
Journal of Mathematical Economics 90 (2020) 1–11

Contents lists available at ScienceDirect

Journal ofMathematical Economics

journal homepage: www.elsevier.com/locate/jmateco

Randomization under ambiguity: Efficiency and incentive
compatibility✩

Zhiwei Liu a, Xinxi Song a,∗, Nicholas C. Yannelis b

a International School of Economics and Management, Capital University of Economics and Business, Beijing, China
b Department of Economics, The University of Iowa, Iowa City, USA

a r t i c l e i n f o

Article history:
Received 1 November 2018
Received in revised form 29 February 2020
Accepted 12 May 2020
Available online 20 May 2020

Keywords:
Lottery allocations
Mixed strategy
Efficiency
Incentive compatibility
Wald’s maxmin preferences

a b s t r a c t

We generalize de Castro and Yannelis (2018) by taking into account the use of randomization. We
answer the following questions: Is each efficient allocation of de Castro and Yannelis (2018) still Pareto
optimal? Are all efficient allocations still incentive compatible under the Wald’s maxmin preferences?
We provide positive answers and give applications.
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1. Introduction

One of the fundamental problems in mechanism design and
equilibrium theory with asymmetric information is the conflict
between efficiency and incentive compatibility. As shown in
Myerson (1979) and Holmström and Myerson (1983), an effi-
cient allocation may not be incentive compatible in the Bayesian
framework.1 However, when agents have the Wald’s maxmin
preferences, de Castro and Yannelis (2018) showed that the
conflict between efficiency and incentive compatibility no longer
exists: all efficient allocations are also incentive compatible if and
only if agents have the Wald’s maxmin preferences.
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1 It is well known that to end up with an allocation, the allocation’s incentive

compatibility plays an important role. There are different ways to define the
term ‘‘end up with’’, and the importance of incentive compatibility varies
with this definition. We refer interested readers to Pram (2020) for a recent
development in this direction.

We generalize de Castro and Yannelis (2018) by taking into
account the use of randomization. As pointed out by Raiffa (1961),
and rigorously showed by Saito (2015) and Ke and Zhang (2020),
a maxmin agent may achieve a higher payoff through the use
of randomization, and hence prefers to randomize her choices.2
The fact that randomization can improve maxmin agents’ payoffs
leads to the following questions: Can an efficient allocation of
de Castro and Yannelis (2018) be Pareto improved by a lottery
allocation?3 Are all efficient allocations still incentive compati-
ble under the Wald’s maxmin preferences, when we take into
account that each agent may randomize her choices (i.e., use a
mixed strategy)? We answer these questions in this paper.

In particular, we explicitly take into account randomization
(both lottery allocations and mixed strategies) to study efficiency
and incentive compatibility in an ambiguous exchange economy
with asymmetric information. An ambiguous exchange economy
with asymmetric information consists of a finite set of agents,
each of whom is characterized by a finite type set, an initial
endowment and an ex post utility function. More importantly, the
agents have the maxmin preferences à la Gilboa and Schmeidler
(1989) which include the Wald’s maxmin preference as a special
case. The main contributions that this paper makes are:

First, we show that when the agents’ utility functions sat-
isfy the standard concavity assumption, efficient allocations of

2 Empirical studies including Dominiak and Schnedler (2011), Dwenger et al.
(2016) and Agranov and Ortoleva (2017) found that a non-negligible number of
subjects do strictly prefer to randomize.
3 We introduce lotteries over the commodity space to get lottery allocations.

An allocation is a special case of a lottery allocation when it is degenerate.
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de Castro and Yannelis (2018) cannot be Pareto improved by any
feasible lottery allocation. Moreover, introducing lotteries over
the commodity space enlarges the set of efficient allocations. That
is, we show in Section 3 that the efficient lottery allocations set
contains the efficient allocations set of de Castro and Yannelis
(2018) as a strict subset.

Second, we show that this larger set, i.e., the efficient lottery
allocations set, satisfies stronger incentive compatibility notions
than the one in de Castro and Yannelis (2018). It follows that
all efficient allocations of de Castro and Yannelis (2018) are still
incentive compatible under the Wald’s maxmin preferences, even
if we take into account that an agent may randomize her reports
to get higher payoffs. Therefore, we strengthen and generalize
the sufficiency part of de Castro and Yannelis (2018), and obtain
as a corollary their related theorem. More specifically, there are
different ways to define incentive compatibility under mixed
strategies, since there are different and equally natural ways for
a maxmin agent to evaluate her mixed strategy. Two frequently
used ways are: evaluating a mixed strategy ex ante, and evaluating
a mixed strategy ex post. Evaluating a mixed strategy ex ante
assumes that an agent learns the realization of her mixed strategy
before nature draws a probability law from a set of probability
laws (i.e., ambiguity) to minimize the agent’s expected utility. It
follows that no mixed strategy can eliminate the effect of ambigu-
ity.4 Evaluating a mixed strategy ex post assumes that an agent
learns the realization of her mixed strategy after nature draws
a probability law from a set of probability laws to minimize the
agent’s expected utility. Now, a mixed strategy can fully eliminate
the effect of ambiguity.5 Saito (2015) introduced a more general
way: a maxmin agent evaluates her mixed strategy by taking a
weighted average of ‘‘evaluating a mixed strategy ex ante’’ and
‘‘evaluating a mixed strategy ex post’’, where the weight captures
the agent’s subjective belief that her mixed strategy eliminates
the effect of ambiguity. We show that when agents have the
Wald’s maxmin preferences, all efficient lottery allocations are
strongly mixed incentive compatible (Theorem 1). It follows that
when agents’ utility functions satisfy the standard concavity as-
sumption, all efficient allocations of de Castro and Yannelis (2018)
are strongly mixed incentive compatible (Corollary 3), which is
the strongest notion among all the mixed incentive compatibility
notions considered in this paper (Proposition 2).

Third, we demonstrate the usefulness of our results through
three applications, which are not covered by de Castro and Yan-
nelis (2018). In the first application, we recast the key example
of Prescott and Townsend (1984) with Wald’s maxmin prefer-
ences. Prescott and Townsend (1984) introduced lotteries on the
commodity space in an exchange economy with a continuum
of agents and the Bayesian preferences. They showed that an
efficient allocation x may not be incentive compatible; however,
the use of lotteries on the commodity space can achieve both
incentive compatibility and the same utility for every agent as
the efficient allocation x. We show that in a Bayesian economy
with a finite number of agents, Prescott and Townsend (1984)’s
method does not always work: when an efficient allocation is
not incentive compatible, using lotteries on the commodity space
may not be able to achieve both incentive compatibility and the
same utility for every agent as the efficient allocation. However, if
agents have the Wald’s maxmin preferences, every efficient allo-
cation is strongly mixed incentive compatible. In the second and

4 This is because regardless of the realization of the agent’s mixed strategy,
she faces ambiguity. It follows that using mixed strategies cannot improve the
agent’s payoff.
5 This is because the probability of her mixed strategy may be able to make

her payoff constant, which makes ambiguity irrelevant. It follows that a mixed
strategy may improve the agent’s payoff.

third applications, we show that each ex ante efficient allocation of
de Castro et al. (2017a,b) and each interim maxmin value allocation
of Angelopoulos and Koutsougeras (2015) are strongly mixed
incentive compatible under the Wald’s maxmin preferences.

The paper is organized as follows. Section 2 defines the
ambiguous exchange economy with asymmetric information.
Sections 3 and 4 discuss efficiency and incentive compatibility
respectively, while taking into account the use of randomiza-
tion. Section 5 shows that each efficient lottery allocation is
strongly mixed incentive compatible under the Wald’s maxmin
preferences. Section 6 discusses the three applications. Finally,
we conclude in Section 7. The proofs of our main results are
delegated to the Appendix.

