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Abstract

Random matching models with a continuum population are widely used in
economics to model decentralized environments. A number of economic
models—e.g., in evolutionary game theory and monetary theory—explicitly
or implicitly assume pairwise random matching with convenient propor-
tionality and independence properties. This paper provides foundations to
random matching models of continuum populations with infinitely many
types, which are currently used in the literature without an explicit justifi-
cation. The approach of this paper uses tools of standard measure theory,
as opposed to that in Duffie and Sun (Ann Appl Probab 17:386–419, 2007)
which is based on nonstandard analysis.
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1 Introduction

Decentralized environments are relevant to a variety of fields, e.g., game theory,
monetary economics, labor economics and experimental economics. Typically,
random matching plays an important role in modeling decentralized environ-
ments and in generating a variety of frictions. For instance, in game theory, the
matching technology has important implications for the sustainability of co-
operation in dynamic games (see Kandori (1992)). Some monetary models are
built on markets with frictions, where communication is limited and trade frag-
mented by assuming that agents interact in small coalitions (e.g., Kiyotaki and
Wright (1989)). In experimental economics, the type of matching protocol has
important behavioral implications (e.g., Andreoni and Croson (2008), Botelho
et al. (2009)).

The typical approach in models with continuum of agents is to assume (im-
plicitly or explicitly) that the matching technology satisfies a list of desired
properties (e.g., proportionality properties, independence properties, anonymity
properties, constant returns to scale, etc.). These properties are desirable as they
are consistent with a limit approach. Specifically, under certain conditions (see
Molzon and Puzzello (2010)), they arise naturally as limits of uniform random
matching for finite populations. That is, these properties are consistent with the
notion that continuum populations are a convenient idealization of finite large
populations.

Proportionality and independence properties of random matching have also
been employed in genetics to study the steady state frequencies of allelic types
(See Hardy (1908)). The following example dates back to Hardy, and was intro-
duced into economics by Boylan (1992). Consider a continuum population of
randomly matched gametes consisting of a fraction p of alleles A and fraction
q � 1�p of alleles B. Then, the Hardy-Weinberg approach (by implicitly invoking
the law of large numbers) predicts that the new population will consist of a p2

fraction whose parents are both of type A, a q2 fraction whose parents are both
of type B, and a 2pq fraction whose parents are mixed.

Even though the Hardy-Weinberg law has intuitive appeal, it has been quite
challenging to provide its mathematical foundations also due to measurabil-
ity issues associated with a continuum of i.i.d. random variables (for details,
see Doob (1953) and Judd (1985)). Thus, a number of studies have constructed
random matching technologies satisfying a list of desired properties by ex-
plicit constructions that do not invoke the law of large numbers (see Aliprantis
et al. (2006), Alós-Ferrer (1999), Alós-Ferrer (2002), Boylan (1992), Boylan (1995),
Gilboa and Matsui (1992)). For instance, Alós-Ferrer (1999) constructed an ex-
plicit random matching process satisfying proportionality properties for contin-
uum populations. However, the process he proposed does not satisfy indepen-
dence in types.1 Only recently, Duffie and Sun (2007) have provided existence

1Molzon and Puzzello (2010) provide an existence result of random matching with propor-
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results for random matching satisfying proportionality as well as independence
properties. Their approach relies on tools from nonstandard analysis.

All the existence results available in the literature, including Duffie and Sun
(2007), apply to models with finitely many types. As pointed out in Molzon and
Puzzello (2010), this might be an issue. Indeed, for a wide class of economic
models, it is not possible to capture all the relevant attributes of agents with a
finite number of types. This is the case, e.g., for the models described in Green
and Zhou (2002), Molico (2006), Lagos and Wright (2005), Shi (1997), Zhu (2005),
where there are no upper bounds on money holdings or money holdings are
perfectly divisible, or those described in Sandholm (2001), Oechssler and Riedel
(2002), Hofbauer et al. (2008), where continuous strategy sets matter. Such mod-
els are currently missing explicit foundations for the random matching process.

Our paper provides several contributions to the literature on matching. In
particular, it provides general existence and uniqueness results with the tools
of standard measure theory. Specifically, it shows existence of random match-
ing with proportionality and independence properties, thus providing explicit
microfoundations to a wide class of economic models including ones with in-
finitely many types (e.g., Green and Zhou (2002), Molico (2006), Lagos and Wright
(2005), Shi (1997), Zhu (2005), Sandholm (2001), Oechssler and Riedel (2002),
Hofbauer et al. (2008)).

It has always been implicit in the literature that, in case of existence of ran-
dom matching in some model, uniqueness will not hold in general; see in par-
ticular Molzon and Puzzello (2010) where it is clarified that uniqueness does
not hold if the random matching satisfies only proportionality properties. How-
ever, in this paper we show that if a random matching satisfies both propor-
tionality and independence properties, then, in terms of distributions on the
set of matchings, uniqueness is guaranteed. We also discuss the relationships
between different properties of a random matching and their relevance for eco-
nomic models.

The paper is organized as follows. Section 2 provides some basic definitions
and formalizes proportionality, independence and anonymity properties of ran-
dom matching. The main result of our paper is on existence of independent
random matching and can be found in Section 3. In Section 4 we discuss rela-
tionships between different properties of a random matching. Section 5 provides
a uniqueness result. Note that our existence result is quite general and applies
also to models with infinitely many types. Such models arise naturally in eco-
nomics, as illustrated in Section 6 where some examples from the literature are
discussed.

tionality properties for finite populations. Clearly, in this setting, independence in types cannot
be satisfied.
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2 Definitions and properties of random matching

There are at least two ways that one can think of random matching. One ap-
proach works explicitly with the set of agents and with bilateral matches as
mappings on this set. This is the approach usually followed in the literature on
foundations of matching, e.g., Alós-Ferrer (1999), Duffie and Sun (2007), Molzon
and Puzzello (2010), as well as in applications, e.g., Lagos and Wright (2005).
The second approach avoids working directly with the population of agents and
just takes measures on the set of characteristics/types of agents as the primi-
tives. This is the approach followed by McLennan and Sonnenschein (1991).2 We
follow the first approach.

We first introduce some basic definitions that allow us to formalize random
matching properties that are implicitly used in a variety of matching models.

Definition 1. Let X be a set. An involution on X is a bijection f : X ! X which
is self-inverse (i.e., such that the inverse f�1 satisfies f�1 � f ); equivalently, an
involution on X is a mapping f : X ! X such that f � f is the identity on X.
A mapping f : X ! X is said to be fixed point free if f�x� � x for all x 2 X.

Involutions provide a natural formalization for the notion of bilateral match-
ing (e.g., Alós-Ferrer (1999), Aliprantis et al. (2006)). In this study, we focus on
bilateral matching technologies where no agent remains unmatched.

Definition 2. Let A be a set of agents. A bilateral matching (or, for short, a
matching) on A is a fixed point free involution on A.

We are now ready to give the definition of random bilateral matching.

Definition 3. Let �A;A; �� be a probability space of agents and let �
;�; �� be a
sample probability space. A random bilateral matching (or a random matching)
is a mapping f : A�
 ! A such that

(a) f��; y� is a matching on A for each y 2 
,

(b) the mappings f��; y� : A ! A and f�x; �� : 
 ! A are measurable for each
y 2 
 and x 2 A.

Notation. In the context of Definition 3, we also write fx for the function f�x; ��,
and fy for f��; y�.

