )

(1): ` ∗ () ⊃ ∨∈B(
∗
())

(2): ` ∗ () ⊃ BB(
∗
 ())

Proof. (0): Since bst(; ) is a game formula for  = 1 2, we have, for each  ∈  Ir (; ) `
Ir (bst(; );bst( ; )) or Ir


 (; ) ` ¬Ir (bst(; ); bst( ; )) by Theorem 3.1. Hence,

for each  ∈  Ir

 (; ) ` ∗ () or Ir


 (; ) ` ¬∗ () Using Lemma 2.2, we have, for each

 ∈   Ir

 (; ) ` B(

∗
 ()) or Ir


 (; ) ` ¬B(

∗
()) Also, for each  ∈  Ir (; ) `

bst(; ) or Ir

 (; ) ` ¬bst(; ) Thus, Ir (; ) ` ∗ () ∧B(

∗
 ()) ⊃ bst(; ) or

Ir (; ) ` ¬[∗ ()∧B(
∗
()) ⊃ bst(; )] If the latter held, then, applying the epistemic

eraser 0 to this, we would have ∧ ` ¬[(∨∈nash( ))∧(∨∈nash(  )) ⊃ bst(; )]
which is impossible since  is an interchangeable game. Hence, we have the assertion.

(1): By Lemma 2.2, we have ` Ir [bst(; );bst( ; )] ⊃ B(Ir

 [bst( ; ); bst(; )])

Hence, ` Ir [bst(; ); bst( ; )] ⊃B(∨∈Ir [bst( ; ); bst(; )]) i.e., ` Ir [bst(; );
bst( ; )] ⊃ B(

∗
 ()) Hence, ` Ir [bst(; );bst( ; )] ⊃ ∨∈B(

∗
 ()) Then, `

∨∈Ir [bst(; )bst( ; )] ⊃ ∨∈B(
∗
 ()) i.e., ` ∗ () ⊃ ∨∈B(

∗
 ())
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(2): Since ` Ir [bst(; );bst( ; )] ⊃ B(Ir

 [bst( ; ); bst(; )]) and `B(Ir


 [bst( ; );

bst(; )]) ⊃ BB(Ir

 [bst(; ); bst( ; )]) we have ` Ir [bst(; );bst( ; )] ⊃

BB(Ir

 [bst(; );bst( ; )])We take disjunctions from the latter to the former with respect

to   and have ` ∨∈Ir [bst(; )bst( ; )] ⊃ ∨∈BB(Ir

 [bst(; )bst( ; )])

Then, the former is ∗ () and the latter implies BB(∨∈Ir [bst(; )bst( ; )]) i.e.,
BB(

∗
 ())¥

Proof of Theorem 4.2. It follows from Lemma 4.3 that Ir (; ) ` N(A∗) for  = 1 2 Hence,
Ir (; ) ` N(A∗) ∧B(N(A∗)) It follows from Theorem 4.1 that Ir (N;N) ` ∧∈ [I() ∧
B(I()) ⊃ ∗ () ∧ B(

∗
 ())] We have Ir


 (; ) Ir


 (N) Ir


 (WF) ` [∗ () ⊃ I()] ∧

[B(
∗
 ()) ⊃B(I())]Hence, Ir


 (; ) Ir


 (N) Ir


 (WF) ` Ir [∗ () ⊃ I();∗ () ⊃I())]

Using Theorem 4.1 and Lemma 2.3.(3), we have Ir(; ) Ir(N) Ir(WF) ` Ir[∗ () ≡
I();

∗
 () ≡ I())]¥

5 Undecidability for Uninterchangeable Games

The situation for an uninterchangeable game differs entirely from that for an interchangeable

game. For an interchangeable  we show the undecidability result that for some strategy  for

player  he cannot infer from his belief set ∆ = {Ir(; ) Ir(N)}∪ Ir(WF) whether  is a

final decision or not. We give three other results related to this theorem.

5.1 Undecidability theorem and related theorems

Theorem 5.1. (Undecidability of prediction/decision making) Let  be an uninter-

changeable game, g = (1 2) its formalized payoffs, and  = 1 2 Then, there is an  ∈  such

that

neither ∆ ` B(I()) nor ∆ ` B(¬I()) (21)

This will be proved in Section 5.2. First, we note that we have some  so that neither

∆ ` BB(I()) nor ∆ ` BB(¬I()) i.e., player  cannot predict whether  is a decision
or not for player  This is also obtained in the proof of Theorem 5.1. Now, we concentrate on

(21) for player .

