Prediction/Decision Making in Epistemic Logic

Tai-Wei Hu

(based on papers with Mamoru Kaneko)

Northwestern University

SAET conference 2014, Tokyo, August 19, 2014

Outline

- Prediction and undecidability
- Nash theory: epistemic analysis
- Infinite regress logic
- Undecidability in Nash theory

э

Prediction and undecidability

Prediction/decision making in game theory

Payoff interdependence

- one player's optimal choice depends on other players' actions
- prediction about others' actions crucial to one's decision

Prediction/decision making in game theory

Payoff interdependence

- one player's optimal choice depends on other players' actions
- prediction about others' actions crucial to one's decision

Battle of Sexes

	Board Game	Hiking	
Board Game	(3, 2)	(0, 0)	
Hiking	(0, 0)	(2,3)	

- 3

<ロ> <同> <同> < 同> < 同>

Give up making predictions

• dominant strategy criterion, default choice

э

Give up making predictions

dominant strategy criterion, default choice

Prediction by induction from past experiences

- treating players as nature and use probability distributions
- evolutionary game theory/learning theory

Give up making predictions

dominant strategy criterion, default choice

Prediction by induction from past experiences

- treating players as nature and use probability distributions
- evolutionary game theory/learning theory

Prediction by inferences

- infer others' actions from their preferences and decision methods
- ex ante prediction-making is a process of logical inferences

Formal theory of inferences: proof theory

Proof theory treats "proofs" as mathematical objects

- a proof is a sequence of symbols, each element is either an axiom, or is derived from preceding elements following a rule
- a sentence A is provable, denoted by $\vdash A$, if a proof for A exists

Formal theory of inferences: proof theory

Proof theory treats "proofs" as mathematical objects

- a proof is a sequence of symbols, each element is either an axiom, or is derived from preceding elements following a rule
- a sentence A is provable, denoted by $\vdash A$, if a proof for A exists

Proof theory connected to model theory by completeness theorem

• completeness: for all sentences A,

 $\vdash A$ if and only if A is "true" in every model

Formal theory of inferences: proof theory

Proof theory treats "proofs" as mathematical objects

- a proof is a sequence of symbols, each element is either an axiom, or is derived from preceding elements following a rule
- a sentence A is provable, denoted by $\vdash A$, if a proof for A exists

Proof theory connected to model theory by completeness theorem

• completeness: for all sentences A,

 $\vdash A$ if and only if A is "true" in every model

Our proof theory approach highlights an undecidability result for prediction/decision making in games, using model theory as a tool

イロト イポト イヨト イヨト

Undecidability (incompleteness)

Gödel's undecidability (incompleteness) theorem (1931): in a formal theory of arithmetic, Γ , there is a sentence A such that

 $\Gamma \nvDash A$ and $\Gamma \nvDash \neg A$

- Γ, a set of consistent (nonlogical) axioms about arithmetic
- Φ is *decidable* (*complete*), if for all A, $\Phi \vdash A$ or $\Phi \vdash \neg A$
- Gödel proves that Γ is undecidable (incomplete)

Undecidability (incompleteness)

Gödel's undecidability (incompleteness) theorem (1931): in a formal theory of arithmetic, Γ , there is a sentence A such that

 $\Gamma \nvDash A$ and $\Gamma \nvDash \neg A$

- Γ, a set of consistent (nonlogical) axioms about arithmetic
- Φ is *decidable* (*complete*), if for all A, $\Phi \vdash A$ or $\Phi \vdash \neg A$
- Gödel proves that Γ is undecidable (incomplete)

When undecidability arises, a player may get stuck in the reasoning process without reaching a satisfactory decision

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Logical inferences in game situations

Logical inferences in game situations

• ex ante considerations require subjective inference for each player

Logical inferences in game situations

- ex ante considerations require subjective inference for each player
- one player's inference may require simulated inferences for others

Logical inferences in game situations

- ex ante considerations require subjective inference for each player
- one player's inference may require simulated inferences for others