Note that this definition involves two probability spaces: one associated with
the population and the other associated with the set of bilateral matchings. This
definition is general as it imposes only minimal measurability conditions neces-
sary to formulate our definitions and results. Specifically, it leaves the door open

2See also Karavaev (2009), who proposes a model that avoids working directly with the pop-
ulation of agents and takes the distribution of idiosyncratic shocks as a primitive.
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to a variety of properties including proportionality and independence properties
that are consistent with the idea of “uniform” random matching.

Many economic models assume that agents of different types are randomly
matched in pairs. For instance, in monetary theory buyers and sellers endowed
with different amounts of money are randomly matched in pairs (e.g., Kiyotaki
and Wright (1989)). Similarly, in evolutionary game theory, agents playing cer-
tain strategies are randomly matched to play a normal form game (e.g., Kandori
et al. (1993)).

Next, we provide the definition of type assignment and its measurability
properties.

Definition 4. A type space is a measurable space �T ;T �. Given a probability
space �A;A; �� of agents, a type assignment is a measurable mapping � from
�A;A; �� to a type space �T ;T �, and the corresponding type distribution is the
distribution of �, i.e. the probability measure on T given by ��B� � ����1�B��
for each B 2 T .

Proportionality and independence properties of random matching play an
important role in existing matching models. For instance, in dynamic models,
these properties are used to write down expected payoffs and law of motions
in each period. These properties arise naturally as limits of bilateral uniform
random matching for finite sets of agents (see Molzon and Puzzello (2010)). In
other words, proportionality and independence properties are consistent with
the notion that continuum populations are a convenient idealization of finite
large populations. We formalize these properties next.

Let �A;A; �� be a probability space of agents, �
;�; �� a sample probability
space, f : A �
 ! A a random matching, �T ;T � a type space, � : A ! T a type
assignment, and � the corresponding type distribution.

(P1) “Measure preservation:”3 For all y 2 
, fy is inverse-measure-preserving,
i.e., ��f�1

y �E�� � ��E� for any E 2A.

(P2) “General proportional law:” For all x 2 A, fx is inverse-measure-preserving,
i.e., ��f�1

x �E�� � ��E� for any E 2A.

(P3) “Strong mixing:” For any E1, E2 2 A, ��E1 \ f�1
y �E2�� � ��E1���E2� for

almost all y 2 
.

(P4) “General independence:” The family hfxix2A is stochastically independent;
that is, the family h�xix2A is stochastically independent, writing �x for the
sub-� -algebra of � generated by fx .

(P5) “Atomless:” For any two x, x0 2 A, the set fy 2 
 : fx�y� � x0g is a �-null
set.

3In the naming of (P1)-(P3) and (P5)-(P7) we follow Alós-Ferrer (1999).

5



(P6) “Types proportional law:” For all x 2 A, the mapping � � fx from 
 to T
has distribution � , i.e., �

�
�� � fx��1�B�

�
� ��B� for any B 2 T .

(P7) “Types mixing:” For any B1, B22T , �
�
��1�B1�\���fy��1�B2�

�
� ��B1���B2�

for almost all y 2 
.

(P8) “Independence in types:” The family h� � fxix2A of mapping from 
 to T
is stochastically independent; that is, the family h��xix2A is stochastically
independent, writing ��x for the sub-� -algebra of � generated by � � fx .

Property (P1) requires that, for all matchings, a given measurable set of
agents must have the same measure as the set of their partners. Property (P2)
establishes that the probability that a given agent is paired to an agent in a mea-
surable set E is equal to the measure of the set of agents in E. This property
plays an important role for expected payoff equations. Property (P3) states that
the measure of the agents in a given measurable set which are matched with
agents in another measurable set is equal to the product of the measures of the
two sets for almost all matchings. This property holds if the stochastic dynamic
system generated by uniform random matching can be approximated by a de-
terministic system (e.g., Alós-Ferrer (1999) or Boylan (1992)). In Section 3, we
will show that this property may also be viewed as displaying some “large num-
bers” effect. The intuition behind property (P4) is that, for finitely many distinct
agents in a continuum population, the events that these agents have partners in
any given measurable sets should be independent.4 Of course, (P4) cannot hold
for random matchings in a finite population. However, by calculations it may
be seen that in a sequence of finite populations where the size goes to infinity
and the random matching in each of these populations is uniform, for any fixed
integer k � 2 the deviation from independence that appears for any sets of k
agents vanishes asymptotically.5 Thus, in a model with a continuum population,
viewed as idealization of a large finite population, it may be seen as natural to
require a random matching to satisfy (P4). Property (P5) states that the proba-
bility that any two given agents are matched is zero. This property may also be
seen as natural in a model with a continuum population. Moreover, this property

4The fact that matching agent xi with agent xj implies xj is matched with xi does not mean
a contradiction to (P4) if the space of agents is atomless and the random matching satisfies
(P2), because any two null sets in the sample space are trivially stochastically independent.

5Indeed, to capture also finite populations with an odd number of agents, modify Definition 1
to require that at most one agent remains unmatched. Then for each integer n > 0, let An be a
finite population with n agents, and In the set of all matchings on An. Let Pn be the normalized
counting measure on In. Suppose that the random matching is uniform for each n, i.e., that all
elements of In are equally likely. Then, for each n, randomness of matching is captured by Pn.
Fix an integer k > 0. For each n > k, let An1 ; : : : ; A

n
k be any subsets of An, let xn1 ; : : : ; x

n
k be

any distinct agents in An, and for each i � 1; : : : ; k, let Fni be the set of those elements of In

which match agent xni with an agent in Ani . A straightforward but a bit messy calculation shows

that
���Pn�Tki�1 F

n
i
�
�
Qk
i�1 Pn

�
Fni
���� ! 0 as n ! 1, i.e., the deviation from independence that

appears for any sets of k agents vanishes asymptotically.
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is important in models with a continuum of agents as it captures the notion of
“anonymity” (see Aliprantis et al. (2006) for the notion of “anonymity”). Proper-
ties (P6), (P7) and (P8) are analogs of (P2), (P3) and (P4) respectively, formulated
in terms of type assignments. In fact, the following holds as may readily be seen.

Remark 1. For any type assignment, (P2) implies (P6), (P3) implies (P7), and (P4)
implies (P8). If �A;A; �� is atomless, then (P2) also implies (P5).

See Section 4 for further relationships between the properties listed above.

3 The main existence result

In this section we state and prove our main result on existence of independent
random matching.

Theorem 1. There exists an atomless probability space �A;A; �� of agents, with
#�A� � c (so that A may be identified with �0;1�),6 a sample probability space
�
;�; ��, and a random matching f : A�
 ! A such that the following hold.

(a) (P1) to (P5) are satisfied for f .

(b) Given any type space �T ;T � and type assignment � : A ! T , (P6) to (P8) are
satisfied for f .

(c) Let � be the product measure on A � 
 defined from � and � . There is a
Fubini extension �̄ of � such that f is ��̄;A�-measurable, writing �̄ for the
domain of �̄; in particular, given any type space �T ;T � and type assignment
� : A! T , the type process � � f is ��̄;T �-measurable.7

Remark 2. Note that Theorem 1 gives a random matching that does not depend
on the type assignment or type distribution. In particular, the random matching
is independent in types against any type assignment.

Theorem 1 contributes to the literature in several ways. It provides a general
existence result which differs from that in Alós-Ferrer (1999) as general inde-
pendence is satisfied, and in particular, independence in types. As pointed out
in the previous section, in a model with a continuum population used as ideal-
ization of large finite populations, it may be seen as natural to require that a
random matching satisfies these independence properties.