2. Ambiguous exchange economy

Let I = {1, . . . ,N} be the set of N agents. Each agent i ∈ I
observes privately her own type si in the interim, where si is in a
finite set of possible types Si. That is, Si is agent i’s finite type
set. Write S = ×

N
i=1Si. A vector s = (s1, . . . , si, . . . , sN) ∈ S

represents agents’ types. That is, s is a type profile. Also, write
S−i = ×j̸=iSj, and s−i = (s1, . . . , si−1, si+1, . . . , sN) ∈ S−i. Let
Rℓ

+
be the ℓ-goods commodity space. Let ei : S → Rℓ

+
be agent

i’s initial endowment. Each agent receives her endowment in the
interim. We assume that ei is private valued, which means that
agent i’s endowment depends only on her own type si, and not
on the types of the other agents s−i, that is, for every si, s−i and
s′
−i, the endowments satisfy ei (si, s−i) = ei

(
si, s′−i

)
.6 Let ci ∈ Rℓ

+

denote agent i’s consumption, and c = (c1, . . . , cN) the vector
of all agents’ consumptions. That is, c is a consumption profile.
Clearly, c ∈ Rℓ×N

+ . Agent i’s utility of consuming ci ∈ Rℓ
+

at s ∈ S
is ui (ci, s), where ui is continuous and increasing in consumption.
Each agent learns her utility function ui in the interim. We assume
that ui is private valued, i.e., for every ci, si, s−i and s′

−i, the utilities
satisfy ui (ci, si, s−i) = ui

(
ci, si, s′−i

)
.7 For ease of notation, we

write ui (ci, si) thereafter.
An allocation is a mapping x : S → Rℓ×N

+ . For every s,
x (s) belongs to the set Rℓ×N

+ . That is, after the agents learn s,
they receive a consumption profile. Let L =

{
x : S → Rℓ×N

+

}
be

the set of allocations. Let ∆
(
Rℓ×N

+

)
denote the set of probability

distributions (i.e., lotteries) over Rℓ×N
+ with finite supports, i.e.,

∆
(
Rℓ×N

+

)
=
{
probability distribution δ : Rℓ×N

+
→ [0, 1] | δ (c) ̸= 0

for only finitely many c ’s in Rℓ×N
+

}
.

A lottery allocation is a mapping x : S → ∆
(
Rℓ×N

+

)
. For every

s, x (s) belongs to the set ∆
(
Rℓ×N

+

)
. That is, after the agents

learn s, they receive x (s) which is a lottery over Rℓ×N
+ . When the

lottery x (s) is realized, the agents receive a consumption profile
c ∈ Rℓ×N

+ , i.e., the realization of the lottery x (s) is a consumption
profile c. Let ∆ (L) =

{
x : S → ∆

(
Rℓ×N

+

)}
be the set of lottery

allocations. Then, an allocation x : S → Rℓ×N
+ is a special case of

a lottery allocation in which each x (s) assigns probability one to
some c in Rℓ×N

+ . For notational simplicity, we identify L with the
subset {x ∈ ∆ (L) | for every s, x (s) [c] = 1 for some c} of ∆ (L),
where x (s) [c] denotes the probability of consuming c.

After the agents learn everyone’s type s (i.e., at ex post), they
receive the lottery x (s). Let {ck}k∈{1,...,K } denote the K consump-
tion profiles in Rℓ×N

+ that occur with non-zero probabilities. Let

6 This assumption is automatically satisfied, if ei is constant, i.e., type
independent.
7 See Prescott and Townsend (1984) and de Castro and Yannelis (2018) which

also adopted private valued utility functions. This private valued assumption is
automatically satisfied, if ui is type independent.
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x (s)
[
ck
]
denote the probability of consuming ck. That is, after the

agents learn s, each agent i’s ex post utility is

vi (x (s) ; si) =

K∑
k=1

ui
(
cki , si

)
· x (s)

[
ck
]
,

where cki denotes agent i’s consumption in the consumption
profile ck.

When agent i privately learns si (i.e., in the interim stage), her
preference is maxmin à la Gilboa and Schmeidler (1989). Given a
lottery allocation x, the interim maxmin expected utility of agent i
with type si is

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i) , (1)

where Pi (si) is a non-empty, closed and convex set of probabili-
ties over S−i, i.e., the agent’s multi-prior set. Let x and y be two
lottery allocations. If the interim maxmin expected utility of x
is larger than that of y, then agent i with type si prefers x to y,
x ⪰

si y.8 Moreover, she strictly prefers x to y, x ≻
si y, if x ⪰

si y
but not y ⪰

si x. This general multi-prior model includes both the
Bayesian and the Wald’s maxmin preferences in de Castro and
Yannelis (2018) as special cases. If, for each i and si, the set Pi (si)
is a singleton set, then the multi-prior preferences become the
Bayesian preferences. If, for each i and si, the set Pi (si) is the set of
all probabilities over S−i, then the worst probability should assign
the whole weight to the worst type profile. In this case, the multi-
prior preferences become the Wald’s maxmin preferences in de
Castro and Yannelis (2018) and de Castro et al. (2017a), where
the following formulation is equivalent to (1),

min
s−i∈S−i

vi (x (si, s−i) ; si) . (2)

Remark 1. In Sections 3 and 4, our results hold for any multi-
prior set Pi (si). In Sections 5 and 6, we focus on the Wald’s
maxmin preferences, i.e., expression (2), to strengthen and gen-
eralize the sufficiency part of de Castro and Yannelis (2018): we
take into account the use of randomization (i.e., lottery allocations
and mixed strategy deviations) and show that the Wald’s maxmin
preferences solve the conflict between efficiency and incentive
compatibility. It follows that the results of de Castro and Yannelis
(2018) are robust in the presence of randomization.

3. Randomization under ambiguity: efficiency

One of the most important notions to evaluate a lottery allo-
cation is efficiency. In this section, we show that when ui satisfies
the standard concavity assumption, every feasible allocation that
cannot be Pareto improved by any feasible allocation in L, cannot
be Pareto improved by any feasible lottery allocation in ∆ (L)
either. Moreover, the efficient lottery allocations set contains the
efficient allocations set as a strict subset. In other words, intro-
ducing lotteries over Rℓ×N

+ enlarges the set of efficient allocations.
As in de Castro and Yannelis (2018), efficiency means interim
efficiency, unless stated otherwise.

Definition 1. A lottery allocation x in ∆ (L) is feasible, if for every
s ∈ S and c = (c1, . . . , cN) ∈ Rℓ×N

+ such that x (s) [c] > 0, then

N∑
i=1

ci =

N∑
i=1

ei (s) .

8 ‘‘Larger than’’ means ‘‘greater than or equal to’’.

Every agent i knows her own type si in the interim, and ranks
lottery allocations based on the maxmin preferences, i.e., expres-
sion (1). A feasible lottery allocation x is interim efficient, if there
does not exist another feasible lottery allocation y such that every
type si of every agent i prefers y to x, and some type si of some
agent i strictly prefers y to x under the maxmin preferences.

Definition 2. A feasible lottery allocation x ∈ ∆ (L) (resp., ∈ L)
is said to be interim efficient in ∆ (L) (resp., L), if there does not
exist another feasible lottery allocation y ∈ ∆ (L) (resp., ∈ L), such
that y ⪰

si x for all i and si ∈ Si; furthermore, y ≻
si x for some i

and si.

The efficient allocation of de Castro and Yannelis (2018) is a
feasible allocation x ∈ L that is interim efficient in L.

Remark 2. Notice that a feasible allocation x ∈ L is interim
efficient in ∆ (L), if there does not exist another feasible lottery
allocation y ∈ ∆ (L), such that y ⪰

si x for all i and si ∈ Si;
furthermore, y ≻

si x for some i and si. Since ∆ (L) contains L as a
strict subset, obviously it is harder for an allocation x to be interim
efficient in ∆ (L) than in L.

