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Abstract

This paper develops a new approach to investigating equilibrium existence in first-price auctions with
many asymmetric bidders whose types are affiliated and valuations are interdependent and not necessar-
ily strictly increasing in own type. We begin with studying a number of continuity-related properties of
the model, which are used, in conjunction with tieless single crossing and H-convexity, to establish the
existence of monotone approximate interim equilibria. Then we provide two sets of sufficient conditions
for the game to have a sequence of monotone approximate equilibria whose limit points are pure-strategy
Bayesian-Nash equilibria.
© 2019 Elsevier Inc. All rights reserved.
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1. Introduction

In Bayesian games where the players’ best-reply correspondences are nonempty-valued, up-
per semicontinuous, and contractible-valued, Eilenberg-Montgomery’s (1946) fixed-point theo-
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rem can be of help in establishing the existence of monotone Bayesian-Nash equilibria (Reny,
2011). If the payoff functions are not continuous in actions, values of the best-reply correspon-
dences might be empty, and one has to study either finite-action approximations of the game or
its approximate best-reply correspondences.

Finite-action approximations of games have served as an important technique for establish-
ing equilibrium existence for quite a while.! In normal-form games, the interest in using such
approximations has somewhat faded since the introduction of the notion of a better-reply secure
game by Reny (1999).” However, the technique has retained its relevance in the Bayesian game
framework so far. Using finite-action approximations, Athey (2001) investigated the existence
of a monotone Bayesian-Nash equilibrium in games with incomplete information. Within the
framework of Athey’s (2001) approach, Reny and Zamir (2004) carried out a detailed study of
an asymmetric first-price auction with affiliated private information and interdependent values.

The approach we employ to examine equilibrium existence in first-price auctions relies on
studying the existence of approximate equilibria. If no pure-strategy equilibrium exists in a
Bayesian game, both Athey’s (2001) finite-action technique and the lattice-theoretic approach
(see, e.g., Vives, 1999, 2005; Amir, 2005; Van Zandt and Vives, 2007) are powerless. A possi-
ble way to handle such situations is to turn to approximate equilibria® For example, one of the
assumptions customarily made to ensure the existence of a pure-strategy Bayesian-Nash equi-
librium in first-price auctions is that the bidders’ valuations are strictly increasing in own type
(see, e.g., Athey, 2001; Maskin and Riley, 2003; and Reny and Zamir, 2004). If it does not hold,
a Bayesian-Nash equilibrium can fail to exist (see, e.g., Lebrun, 1996, p. 422). However, this
assumption is not needed for the existence of approximate equilibria. Consequently, the problem
of existence of a pure-strategy Bayesian-Nash equilibrium is reduced to developing sufficient
conditions for the limit point of a convergent sequence of ¢-equilibria, when ¢ tends to 0, to be a
Bayesian-Nash equilibrium.

This paper’s results concerning approximate equilibrium existence rest on two cornerstones:
on a number of continuity-related properties of the game and on the H -convexity of each bidder’s
set of nondecreasing strategies. Among the continuity-related properties of the auction game
studied in this paper are: (i) the transfer lower semicontinuity of each interim payoff function
in variables different from own bids (interim payoff security, in other terminology); and (ii) the
continuity of the interim value and ex-ante value functions. These properties are employed to
establish that, in the class of monotone strategies, every approximate best-reply correspondence
has the local intersection property; that is, it has a multivalued selection with open lower sections.

Since, in our setting, values of the approximate best-reply correspondences need be neither
convex-valued, nor contractible-valued, nor even closed-valued, it might be problematic to use
any Kakutani-type fixed-point theorem. Following Athey (2001), McAdams (2003), and Reny
(2011), we employ a kind of generalized convexity as an alternative for convexity; namely, each
bidder’s set of nondecreasing strategies is interpreted as an H-space, a space comprising con-
tractible families of strategies. Then the approximate best-reply correspondences, whose values
consist of nondecreasing approximate interim best replies, have H-convex values. Consequently,

1 See, e.g., Dasgupta and Maskin (1986), Simon (1987), Maskin and Riley (2000), Athey (2001), McAdams (2003),
Reny and Zamir (2004).