In this regard, Theorem 1 also differs from the existence result in Duffie and
Sun (2007, Theorem 2.4) which, concerning independence properties, makes a
statement only about pairwise independence in types, i.e. property (P8) weak-
ened to pairwise independence. However, given that one wants to have a ran-
dom matching to satisfy independence properties, it seems more natural to us

6#�X� denotes the cardinal of a set X; c denotes the cardinal of the continuum.
7See Remark 5 below for the notion of a Fubini extension.
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to require these properties to hold already on the general level of the random
matching, as in property (P4), and to require these properties to hold in the form
of full stochastic independence, and not only in the form of pairwise indepen-
dence.

Furthermore, unlike Duffie and Sun (2007), our result is not based on non-
standard analysis. In particular, it does not depend on Loeb space constructions.

Finally, our result applies also to the case of infinitely many types, currently
missing explicit foundations in the literature. Indeed, recall that given any atom-
less probability space �A;A; �� and any Borel probability measure 
 on a Polish
space Z , there is a mapping � : A ! Z which is inverse-measure-preserving for
� and 
; in other words, every such 
 is the distribution of some measurable
mapping from A to Z . Consequently, Theorem 1 allows for any Borel probability
measure on a Polish space to be taken as type distribution.

Remark 3. In Theorem 1, for the probability space �A;A; �� of agents we can
have A � �0;1�; however, unlike Alós-Ferrer (1999), � cannot be Lebesgue mea-
sure on �0;1�. In fact, as noted in Alós-Ferrer (1999), if �0;1� with Lebesgue
measure is taken as space of agents, there can be no random matching such
that properties (P3) and (P1) hold together. However, in our opinion, having or
not having �0;1� with Lebesgue measure as the space of agents is of no eco-
nomic significance. As pointed out by Hildenbrand (1974, p. 113), if, in order
to establish that any single agent has strictly no influence on aggregate levels,
a large set of negligible agents is modelled as an atomless probability space,
the � -algebra should be considered as “only been introduced for technical rea-
sons” and, conceptually, “be considered . . . as the set of all subsets” of the set of
agents.8 Under this view, any atomless probability measure on �0;1� is as good
as any other in modelling a large set of negligible agents, and a particular choice,
e.g. according to our Theorem 1, of a � -algebra, or probability measure, on the
set of agents should not be discussed in terms of economic meaning, but should
be seen as a technical device having to do some job. In this regard, note, for in-
stance, that Theorem 1 gives a random matching with the property that types
mixing holds for any type assignment, a property that cannot hold for any ran-
dom matching when �0;1� with Lebesgue measure is the space of agents, by the
next remark since this property implies (P3) as noted in Theorem 3 below. Sim-
ilarly, by Theorem 4 below, if one wants to have a random matching satisfying
independence and proportionality properties, as well as some joint measurabil-
ity property with respect to agents and sample point, then �0;1� with Lebesgue
measure is also not the appropriate choice of the probability space of agents.

Remark 4. Actually, if �0;1� with Lebesgue measure is taken as space of agents,
then already (P3) alone cannot hold for any random matching. To see this, let

8In particular, it should not be considered an essential point whether or not the � -algebra is
countably generated. Further, the � -algebra need not be derived from any topological structure
on the set of agents, and therefore, in case of �0;1� as set of agents, it should also not be
considered an essential point whether or not the � -algebra contains the sub-intervals of �0;1�.
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B be the Borel � -algebra of �0;1�, let � be Lebesgue measure on �0;1�, and let
C � B be a countable algebra generating B. Suppose there would be a random
matching f : �0;1� � 
 ! �0;1� such that (P3) holds with respect to �. Pick
any E2 2 B with ��E2� � 1=2. Then (P3) implies that there is a ȳ 2 
 such
that ��E1 \ f�1

ȳ �E2�� � ��E1���E2� for all E1 2 C. Note that for each y 2 
,�
E1 2 B : ��E1 \ f�1

y �E2�� � ��E1���E2�
	

is a monotone class. It follows that
the function fȳ : �0;1� ! �0;1� would satisfy ��E1 \ f�1

ȳ �E2�� � ��E1���E2� for
all E1 2 B. But such a function cannot exist. To see this, set E1 � f�1

ȳ �E2� if
��f�1

ȳ �E2�� > 0 and E1 � �0;1� otherwise.

Remark 5. Concerning part (c) of Theorem 1, recall first that a Fubini exten-
sion �̄ of the product measure � defined from � and � is a probability measure
on A�
 which extends � but so that the conclusion of Fubini’s theorem about
repeated integrals with respect to the factor measure � and � continues to hold
for �̄-integrable real-valued functions. (A formal definition of the notion of a
Fubini extension is given prior to the statement of Theorem 2 below.) Now the
relevance of part (c) of Theorem 1 comes from the following. In many appli-
cations, there is a need for the random matching f , and in particular for the
type process � � f , to satisfy some joint measurability property with respect
to agents and points in the sample space, e.g., to be in a position allowing to
apply Fubini-type arguments to a function R : A � 
 ! R obtained by setting
R�x;y� � r���x�; ��f�x;y��� for x 2 A and y 2 
, where r : T � T ! R is a
bounded T 
T -measurable function assigning some “payoff” to any two agents
when they are matched and are of types t, t0 2 T . But to be in such a position,
it is sufficient that (c) of Theorem 1 holds for the random matching f . (Cf. the
argument in the proof of Theorem 4 below.) Now it is important to note that if
the random matching f satisfies properties (P2) and (P4), then measurability of
f with respect to the domain of a Fubini extension �̄ of � implies that �̄ must
be a proper extension of �.9 Thus, in particular, if f satisfies (P2) and (P4), then
f cannot be measurable already for the domain of the product measure � itself.
Thus the problem of establishing (c) of Theorem 1 is non-trivial.10

Proof of Theorem 1. Let !1 be the least uncountable cardinal. For each � < !1,
choose a subset K� � !1 with #�K�� � #��� such that � > � for each � 2 K� ,
and then choose a bijection �� : � ! K� . Define h� : !1 !!1 by setting

h���� �

8>>><>>>:
���� for � < �

��1��� for � 2 K�
� for � 62 � [K� .

Then for each � < !1, h� is an involution on !1.

9See, e.g., Podczeck (2010, Remark 3), and note for this reference that, since �A;A; �� is
atomless, (P4) implies that the family hfxix2A satisfies the property of essential pairwise inde-
pendence which is considered in this reference.

10For a recent application of the notion of Fubini extension outside the scope of random
matching models, see Sun and Yannelis (2008).
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Consider the product space f0;1g!1 . Let � be the usual measure on f0;1g!1 ,
and let � denote the domain of �. Recall that � is complete. For each � < !1,
define a mapping �̂� : f0;1g!1 ! f0;1g!1 by setting, for each x 2 f0;1g!1 ,

�̂��x� � x � h� :

(Thus �̂��x� is the element in f0;1g!1 that is given by �̂��x���� � x�h�����
for � < !1.) Then for each � < !1, �̂� is inverse-measure-preserving for �,
and since h� is an involution, �̂� is an involution, too. (To see that �̂� is an
involution, observe that for each x 2 f0;1g!1 ,

�̂���̂��x�� � �̂��x � h�� � �x � h�� � h� � x � �h� � h�� � x:

To see that �̂� is inverse-measure-preserving for �, observe that whenever I is
a finite subset of !1, we have

�
�
fx 2 f0;1g!1 : x�h����

�
� 1 for every � 2 Ig� � 2�#�I�;

because h� is an injection.)
We claim that given any E1, E2 2 �, for all but countably many � < !1

the sets E1 and �̂�1
� �E2� are stochastically independent, i.e., ��E1 \ �̂�1

� �E2�� �
��E1����̂�1

� �E2��. To see this, pick any E1, E2 2 �. There is an E01 2 � which
differs from E1 by a null set and is determined by coordinates in a countable
subset of !1, say D1, and there is an E02 2 � which differs from E2 by a null set
and is determined by coordinates in a countable subset of !1, say D2. Then by
choice of �̂� , for each � < !1 the set �̂�1

� �E
0
2� is determined by coordinates in

h��D2�. As!1 has uncountable cofinality, we can find a � < !1 such that � < �
for every � 2 D1[D2. Then by choice of h� , for each � < !1 with � > �, we have
� > � for every � 2 h��D2�. Hence for each � < !1 with � > �, D1\h��D2� � ;,
which implies that the sets E01 and �̂�1

� �E
0
2� are stochastically independent, E01

being determined by coordinates in D1, and �̂�1
� �E

0
2� by coordinates in h��D2�.