Epistemic logic: proof-theoretical approach to prediction-making in games

- *belief operators* to model a player's subjective scope
- epistemic axioms to model simulated inferences

Logical inferences in game situations

- ex ante considerations require subjective inference for each player
- one player's inference may require simulated inferences for others

Epistemic logic: proof-theoretical approach to prediction-making in games

- *belief operators* to model a player's subjective scope
- epistemic axioms to model simulated inferences

Players make decisions and predictions based on beliefs about preferences and decision criterion

Decision criterion based on payoff maximization w.r.t. predictions

- "good" decision if best response against predicted actions from others
- independent decision-making: take all predictions into account

Decision criterion based on payoff maximization w.r.t. predictions

- "good" decision if best response against predicted actions from others
- independent decision-making: take all predictions into account

Nash theory

- symmetric prediction/decision criterion
- prediction based on inference from other's decision criterion
- requires an infinite regress of beliefs

Decision criterion based on payoff maximization w.r.t. predictions

- "good" decision if best response against predicted actions from others
- independent decision-making: take all predictions into account

Nash theory

- symmetric prediction/decision criterion
- prediction based on inference from other's decision criterion
- requires an infinite regress of beliefs

Can a player reach a final decision from this infinite regress?

Let Γ_i represent player *i*'s beliefs (or infinite regress) of preferences and decision criteria and let $I_1(s_1)$ mean " s_1 is a good decision"

Let Γ_i represent player *i*'s beliefs (or infinite regress) of preferences and decision criteria and let $l_1(s_1)$ mean " s_1 is a good decision"

- Γ_i leads to decidability if for each s_i ,
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\mathbf{I}_i(s_i))$ (positive decision), or
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\neg I_i(s_i))$ (negative decision)

Let Γ_i represent player *i*'s beliefs (or infinite regress) of preferences and decision criteria and let $l_1(s_1)$ mean " s_1 is a good decision"

- Γ_i leads to decidability if for each s_i ,
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\mathbf{I}_i(s_i))$ (positive decision), or
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\neg I_i(s_i))$ (negative decision)
- Γ_i leads to undecidability if for some s_i ,
 - ► $\mathbf{B}_i(\Gamma_i) \nvDash \mathbf{B}_i(\mathsf{I}_i(s_i))$ and $\mathbf{B}_i(\Gamma_i) \nvDash \mathbf{B}_i(\neg \mathsf{I}_i(s_i))$

Let Γ_i represent player *i*'s beliefs (or infinite regress) of preferences and decision criteria and let $l_1(s_1)$ mean " s_1 is a good decision"

- Γ_i leads to decidability if for each s_i ,
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\mathbf{I}_i(s_i))$ (positive decision), or
 - $\mathbf{B}_i(\Gamma_i) \vdash \mathbf{B}_i(\neg I_i(s_i))$ (negative decision)
- Γ_i leads to undecidability if for some s_i ,
 - $\mathbf{B}_i(\Gamma_i) \nvDash \mathbf{B}_i(\mathsf{I}_i(s_i))$ and $\mathbf{B}_i(\Gamma_i) \nvDash \mathbf{B}_i(\neg \mathsf{I}_i(s_i))$

We characterize

- the class of games for which Nash theory leads to decidability
- the class of games for which Nash theory leads to undecidability

Example: decidable case

	L	R_1	R_2	
U	(5,5)	(1, 0)	(1, 0)	
D_1	(0, 1)	(2,-2)	(-2, 2)	
<i>D</i> ₂	(0, 1)	(-2, 2)	(2,-2)	

æ

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example: decidable case

	L	R_1	R_2	
U	(5,5)	(1, 0)	(1, 0)	
D_1	(0, 1)	(2,-2)	(-2, 2)	
D_2	(0, 1)	(-2, 2)	(2,-2)	

Under Nash theory,

- $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\mathbf{I}_1(U))$
- $B_1(\Gamma_1) \vdash B_1(\neg I_1(D_1)) \land B_1(\neg I_1(D_2))$

- ₹ ₹ ►

< /□ > <

- 34

Example: undecidable case

		L		R)	
U	(3,	2)	(0,	0)
D	(0,	0)	(2,	3)