The following theorem states that the decision I() cannot be expressed in terms of a

concrete formula if (21) holds for  which is proved in Section 5.2.

Theorem 5.2. (No-formula) Let  be an uninterchangeable game, g = (1 2) its formalized

payoffs, and  = 1 2. Let  ∈  be a strategy for which (21) holds. Then, there is no game

formula  such that

∆ ` B(I() ≡ ) (22)

Theorems 5.1 and 5.2 hold even for IR2 with the additional axioms T, 4 and 5. We will

prove Theorem 5.2 for IR2(T) which implies the result for IR2.

The undecidability result differs from the negative result for a game with no Nash equilibria:

For such a game, Theorem 4.3 states that player  can deny any strategy for his decision. In

this case, he may think about some other criterion such as the default criterion that the first
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strategy for him should be chosen. However, undecidability means that he can not reach such a

conclusion.

The negative decision given in (20) holds for a non-Nash strategy  for any game  Hence,

 for (21) is a Nash strategy. In fact, it is a sufficient (in fact, necessary, too) condition for (21)

that

 is a Nash strategy but  ∈  for some subsolution 1 × 2 (23)

which is shown in Lemma 5.1. The battle of the sexes (Table 1.2) has two subsolutions

{(s11 s21)} {(s12 s22)} Since (23) holds for each of s1 and s2 we have undecidability (21)
for both strategies of both players.

Table 5.1

s21 s22

s11
 1(1 1)

2
(0 1)

2

s12
 1(1 0) (0 0)

Even when  is uninterchangeable, there may be some case where player  has a positive

decision. Table 5.1 has two subsolutions  1 = {(s11 s21) (s12 s21)} and  2 = {(s11 s21)
(s11 s22)} Since (s11 s21) belongs to both subsolutions, (23) does not hold for s1

To consider what would happen when the subsolutions have a nonempty intersection, we

extend Theorem 4.2 to an uninterchangeable game . Let  be any game with its subsolutions

 1   We denote the intersection ∩=1  by ̂ We stipulate that  = 0 and ̂ = ∅ if  has

no Nash equilibria. If  is solvable, then  = 1 and  1 is the set of all Nash equilibria ()

We note that this intersection ̂ satisfies interchangeability; so it can be written as ̂1 × ̂2

Here, we modify the target formulae {∗ ()}∈   = 1 2as follows:

∗∗() := ∨∈̂Ir

 [bst(; );bst( ; )] (24)

This differs from ∗() with the domain of disjunction ̂ instead of   In this sense, it depends
upon the specification of the payoff functions.

We define the candidate formulae C = {∗ ()}∈   = 1 2 as follows:

∗ () =

⎧⎨⎩ ∗∗ () if  ∈ ̂
∗ () if  ∈ ()
I() otherwise.

(25)

Then, we have the following characterization theorem, which will be proved in Section 5.2.

Theorem 5.3. (Characterization II) Let  be any game with its subsolutions  1   

g = (1 2) its formalized payoffs, and  = 1 2. Then, ` B(I() ≡ ∗ ()) for all  ∈ 

The following theorem is a corollary.

Theorem 5.4. (Positive Decision) Let  be any game, g = (1 2) its formalized payoffs,

and  = 1 2. Then, for all  ∈  ∆ ` B(I()) if and only if  ∈ ̂

This has various implications: When  has no Nash equilibria, i.e., ̂ = ∅ ∆ gives no

positive decisions; When  is solvable, it gives a positive decision. When  has a multiple
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subsolutions, there are two cases; if ̂ = ∅ then it gives no positive decision; and if ̂ 6= ∅ it
gives a positive decision, i.e.,  ∈ ̂.

It may be informative to state the semantic counterpart of Theorem 5.1, but since this goes

to a sidetrack, we do not give a proof.

Theorem 5.5. (Semantic counterpart): Let  be a game with () 6= ∅ and g = (1 2)
its associated formalized payoffs. Let  = (h ;1 2i ) be any KD-model and  any world

in  Suppose that () |= Ir(g)∧ Ir(N) and () |= Ir(WF(A)) for all A. Then, there
exists a subsolution  = 1 × 2 in  such that

() |= Ir(I1(1) I2(1)) for any  ∈  (26)

() |= Ir(¬I1(1)¬I2(1)) for any  ∈ (1 − 1)× (2 − 2)  (27)

When  has no Nash equilibria, the theorem is modified as stating the the claimed  is

empty: Only (27) is applied.