Since �̂� is inverse-measure-preserving for �, the fact that E01 and E02 differ by a
null set from E1, E2 respectively implies that �̂�1

� �E
0
2� differs by a null set from

�̂�1
� �E2�, and E01\�̂�1

� �E
0
2� by a null set from E1\�̂�1

� �E2�. Consequently E1 and

�̂�1
� �E2� are stochastically independent for each � < !1 with � > �, and thus

the claim above is established.
Because each �̂� is inverse-measure-preserving for �, it follows that given

any E1, E2 2 � we have ��E1 \ �̂�1
� �E2�� � ��E1���E2� for all but countably

many � < !1.
Let

A � fx 2 f0;1g!1 : for some � < !1, x��� � 1 for all � < !1 with � > �g:

Evidently A is the union of!1 many sets of cardinal c, so #�A� �!1 �c � c. Also,
A has full outer measure for �, by the fact that every non-negligible member of �
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includes a non-empty set that is determined by coordinates in some countable
subset of !1, together with the fact that !1 has uncountable cofinality.

Let � be the subspace measure on A induced from �, and let A denote its
domain. Then, as A has full outer measure for �, �A;A; �� is a probability space.
Clearly, as � is complete and atomless, so is �.

For each � < !1 let �̃� be the restriction of �̂� to A. Note that by con-
struction, for each � < !1 and each x 2 f0;1g!1 , �̂��x� and x agree in all but
countably many coordinates in !1. Consequently, for each � < !1, whenever
x 2 A then �̃��x� 2 A, again using the fact that !1 has uncountable cofinality.
Thus since �̂� is an involution on f0;1g!1 , �̃� is an involution on A. By the
fact that A has full outer measure for �, the properties of the functions �̂� ,
� < !1, also imply that, for each � < !1, �̃� is inverse-measure-preserving
for �, and that, given any E1, E2 2 A, for all but countably many � < !1 we
have ��E1 \ �̃�1

� �E2�� � ��E1���E2�.
We will now modify the mappings �̃� so as to make them fixed point free.

Pick any � < !1 with � �!. Let

�� � fx 2 f0;1g!1 : x��� � x�h����� for each � < !1g

and let �A� � �� \A. Then by the definitions of �̂� and �̃� , �A� is exactly the set

of fixed points of �̃� . Now by the definition of h� ,

f� < !1 : � < �g \ h��f� < !1 : � < �g� � ;:

Hence since � �!, �� is a �-null set in f0;1g!1 (directly from the definition of �
to be the usual measure on f0;1g!1 ), and thus �A� is a �-null set in A. Finally,

�A� is an infinite subset of A. (To see this, note that by definition of h� , for some
countable D � !1 we have h���� � � for all � < !1 with � � D, and let B be
the set of those x in A for which x��� � 1 for all � < !1 with the exception of
exactly one � < !1 with � � D. Then B is an infinite subset of A, and since h�
is a bijection we must have B � �A� .)

Now by the fact that any infinite set can be partitioned into two sets of the
same cardinality, we can choose a fixed point free involution �� : �A� ! �A� . As

�A� is the set of fixed points of �̃� , the restriction of �̃� to An�A� is an involution

on An�A� . Therefore, defining �� : A! A by

���x� �

8<:���x� if x 2 �A�
�̃��x� if x 2 An�A� ;

�� is a fixed point free involution on A. As �� agrees with �̃� on the comple-
ment of a �-null set, �� is inverse-measure-preserving for �.

Doing this construction for all � < !1 with � �!, and then letting �� � �!
for � < !, we get a family h��i�<!1 of fixed point free involutions on A, each
of them inverse-measure-preserving for �. Moreover, given any E1, E2 2 A, for

11



all but countably many � < !1 we have ��E1 \��1
� �E2�� � ��E1���E2�, by the

corresponding property of the family h�̃�i�<!1 , because �� agrees with �̃� on
the complement of a �-null set for ! � � < !1.

Now choose a family hx�i�<!1 of elements of A so that given any countable
D � A, for some � < !1 we have both x� � D and ���x�� � D. Such a choice
is possible. Indeed, by transfinite recursion on !1 choose a family hx�i�<!1 as
follows. Let x0 be an arbitrary point of A. Given that hx�i�<� has been chosen,
where � < !1, consider the set A� � fx�;���x�� : � < �g. Then A� is countable,
so because A is uncountable and�� is a bijection, we can choose an x� in A such
that both x� � A� and ���x�� � A� . This completes the recursion. The result is
a family hx�i�<!1 of distinct elements of A such that the family h���x��i�<!1

also consists of distinct members. Thus hx�i�<!1 is a family as desired.
Let �̄ be the complete product probability measure on AA defined from �,

and let �̄ denote the domain of �̄ . For each � < !1 let

N� �
n
y 2 AA : (a) y is a fixed point free involution on A,

(b) y�x�� � ���x��;
(c) y uAnN � �� uAnN for some �-null set N � A

o
;

and then let 
 �
S
�<� N� .

From (c) in the definition of N� , each y 2 
 is inverse-measure-preserving
for �. From (b) in that definition, each N� is a �̄-null set in AA because, � being
atomless, singletons in A are �-null sets.

On the other hand, 
 has full outer measure for �̄ . To see this, note first
that it suffices to show that 
 intersects every non-negligible subset of AA that
is determined by coordinates in some countable subset of A (since every non-
negligible element of �̄ includes a such a set). Thus let E be a non-negligible
subset of AA, determined by coordinates in a countable subset of A, say D.

As D is countable and �A;A; �� is atomless, the set of all y in AA such that
y uD is injective is an element of �̄ with �̄-measure 1 (see Fremlin, 2001, 254V).
Also, since a countable subset of A is a �-null set in A, for each x 2 A the set of
all y in AA such that y�x� 2 D is a �̄-null set in AA, and hence (using again the
fact that D is countable) the set of all y in AA such that D \y�D� � ; belongs
to �̄ and has �̄-measure 1. Consequently, because E is non-negligible, there is an
element of E, say y0, such that y0 uD is a bijection onto y0�D� and such that
D \y0�D� � ;.

Set D0 � y0�D�. Then D [ D0 is countable, so we can choose a countably
infinite subset H of A with H \ �D [ D0� � ;. Set C � H [ D [ D0. Then C is
again countable, so by choice of the family hx�i�<!1 , there is a � < !1 such
that x� � C as well as ���x�� � C . Fix such a � and set C0 � C [���C�. Using
the fact that �� is an involution, we may see that x� � C0.

Also by the fact that �� is an involution, we have ���C0� � C0 and therefore
���AnC0� � An���C0� � AnC0. Thus �� uAnC0 is a fixed point free involution
on AnC0.

12



Note that by choice of C , the set C0 n�D [ D0� is infinite. Hence, since an
infinite set can be partitioned into two sets of the same cardinality, we can
choose a fixed point free involution � : C0n�D [D0�! C0n�D [D0�.