æ

<ロ> <同> <同> < 同> < 同>

Example: undecidable case

	L		R	
U	(3,	2)	(0,	0)
D	(0,	0)	(2,	3)

Under Nash theory,

- $\mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\mathsf{I}_1(U)), \ \mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\neg \mathsf{I}_1(U))$
- $\mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\mathsf{I}_1(D)), \ \mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\neg \mathsf{I}_1(D))$

Nash Theory

æ

< ∃⇒

∃ >

 ${\it G}=\langle\{1,2\},\{{\it S}_1,{\it S}_2\},\{{\it h}_1,{\it h}_2\}
angle$, a two-person finite game

- $\mathcal{G}=\langle\{1,2\},\{\mathcal{S}_1,\mathcal{S}_2\},\{\mathit{h}_1,\mathit{h}_2\}
 angle$, a two-person finite game
 - $E \subseteq S_1 \times S_2$ is interchangeable iff $E = E_1 \times E_2 \neq \emptyset$
 - interchangeability captures independence of players' decision-making

- $\mathcal{G}=\langle\{1,2\},\{\mathcal{S}_1,\mathcal{S}_2\},\{\mathit{h}_1,\mathit{h}_2\}
 angle$, a two-person finite game
 - $E \subseteq S_1 \times S_2$ is interchangeable iff $E = E_1 \times E_2 \neq \emptyset$
 - interchangeability captures independence of players' decision-making
 - E_i describes player i's decisions and E_j describes his predictions

- $\mathcal{G}=\langle\{1,2\},\{\mathcal{S}_1,\mathcal{S}_2\},\{\mathit{h}_1,\mathit{h}_2\}
 angle$, a two-person finite game
 - $E \subseteq S_1 \times S_2$ is interchangeable iff $E = E_1 \times E_2 \neq \emptyset$
 - interchangeability captures independence of players' decision-making
 - E_i describes player i's decisions and E_j describes his predictions

Solvable and unsolvable games (Nash, 1951)

- G is solvable if E(G) (the set of Nash equilibria) is interchangeable and E(G) is the solution
- otherwise, G is unsolvable
 - maximal $E \subseteq E(G)$ satisfying interchangeability is a subsolution

Decision criterion for Nash solutions

- A candidate solution $E = E_1 \times E_2 \subset S$ satisfies
- \mathbf{N}_1 If $s_1 \in E_1$, then s_1 is a best response against all $s_2 \in E_2$;
- \mathbf{N}_2 If $s_2 \in E_2$, then s_2 is a best response against all $s_1 \in E_1$.
 - for player 1, E_1 describes his "good" decisions and E_2 his predictions
 - $\bullet~N_2$ and N_2 can be viewed as a system of simultaneous equations

Prediction and interpersonal beliefs

In N_1 - N_2 there is no distinction between decisions and predictions

- E_1 occurs in the scope of $\mathbf{B}_1(\cdot)$
- E_2 occurs in the scope of $\mathbf{B}_1\mathbf{B}_2(\cdot)$

Prediction and interpersonal beliefs

In N_1 - N_2 there is no distinction between decisions and predictions

- E_1 occurs in the scope of $\mathbf{B}_1(\cdot)$
- E_2 occurs in the scope of $\mathbf{B}_1\mathbf{B}_2(\cdot)$

Derivation using N_1 - N_2 requires to the following infinite regress (from player 1's perspective):

$B_1(N_1)$		$\mathbf{B}_1\mathbf{B}_2\mathbf{B}_1(N_1)$		• • • • • • • • •
\downarrow	\checkmark	\downarrow	$^{\checkmark}$	\downarrow
$\mathbf{B}_1\mathbf{B}_2(N_2)$		$\mathbf{B}_1\mathbf{B}_2\mathbf{B}_1\mathbf{B}_2(N_2)$		• • • • • • • •

Derivation of final decisions

Positive decision: $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\mathsf{I}_1(s_1))$

Negative decisions: $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\neg I_1(s_1))$

- I₁(s₁) means "s₁ is a good decision"
- Γ₁ includes
 - ▶ 1's belief about his decision criterion (N_1) and his preferences (g_1)
 - his belief about 2's belief about N₂ and g₂
 - his belief about 2's belief about his belief about N_1 and g_1 , etc.