However, Proposition 1 shows that if agents’ utility functions
ui are concave, then every allocation x that is interim efficient in L
is also interim efficient in ∆ (L) under the maxmin preferences.9
Formally, let X∆(L) ⊂ ∆ (L) denote the set of lottery allocations
that are interim efficient in ∆ (L), and XL ⊂ L denote the set of
allocations that are interim efficient in L.

Proposition 1. In an ambiguous exchange economy, if the utility
function ui is concave for each i, then XL ⊆ X∆(L).

The proof of Proposition 1 is in the Appendix.10 The intuition
behind Proposition 1 is that at every s, the concavity of ui implies
risk aversion. Then, for every feasible lottery allocation in ∆ (L),
there is a feasible allocation in L that gives every agent a higher
payoff at every s. Therefore, an allocation that is interim efficient
in L cannot be Pareto improved by any feasible lottery allocation
in ∆ (L), when the agents’ utility functions are concave.

Example 1 shows that XL ⊂ X∆(L), that is, the efficient alloca-
tions set is a strict subset of the efficient lottery allocations set.

Example 1. There is one good and two agents. Agent 1 has one
type S1 = {s1}, and agent 2 has two types S2 =

{
s2, s′2

}
. Thus,

there are two possible type profiles s = (s1, s2), s′ =
(
s1, s′2

)
. The

aggregate endowment is one unit of the good, regardless of the
agents’ types. Agents’ utility functions are as follows:

u1 (c, s1) = c; u2 (c, s2) = c; u2
(
c, s′2

)
=

√
c.

Agent 2 knows agent 1’s type, since by construction agent 1
has only one type. Agent 1 has a multi-prior set P1 which contains
all probability distributions over S2. That is, P1 is the convex hull
of {(1, 0), (0, 1)}, where (1, 0) denotes the probability distribution
that assigns 1 to s2, and (0, 1) denotes the probability distribution
that assigns 1 to s′2.

The set of efficient allocations is

XL = {x ∈ L : x is feasible, and x1 (s) = x1
(
s′
)
},

i.e., each allocation in XL should always assign the same level of
consumption to agent 1.

It is straightforward to check that each allocation in XL is
interim efficient in ∆ (L) when all lottery allocations in ∆ (L) are

9 Concavity of ui implies risk aversion. Also, concavity imposes restrictions
on the agents’ preferences over multiple commodities.
10 Proposition 1 holds for any multi-prior set Pi (si), i.e., expression (1).
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considered. Let ∆ (L) \ L denote the set of all elements of ∆ (L)
that are not elements of L. Then, there exist lottery allocations in
∆ (L) \ L that are interim efficient in ∆ (L) as well. For example,
the following lottery allocation x is interim efficient in ∆ (L),

x =

{
(1, 0)with prob 1

2 ; (0, 1)with prob 1
2 s = (s1, s2)

(0.5, 0.5) s′ =
(
s1, s′2

)
.

That is, at s, agent 1 gets 1 unit of the good with probability 1
2 , and

agent 2 gets 1 unit of the good with probability 1
2 . At s

′, each agent
gets 0.5 unit of the good. It follows that the efficient allocations
set is a strict subset of the efficient lottery allocations set, i.e., we
have XL ⊂ X∆(L).

4. Randomization under ambiguity: incentive compatibility

When there is ambiguity, Saito (2015) and Ke and Zhang
(2020) showed that a maxmin agent may achieve a higher in-
terim payoff through the use of randomization. Furthermore,
Saito (2015) pointed out that an agent may randomize her choices
in her mind without using observable randomization devices,
when she sees fit. This motivates us to take into account that
a maxmin agent may adopt a mixed strategy in her decision
making.

Given initial endowment e, if agents want to end up with a
feasible lottery allocation x ̸= e, transfers need to take place.
Since we allow both e and x to depend on the type profile s, the
transfers may depend on s as well. Formally,

Definition 3. Given a lottery allocation x in ∆ (L) and an s
in S, define t (s) ∈ ∆

(
Rℓ×N

)
to be the transfer in which the

consumption transfer tk (s) = ck − e (s) ∈ Rℓ×N occurs with
probability x (s)

[
ck
]
for every k = 1, . . . , K (s).11

In the interim, every agent i only knows si. Thus, to end up
with the correct transfer t (s), it is necessary to pool their private
information. Therefore, we assume that each agent i decides
which type to report after learning si, in order that they may end
up with the correct transfer. By doing so, it is possible that agents
misreport their true types.

For simplicity, let e (si, s−i) + t
(
ŝi, s−i

)
denote the lottery that

the agents get, when their type profile is (si, s−i) and their re-
ported type profile is

(
ŝi, s−i

)
. Then, vi

(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)

is the utility that agent i gets, when the agents’ type profile is
(si, s−i) and their reported type profile is

(
ŝi, s−i

)
, i.e.,

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)

=

K(ŝi,s−i)∑
k=1

ui
(
ei (si, s−i) + cki − ei

(
ŝi, s−i

)
, si
)
x
(
ŝi, s−i

) [
ck
]
.

Since we allow each agent’s endowment to vary with her type,
we impose the following feasibility condition as in de Castro et al.
(2017a,b), Moreno-García and Torres-Martínez (2020): every con-
sumption transfer under x is feasible, i.e., ei (s)+ cki − ei

(
ŝ
)

∈ Rℓ
+
,

for each i, s, ŝ and k ∈
{
1, . . . , K

(
ŝ
)}

. Clearly, if each ei is constant,
then this feasibility condition is automatically satisfied.

When reporting her type, an agent can use a pure deception:
an agent’s pure deception is a pure strategy which specifies a
reported type for each true type.

Definition 4. Agent i’s pure deception is a mapping α̂i : Si → Si.

The (pure) incentive compatibility notion is standard.

11 That is, there are K (s) consumption profiles that occur with non-zero
probabilities, when the lottery is x (s).

Definition 5. A lottery allocation x ∈ ∆ (L) is (pure) incentive
compatible under the maxmin preferences, if for each agent i, and
for each type si of agent i,

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i) ≥

min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
α̂i(si), s−i

)
; si
)
pi (s−i)

for all α̂i(si) ∈ Si.

When we take into account randomization, an agent’s decep-
tion is a mapping from her type set Si to the set of lotteries over
her type set. We call such a deception a mixed deception.

Definition 6. Agent i’s mixed deception is a mapping αi : Si →

∆ (Si).

For every si, αi (si) is a lottery over her type set. Then, agent
i with type si reports the realization ŝi of the lottery αi (si). Let
αi (si)

[
ŝi
]
denote the probability with which agent i with type

si reports ŝi, where ŝi ∈ Si. The truth telling mixed deception αT
i ,

defined by αT
i (si) [si] = 1 for every si ∈ Si, will be central to our

analysis.
Clearly, an agent’s mixed deception corresponds to a mixed

strategy.12 When an agent has maxmin preferences, she may
evaluate her mixed strategy ex ante or evaluate her mixed strategy
ex post. Both ways are equally natural. More general ways to
evaluate mixed strategies were formulated by Saito (2015) and
Ke and Zhang (2020). Different ways to evaluate a mixed strategy
lead to different mixed incentive compatibility notions. We dis-
cuss different notions of mixed incentive compatibility and their
relationships below.

4.1. Weak mixed incentive compatibility

Evaluating a mixed strategy ex ante assumes that an agent
with type si learns the realization ŝi of her mixed strategy (i.e., ŝi
is the realization of the lottery αi (si)) and reports ŝi, before
nature draws pi ∈ Pi (si). More specifically, Fig. 1 illustrates the
subjective timing of agent i with type si. On the diagram, when
we say ‘‘Agent i’’, we mean ‘‘Agent i with type si’’.