Theorem 5.5 describes how a subsolution  occurs in one model. It states that in the world

 ∈ only  and  from the subsolution  are a decision and a prediction for player . From

the viewpoint of a single model, this resolves the difficulty caused by our undecidability result.

However, we take the viewpoint that player ’s inference is described in the formal system of IR2

The soundness/completeness theorem (Theorem 2.1) implies that for each model, a subsolution

may be a possible solution but the choice of a model remains.

5.2 Proof of the theorems

We stipulate that when () = ∅ then the subsolution  is empty and 1 = 2 = ∅. Lemma
4.2 follows this lemma and soundness for IR2

Lemma 5.1. Let  be any game. Then, for any subsolution  = 1 × 2 in  there is a

KD-model  = (h ;1 2i ) and a world  ∈ such that

() |= Ir(g) ∧ Ir(N) and () |= Ir(WF(A)) for all A; (28)

for any  ∈  () |= B(I())⇔ () |= I()⇔  ∈  (29)

Proof. We construct a model  = (h ;1 2i ) satisfying (28) and (29). Let  = 1 × 2
be a subsolution. Let h ;1 2i be the frame given by  = {} and  = {()} for
 = 1 2 i.e., it has a single world, and  is reflexive. Hence, this is a frame for Axiom T (and

4, 5), too. Define  by, for  = 1 2

for any ; 0 ∈  (PR(; 
0)) = >⇔ () ≥ (

0); (30)

( I()) = >⇔  ∈  (31)

That is, the preferences true relative to  are given by  ; and I() is true if and only if

 ∈  By (30), we have () |= 1 ∧ 2 Also, since  = {}, we have, for any formula 
and  = 1 2

() |=  ⇔ () |= B() (32)
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Now, because  is a subsolution and () |= 1 ∧ 2, it follows that () |= bst(; )
for all (; ) ∈  and for  = 1 2. Thus, () |= N0 Also, () |= N1 by (31), and

() |= N2 by  = {} Thus, () |= Ir(N) for both  = 1 2.

Let us show () |= Ir(WF(A)) for all A. Let A = {()}∈   = 1 2 be given.

Let  = { ∈  : () |= ()} for  = 1 2. First, notice, using (32), that if () |=
¬[N1(A) ∧ N2(A)], then () |= (A). Thus, we can assume that () |= N1(A) ∧
N2(A) Using N01(A)∧N02(A) we have, for any (1; 2) ∈  () |= 1(1) ∧ 2(2) ⊃
bst1(1; 2)∧bst2(2; 1) i.e., 1 ×2 ⊆ (). Consider two cases.

(i) Suppose that 1 × 2 ⊆  . Then, by (31), for  = 1 2, () |= ∧∈ [() ⊃ I()]
and hence () |=(A).
(ii) Suppose that 1 × 2 −  6= ∅. Because  is a subsolution, it is maximal having the

form of  = 1 × 2 Also by 1 × 2 ⊆ () we have  −  6= ∅. Let (∗1 ∗2) ∈  − .

Then, () |= [I1(∗1)∧I2(∗2)] ∧ ¬[1(∗1) ∧2(∗2)] and hence for  = 1 2, () |= ¬[I(∗ ) ∧
B(I(

∗
 )) ⊃ (

∗
 ) ∧B(

∗
 ())]. Thus, () |=(A) for  = 1 2.¥

Proof of Theorem 5.1: Let  be an uninterchangeable game, and let  0 be two subsolutions
with (; ) ∈  but (; ) ∈  0 By Lemma 5.1, there are two models  and  0 so that (28)
and (29), respectively, for  and  0 Hence, () |= B(I()) but (

0 0) 2 B(I()) By

soundness for IR2 we have ∆ 0 ¬B(I()) and ∆ 0 B(I())¥

Since the model given in Lemma 5.1 has a single world, it is a model for Axioms T, 4 and 5.