2 See, for some recent generalizations of Reny’s (1999) theorem, McLennan et al. (2011), Barelli and Meneghel (2013),
Carmona and Podczeck (2016), Prokopovych (2016), Reny (2016).

3 It is also possible to handle the equilibrium nonexistence problem in auctions by introducing special tie-breaking
rules (see, e.g., Maskin and Riley, 2000; Jackson et al., 2002; and Araujo and de Castro, 2009).
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as shown in Theorem 2, the existence of monotone approximate interim equilibria in the game
follows from Horvath’s (1987) fixed-point theorem, a generalization of Browder’s (1968) fixed-
point theorem.

If, in addition, the bidders’ payoffs for every vector of types are aggregate upper semicontinu-
ous in bids, then every limit point of a sequence of monotone interim ¢-equilibria, with ¢ tending
to 0, is a Bayesian-Nash equilibrium (Theorem 3). Another condition guaranteeing the existence
of a convergent sequence of ex-ante g-equilibria whose limit point is a Bayesian-Nash equilib-
rium of the game is that each bidder’s valuation is strictly increasing in own type (Theorem 4).

We illustrate the proposed equilibrium existence conditions with a number of examples. Ex-
amples 1 and 2 illustrate the fact that no pure-strategy Bayesian-Nash equilibrium might exist in
a first-price auction if bidders’ valuations are not strictly increasing in own type. In such cases,
it is natural to turn to studying approximate Bayesian-Nash equilibria. Example 3 describes an-
other problem that might appear when bidders’ valuation are not strictly increasing in own type,
namely, the absence of Bayesian-Nash equilibria in strictly increasing strategies, which itself can
considerably complicate investigation of such games. Examples 4 and 5 are common-value first-
price auctions in which the bidders’ valuations are not strictly increasing in own type and the
existence of a monotone pure-strategy Bayesian-Nash equilibrium follows from Theorem 3, but
not from Athey’s (2001) and Reny-Zamir’s (2004) results. Example 6 explains some subtleties
of choosing an appropriate sequence of monotone approximate equilibria when the bidders’ val-
uations are strictly increasing in own type. Example 7 is a private-value first-price auction with
subsidies.

The structure of the paper is as follows. Section 2 contains the model and some theoretical
underpinnings necessary for studying equilibrium existence in the Bayesian game. A number
of important continuity-related properties of the interim payoff and value functions are investi-
gated in Section 3. In Section 4, we provide sufficient conditions for every approximate interim
best-reply correspondence to have a nondecreasing single-valued selection. The existence of
monotone interim g-equilibria and Bayesian-Nash equilibria in the first-price auction is studied
in Section 5. The section also contains examples illustrating the equilibrium existence conditions.
A number of proofs are relegated to the Appendix.

2. Preliminaries
In this section, we describe the model and provide a number of auxiliary definitions and facts.
2.1. The model

Consider the following n-player Bayesian game, denoted by I' = (B;, T;, f, vi)iecr, Where
I ={1,...,n}is the set of bidders (with n > 2); B; =[O0, c], ¢ > 0, is the set of bids available to
bidder i; 7; = [0, 1] is player i’s set of types. Let B = Xy B; and T = X;¢yT;. The joint density
of the bidders’ types, f, is a continuous function from 7 to (0, +o0c). Each player i’s payoff
function v; : B x T — R can be represented as follows:

Luii; )it m=#{j € I :b; =b; = maxges bi} > 1,
0 otherwise,

vi(b;t) = {

where u; : B; x T — R has the following properties:
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(i) u; is jointly continuous in (b;, t), nondecreasing in ¢; for each j € I, and nonincreasing in
b;forallteT;
(i) u;(0;¢t) >0and u;(c;t) <Oforallt e T;
(iii) u; has increasing differences in (b;, t;) or (b;, B>