Clearly, regardless of the realization of the agent’s mixed strat-
egy, she faces ambiguity. The utility of agent i with type si from
playing the mixed strategy αi is

∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]
,

(3)

i.e., agent i with type si evaluates her mixed strategy ex ante. Under
the formulation of (3), there does not exist a mixed strategy that
can outperform all the pure strategies. Indeed, let s∗i be her best
report among all the choices in Si, i.e.,

min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
s∗i , s−i

)
; si
)
pi (s−i) = (4)

max
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭ .

12 A mixed strategy of agent i is a mapping from her type set Si to the set of
lotteries over her action set. An agent’s mixed deception is a mixed strategy in
which her action set is her type set.
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Fig. 1. Subjective timing of Agent i that leads to evaluating a mixed strategy ex ante.

Fig. 2. Subjective timing of Agent i that leads to evaluating a mixed strategy ex post.

Since we have 0 ≤ αi (si)
[
ŝi
]

≤ 1 for each ŝi ∈ Si, and∑
ŝi∈Si

αi (si)
[
ŝi
]

= 1 by construction, it must be that

∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]

≤

(5)

min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
s∗i , s−i

)
; si
)
pi (s−i) .

Thus, no lottery αi (si) can give a higher payoff for (3) than what
is obtained in (4). That is, no lottery αi (si) can outperform the
best report s∗i . We can conclude that there does not exist a mixed
strategy that can outperform all the pure strategies.

Definition 7. A lottery allocation x ∈ ∆ (L) is weakly mixed
incentive compatible, if for each agent i, and for each type si of
agent i,

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i) ≥

∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]
.

for any αi (si) ∈ ∆ (Si). That is, every agent prefers truthfully
reporting her type to any lottery over her type set Si.

Since the set ∆ (Si) includes the lotteries that the agent reports
a type with probability one, we know that weak mixed incentive
compatibility implies incentive compatibility (Definition 5). Fur-
thermore, we know from (5) that if s∗i happens to be agent i’s true
type, then agent i has no incentive to adopt a lottery over her type
set. That is, incentive compatibility implies weak mixed incentive
compatibility. Therefore, we can conclude this subsection with
the following corollary.

Corollary 1. Let x ∈ ∆ (L). The lottery allocation x is weakly
mixed incentive compatible (Definition 7) if and only if x is incentive
compatible (Definition 5).

4.2. Strong mixed incentive compatibility

Evaluating a mixed strategy ex post assumes that nature draws
pi from Pi (si) first, and then agent i with type si learns the
realization ŝi of her mixed strategy. Fig. 2 illustrates the subjective
timing of agent i with type si. On the diagram, when we say
‘‘Agent i’’, we mean ‘‘Agent i with type si’’.

Her utility from playing the mixed strategy αi is

min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]
pi (s−i) ,

(6)

i.e., agent i with type si evaluates her mixed strategy ex post.13
Since the probability of her mixed strategy enters her utility
function (6) in a nonlinear way, randomization may be able to
make her payoff across all possible type profiles smooth. Thus,
randomization may be able to fully eliminate the effect of ambi-
guity. Indeed, if there exists a lottery α∗

i (si) that gives the agent
the same payoff at every possible type profile, i.e.,∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
α∗

i (si)
[
ŝi
]

=

∑
ŝi∈Si

vi
(
e
(
si, s′−i

)
+ t

(
ŝi, s′−i

)
; si
)
α∗

i (si)
[
ŝi
]

for all s−i and s′
−i in S−i, then ambiguity no longer affects her

payoff, i.e.,

min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
α∗

i (si)
[
ŝi
]
pi (s−i) =

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
α∗

i (si)
[
ŝi
]
pi (s−i) ,

for all pi in Pi (si). Thus, her mixed strategy fully eliminates the
effect of ambiguity.

Definition 8. A lottery allocation x ∈ ∆ (L) is strongly mixed
incentive compatible, if for each agent i, and for each type si of
agent i,

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i) ≥

min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]
pi (s−i)

for any αi (si) ∈ ∆ (Si). That is, every agent prefers truthfully
reporting her type to any lottery over her type set.

It can be easily checked that strong mixed incentive compati-
bility implies incentive compatibility, since the set ∆ (Si) includes

13 Now agent i with type si evaluates the lottery αi (si) for each type profile
s′ in the set of all possible type profiles {(si, s−i) : s−i ∈ S−i}, hence the name
‘‘evaluating a mixed strategy ex post’’.
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the lotteries that the agent reports a type with probability one.
We illustrate in Example 2 that an incentive compatible lottery
allocation may not be strongly mixed incentive compatible under
the maxmin preferences.

Example 2. There are two agents, 1 and 2. Agent 1’s type set is
S1 =

{
s1, s′1

}
. Agent 2’s type set is S2 =

{
s2, s′2

}
. There are four

possible type profiles,

S =
{
(s1, s2) ,

(
s1, s′2

)
,
(
s′1, s2

)
,
(
s′1, s

′

2

)}
.

For simplicity, we assume that each agent i’s utility function ui
and initial endowment ei is independent of s ∈ S. Let x be a
feasible lottery allocation in ∆ (L), such that

v1 (x (s1, s2) ; ·) = 2, v1
(
x
(
s1, s′2

)
; ·
)

= 5,

v1
(
x
(
s′1, s2

)
; ·
)

= 5, v1
(
x
(
s′1, s

′

2

)
; ·
)

= 2.

v2 (x (s1, s2) ; ·) = 5, v2
(
x
(
s1, s′2

)
; ·
)

= 2,

v2
(
x
(
s′1, s2

)
; ·
)

= 2, v2
(
x
(
s′1, s

′

2

)
; ·
)

= 5.

Furthermore, regardless of an agent’s type, her multi-prior set Pi
contains all probability distributions over S−i, that is, Pi = ∆ (S−i).

The lottery allocation x is incentive compatible. Indeed, for
agent 1 with type s1, by reporting the truth, she gets

min
p1∈P1

v1 (x (s1, s2) ; s1) p1 (s2) + v1
(
x
(
s1, s′2

)
; s1
)
p1
(
s′2
)

=

min
{
v1 (x (s1, s2) ; s1) , v1

(
x
(
s1, s′2

)
; s1
)}

= min {2, 5} = 2;

by reporting the lie s′1, she gets

min
p1∈P1

v1
(
x
(
s′1, s2

)
; s1
)
p1 (s2) + v1

(
x
(
s′1, s

′

2

)
; s1
)
p1
(
s′2
)

=

min
{
v1
(
x
(
s′1, s2

)
; s1
)
, v1

(
x
(
s′1, s

′

2

)
; s1
)}

= min {5, 2} = 2.

Clearly, she has no incentive to lie. The same result holds for the
other type and the other agent.

However, the lottery allocation x is not strongly mixed incen-
tive compatible. Indeed, for agent 1 with type s1, mixing between
the truth s1 and the lie s′1, i.e., α1 (s1) [s1] = 0.5 and α1 (s1)

[
s′1
]

=

0.5, gives her a strictly higher interim payoff

min
p1∈P1

{
v1 (x (s1, s2) ; s1) α1 (s1) [s1] + v1

(
x
(
s′1, s2

)
; s1
)
α1 (s1)

[
s′1
]}

p1 (s2) +{
v1
(
x
(
s1, s′2

)
; s1
)
α1 (s1) [s1] + v1

(
x
(
s′1, s

′

2

)
; s1
)
α1 (s1)

[
s′1
]}

p1
(
s′2
)

=

min
{
v1 (x (s1, s2) ; s1) α1 (s1) [s1] + v1

(
x
(
s′1, s2

)
; s1
)
α1 (s1)

[
s′1
]

,

v1
(
x
(
s1, s′2

)
; s1
)
α1 (s1) [s1] + v1

(
x
(
s′1, s

′

2

)
; s1
)
α1 (s1)

[
s′1
]}

=

min {2 × 0.5 + 5 × 0.5, 5 × 0.5 + 2 × 0.5} = 3.5.