Hence, Theorem 5.1 holds for IR2 with those axioms. In the following proof, we use Theorem

5.1 holds for IR2(T)

Proof of Theorem 5.2. Suppose that there is a game formula  such that (22) holds in the

logic IR2; a fortiori, (22) holds for IR2(T)Theorem 3.2 claims that in IR2(T) Ir(g) ` B() or

Ir(g) ` B(¬) This and the supposition imply ∆ ` B(I()) or ∆ ` B(¬I()) in IR2(T)
This is impossible since Theorem 5.1 holds for IR2(T).¥

Proof of Theorem 5.3: When  ∈ ̂ we have Ir

 (g) ` ∗∗ () which implies Ir


 (g) `

I() ⊃ ∗∗ () In the other cases, by Lemma 4.1.(2), Ir

 (N) ` I() ⊃ ∗ () Thus,

Ir (g) Ir

 (N) ` I() ⊃ ∗ () for all  ∈  (33)

Now, consider the converse of (33).

We modify Lemma 4.3 as follows: for any (; ) ∈ 

(0∗): Ir (g) Ir

 (N) ` ∗ () ∧B(

∗
 ()) ⊃ bst(; )

(1∗): Ir (g) Ir

 (N) ` ∗ () ⊃ ∨∈B(

∗
 ())

(2∗): Ir (N) ` ∗ () ⊃ BB(
∗
 ())

(0∗): If ∗ () = ∗ () or 
∗
 () = ∗ () then Ir


 (g) ` ¬∗ () or Ir (g) ` B(¬∗ ());

so, the assertion holds. Let ∗ () = ∗∗ () and ∗ () = ∗∗ () So, we have Ir

 (g) `

bst(; ); so, we have the assertion. Let 
∗
 () = ∗∗ () and ∗ () = I() Then, for any

 = 1   (; ) ∈   for some   and also, for some 0 ( ; ) ∈  0 for some   Hence,

we have (; ) ∈  0  i.e., (; ) is a Nash equilibrium. Hence, Ir

 (g) ` bst(; ) The case

where ∗ () = I() and ∗ () = ∗∗ () is similar

(1∗): First, let ∗ () = I() By N1 ` ∗ () ⊃ ∨∈B(I()) Then, since Ir

 (g) Ir


 (N) `
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Ir(g)∧Ir(N) by (6), we use (33) for  and get Ir (g) Ir (N) ` ∨∈B(I()) ⊃ ∨∈B(
∗
 ())

Thus, Ir (g) Ir

 (N) ` ∗ () ⊃ ∨∈B(

∗
 ()) Second, let 

∗
 () = ∗ () Then, Ir


 (g) `

¬∗ () and hence, Ir (g) ` ∗ () ⊃ ∨∈B(
∗
 ()) Third, let 

∗
 () = ∗∗ (). Let

 ∈ ̂  Then, since ` Ir (bst(; );bst( ; )) ⊃ Ir(bst( ; );bst(; )) by (6) we have
` ∗ () ⊃ ∨∈̂B(

∗
 ()) Then, ` ∗ () ⊃ [∨

∈̂B(
∗
 ())] ∨ [∨∈−̂B(

∗
 ())]

equivalently, ` ∗ () ⊃ ∨∈B(
∗
 ())

(2∗): If ∗ () = ∗ () we have ` ∗ () ⊃ BB(
∗
 ()) by Lemma 4.3.(2). The case for

∗ () = ∗∗ () is similar. If 
∗
 () = I() then ` ∗ () ⊃ BB(

∗
 ()) by N2¥

The above three statements imply Ir (g) Ir

 (N) ` N(C∗) ∧B(N(C∗)) and also, by (33),

we have Ir (g) Ir

 (N) ` ∧∈hI()∧ B(I()) ⊃ ∗ () ∧ B(

∗
 ())i Then, we using

Ir (WF(C∗)) we have Ir (g) Ir (N) Ir (WF(C∗)) ` ∗() ⊃ I()¥
Proof of Theorem 5.4: (Only-if): Suppose (; ) ∈ ̂ for any  ∈   Let  be not a