Now as y0 uD is a bijection onto D0, and D \ D0 � ;, we get a fixed point
free involution y1 : A! A by setting, for x 2 A,

y1�x� �

8>>>>>><>>>>>>:

y0�x� if x 2 D
y�1

0 �x� if x 2 D0

��x� if x 2 C0n�D [D0�
���x� if x 2 AnC0:

In particular, then, since x� � C0, we have y1�x�� � ���x��. Thus y1 2 
,
because the countable set C0 is a �-null set in A. On the other hand, y1 agrees
with y0 on D, and since y0 2 E and E is determined by coordinates in D, we
have y1 2 E. Thus 
 \ E 6� ;, proving that 
 has full outer measure for �̄ .

Let � be the subspace measure on 
 induced from �̄ , and let � denote its
domain. Then, as 
 has full outer measure for �̄ , �
;�; �� is a probability space.
Note that N� is a �-null set in 
 for each � < !1.

Now let f : A�
 ! A be defined by setting

f�x;y� � y�x�; x 2 A; y 2 
:

Further, for each x 2 A, let �x be the coordinate projection y , y�x� : AA ! A.
Then, by definition of product measure, for each x 2 A, �x is inverse-measure-
preserving for �̄ and �, and the family h�xix2A is stochastically independent.
Evidently f�x; �� agrees with �x on 
 for each x 2 A, and since 
 has full
outer measure for �̄ , it follows that for each x 2 A, fx � f�x; �� is inverse-
measure-preserving for � and �, and that the family hfxix2A is stochastically
independent. On the other hand, for each y 2 
, fy is the same as y . Hence,
for each y 2 
, fy is a fixed point free involution on A, and by what was noted
following the definition of the sets N� above, fy is inverse-measure-preserving
for �. As was also noted above, given any E1, E2 2A, we have ��E1\��1

� �E2�� �
��E1���E2� for all but countably many � < !1. By (c) in the definition of the
sets N� , this means that, given any E1, E2 2A, there is a countable D �!1 such
that whenever y 2 
n

S
�2DN� then ��E1\f�1

y �E2�� � ��E1���E2�. As each N� is
a null set in 
, it follows that, given any E1, E2 2A, we have ��E1 \ f�1

y �E2�� �
��E1���E2� for almost all y 2 
.

Taken together, these properties of f mean that f is a random matching
satisfying (P1) to (P4). By Remark 1 above, (P5) is also satisfied and, given any
type space �T ;T � and type assignment � : A ! T , (P6) to (P8) are satisfied as
well. Thus, (a) and (b) of the theorem hold for f . By Theorem 2 below, (c) of the
theorem holds, too. This completes the proof.

Here is a formal definition of the notion of a Fubini extension.
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Definition 5. Let �X;�; �� and �Y ; T ; �� be probability spaces, and �X � Y ;�; ��
the corresponding product probability space. Let �̄ be a probability measure
on X � Y , and �̄ its domain. Then �̄ is said to be a Fubini extension of � if
(a) �̄ � � and (b) for each H 2 �̄—denoting by �H the characteristic function
of H—the integrals

R R
�H�x;y�d��y�d��x� and

R R
�H�x;y�d��x�d��y� are

well-defined and
R R
�H�x;y�d��y�d��x� � �̄�H� �

R R
�H�x;y�d��x�d��y�.

The following notation will be used in the sequel.

Notation. If H is a subset of a product X � Y and x 2 X, then Hx denotes the
x-section ofH, and if y 2 Y thenHy denotes the y-section ofH. Thus, if x 2 X,
thenHx � fy 2 Y : �x;y� 2 Hg; similarly, for y 2 Y ,Hy � fx 2 X : �x;y� 2 Hg.

Theorem 2. Let �A;A; �� be an atomless probability space of agents, �
;�; �� a
sample probability space, and f : A � 
 ! A a random matching. Let � be the
product probability measure on A�
 defined from � and � . If f satisfies (P1) to
(P4), then � has a Fubini extension �̄ such that f is ��̄;A�-measurable, writing �̄
for the domain of �̄.

Proof. Using Maharam’s theorem, we can choose a countable partition hAiii2I
of A into non-negligible measurable sets so that for each i 2 I there is a family
hF i;jij2Ji of measurable subsets of A, with F i;j � Ai for all j 2 Ji, such that
the following hold, writing �i for the probability measure on Ai obtained by
normalizing the subspace measure induced by � on Ai:

(i) For each i 2 I, �i�F i;j� � 1=2 for all j 2 Ji.

(ii) For each i 2 I, the family hF i;jij2Ji is stochastically independent for �i.

(iii) Denoting by A0 the sub-� -algebra of A generated by fF i;j : i 2 I; j 2 Jig,
for any B 2A there is a B0 2A0 such that B0 differs from B by a �-null set.

For each i 2 I and j 2 Ji, let Hi;j � f�1�F i;j�. We will show that the family
hHi;jii2I;j2Ji satisfies the requirements in Lemma 1 below.

Clearly (c) of these requirements holds for hHi;jii2I;j2Ji . As earlier, write fx
for f�x; �� and fy for f��; y�. Note that for each i 2 I and j 2 Ji, the sections

Hi;jx and Hi;jy satisfy

Hi;jx � f�1
x �F i;j� and Hi;jy � f�1

y �F i;j�

for all x 2 A and y 2 
, respectively. Thus, in particular, (a) of Lemma 1 holds
for hHi;jii2I;j2Ji .

For each i 2 I set �i � ��Ai�. Fix any i 2 I, and let j1; : : : ; jn be distinct
members of Ji. Note that (i) and (ii) imply:

(�) ��F i;j1 \ � � � \ F i;jn� � �i2�n:
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Consider any B 2 A. As f satisfies (P3) by hypothesis, for almost all y 2 

we have

��B \ f�1
y �F i;j1 \ � � � \ F i;jn�� � ��B���F i;j1 \ � � � \ F i;jn�:

Using this fact together with ���, we may see that for almost every y 2 
,

��B \Hi;j1y \ � � � \Hi;jny � ��
�
B \ f�1

y �F i;j1�\ � � � \ f�1
y �F i;jn�

�
��

�
B \ f�1

y �F i;j1 \ � � � \ F i;jn�
�

���B���F i;j1 \ � � � \ F i;jn�
���B��i2�n:

Now consider any C 2 �. For each x 2 A let �x be the sub-� -algebra of � gen-
erated by fx , and let �C be the sub-� -algebra of � generated by C . By hypothesis,
f satisfies (P4), i.e., the family h�xix2A is stochastically independent. By Fremlin
(2008, 5A6-272W), it follows that there is a countable D � A such that for each
x 2 AnD , �C and �x are stochastically independent. Since �A;A; �� is atomless
by hypothesis, this means that �C and �x are stochastically independent for
almost every x 2 A. Now for each x 2 A, we have f�1

x �F i;j1 \ � � � \ F i;jn� 2 �x ,
and it follows that for almost all x 2 A,

�
�
C \ f�1

x �F i;j1 \ � � � \ F i;jn�
�
� ��C��

�
f�1
x �F i;j1 \ � � � \ F i;jn�

�
:

Using this fact together with ��� and the hypothesis that f satisfies (P2), i.e.,
that for each x 2 A, fx is inverse-measure-preserving for � and � , we may
conclude that for almost all x 2 A,

��C \Hi;j1x \ � � � \Hi;jnx � ��
�
C \ f�1

x �F i;j1�\ � � � \ f�1
x �F i;jn�

�
��

�
C \ f�1

x �F i;j1 \ � � � \ F i;jn�
�

���C��
�
f�1
x �F i;j1 \ � � � \ F i;jn�

�
���C���F i;j1 \ � � � \ F i;jn�
���C��i2�n:

Thus also (b) of Lemma 1 holds for hHi;jii2I;j2Ji .
Now let

G � ff�1�N� : N is a �-null set in Ag:

Then for each M 2 G, and each x 2 A, the section Mx is a �-null set in 
, by
the facts that M � f�1�N� implies Mx � f�1

x �N� and fx is inverse-measure-
preserving. Similarly, as f satisfies (P1), i.e., for each y 2 
, fy is inverse-
measure-preserving, My is a �-null set in A for each M 2 G and each y 2 
.