Clearly, x is not strongly mixed incentive compatible under the
maxmin preferences.

Remark 3. In Example 2, we assume a type independent ui,
which is a special case of the private valued utility function.
One could drop the type independence assumption and reach
the same conclusion that incentive compatibility does not imply
strong mixed incentive compatibility under the maxmin prefer-
ences.

Note that the lottery allocation x in Example 2 is not in-
terim efficient. We discuss the relationship between efficiency
and incentive compatibility in Section 5.

We summarize the results of this subsection with the follow-
ing corollary.

Corollary 2. Let x ∈ ∆ (L). If the lottery allocation x is strongly
mixed incentive compatible (Definition 8), then x is incentive com-
patible (Definition 5). However, an incentive compatible lottery al-
location may not be strongly mixed incentive compatible.

4.3. Mixed incentive compatibility under the random uncertainty-
averse representation

Saito (2015) axiomatized a utility function that identifies the
agent’s subjective belief that her randomization eliminates the
effects of ambiguity. The utility representation is called a random
uncertainty-averse (RUA) representation. According to the ran-
dom uncertainty-averse (RUA) representation, the utility of agent
i with type si from playing a mixed strategy αi is a weighted aver-
age of ‘‘evaluating a mixed strategy ex ante’’ (i.e., expression (3))
and ‘‘evaluating a mixed strategy ex post’’ (i.e., expression (6)):

δ min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]
pi (s−i) +

(1 − δ)
∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]
,

(7)

where δ ∈ [0, 1] is the weight.
That is, the RUA representation (7) assigns a weight δ ∈ [0, 1]

to evaluating a mixed strategy ex post, and assigns a weight 1−δ

to evaluating a mixed strategy ex ante. Hence, the parameter δ

captures the agent’s subjective belief that her mixed strategy αi
eliminates the effect of ambiguity. Clearly, the RUA representa-
tion includes (3), (6) and intermediate cases between (3) and (6)
as special cases. Now, the mixed incentive compatibility notion
becomes the following.

Definition 9. A lottery allocation x ∈ ∆ (L) is mixed in-
centive compatible under the random uncertainty-averse (RUA)
representation, if for each agent i, and for each type si of agent i,

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i) ≥

δ min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]
pi (s−i) +

(1 − δ)
∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]
,

for any αi (si) ∈ ∆ (Si). That is, every agent prefers truthfully
reporting her type to any lottery over her type set.

When the weight δ is one, Definition 9 becomes strong
mixed incentive compatibility (Definition 8). When δ is zero,
Definition 9 becomes weak mixed incentive compatibility
(Definition 7) which is equivalent to incentive compatibility
(Definition 5). We show that the strong mixed incentive compat-
ibility notion is the strongest of all. That is, we have the following
proposition, and its proof is in the Appendix.

Proposition 2. Let x ∈ ∆ (L). If the lottery allocation x is strongly
mixed incentive compatible, then x is mixed incentive compatible
under the random uncertainty-averse (RUA) representation for any
δ ∈ [0, 1] which includes weak mixed incentive compatibility as a
special case.

5. Efficiency and mixed incentive compatibility

In the Bayesian framework, it is known from Myerson (1979)
and Holmström and Myerson (1983) that an efficient allocation
may not be incentive compatible. Also, in general, an incentive
compatible allocation may not be efficient. de Castro and Yannelis
(2018) showed that if agents have the Wald’s maxmin prefer-
ences, any efficient allocation is incentive compatible, that is,
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the set of efficient allocations is a strict subset of the set of in-
centive compatible allocations. Furthermore, the Wald’s maxmin
preference is necessary for this result to hold.

We improve the result of de Castro and Yannelis (2018) by
showing that under the Wald’s maxmin preferences, each effi-
cient lottery allocation, x ∈ X∆(L), is strongly mixed incentive
compatible (Theorem 1). It follows that when ui satisfies the
standard concavity assumption, all efficient allocations of de
Castro and Yannelis (2018) are strongly mixed incentive com-
patible (Corollary 3). The strong mixed incentive compatibil-
ity notion is stronger than the incentive compatibility notion
(Corollary 2), and it is the strongest among all the mixed
incentive compatibility notions considered in this paper
(Proposition 2). Therefore, we strengthen and generalize the
sufficiency part of de Castro and Yannelis (2018), and obtain as a
corollary their related theorem.14 Formally,

Theorem 1. In an ambiguous exchange economy, if agents have
the Wald’s maxmin preferences, then every efficient lottery allocation
x ∈ X∆(L) is strongly mixed incentive compatible.15

The proof of Theorem 1 is in the Appendix. The intuition
behind Theorem 1 is that under the Wald’s maxmin preferences,
profitable unilateral deviations lead to Pareto improvements. In-
deed, let x be a lottery allocation. Suppose that an agent i with
type si adopts a mixed deception αi (si) ∈ ∆ (Si), and all other
agents report their types truthfully. The resulting lottery alloca-
tion y is feasible. The mixed deception αi (si) cannot reduce the
worst possible payoff of agent j ̸= i regardless of the type of
agent j. In fact, the mixed deception αi (si) may help agent j to
eliminate the effect of ambiguity. Therefore, every agent j with
type sj’s interim payoff does not fall under the Wald’s maxmin
preferences. If the mixed deception αi (si) strictly increases the
interim payoff of the agent i with type si, then the feasible lottery
allocation y Pareto improves x.

Corollary 3 shows that the efficient allocations of de Castro
and Yannelis (2018) are not only incentive compatible but also
strongly mixed incentive compatible, when each ui is concave and
each agent i has Wald’s maxmin preferences.

Corollary 3. In an ambiguous exchange economy, if agents have
the Wald’s maxmin preferences, and utility function ui is concave
for each i, then every efficient allocation x ∈ XL is strongly mixed
incentive compatible.

Proof. This result follows from Proposition 1 and Theorem 1. □

It follows from Proposition 2 that the efficient allocations of
de Castro and Yannelis (2018) are incentive compatible under

14 In this paper, we adopt the type model as in de Castro and Yannelis
(2018). A more general model is the partition model. Unlike the type model, the
partition model can describe situations in which agents’ reports do not agree,
i.e., the intersection of the reported events is empty. For a detailed discussion on
the relationship between partition models and type models, please see de Castro
et al. (2017b) and de Castro et al. (2016). Under a partition model, the incentive
compatibility notions depend on the punishments that the agents get when their
reported events do not agree. Some choices of punishments are: every agent
keeps her endowment, impose the worst possible transfer, or randomly assign
a transfer, just to name a few, see for example, Glycopantis et al. (2001, 2003),
Liu (2016) and de Castro et al. (2020, 2017b). Incentive compatibility should
be easier to achieve, if one imposes a severe punishment whenever the agents’
reports do not agree.
15 Theorem 1 implies that direct revelation mechanisms suffice to implement
efficient lottery allocations. Therefore, there is no need to consider other
mechanisms. The revelation principle under maxmin preferences and mixed
strategies is interesting. On this topic, we refer interested readers to Bose and
Renou (2014a) and Bose and Renou (2014b).

mixed strategies, regardless of each agent’s subjective belief that
her mixed strategy eliminates the effect of ambiguity. That is,

Corollary 4. In an ambiguous exchange economy, if agents have
the Wald’s maxmin preferences, and utility function ui is concave for
each i, then every efficient allocation x ∈ XL is mixed incentive com-
patible under the random uncertainty-averse (RUA) representation
for any δ ∈ [0, 1].