Each function u; is assumed to be nondecreasing, not necessarily strictly increasing, in bidder
i’s own type, which does not suffice for the existence of a pure-strategy Bayesian-Nash equi-
librium in first-price auctions with incomplete information (see, e.g., Lebrun, 1996, p. 422; and
Examples 1 and 2 below). To ensure the payoff security of the game, it is assumed that, for each
i € I, u; is jointly continuous in its variables, and, moreover, that the joint density function f is
continuous, which is a conventional assumption in action theory (see, e.g., Milgrom, 2004; and
Krishna, 2010). Another assumption to be mentioned here is that, for each i € I, u; is nonin-
creasing in own bid b;, which is also not counterintuitive, since u; represents player i’s payoff in
the case of winning the item. If a bidder wins it with a bid, then a higher bid should not result in
a higher payoff to the bidder.

On the other hand, from a theoretical point of view, if the bidders’ valuations are nonincreasing
in own bids, then the definition of tieless single crossing need not include Reny and Zamir’s
(2004) individual rationality condition, which is helpful when approximate interim best-reply
correspondences are involved.

Denote by L; the set of Lebesgue measurable functions from 7; to B; and by S; the set
of nondecreasing functions from 7; to B;. Clearly, S; C L;. Each set L; (S;), equipped with
the semimetric d;(s;, s}) = le |s,~ ) — sl.’(ti)l dt; for all s;, s € L; (resp., s;, s; € S;), can be
considered as a metric space (resp., a compact metric space) consisting of equivalent classes
of Lebesgue measurable functions, though it is conventional to act as though the elements of
the metric space are functions, not equivalence classes of functions. Any Cartesian product of a
finite number of metric spaces is assumed to be a metric space endowed with a product metric
that induces the product topology on the Cartesian product. Denote L = X;cyL; and L_; =
X jer\(iyL j. Similarly, define S and S_; to be the Cartesian products of the corresponding S;’s.
Though below we confine the bidders’ choices to nondecreasing strategies, no bidder will be
able to deviate profitably from an approximate or exact monotone equilibrium using a Lebesgue
measurable (not necessarily monotone) strategy.

In simple cases (two players or independent types), we will assume increasing differences
between the players’ bids and their own types only.

Assumption Ail. Each u; exhibits increasing differences in (b;, t;); that is, for every b; and
b; in B; with b; > b; and every t_; € T_;, (u;(b;;-,t_;) —u;(b;;-,t—;)) : T; — (—00,0] is
nondecreasing.

In the case of more than two bidders with affiliated types, we will additionally assume in-
creasing differences between b; and 7_;.

Assumption A.2. Each u; exhibits increasing differences in (b;, t); that is, for every b; and b; in

B; with b; > b;, each j € I andevery t_j € T_j, (u; (bi; -, 1) —ui(b;; -, t—j)) : Tj > (—00, 0]
is nondecreasing.

4 These two conditions can be found below as Assumptions A.1 and A.2, respectively.
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The next two conditions concern the bidders’ beliefs about the distribution of types. The
conditional density function of ¢_; given ¢#; is denoted by f_;(z_;|¢;). By definition, f_;(t_;|t;) =

%—) where f;(t;) = fT_.- f(t,t_;)dt_; is the marginal density function of #;. Assumption B.1
naturally arises in applications (see, e.g., Milgrom and Weber, 1982; and Athey, 2002).

Assumption B.1. The function f : T — (0, 400) satisfies the following logsupermodularity
condition: f(t At)f(t V) > f(@)f() forall t,¢ € T, where A and Vv denote the compo-
nentwise minimum and maximum of ¢ and ¢, respectively.

Assumption B.2 is a particular case of Assumption B.1 when the bidders have independent
types.

Assumption B.2. The function f : 7' — (0, +00) satisfies the following condition: f(t) =
fi(t1) X ... X fu(ty) forallz e T.