We may now appeal to Lemma 1 to find a Fubini extension of � such that,
denoting by �̄ its domain, �̄ contains every member of G and every member of
hHi;jii2I;j2Ji . In view of (iii) above, it follows that f is ��̄;A�-measurable. This
completes the proof.
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Lemma 1. Let �A;A; �� and �
;�; �� be probability spaces, and �A�
;�; �� the
corresponding product probability space. Let M be the set of all M � A � 
 for
whichMx is a null set in 
 for almost all x 2 A, andMy a null set in A for almost
all y 2 
. Further, let hJiii2I be a family of sets, and hHi;jii2I;j2Ji a family of
subsets of A�
. Suppose:

(a) For all x 2 A and all y 2 
, Hi;jx 2 � and Hi;jy 2A for each i 2 I and j 2 Ji.

(b) For each i 2 I there is a real number �i > 0 such that whenever j1; : : : ; jn
are finitely many distinct members of Ji, then given B 2A,

��B \Hi;j1y \ � � � \Hi;jny � � ��B��i2�n

for almost all y 2 
, and given C 2 �,

��C \Hi;j1x \ � � � \Hi;jnx � � ��C��i2�n

for almost all x 2 A.

(c) Hi;j \Hi0;j0 � ; whenever i 6� i0.

Then � has a Fubini extension �̄ such that M[ fHi;j : i 2 I; j 2 Jig � �̄, writing
�̄ for the domain of �̄.

Proof. Let F denote the set of all subsets F of A � 
 such that the integralsR
A ��Fx�d��x� and

R

 ��Fy�d��y� are well-defined and equal. Then F is a

Dynkin class (i.e. ; 2 F and F is closed under complements and countable
disjoint unions) as may easily be checked. In addition, (a) to (c) imply that
whenever B1 � C1; : : : ; Bn � Cn are finitely many measurable rectangles in A�

and F1; : : : ; Fm are finitely many elements of M[ fHi;j : i 2 I; j 2 Jig, then the
intersection

�B1 � C1�\ � � � \ �Bn � Cn�\ F1 \ � � � \ Fm
belongs to F . Therefore, by the monotone class theorem, there is a � -algebra
�0 � F which contains all measurable rectangles in A � 
 and all members of
M[ fHi;j : i 2 I; j 2 Jig. Define �0 : �0 ! R by setting �0�F� �

R
A ��Fx�d��x�

for F 2 �0. Using the monotone convergence theorem, we may see that �0 is
a probability measure on A � 
. Evidently �0 agrees with � on all measurable
rectangles in A�
.

Let �̄ be the completion of �0, and �̄ the domain of �̄. Since �0 agrees with
� on the measurable rectangles in A�
, we must have �̄ � �. By construction,
the Fubini property holds for the characteristic functions of the elements of �0,
which in particular implies that if N is a �0-null set in A�
, then for �-almost
every x 2 A, the x-section of N is a �-null set in 
, and for �-almost every
y 2 
, the y-section of N is a �-null set in A. Hence, the Fubini property holds
for the characteristic functions of the elements of �̄. Thus �̄ is a Fubini extension
of �. By construction, the domain �̄ of �̄ includesM[fHi;j : i 2 I; j 2 Jig.
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4 Relationship between properties of a random matching

As was noted in Remark 1, if a random matching satisfies “general indepen-
dence,” then it satisfies “independence in types” against any type assignment.
The next theorem shows that the converse of this implication is also true. In fact,
“general independence” already holds if “independence in types” holds against
any type assignment with a finite type space. An analogous relationship holds
for (P3) and (P7), and for (P2) and (P6).

Theorem 3. Let �A;A; �� be an atomless probability space of agents, �
;�; �� a
sample probability space, and f : A�
 ! A a random matching.

(a) If f satisfies (P8) against any type assignment with a finite type space, then f
satisfies (P4).

(b) If f satisfies (P7) against any type assignment with a finite type space, then f
satisfies (P3).

(c) If f satisfies (P6) against any type assignment with a finite type space, then f
satisfies (P2).

Proof. (a) We have to show that whenever x1; : : : ; xn are distinct members of A
and E1; : : : ; En are members ofA, then

�
�
f�1
x1
�E1�\ � � � \ f�1

xn �En�
�
�

nY
i�1

�
�
f�1
xi �Ei�

�
:

Thus let such x1; : : : ; xn and E1; : : : ; En be given. There is a finite partition P of
A into measurable subsets such that for each i � 1; : : : ; n, Ei is the union of
members of P. Let the finite type space �T ;T � be given by setting T � P and
T � 2P , and let the type assignment � : A ! T be the mapping that takes an
x 2 A to that element of P which contains x. Evidently � is �A;T �-measurable
and we have ��1���Ei�� � Ei for each i � 1; : : : ; n. Now (P8) implies that

�
�
f�1
x1
���1���E1���\ � � � \ f�1

xn ��
�1���En���

�
�

nY
i�1

�
�
f�1
xi ��

�1���Ei���
�
;

and since ��1���Ei�� � Ei for each i � 1; : : : ; n, we have the desired conclusion.
(b) Consider any E1, E2 2 A. Let a type space �T ;T � be given by setting

T � f0;1;2;3g and T � 2T , and let the type assignment � : A ! T be given by
setting ��x� � 0 for x 2 E1nE2, ��x� � 1 for x 2 E1\E2, ��x� � 2 for x 2 E2nE1,
and ��x� � 3 for x 2 An�E1 [ E2�. If (P7) holds against �, then there is a �-null
set N � 
 such that for each y 2 
nN,

�
�
��1�f0;1g�\ f�1

y ���1�f1;2g��
�
� �

�
��1�f0;1g�

�
�
�
��1�f1;2g�

�
:

Thus ��E1 \ f�1
y �E2�� � ��E1���E2� for each y 2 
nN.

(c) Fix any E 2 A. Let �T ;T � �
�
f0;1g;2f0;1g

�
and let � : A ! T be given by

��x� � 1 if x 2 E and ��x� � 0 if x 2 AnE. If (P6) holds against f , then for each
x 2 A, �

�
f�1
x ���1�f1g��

�
� ����1�f1g�� and thus ��f�1

x �E�� � ��E�.
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The next theorem shows that if a random matching has the measurability
property stated in (c) of Theorem 1, then (P2) and (P4) together imply (P3). Note
that, given a random matching f : A�
 ! A, (P2) and (P4) together mean that the
family hfxix2A of functions from 
 to A is i.i.d.. Thus the next theorem shows,
in particular, that the “strong mixing” property (P3) of the family hfyiy2
 of
sample functions may be viewed as manifestation of a law of large numbers.

Theorem 4. Let �A;A; �� be an atomless probability space of agents, �
;�; �� a
sample probability space, and f : A � 
 ! A a random matching. Let � be the
product probability measure on A�
 defined from � and � . Suppose:

(i) There is a Fubini extension �̄ of � such that, writing �̄ for the domain of �̄,
f is ��̄;A�-measurable.

(ii) f satisfies (P2) and (P4).

Then f satisfies (P3).