6. Applications

6.1. Comparison with Prescott and Townsend

Prescott and Townsend (1984) showed that in a Bayesian
economy with a continuum of agents, an efficient allocation x
may not be incentive compatible. However, it is possible to find
an incentive compatible lottery allocation that gives every type of
agent the same utility as x. Their well chosen lottery allocation is
feasible only when there is a continuum of agents. Prescott and
Townsend (1984) illustrated their idea with the help of an exam-
ple (page 15). In their example, there is a continuum of agents,
and two types, s1 and s2. The agents have increasing and concave
utility functions. When an agent’s type is s1, her utility function
ui is risk averse. When an agent’s type is s2, her utility function ui
is risk neutral. There is one good in this economy. Since there are
differences in curvatures in the utility functions ui, an efficient
allocation x in L would be for type s1 to consume c1 ∈ R+ units
of the good, and type s2 to consume c2 ∈ R+ units of the good,
where c1 < c2. However, this efficient allocation x is not incentive
compatible. Indeed, type s1 prefers the larger consumption c2 to
the consumption c1, thus it is beneficial for type s1 to pretend
to be type s2. Prescott and Townsend (1984) showed that it is
possible to achieve both incentive compatibility and the same
utility by replacing c2 with a lottery over R+. The new lottery
allocation y is in ∆ (L), which gives c1 units of the good to type s1
and gives a lottery over R+ to type s2. Prescott and Townsend
(1984) chose the lottery such that type s1 strictly prefers her
consumption c1 to the lottery, and type s2 is indifferent between
the lottery and the consumption c2. Therefore, lotteries can be
used to achieve both incentive compatibility and the same utility.

However, we show that Prescott and Townsend (1984)’s
method does not always work in a Bayesian economy with a finite
number of agents: an efficient allocation x may not be incentive
compatible, and there may not exist an incentive compatible
lottery allocation that gives every type of agent the same utility
as x. If the agents have the Wald’s maxmin preferences instead
of the Bayesian preferences, then every efficient allocation is
strongly mixed incentive compatible, as was shown in Section 5.
We illustrate this point with the help of Example 3.

Example 3. There is one good and two agents. Agent 1 has two
types S1 =

{
s1, s′1

}
, and agent 2 has two types S2 =

{
s2, s′2

}
.

There are four possible type profiles s = (s1, s2), s′ =
(
s1, s′2

)
,

s′′ =
(
s′1, s2

)
, s′′′ =

(
s′1, s

′

2

)
. The aggregate endowment is one

unit of the good, regardless of the agents’ types. Agents’ utility
functions are as follows:

u1 (c, s1) =
√
c; u1

(
c, s′1

)
= c; u2 (c, s2) =

√
c; u2

(
c, s′2

)
=

10c.
In the interim, if each agent i thinks that agent −i′s two types

are equally likely, then an efficient allocation, i.e., x in XL, of this
economy is

x =

⎧⎪⎪⎨⎪⎪⎩
(0.5, 0.5) s = (s1, s2)
(0, 1) s′ =

(
s1, s′2

)
(0.75, 0.25) s′′ =

(
s′1, s2

)
(0, 1) s′′′ =

(
s′1, s

′

2

)
.
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That is, at s, each agent gets 0.5 unit of the good; at s′, agent 2 gets
1 unit of the good, and agent 1 gets nothing; etc. The allocation
x is not incentive compatible. Indeed, agent 2 with type s2 gets√
0.5× 0.5+

√
0.25× 0.5 by reporting the truth s2, and she gets

1 by reporting the lie s′2. Clearly, lying is better.
Following Prescott and Townsend (1984), we look for an in-

centive compatible lottery allocation y in ∆ (L) which gives the
same interim utility to every type of agent as x. Clearly, if such a
y exists, then it is both incentive compatible and efficient. Indeed,
since x in L is interim efficient in L, then no feasible lottery
allocation z in ∆ (L) can Pareto improve x by Proposition 1. The
lottery allocation y gives every type of agent the same interim
utility as x, therefore no feasible lottery allocation z in ∆ (L) can
Pareto improve y. That is, y is interim efficient in ∆ (L).

The idea is to replace the risk neutral agent’s consumption
with a lottery, such that the risk neutral agent’s interim utility
is unchanged. At the same time, the risk averse agent prefers her
consumption to the risk neutral agent’s lottery. However, in this
example, such a lottery allocation does not exist. The risk neutral
agent 2 already has the total endowment. It is not possible to
replace agent 2’s consumption at s′ and s′′′ with lotteries, while
keeping the risk neutral agent 2’s interim utility unchanged and
making the risk averse agent 2 unwilling to lie.

Now, if the agents have the Wald’s maxmin preferences, that
is, every agent i thinks that any probability distribution over S−i
is possible, then every efficient allocation x ∈ XL is strongly mixed
incentive compatible by Corollary 3.

Remark 4. In order to achieve both efficiency and incentive
compatibility, Prescott and Townsend (1984) rely on a continuum
of agents. When there is a finite number of agents, one may not
be able to achieve both efficiency and incentive compatibility by
using lotteries as in Prescott and Townsend (1984) (Example 3).
Also, Sun and Yannelis (2008) showed that every efficient allo-
cation is incentive compatible in the Bayesian framework, and
this result relies on the law of large numbers. In essence, the
continuum of agents with certain assumptions (independence of
private information signals) enables the authors to show that the
private information becomes negligible/irrelevant and no issue of
incentive compatibility arises in their framework. In our model,
we do not need a continuum of agents, as we have a fixed finite
economy. However, the adaptation of the Wald’s maxim prefer-
ences enables us to show that efficient allocations are strongly
mixed incentive compatible, a result that is false in the Bayesian
framework, as Example 3 indicated.

6.2. Ex ante efficient allocations

The efficiency notion we examined is interim efficiency, and
an alternative efficiency notion is ex ante efficiency. At ex ante,
each agent is able to form a probability assessment µi over her
types. That is, there is a measure µi generating si. Assume that
for each i and for each type si, µi (si) > 0. Let ∆i be the set of all
prior probability measures on S that agrees with µi, i.e.,

∆i =

⎧⎨⎩probability measureπi : 2S
→ [0, 1] |

∑
s−i∈S−i

πi (si, s−i)

= µi (si) , ∀si ∈ Si

⎫⎬⎭ .

That is, each probability measure πi in ∆i assigns the correct
probability µi (si) to the event {(si, s−i) : s−i ∈ S−i} for each si ∈ Si.
Clearly, ∆i is nonempty, closed and convex. If at ex ante, agent i’s

multi-prior set is ∆i, then she has the Wald’s maxmin preferences
⪰

e
i in de Castro et al. (2017a,b).

Definition 10. For any two allocations x and y in L, agent i prefers
x to y at ex ante, x ⪰

e
i y, if

min
πi∈∆i

∑
s∈S

vi (x (s) , si) πi (s) ≥ min
πi∈∆i

∑
s∈S

vi (y (s) , si) πi (s) . (8)

Now, agent i uses the worst probability measure in ∆i to
evaluate an allocation. Agent i knows µi (si) for each si. Therefore,
the worst probability measure puts the whole weight µi (si) on
the worst type profile in the set {(si, s−i) : s−i ∈ S−i}, for each
si. Now, we have the following formulation which is equivalent
to (8),∑
si∈Si

(
min

s−i∈S−i
vi (x (si, s−i) , si)

)
µi (si)

≥

∑
si∈Si

(
min

s−i∈S−i
vi (y (si, s−i) , si)

)
µi (si) .

Definition 11. A feasible allocation x ∈ L is ex ante efficient in L,
if there does not exist another feasible allocation y ∈ L, such that
at ex ante y ⪰

e
i x for all i, and y ≻

e
i x for at least one i.