Nash strategy. Then, ∆ ` B(¬I()) by (20); so ∆ ` ¬B(I()) by Axiom D. Since ∆ is

consistent by Lemma 4.2, we have ∆ 0 B(I()) Let  be a Nash strategy. Then,  ∈  
 for

some subsolution  
1 ×  

2 Thus, ∆ 0 B(I()) by (23)

(If): If (; ) ∈ ̂ for some   then Ir

 (g) ` ∗∗() Hence, ∆

 ` I() by Theorem 5.3 which
implies ∆ ` B(I())¥

6 Conclusions

We have considered prediction/decision making by player  in a finite 2-person game  His

decision criterion constitutes of the three axioms, N = N0∧N1∧N2 which are described in
the mind of player  and we require the same for the other player  Therefore, player  is led to

an infinite regress consisting of N and N  This infinite regress is captured by Ir(N;N) in the

fixed-point extension IR2 of the epistemic logic KD2 We adopted this Ir(N) = Ir(N;N) and

the additional infinite regresses, Ir(WF) and Ir(g) For an interchangeable game  the belief

set ∆ = {Ir(g) Ir(N)}∪ Ir(WF) determine I() to the some specific formula 
∗() while

the situation for an uninterchangeable  is entirely different. Here, we discuss various relevant

points for our results on decidability and undecidability.

Positive, negative decisions, and undecidable: Suppose that  has the interchangeable

set of Nash equilibria. Our decidability result states that player  finds his Nash strategy to be

a possible decision, and disproves any non-Nash strategy as a negative decision. Player  may

find multiple possible decisions, but can use any for his play. Our theory is silent for this choice.

Suppose that  has no Nash equilibria. The decidability result states that player  denies any

strategies as negative decisions. Then, the negative decisions may lead player  to a different

decision criterion such as a default criterion, e.g., the first strategy should be chosen, to the

necessity of communication.

On the other hand, when  has multiple subsolutions, we presented the undecidability result

that player  cannot find any positive decision, unless the entire subsolutions has a nonempty

intersection. In this case, he can reach neither a positive nor a negative decision. Then, he

cannot go to a new criterion, since he himself does not notice undecidability.

A way out? We may regard communication between the two players as a way out. Technically,
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if they can communicate with each other, a specifying a subsolution to be chosen would resolve

undecidability. Again, difficulty is that player  does not notice this necessity.

Two independent minds and a discord in Ir(g): Gödel’s theorem is caused by the self-

referential structure of Peano Arithmetic. That is, the entire theory of Peano Arithmetic can

be described inside the theory; the contradiction-freeness of Peano Arithmetic is one important

example. Our framework includes also a self-referential structure; the infinite regress operator

Ir(·; ·) describes Ir(·; ·) and vice versa in the logic IR2 This gives an environment for our
undecidability, but does not directly generate it. For example, the prediction/decision criterion

{Ir(N)} ∪ Ir(WF) treats the two minds of the players equally in that each is embedded into

the other. In fact, a discord between the two players is included only in the infinite regress of

the game Ir(g) This discord is the real source for our undecidability.

The self-referential involved in our framework serves an environment for undecidability, since

it gives simultaneous decisions and predictions for the two players. In the end of this section,

we discuss other environments where non-simultaneous decisions are made and where we have

only decidability results.

Johansen’s [10] argument: He gave the following four postulates for prediction/decision mak-

ing and asserted that the Nash noncooperative solution could be derived from them for solvable

games. He assumed (p.435) that the game has the unique Nash equilibrium.

Postulate J1 (Closed world): A player makes his decision  ∈  on the basis of, and only

on the basis of information concerning the action possibility sets of two players 1 2 and their

payoff functions 1 2

Postulate J2 (Symmetry in rationality): In choosing his own decision, a player assumes

that the other is rational in the same way as he himself is rational.

Postulate J3 (Predictability): If any7 decision is a rational decision to make for an individ-

ual player, then this decision can be correctly predicted by the other player.

Postulate J4 (Optimization against “for all” predictions): Being able to predict the

actions to be taken by the other player, a player’s own decision maximizes his payoff function

corresponding to the predicted actions of the other player.

Those are connected to our requirements N0∧N1∧N2 and N0∧N1∧N2  J1 requires player
’s prediction/decision criterion to be described by game formulae. J3 corresponds to N2 and

N2 , and J4 to N0 and N0  Here, J2 should be interpreted as symmetry between N0∧N1∧N2
and N0∧N1∧N2 together with the symmetric treatment of two minds in IR2 Complete sym-
metry is obtained in terms of infinite regresses {Ir(N)}∪ Ir(WF) while keeping the identities

of two minds. Once Ir(g) is introduced, it may contain some discord, which may generate

undecidability. Johansen himself did not discuss this part at all.