Derivation of final decisions

Positive decision: $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\mathsf{I}_1(s_1))$

Negative decisions: $\mathbf{B}_1(\Gamma_1) \vdash \mathbf{B}_1(\neg I_1(s_1))$

- I₁(s₁) means "s₁ is a good decision"
- Γ₁ includes
 - ▶ 1's belief about his decision criterion (N_1) and his preferences (g_1)
 - his belief about 2's belief about N₂ and g_2
 - his belief about 2's belief about his belief about N_1 and g_1 , etc.

Undecidability: neither positive nor negative decision can be reached

 $\mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\mathsf{I}_1(s_1))$ and $\mathbf{B}_1(\Gamma_1) \nvDash \mathbf{B}_1(\neg \mathsf{I}_1(s_1))$

イロト イポト イヨト イヨト 三日

Infinite regress logic

э

Infinite regress logic IR²

Language

- propositional variables: **p**₀, **p**₁,
- logical connectives: \neg , \supset , \land , \lor
- unary belief operators: $B_1(\cdot)$, $B_2(\cdot)$
- infinite regress operators: $Ir_1(\cdot, \cdot)$, $Ir_2(\cdot, \cdot)$

Infinite regress logic IR²

Language

- propositional variables: **p**₀, **p**₁,
- logical connectives: \neg , \supset , \land , \lor
- unary belief operators: $B_1(\cdot)$, $B_2(\cdot)$
- infinite regress operators: $\textbf{Ir}_1(\cdot,\cdot),~\textbf{Ir}_2(\cdot,\cdot)$

Subjective perspectives

- **B**_i(A) means "*i* believes in A"
- Ir_i(A_i; A_j) means "i believes in A_i, i believes that j believes in A_j, i believes j believes i believes..."

= ∽<<

Infinite regress and common knowledge

 $\mathbf{lr}_i(A_i; A_j)$ intends to capture

 $\mathbf{B}_i(A_i), \ \mathbf{B}_i\mathbf{B}_j(A_j), \ \mathbf{B}_i\mathbf{B}_j\mathbf{B}_i(A_i), \ \dots$

- 4 同 6 4 日 6 4 日 6 - 日

Infinite regress and common knowledge

 $\mathbf{lr}_i(A_i; A_j)$ intends to capture

 $\mathbf{B}_i(A_i), \ \mathbf{B}_i\mathbf{B}_j(A_j), \ \mathbf{B}_i\mathbf{B}_j\mathbf{B}_i(A_i), \ \dots$

C(A) (common knowledge of A) captures

 $A, \mathbf{B}_1(A), \mathbf{B}_2(A), \mathbf{B}_1\mathbf{B}_2(A), \mathbf{B}_2\mathbf{B}_1(A), \dots$

▲ 御 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ●

Infinite regress and common knowledge

 $\mathbf{lr}_i(A_i; A_j)$ intends to capture

 $\mathbf{B}_i(A_i), \ \mathbf{B}_i\mathbf{B}_j(A_j), \ \mathbf{B}_i\mathbf{B}_j\mathbf{B}_i(A_i), \ \dots$

C(A) (common knowledge of A) captures

 $A, \mathbf{B}_1(A), \mathbf{B}_2(A), \mathbf{B}_1\mathbf{B}_2(A), \mathbf{B}_2\mathbf{B}_1(A), \dots$

- C(A) is an objective notion, formulated from the analyst's perspective
- $\mathbf{lr}_i(A_i; A_j)$ is a subjective concept, formulated from *i*'s perspective

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Epistemic axioms

Axioms and rules from epistemic logic

- K: $\mathbf{B}_i(A \supset B) \supset (\mathbf{B}_i(A) \supset \mathbf{B}_i(B))$
- D: $\neg \mathbf{B}_i(A \land \neg A)$
- NEC: from A infers $\mathbf{B}_i(A)$