We show that each allocation in L that is ex ante efficient in L
is strongly mixed incentive compatible under concavity and the
Wald’s maxmin preferences. Formally,

Proposition 3. In an ambiguous exchange economy, if agents have
the Wald’s maxmin preferences, and utility function ui is concave for
each i, then every ex ante efficient allocation x ∈ L is strongly mixed
incentive compatible.

Proof. By Definitions 2 and 11, every feasible allocation x ∈ L
that is ex ante efficient in L is interim efficient in L. Then by
Corollary 3, every feasible allocation x ∈ L that is ex ante efficient
in L is strongly mixed incentive compatible under the Wald’s
maxmin preferences. □

6.3. Interim maxmin value allocations

We show below that each interim maxmin value allocation
of Angelopoulos and Koutsougeras (2015) is strongly mixed in-
centive compatible under the Wald’s maxmin preferences. This
maxmin value notion has more desirable general equilibrium
properties than its Bayesian counterpart. Its Bayesian counter-
part restricts the space of allocations to those compatible with
the information of individuals (i.e., incentive compatible ones),
which excluded many opportunities for trade. As a result, the
Bayesian outcomes are only (information) constrained efficient.
However, the maxmin value notion abandons the restrictions on
the space of allocations, achieving both unconstrained efficiency
and incentive compatibility.

Given an economy, let u =
(
u1, . . . , uN

)
denote the agents’

interim maxmin expected utility, where ui (x(s)) = mins′
−i∈S−i

ui
(
x
(
si, s′−i

))
, and x ∈ L. For each s ∈ S, an interim maxmin

TU game Γ =
(
I, Vλ,u,s

)
whose characteristic function Vλ,u,s is

defined as follows: for each coalition C ⊆ I and each weight λ,
define16

Vλ,u,s (C) =

{
max
x∈L

∑
i∈C

λi (s) ui (x(s)) |

∑
i∈C

xi (s) =

∑
i∈C

ei (s) , ∀s ∈ S

}
,

16 For C = ∅, define Vλ,u,s (∅) = 0.
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where λi (s) is the weight on agent i at s. Given such a TU game,
the Shapley value of agent i is defined as

Shi
(
Vλ,u,s

)
=

∑
C⊆I,i∈C

(|C | − 1)! (|I| − |C |)!

|I|!

[
Vλ,u,s (C) − Vλ,u,s (C\{i})

]
,

where the summation is over all coalitions C that contain the
agent i. The Shapley value can be interpreted as the ‘‘worth’’
or the sum of marginal contributions that an agent made to all
the coalitions that she belongs to. The interim maxmin value
allocation of Angelopoulos and Koutsougeras (2015) is defined
below.

Definition 12. An allocation x ∈ L is said to be an interim
maxmin value allocation if the following two conditions are sat-
isfied for all s ∈ S:

1.
∑

i∈I xi (s) =
∑

i∈I ei (s)
2. there exists λ (s) ∈ RI

+
\{0}, such that for all i ∈ I ,

λi (s) ui (x(s)) = Shi
(
Vλ,u,s

)
.

The first condition is the feasibility constraint at each s; and
the second condition says that the interim maxmin expected
utility of each agent multiplied by her weight λi(s) must be equal
to her Shapley value derived from the TU game Γ =

(
I, Vλ,u,s

)
. In

other words, the interim maxmin expected utility of each agent
multiplied by her weight is equal to her ‘‘worth’’. Thus, fairness
is inherent in this concept.

Definition 13. A feasible allocation x in L is said to be strongly
interim efficient in L under the maxmin preferences, if there does
not exist another feasible allocation y in L and a type profile s,
such that y ⪰

si
i x for all i; furthermore, y ≻

si
i x for at least one i.

We show that each interim maxmin value allocation is
strongly mixed incentive compatible under concavity and the
Wald’s maxmin preferences. Formally,

Proposition 4. In an ambiguous exchange economy, if agents have
the Wald’s maxmin preferences, and utility function ui is concave for
each i, then every interim maxmin value allocation is strongly mixed
incentive compatible.17

Proof. Angelopoulos and Koutsougeras (2015) showed that each
interim maxmin value allocation is strongly interim efficient in
L under the Wald’s maxmin preferences. Every allocation in L
that is strongly interim efficient in L is interim efficient in L
by Definitions 2 and 13.18 Therefore, it is strongly mixed in-
centive compatible under the Wald’s maxmin preferences by
Corollary 3. □

7. Conclusion

We improve the result of de Castro and Yannelis (2018) which
says that every efficient allocation is incentive compatible under
the Wald’s maxmin preferences. By introducing lotteries over the
commodity space, we show that the set of efficient allocations
becomes larger. By taking into account mixed strategies, we show
that strong mixed incentive compatibility is a stronger notion

17 If each agent i’s utility function ui depends on her type, i.e., ui (x (s) , si),
this proposition works too.
18 Indeed, if an allocation x in L is not interim efficient in L, then there exists
a feasible allocation y ∈ L, such that y ⪰

si
i x for all i for all si; furthermore,

y ≻
si
i x for some i and si . Now, clearly, x is not strongly interim efficient by

Definition 13. The contrapositive statement is that every allocation in L that is
strongly interim efficient in L is interim efficient in L.

than incentive compatibility. Nevertheless, we show that the
larger efficient set satisfies the stronger incentive compatibility
notion, i.e., every efficient lottery allocation is strongly mixed
incentive compatible under the Wald’s maxmin preferences. In
our framework, the conflict between efficiency and incentive
compatibility is resolved by the use of the Wald’s maxmin prefer-
ences. Unlike Prescott and Townsend (1984) and Sun and Yannelis
(2007, 2008), no continuum of agents or the law of large num-
bers is used. Furthermore, we are able to show that ex ante
efficient allocations and interim maxmin value allocations are all
strongly mixed incentive compatible under the Wald’s maxmin
preferences.

Appendix A. Proof of Proposition 1

Proof. Let x ∈ XL, i.e., x is interim efficient in L. Let y ∈ ∆ (L) be
an arbitrary feasible lottery allocation. We show below that we
cannot have y ⪰

si
i x for all i and si, and y ≻

si
i x for some i and si.

For each agent i with type si, her interim maxmin expected
utility of y is

min
pi∈Pi(si)

∑
s−i∈S−i

vi (y (si, s−i) ; si) pi (s−i)

= min
pi∈Pi(si)

∑
s−i∈S−i

⎧⎨⎩
K(si,s−i)∑

k=1

ui
(
cki , si

)
· y (si, s−i)

[
ck
]⎫⎬⎭ pi (s−i) ,

where K (si, s−i) consumption profiles occur with non-zero prob-
abilities under y (si, s−i). Now, define an allocation z ∈ L, such
that for each s and i,

zi (s) =

K (s)∑
k=1

cki · y (s)
[
ck
]
. (A.1)

We show that the allocation z is feasible. Indeed, since y is
feasible in ∆ (L), we have that for each s,
N∑
i=1

zi (s) =

N∑
i=1

K (s)∑
k=1

cki · y (s)
[
ck
]

=

K (s)∑
k=1

y (s)
[
ck
] N∑

i=1

cki

=

K (s)∑
k=1

y (s)
[
ck
]
·

N∑
i=1

ei (s) =

N∑
i=1

ei (s) .

Since ui is concave in consumption, we have for each s,

vi (y (s) ; si) =

K (s)∑
k=1

ui
(
cki , si

)
· y (s)

[
ck
]

≤ ui

(K (s)∑
k=1

cki · y (s)
[
ck
]
, si

)
= ui (zi (s) , si) = vi (z (s) ; si) .

Thus, for every feasible lottery allocation y in ∆ (L), we can find
a feasible allocation z such that once every agent knows the
type profile s, every agent prefers z to y. It follows that every
agent prefers z to y in the interim under the maxmin preferences,
i.e., z ⪰

si
i y for all i and si.