Other undecidability in game theory: The undecidability result given in Kaneko-Nagashima

[11] takes the same form as our undecidability8. They gave a 3-person game having a unique

Nash equilibrium in mixed strategies. It is assumed that the game structure and real number

theory Φ (real closed field theory) are common knowledge among the players. They proved the

provability of C(∃Nash()) from their common knowledge of  and Φ  However, from the

same common knowledge assumption, neither ∃C(Nash()) nor ¬∃C(Nash()) is provable.
That is, the players commonly know the abstract existence of a Nash equilibrium, but do not

7This “any” was “some” in Johansen’s orginal Posutlate 3. According to logic, this should be “any”. However,

this is expressed as “some” by many scientists (even mathematicians).
8There are some literature on uncomputability on optimal strategies in a simple extensive game
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find a concrete one; hence they cannot play the specific Nash equilibrium strategy.

This is related to neither a self-referential structure nor the interdependence of the situation.

It is caused by the lack of the names of irrational numbers such as
√
51 in their language, which

is involved in the Nash equilibrium in the 3-person game with rational payoffs9. The main reason

for this difficulty is to give a name to a concept, but not the self-referential structure.

Other solution concepts in game theory: Theorem 4.1 appears related to Aumann-

Brandenburger [2] in that “Nash equilibrium” is derived there in a game model. It would

be difficult make a direct comparison with their model in that it is a game model of decision

making following the Bayesian-game theory tradition, but not a model in the sense of logic. As

remarked, our target is a possible decision but Nash equilibrium is a realization of it. Anyhow,

since it is a single model, it is incapable of talking about undecidability like ours. Also, it is

worth mentioning that a solution function there describing a decision is single-valued, while

we consider a possible decision, to be interpreted as a set-(possibly empty)-valued function.

Therefore, the Nash solution theory was not questioned in [2].

The game theory literature has various “solution concepts” other than the Nash solution

theory. As far as we have checked, confining to finite games with pure strategies, there are no

solution concepts for undecidability other than the Nash solution theory.

For example, the theory of “rationalizable strategies” (cf., Osborne-Rubinstein [18]) can be

formulated by a similar axiomatization to Na1−Na2 except that “for all predictions” is replaced
by “some prediction”. Then, a variant of N01 and N02 can axiomatize “rationalizable strategies”.

The full axiomatization including beliefs can be done in the infinitary logic in Hu, at al. [9]10.

Here, when an appropriate belief set of payoffs is given, we have the decidability.

Dominant strategy criterion: Let us see the dominant strategy criterion. In addition to N0
as the basic axiom, and we assume the following axiom for predictions, instead of N1 and N2:

Dm (Giving up prediction): ∧∈ [B(I())].

It states that player  gives up predicting ’s decision by accepting any strategy for  as a possible

decision. Player ’s thinking is already closed in N0 and Dm i.e., B(N0∧Dm).

We consider the formula dm() := ∧∈bst(; ) expressing “ is a dominant strategy”.
Then, B(N0∧Dm) ` B(I()) ⊃ B(dm()) for all  ∈  The converse can be formulated

in the similar manner as WF(A) in Section 4.2: Let WF
 = {Dm(A) ⊃ ∧∈[() ⊃

I()] : A = {()}∈} Then, we have the following theorem:
B(N0 ∧Dm)B(WF

 ) ` B(I() ≡ dm()) (34)

This has two important points: First, the epistemic depth for this result is 1; no interdepen-

dency between the two players are involved. Second, Theorem 3.1 (decidability) implies also

decidability.

The result (34) is extended in various manners: We may specify some strategies only for

predictions. Or, player  assumes that player  follows Dm ; then interpersonal interdependence

9Classical game theory for the 2-person case can be done only in rational numbers. For the 3-person case, any

algebraic real numbers in [0 1] are involved as some mixed strategy equilibria Nevertheless, if they are assumed

to be expressed by constants, which is possible, we can avoid the undecidability in [11].
10A fixed-point logic approach is also possible, but it needs a specific formulation, and is more cumbersome

than IR2 of this paper. The infinitary logic approach gives a unified way for the Nash theory and rationalizability

theory.
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of degree 2 is required. Still, we can formulate those criteria without conceptual difficulties.

For those case, we have decidability as far as the beliefs of payoffs are given in an appropriate

manner. More generally, if we start with the same argument in a finite but repeated way, we

have only decidability. We, however, emphasize that those extensions do not give a completely

symmetric environment In this sense, the self-referential structure for the two players is crucial

for our undecidability result.
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