Bidder i’s interim payoff function V; : B; x L_; x T; — R is defined by

Vi(bi,S—i;ti)=/vi(bi,S—i(t—i);ti,t—i)f—i(t—ilti)dt—i,
T_;
and bidder i’s interim value function V; : L_; x T; — R is defined by
Vi(s—i; ;) = sup Vi(bi, s_i; ;).
b,’GBi

Given a Lebesgue measurable subset A of 7_;, we will also need the following auxiliary
function V;(-,-; -, A) : B; x L_; x T; — R defined by

Vilbi,s—i;t;, A) = / vi(bi, s (t—;); ti, ) f—i (t—;|t;)dt ;.
A
Bidder i’s ex-ante payoff function V;* : L — R is defined by

V,-*(S)=/Vi(sz'(l‘i),S—i;ti)fi(ti)dti-
T;
Bidder i’s ex-ante value function VT : L_; — R is defined by
Vi (s—i) = sup Vi*(si,5-0).
si€eL;

A strategy profile s € L is an interim ¢-equilibrium (¢ > 0) of T if, for each i € I and for
almost all #; € T;,

Vi(si(t), s—i3 1) > Vi(s—i; 1) — €.

A strategy profile s € L is an ex-ante g-equilibrium of I' (¢ > 0) if V;*(s) > V;-k (s—i) —e.

In general, the notion of an interim e-equilibrium is stronger than the notion of an ex-ante
g-equilibrium which allows some vanishing set of types of bidders not to be even approximately
optimizing (see, for more details, Van Zandt, 2010; and Jackson et al., 2012). .,

A Bayesian-Nash equilibrium of T" is a strategy profile s € L such that Vl* (i, 5-i)=V,;(s-i)
foreachi e I.

We begin with a number of auxiliary facts which will be used throughout the paper.
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2.2. Generalized convexity and payoff security

In games with complete information, employing payoff security in conjunction with quasi-
concavity might facilitate investigating the existence of approximate Nash equilibria consider-
ably (Prokopovych, 2011). Quasiconcavity turns out to be a too demanding condition which
rarely holds in Bayesian games. In some of them, it is possible to proceed completely within
a complementarity-based framework (see, e.g., Vives, 1990, 1999; Van Zandt and Vives, 2007:
Balbus et al., 2015; and Dekel and Pauzner, 2018). In others, among the tools employed to make
the nonquasiconcavity problem more tractable are purification techniques, behavioral strategies,
and maximin preferences.’

To circumvent the nonquasiconcavity-related problems, Reny (2011) made use of the con-
tractibility of the values of upper semicontinuous best-reply correspondences in a class of con-
tinuous Bayesian games. In our model, the approximate best-reply correspondences need be
neither upper hemicontinuous nor contractible-valued. Instead, they possess the local intersection
property and have H-convex values, if the bidders’ strategy sets are confined to nondecreasing
functions and approximate interim (not ex-ante) best replies are considered.

We interpret each strategy set S; as an H-space. The definition of an H-space is as follows. An
H-space is a pair (X, {F4}), where X is a topological space and {F,} is a family of nonempty
contractible subsets of X, indexed by the finite subsets of X, such that A C B implies F4 C
Fpg (see, e.g., Horvath, 1987, 1991; Bardaro and Ceppitelli, 1988; and Tarafdar, 1990). If X is
compact, then we say that (X, {F4}) is a compact H-space. Given an H-space, (X, {Fa}), a
nonempty subset D of X is called H-convex if F4 C D for each finite subset A of D.

We now describe an H-space associated with each strategy set S;. Given s;, slf € §;, let the
function (s; V s57) : T; — B; be defined by (s; V 5)(#;) = max(s; (t;), s;(t;)) for all t; € T;. For a
finite family of strategies A; = {s1;, ..., Sxi} C S;, define F4, as the minimal subset of S; which
possesses the following properties: (i) it contains A;; (ii) if s, si’ € Fy,,thens; v slf € Fy,; (iii) for
every s; and s; are in F; and every 7 € (0, 1), 5; Xjo,1—7] + (5i V 5)) X(1—¢,1] is in Fy,, where Xp
denotes the indicator function of the set D. We need to check that: (a) the set Fj; is contractible,
and (b) Fs, C Fp; if A; C B; and B; is also a finite subset of S;. Part (b) is clear. To show (a),
we need to find a point 5; € Fy4, and a continuous function 4 : [0, 1] x Fa, — Fa, such that
h(0,s;) =s; and h(l,s;) =s5; for all s; € Fy,; that is, we need to show the function s; can be
continuously deformed into 5; by the homotopy 4.