Proof. Fix any E1, E2 2 A and consider any B 2 �. Note first that by (i), we have
�E1�B�\f�1�E2� 2 �̄, and therefore, from the definition of Fubini extension, the
integrals

R
E1
�
�
B\f�1

x �E2�
�
d��x� and

R
B �
�
E1\f�1

y �E2�
�
d��y� are well-defined

and equal. Write �B for the sub-� -algebra of � generated by B, and �x for that
generated by fx , x 2 A. Now (P4) says that the family h�xix2A is stochastically
independent. Using Fremlin (2008, 5A6-272W), it follows that there is a count-
able D � A such that for each x 2 AnD , �B and �x are stochastically indepen-
dent. Since �A;A; �� is atomless, this means that �B and �x are stochastically
independent for almost every x 2 A. Thus ��B \ f�1

x �E2�� � ��B���f�1
x �E2��

for almost all x 2 A. Finally, note that from (P2) we have ��f�1
x �E2�� � ��E2�

for all x 2 A.
Putting all these together, we may conclude that, for any B 2 �,Z

B
�
�
E1 \ f�1

y �E2�
�
d��y� �

Z
E1

�
�
B \ f�1

x �E2�
�
d��x�

�
Z
E1

��B���f�1
x �E2��d�

�
x�

�
Z
E1

��B���E2�d��x�

� ��B���E2���E1�:

By the Radon-Nikodym theorem it follows that �
�
E1 \ f�1

y �E2�
�
� ��E1���E2�

for almost all y 2 �. Thus, as E1, E2 2A are arbitrary, (P3) holds for f .

As noted in Remark 1, if a random matching satisfies (P3), then it satisfies
(P7) against any type assignment. Hence the following corollary of Theorem 4
holds.

18



Corollary 1. Let �A;A; �� be an atomless probability space of agents, �
;�; �� a
sample probability space, and f : A � 
 ! A a random matching. Let � be the
product probability measure on A�
 defined from � and � . Suppose:

(i) There is a Fubini extension �̄ of � such that, writing �̄ for the domain of �̄,
f is ��̄;A�-measurable.

(ii) f satisfies (P2) and (P4).

Then f satisfies (P7) against any type assignment.

Remark 6. A widespread view in the literature seems to be that (P7) follows just
by (P6). However, this is not the case, as illustrated in the following example,
where (P6) holds but (P7) does not.

Example 1. Take the probability space �A;A; �� of agents to be ��0;1� ;B; ��,
where � is the Lebesgue measure, and B the Borel ��algebra of �0;1�. Parti-
tion �0;1� into eight measurable subsets A1; : : : ; A8, each with measure 1=8. Let�
Ai; Aj

�
denote “the agents in Ai are matched with the agents in Aj .” Recall that

given any C;C0 2 B with the same measure, there is an inverse measure preserv-
ing bijection from C onto C0. Using this fact, we can construct four matchings
f1; : : : ; f4 on �0;1� such that each fi is inverse measure-preserving and such
that

f1 satisfies �A1; A2� �A3; A7� �A4; A8� �A5; A6�
f2 satisfies �A1; A5� �A2; A6� �A3; A4� �A7; A8�
f3 satisfies �A1; A2� �A3; A4� �A5; A6� �A7; A8�
f4 satisfies �A1; A6� �A2; A5� �A3; A8� �A4; A7�

Let the sample probability space �
;�; �� be the set f1;2;3;4g with normal-
ized counting measure and let a random matching f : �0;1��
 ! �0;1� be given
by f�x; i� � fi�x� for x 2 �0;1� and i 2 
. Assume that there are just two types
0 and 1, and that the type assignment � : �0;1� ! f0;1g is given by ��x� � 0
for x 2

S4
j�1Aj , and ��x� � 1 for x 2

S8
j�5Aj . Then, since in state 3 there is no

match between any agents of different types, f fails to satisfy (P7). On the other
hand, since each of the four matchings is equally likely, it is easy to check that
f satisfies (P6). Moreover, f is B
��measurable. However, since there are only
finitely many sub-� -algebras of �, f cannot satisfy the independence conditions
(P4) or (P8).

5 A uniqueness result

Molzon and Puzzello (2010) show that if the random matching satisfies only
measure preservation, proportional and mixing properties, then it is not unique
(see also Example 2). However, if the random matching additionally satisfies
independence, then it is possible to show that it is unique in the sense that the
probability distribution on the set of bilateral matches is uniquely determined.
In order to prove it, we first need to introduce some more notation.
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Notation. Given a probability space �A;A; �� of agents, MA � AA denotes the
set of all matchings on A, i.e., the set of all fixed point free involutions on A;
further, writing 
̄ for the product probability measure on AA defined from �,

 denotes the restriction of 
̄ to the � -algebra generated by the measurable
cylinders in AA, 
A the subspace measure on MA induced from 
, and �A the
domain of 
A. Given a sample probability space �
;�; �� and a random matching
f : A �
 ! A in addition, � : 
 ! MA denotes the mapping defined by setting
��y� � fy for y 2 
.

The next theorem shows that, for a given probability space �A;A; �� of
agents, if there exists a random matching such that (P2) and (P4) hold, then,
in terms of distributions on �MA; �A�, this random matching is unique.

Theorem 5. Let �A;A; �� be an atomless probability space of agents. Then given
any sample probability space �
;�; �� and any random matching f : A�
 ! A,
the mapping � is ��; �A�-measurable, and if f satisfies (P2) and (P4), then the
distribution of � on �MA; �A� is 
A.

Proof. It suffices to show that �, viewed as mapping from 
 to AA, has the
property that whenever Z is a measurable cylinder in AA, then ��1�Z� 2 �
and, if (P2) and (P4) hold, ����1�Z�� � 
�Z�. Thus let Z be a measurable
cylinder in AA. Then for some finite collection x1; : : : ; xn of distinct members
of A, together with members B1; : : : ; Bn of A, we have Z � Ex1

B1
\ � � � \ ExnBn

where ExiBi � fz 2 A
A : z�xi� 2 Big, i � 1; : : : ; n. Note that for each i � 1; : : : ; n,

��1
�
ExiBi

�
� f�1

xi �Bi�, because for any y 2 
,

��y� 2 ExiBi a ��y��xi� 2 Bia fy�xi� 2 Bia fxi�y� 2 Bi:

Now by definition of random matching, fx is ��;A�-measurable for any x 2 A.
It follows that ��1

�
ExiBi

�
2 � for each i � 1; : : : ; n, and thus ��1�Z� 2 � as well.

Moreover, if f satisfies (P2) and (P4), then

�
�
��1�Z�

�
� �

�
��1�Ex1

B1
�\ � � � \��1�ExnBn ��

� �
�
f�1
x1
�B1�\ � � � \ f�1

xn �Bn�
�

�
nY
i�1

��f�1
xi �Bi�� by (P4)

�
nY
i�1

��Bi� by (P2)

� 

�
Ex1
B1
\ � � � \ ExnBn

�
� 
�Z�;

the first equality in the previous line by the definition of product measure since
the elements x1; : : : ; xn of A are distinct. This completes the proof.

As noted in Theorem 3, if a random matching satisfies (P6) and (P8) against
any type assignment, then it also satisfies (P2) and (P4). Therefore the above
uniqueness result can be equivalently formulated in terms of type assignments
in the following way.
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Corollary 2. Let �A;A; �� be an atomless probability space of agents. Then given
any sample probability space �
;�; �� and any random matching f : A�
 ! A,
if f satisfies (P6) and (P8) against any type assignment with a finite type space,
then the distribution of � on �MA; �A� is 
A.