Axiom and rule for $Ir_i(A)$

- $\mathsf{IRA}_i : \mathsf{Ir}_i(\mathsf{A}) \supset \mathsf{B}_i(A_i) \land \mathsf{B}_i \mathsf{B}_j(A_j) \land \mathsf{B}_i \mathsf{B}_j \mathsf{Ir}_j(\mathsf{A})$
- IRI_i : from $D_i \supset \mathbf{B}_i(A_i) \land \mathbf{B}_i \mathbf{B}_j(A_j) \land \mathbf{B}_i \mathbf{B}_j(D_i)$ infer $D_i \supset \mathsf{Ir}_i(\mathbf{A})$

Epistemic axioms

Axioms and rules from epistemic logic

- K: $\mathbf{B}_i(A \supset B) \supset (\mathbf{B}_i(A) \supset \mathbf{B}_i(B))$
- D: $\neg \mathbf{B}_i(A \land \neg A)$
- NEC: from A infers $\mathbf{B}_i(A)$

Axiom and rule for $Ir_i(A)$

- $\mathsf{IRA}_i : \mathsf{Ir}_i(\mathsf{A}) \supset \mathsf{B}_i(A_i) \land \mathsf{B}_i \mathsf{B}_j(A_j) \land \mathsf{B}_i \mathsf{B}_j \mathsf{Ir}_j(\mathsf{A})$
- IRI_i : from $D_i \supset \mathbf{B}_i(A_i) \land \mathbf{B}_i \mathbf{B}_j(A_j) \land \mathbf{B}_i \mathbf{B}_j(D_i)$ infer $D_i \supset \mathsf{Ir}_i(\mathbf{A})$

A is provable, denoted $\vdash A$, if there is a sequence of formulae such that either each item is an axiom (or tautology) or is derived from previous items using inference rules

- 4 母 ト 4 ヨ ト - ヨ - りへや

Undecidability in Nash Theory

< 1 →

э

Nash theory in IR²

Given a finite 2-person game, $G = (\{S_1, S_2\}, \{h_1, h_2\})$, we use the following symbols to describe payoffs and decision/prediciton:

atomic preference formulae: $Pr_i(s; t)$ for i = 1, 2, and $s, t \in S$ atomic decision/prediction formulae: $I_i(s_i)$ for $s_i \in S_i$, i = 1, 2

- $\Pr_i(s; t)$ means that s is weakly preferred to t by player i
- $I_i(s_i)$ means that s_i is a "good" decision for i
- $\mathbf{B}_{j}(\mathbf{I}_{j}(s_{j}))$ captures *i*'s prediction that s_{j} is a "good" decision for *j*

Best responses and Nash equilibrium can be expressed by the Pr_i's

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Formalize N1-N2 in IR²:

- $\mathsf{N0}_i: \land_{s \in S}[\mathsf{I}_i(s_i) \supset \langle \mathsf{B}_j(\mathsf{I}_j(s_j)) \supset \mathsf{best}_i(s_i;s_j) \rangle];$
- $\mathbf{N1}_i: \wedge_{s_i \in S_i} [\mathsf{I}_i(s_i) \supset \mathbf{B}_j \mathbf{B}_i(\mathsf{I}_i(s_i))];$
- $\mathbf{N2}_i: \wedge_{s_i \in S_i} [\mathsf{I}_i(s_i) \supset \vee_{s_j \in S_j} \mathbf{B}_j(\mathsf{I}_j(s_j))].$
 - N0_i corresponds directly to N_i, but distinguishes decisions from predictions
 - N1; assume correct predictability
 - N2_i corresponds to non-emptiness of E_1 and E_2

Formalize N1-N2 in IR²:

- $\mathsf{N0}_i: \land_{s \in S}[\mathsf{I}_i(s_i) \supset \langle \mathsf{B}_j(\mathsf{I}_j(s_j)) \supset \mathsf{best}_i(s_i;s_j) \rangle];$
- $\mathbf{N1}_i: \wedge_{s_i \in S_i} [\mathsf{I}_i(s_i) \supset \mathbf{B}_j \mathbf{B}_i(\mathsf{I}_i(s_i))];$
- $\mathbf{N2}_i: \wedge_{s_i \in S_i} [\mathsf{I}_i(s_i) \supset \vee_{s_j \in S_j} \mathbf{B}_j(\mathsf{I}_j(s_j))].$
 - N0_i corresponds directly to N_i, but distinguishes decisions from predictions
 - N1; assume correct predictability
 - N2_i corresponds to non-emptiness of E_1 and E_2

Auxiliary axiom WF^i : if a game formula $A_i(s_i)$ (consisting of preference formulae and belief operators) satisfies N0-N2, then it implies $I_i(s_i)$

イロト 不得 とうせい かほとう ほ

Decidability for solvable games

Let $\Delta_i = \{ \mathbf{Ir}_i(g_i; g_j), \mathbf{Ir}_i(N_i; N_j), \mathbf{Ir}_i(WF^i; WF^j) \}$

• game formula (g_1, g_2) consists of the preferences in G

• $N_i = N0_i \wedge N1_i \wedge N2_i$

< 17 ▶ <

- 3

Decidability for solvable games

Let $\Delta_i = \{ \mathbf{Ir}_i(g_i; g_j), \mathbf{Ir}_i(N_i; N_j), \mathbf{Ir}_i(WF^i; WF^j) \}$

• game formula (g_1, g_2) consists of the preferences in G

• $N_i = NO_i \wedge N1_i \wedge N2_i$

Theorem (Decidability for solvable games)

Let G be a solvable game. If s_i is a Nash strategy, then $\Delta_i \vdash \mathbf{B}_i(I_i(s_i))$; otherwise, $\Delta_i \vdash \mathbf{B}_i(\neg I_i(s_i))$.

Decidability for solvable games

Let $\Delta_i = \{ \mathbf{Ir}_i(g_i; g_j), \mathbf{Ir}_i(N_i; N_j), \mathbf{Ir}_i(WF^i; WF^j) \}$

- game formula (g_1,g_2) consists of the preferences in G
- $N_i = NO_i \wedge N1_i \wedge N2_i$

Theorem (Decidability for solvable games)

Let G be a solvable game. If s_i is a Nash strategy, then $\Delta_i \vdash \mathbf{B}_i(I_i(s_i))$; otherwise, $\Delta_i \vdash \mathbf{B}_i(\neg I_i(s_i))$.

- for solvable games, players can reach final decisions
- similar decidability result holds for any finite depth prediction criterion (such as dominant strategy criterion)

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Undecidability for unsolvable games

Theorem (Undecidability for unsolvable games)

Let G be an unsolvable game. If s_i is not a Nash strategy, then $\Delta_i \vdash \mathbf{B}_i(\neg I_i(s_i))$. However, there exists a Nash strategy s_i such that

 $\Delta_i \nvDash \mathbf{B}_i(I_i(s_i))$ and $\Delta_i \nvDash \mathbf{B}_i(\neg I_i(s_i))$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Undecidability for unsolvable games

Theorem (Undecidability for unsolvable games)

Let G be an unsolvable game. If s_i is not a Nash strategy, then $\Delta_i \vdash \mathbf{B}_i(\neg I_i(s_i))$. However, there exists a Nash strategy s_i such that

 $\Delta_i \nvDash \mathbf{B}_i(I_i(s_i))$ and $\Delta_i \nvDash \mathbf{B}_i(\neg I_i(s_i))$.

- for unsolvable games, players may get stuck in prediction/decision making process
- similar to Gödel's incompleteness theorem, but due to a different source—strategic unpredictability

イロト 不得 トイヨト イヨト 二日

Literature

Mathematical logic and epistemic logic

- Introduction to Mathematical Logic by Mendelson
- Reasoning About Knowledge by Fagin et al.
- "Epistemic logics and their game theoretical applications: Introduction," *Economic Theory* (2002) by Kaneko