Now, suppose that there exists a feasible lottery allocation y
in ∆ (L), such that y ⪰

si
i x for all i and si; furthermore, y ≻

si
i x

for some i and si. Then, we have z ⪰
si
i y ⪰

si
i x for all i and si;

furthermore, z ⪰
si
i y ≻

si
i x for some i and si, where z is defined by

(A.1). Since z is in L and z is feasible, we can conclude that x is
not interim efficient in L. This contradiction allows us to conclude
that we do not have y ⪰

si
i x for all i and si; furthermore, y ≻

si
i x

for some i and si. That is, x is interim efficient in ∆ (L). □
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Appendix B. Proof of Proposition 2

Proof. By way of contradiction, suppose x is not mixed incentive
compatible under the random uncertainty-averse (RUA) repre-
sentation, then there exists an agent i, a type si, and a lottery
αi (si) such that

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i) <

δ min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]
pi (s−i) +

(1 − δ)
∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]
.

Since δ ∈ [0, 1] is the weight, it must be that either

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i)

< min
pi∈Pi(si)

∑
s−i∈S−i

∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]
pi (s−i) ,

(B.1)

or

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i)

<
∑
ŝi∈Si

⎧⎨⎩ min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

⎫⎬⎭αi (si)
[
ŝi
]
,

(B.2)

or both. We show below that either case implies that x is not
strongly mixed incentive compatible (Definition 8).

Case 1: (B.1) holds. Then, this agent i, type si and lottery αi (si)
together violate Definition 8. Therefore, x is not strongly mixed
incentive compatible.

Case 2: (B.2) holds. Since for each ŝi ∈ Si, the αi (si)
[
ŝi
]
is in

the set [0, 1], then from (B.2) we have that

min
pi∈Pi(si)

∑
s−i∈S−i

vi (x (si, s−i) ; si) pi (s−i)

< min
pi∈Pi(si)

∑
s−i∈S−i

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
pi (s−i)

for some ŝi ∈ Si. That is, this agent i, type si and lie ŝi ̸= si together
violate Definition 5. Therefore, x is not incentive compatible. We
can conclude that x is not strongly mixed incentive compatible,
since Definition 8 is a stronger notion than Definition 5 as was
shown by Corollary 2. □

Appendix C. Proof of Theorem 1

Proof. Suppose that a feasible lottery allocation x ∈ ∆(L) is
not strongly mixed incentive compatible. We show below that x
cannot be interim efficient in ∆(L).

Since x is not strongly mixed incentive compatible, there exists
an agent i, a type si, and a mixed deception αi (si), such that

min
s−i∈S−i

vi (x (si, s−i) ; si) <

min
s−i∈S−i

⎧⎨⎩∑
ŝi∈Si

vi
(
e (si, s−i) + t

(
ŝi, s−i

)
; si
)
αi (si)

[
ŝi
]⎫⎬⎭ .

(C.1)

On the right hand side of (C.1), for every s−i, agent i gets a com-
pound lottery. In particular, she gets the simple lottery e (si, s−i)+

t
(
ŝi, s−i

)
with probability αi (si)

[
ŝi
]
, for each ŝi ∈ Si. Let z (si, s−i)

denote its corresponding reduced simple lottery. Clearly, from
(C.1), we have that

min
s−i∈S−i

vi (x (si, s−i) ; si) < min
s−i∈S−i

vi (z (si, s−i) ; si) . (C.2)

Now, we define a lottery allocation y that Pareto improves x
under the Wald’s maxmin preferences. Define a lottery allocation
y by

y(s′) =

{
z
(
si, s′−i

)
if s′i = si and s′

−i ∈ S−i;

x
(
s′
)

otherwise.

To see that y is feasible, it is sufficient to consider what
happens at each type profile

(
si, s′−i

)
, where s′

−i ∈ S−i, because
y is the same as x at every

(
s′i, s

′

−i

)
, where s′i ̸= si. At each type

profile
(
si, s′−i

)
, where s′

−i ∈ S−i, if c occurs with a non-zero
probability under y

(
si, s′−i

)
, then there must be a corresponding

c̃ which occurs with a non-zero probability under x
(
ŝi, s′−i

)
for

some ŝi ∈ Si. Moreover, we have
N∑
i=1

c i =

N∑
i=1

[
ei
(
si, s′−i

)
+ c̃ i − ei

(
ŝi, s′−i

)]
=

N∑
i=1

ei
(
si, s′−i

)
+

N∑
i=1

c̃ i −
N∑
i=1

ei
(
ŝi, s′−i

)
=

N∑
i=1

ei
(
si, s′−i

)
,

since x is feasible, so
∑N

i=1 c̃ i =
∑N

i=1 ei
(
ŝi, s′−i

)
. We can conclude

that y is feasible.
From (C.2) and the definition of y, we have

min
s−i∈S−i

vi (x (si, s−i) ; si) < min
s−i∈S−i

vi (y (si, s−i) ; si) ,

under the type si; and for any other type s′i , we have

min
s−i∈S−i

vi
(
x
(
s′i, s−i

)
; s′i
)

= min
s−i∈S−i

vi
(
y
(
s′i, s−i

)
; s′i
)
.

That is, agent i with type si strictly prefers y to x, while agent i
with type s′i ̸= si is indifferent between x and y.

Now, it remains to show that any other agent j ̸= i prefers
y to x in the interim. Fix an arbitrary agent j ̸= i, and an
arbitrary type sj of agent j. Define Xj =

{
x
(
sj, s′−j

)
: s′

−j ∈ S−j
}

and Yj =
{
y
(
sj, s′−j

)
: s′

−j ∈ S−j
}
. If s′i = si, then agent j’s utility of

y
(
sj, si, s′−j−i

)
at the type profile

(
sj, si, s′−j−i

)
is vj

(
y
(
sj, si, s′−j−i

)
;

sj
)
which equals

∑
ŝi∈Si

⎧⎪⎨⎪⎩
K
(
sj,ŝi,s′−j−i

)∑
k=1

uj
(
ej
(
sj, si, s′−j−i

)
+ ckj − ej

(
sj, ŝi, s′−j−i

)
, sj
)

× x
(
sj, ŝi, s′−j−i

) [
ck
]⎫⎬⎭αi (si)

[
ŝi
]
.

Now, since ej is private valued, we have

K
(
sj,ŝi,s′−j−i

)∑
k=1

uj
(
ej
(
sj, si, s′−j−i

)
+ ckj − ej

(
sj, ŝi, s′−j−i

)
, sj
)
x
(
sj, ŝi, s′−j−i

) [
ck
]

=

K
(
sj,ŝi,s′−j−i

)∑
k=1

uj
(
ckj , sj

)
x
(
sj, ŝi, s′−j−i

) [
ck
]

= vj
(
x
(
sj, ŝi, s′−j−i

)
; sj
)
.
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It follows that

vj
(
y
(
sj, si, s′−j−i

)
; sj
)

=

∑
ŝi∈Si

vj
(
x
(
sj, ŝi, s′−j−i

)
; sj
)
αi (si)

[
ŝi
]

≥ min
ŝi∈Si

vj
(
x
(
sj, ŝi, s′−j−i

)
; sj
)
.

For all s′i ̸= si, we have y
(
sj, s′i, s

′

−j−i

)
= x

(
sj, s′i, s

′

−j−i

)
∈ Xj.

Therefore,

min
s−j∈S−j

vj
(
x
(
sj, s−j

)
; sj
)

≤ min
s−j∈S−j

vj
(
y
(
sj, s−j

)
; sj
)
.

Since the agent j and the type sj are arbitrary, we have that for
every agent j ̸= i, every type sj, y is preferred to x under the
Wald’s maxmin preferences.

Thus, the feasible lottery allocation y Pareto improves the fea-
sible lottery allocation x under the Wald’s maxmin preferences,
i.e., x is not interim efficient in ∆ (L). □
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