6 Examples

The previous section provides conditions for the uniqueness of random match-
ing. Next, Example 2 shows that it is crucial that the notion of type, as defined in
Section 2, incorporates all payoff relevant characteristics of agents. In the first
example, it is possible to capture all the payoff relevant characteristics with
finitely many types. However, some economic models require a continuum of
types, as illustrated in Examples 3 and 4.

Example 2. Production with finitely many types
This example indicates that non-uniqueness of the random matching can be

a problem for economic models, if the notion of type does not capture all payoff
relevant characteristics. The example is very simple but can be easily enriched
to demonstrate that the same problem persists in the case of infinitely many
agents (countable or uncountable).

Suppose our economy consists of an even number of agents, say 8, of two
types, “a” and “b”. Denote the set of agents by

A � fa1; :::; a4; b1; :::; b4g :

Let MA denote the set of all possible bilateral matches on this set of agents, and
let elements of MA be denoted by ’. The randomness of matching will be taken
care of by placing a probability distribution on the set MA.

Each agent g 2 A is endowed with a non-negative amount kg of some input.
Suppose that production of a certain good occurs only when agents of oppo-
site type meet, and that in this case the production of agent g depends on his
input and the input of the agent with whom agent g is matched. A simple spec-
ification capturing such a complementarity of inputs is, denoting by Fg�’� the
production amount of agent g given ’,

Fg�’� �
(
f
�
minfkg; k’�g�g

�
if g and ’�g� have different types

0 if g and ’�g� have the same type;

where f : R� ! R� is an increasing function with f�0� � 0.
We now consider two distinct probability distributions on MA. The two dis-

tributions are described in the tables below, listing the bilateral matches and
corresponding probabilities. Matches that do not appear are assigned probabil-
ity 0. The notation

�
i; j
�

is used to denote that agent i is paired with agent j.
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Distribution I
Match Probability

�a1; a2��a3; b3��a4; b4��b1; b2� :5
�a1; b1��a2; b2��a3; a4��b3; b4� :5

Distribution II
Match Probability

�a1; a2��a3; b3��a4; b4��b1; b2� :25
�a1; a2��a3; b1��a4; b2��b3; b4� :25
�a1; b1��a2; b2��a3; a4��b3; b4� :25
�a1; b3��a2; b4��a3; a4��b1; b2� :25

Note that both distributions satisfy property (P6) (Types proportional law) since
any individual agent has probability :5 of being matched with a type “a” agent
and probability :5 of being matched with a type “b” agent. Both distributions
also satisfy the types mixing property (P7) since for each listed match, exactly
one-half of the type “a” agents are matched with type “a” agents and one-half
are matched with type “b” agents. Now, suppose that agents are given initial
endowments as described in the following table:

Input endowments
Agent a1 a2 a3 a4 b1 b2 b3 b4

Input 1 1 0 0 0 0 1 1

In the case of Distribution I, nothing can be produced. For both matches, either
two agents of the same type are paired or a pair involves one agent with 0
resource.

In the case of Distribution II, if one of the first three distributions is realized,
no production takes place because two agents of the same type meet or agents
of opposite type meet but one of them has 0. However if the fourth match is
realized (and this occurs with probability :25) then agents a1, a2, b3, and b4 all
produce an amount f

�
minf1;1g

�
� f�1�.

The issue in the example is that the notion of type does not include pay-
off relevant attributes, namely input endowments. Note that in this example, it
is easy to deal with non-uniqueness as it is possible to capture all payoff rel-
evant characteristics with finitely many types and the existing literature pro-
vides foundations to these matching models (Boylan (1992), Duffie and Sun
(2007), Alós-Ferrer (1999)).11 Why then would non-uniqueness be an issue for
economic models? As already mentioned, current existence results can accom-
modate finitely many types. However, for some models it is not possible to cap-
ture all the relevant attributes of agents with a finite number of types. This is the

11Examples of such models applied in the context of learning in games, monetary theory and
asset pricing can be found in Ellison (1993), Kandori et al. (1993), Matsui and Matsuyama (1995),
Kiyotaki and Wright (1989), Duffie et al. (2005).
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case for the models described in Green and Zhou (2002), Molico (2006), Lagos
and Wright (2005), Shi (1997), Zhu (2005), where there are no upper bounds on
money holdings or money holdings are perfectly divisible, or those described in
Sandholm (2001), Oechssler and Riedel (2002), Hofbauer et al. (2008), with con-
tinuous strategy sets. Thus, for these models, infinitely many attributes would
not be captured by existing results. Our existence and uniqueness results allow
one to entirely ignore these issues. Indeed, our results provide mathematical
foundations also to random matching models with infinitely many types. We il-
lustrate this point with examples from evolutionary game theory and monetary
theory that employ an infinity of types.

Example 3. Evolutionary Game Theory
In economics, most work of evolutionary game theory focuses on popula-

tions of agents who are randomly matched to play a game with repeated rounds.
In these environments, types are identified with strategies. Thus, games with
continuous strategy spaces involve random matching with a continuum of types.
Examples can be found in Sandholm (2001), Oechssler and Riedel (2002), Hof-
bauer et al. (2008). In these games, the distribution of strategies in the popu-
lation is given by a probability distribution on the strategy space S, written as
� . Let R�s; s0� denote the payoff function to a player selecting strategy s when
his partner/opponent chooses strategy s0. Then, the expected payoff to a player
selecting strategy s is written as

E�s; �� �
Z
S

R�s; s0�d��s0�:

This expression makes implicit use of the types proportional law (P6) with a
continuum of types.

Example 4. Monetary Theory
We start by describing the aspects of the model of Molico (2006) (see also Zhu

(2005)) that are relevant to random matching. Time is discrete and the popula-
tion A � �0;1� consists of a continuum of infinitely lived agents whose discount
factor is � 2 �0;1�. Let �t�E� the measure of agents whose money holdings are
in E � �0;1� at the beginning of period t. In this model, the agent’s type is given
by his money holdings, and thus there are a continuum of types. In every period
agents are randomly and bilaterally matched. An agent is the buyer in his match
with probability �, the seller with probability �, and neither with probability
�1� 2��.

The trading rule is determined by means of Nash bargaining. We follow
Molico (2006) and denote by qt�mb;ms� and dt�mb;ms� the amount of out-
put and the amount of money determined by bargaining in a match where the
buyer hasmb money holdings and the seller hasms money holdings. Note that
the payoff only depends on types.
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The expected lifetime utility of an agent who enters period t with m money
holdings is given by

Vt�m� ��
1Z
0

�
u
�
qt�m;ms�

�
� �Vt�1 �m� dt�m;ms��

	
d�t�ms�

��
1Z
0

�
�c

�
qt�mb;m�

�
� �Vt�1 �m� dt�mb;m��

	
d�t�mb�

� �1� 2���Vt�1�m�:

The state of the system at any time is defined by the distribution �t , whose
law of motion depends on the proportion of sellers and the proportion of buy-
ers. With x denoting the proportion of buyers and sellers during a period, the
law of motion for the distribution of money in Molico (2006) can be written as

�t�1�B� ��
Z Z
mb�dt�mb;ms�2B

d�t�mb�d�t�ms�

��
Z Z
ms�dt�mb;ms�2B

d�t�mb�d�t�ms�� �1� 2���t�B�:

where the first and second terms are the measure of consumers and producers
whose post-trade money holdings are in B, respectively (see also Zhu (2005)).
The last term account for those agents who do not trade and thus their money
holdings remain in B:

The expressions above suggest that the expected payoff and the law of mo-
tion equations implicitly postulate a matching process that satisfies properties
(P6) and (P7) with a continuum of types. Our paper provides foundations to such
matching process.
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