Denote s; =s1; V... Vs Itisclearthats; € Fy, ands;(#;) > s;(#;) foralls; € Fy, andallt; €
T; . To construct a homotopy that continuously shrinks the entire set F4, to 5;, we use a technique
due to Reny (2011).% For any T € T; and s; € Fy,, define the function & : [0, 1] x Fy, — Fg, as
follows:

si(t;),ift; <l—tand7 <1,
5i(ti), otherwise.

h(T,Si)(ti)={

Clearly, A acts continuously from [0, 1] x Fg; to Fa;, h(0,s;) =s; and h(1,s;) =5;. A formal
proof of the joint continuity of 4 in 7 and s; for multidimensional type sets can be found in
Section 6 of Reny (2011). Consequently, each pair (S;, {F4,}) is an H-space.

5 See, e.g., He and Sun, 2014; He and Yannelis, 2015; Brookins and Ryvkin, 2016; He and Yannelis, 2017a; and
Carbonell-Nicolau and McLean, 2018.

6 The technique is intrinsically related to using decomposability as a substitute for convexity (see, e.g., Olech, 1984;
Bressan and Colombo, 1988; Fryszkowski, 2004). Athey (2001) also employed a related kind of generalized convexity.
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As shown by Reny (2011), it is possible to use Eilenberg-Montgomery’s (1946) theorem for
studying the existence of Bayesian-Nash equilibria in a class of continuous Bayesian games.
Since the game studied in this paper is discontinuous, another fixed-point result is needed. We
first provide a number of basic definitions in the context of normal-form games.

Let each X;, i € I ={1,...,n}, be a topological space, and let X = X;c;X; and X_; =
X jer\(i}Xj. A normal-form game G = (X;, u;)ie; is payoff secure if for each i € I and every
x € X and ¢ > 0, there exists x; € X; such that u; (x;, x’_i) > ui(x) — ¢ for all x’_i in some open
neighborhood of x_; (Reny, 1999). In other words, in payoff secure games, each player’s payoff
function is transfer lower semicontinuous in the other players’ strategies (see, e.g., Tian, 1992;
and Prokopovych, 2011).

If G = (X, u;i)ier is payoff secure and player i’s value function

@i (x_;) = sap u; (x],x_;)
x,.'GX,-

is continuous, then player i’s e-best-reply correspondence M; : X_; —» X; (¢ > 0), defined by
M (x—i) ={xi € X; :ui(xi, x—;) > u; (x—;) — &},

has the local intersection property; that is, for every x_; € X_;, there exists X; € X; such that
X; € M} (x" ;) for all xt ; in some open neighborhood of x_; in X;. In compact quasiconcave
games, the fact that each M is convex-valued makes it possible to apply a generalization of
Browder’s (1968) fixed-point theorem to the approximate equilibrium existence problem.’

In this paper, we make use of another generalization of Browder’s fixed-point theorem, due to
Horvath (1987), in which convexity is replaced with H-convexity (see Horvath, 1987, Theorem
2/; Tarafdar, 1992, Corollary 2.3; or Tarafdar and Chowdhury, 2008, Theorem 4.69).8

Theorem 1 (Horvath, 1987). Let (X,{Fa}) be a compact H-space, and let M : X — X be a
correspondence with nonempty H-convex values that has the local intersection property. Then
there exists x € X such that x € M (X).

From an applications’ point of view, the following corollary of Theorem 1 is helpful (see, e.g.,
Tarafdar, 1992, Theorem 2.3). In its statement, {F’ A} denotes a family of nonempty contractible
subsets of X;, indexed by the finite subsets of X;, such that A; C B; in X; implies F j‘i CF éi.

Corollary 1. Let (X;, {F‘Qi D, i=1,...,n, be afamily of compact H-spaces. If each M; : X _; —»
X; is a correspondence with nonempty H-convex values that has the local intersection property,
then there exists X € X such that x; € M;(x_;) for each i.

Proof. To show Corollary 1, consider the correspondence M : X —» X defined by M(x) =
(My(x—1),..., My (x_y)) for all x € X. Obviously, it has the local intersection property. By
Lemma 2 of Tarafdar (1990) or by Lemma 4.19 of Tarafdar and Chowdhury (2008), the product
of any number of H-spaces is an H-space and the product of H-convex subsets is H-convex.
Therefore, the hypotheses of Theorem 1 are satisfied. O

7 See, for more details, Yannelis and Prabhakar (1983); Wu and Shen (1996); Prokopovych (2011); and He and Yannelis
(2017b).
8 Using Browder’s fixed-point theorem is a matter of convenience. See, for details, Yannelis (1991).
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For these techniques to become applicable to the approximate equilibrium existence problem,
we need to provide sufficient conditions for the approximate best-reply correspondences to pos-
sess nondecreasing selections and the local intersection property. We begin with a number of
important continuity-related properties of the game.

3. Continuity-related properties of the interim payoff and value functions

In this section, we investigate a number of continuity-related properties of the interim payoff
and value functions of the first-price auction. Though the interim payoff functions are, obviously,
continuous in own type, they need not be continuous in other variables. If the bidders employ
nondecreasing strategies, the interim payoff and value functions possess a number of continuity-
related properties that might considerably facilitate studying the equilibrium existence problem.
Among the propitious properties studied below are the transfer lower semicontinuity of the in-
terim payoff functions in variables different from own bids and the continuity of the interim value
and ex-ante value functions.

The next lemma shows that, in the absence of nonzero-measure bid ties, the interim payoff
functions are continuous, which is intuitively clear. From now on, for any Lebesgue-measurable
subset A of a Euclidean space, 1 (A) denotes its Lebesgue measure.

Lemma 1. If, in the game T, for some player i and some triple (b —w 0) €Bi xL_; xT;,
utjeT;: bl. = s?(tj)) =0 for all j € I\{i}, then the interim payoff function V; : B; x L_; x
T; — R is continuous at (bO 91, : 0y,
Proof. Consider a sequence { (bk st t")} (b tk) €B;xL_; xT;,k=1,..., converging
to (b?,s9,, £9). We need to show that limy V; (b%, s* ; t) = V (252,540

Assume by way of contradiction, that llmk V; (b —w l t*) exists but is not equal to
V,(bi _l, to) Foreachk € {0, 1, ...}, define gi :T_; > Rbyg; k(i) =v; (b s_l(t_,), ; kt)
f-i(t—; |l‘,- ). Since each sequence {sf }, j € I\{i}, converges to s? in mean, it has a subsequence

_,7

—l’

{sf"‘} convergent to s? almost everywhere (see, e.g., Cohn, 1980, Propositions 3.1.2 and 3.1.4).
There is no loss of generality in assuming that the subsequence {sf’"} tends to s? almost ev-
erywhere for all j € I'\{i}. Let Rj, j € I\{i}, denote a subset of T; containing all points #; at
which either {s?”‘ (¢j)} does not converge to sj.) (zj), or s? )= b?, or both of the properties hold.
Since each R; has zero measure, limy, gf"’ (t=) = g?(t_,-) at almost every t_; € T—;. Then, by
Lebesgue’s dominated convergence theorem, lim; V; (bf’” Ii”l’, t,k'") =V (b? tO) a contra-
diction. O

_17

We will also need the following corollary of Lemma 1.

Corollary 2. Let, in the game T, s; : T; — B; be a step function for some i € I, and let s_; € L_;
be such that u(tj € T; : 5;(t;) = 5;(t;)) =0 for every t; € T; and each j € I\{i}. Then, for every
& > 0, there exists an open neighborhood N (s_,) of s_; in L_; such that V;(s; (t;),s" ;; t;) >
Vi(si(t;), s—i; t;) — € for every t; € T; and every s_i € Ne(s—p).

—i?

For the reader’s convenience, the proof of Corollary 2 is provided in the Appendix.
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The next statement shows that it is possible, in a sense, to get rid of bid ties of positive
measure. The main difficulty while handling ties at a bidder’s bid is that the number of other
bidders tied at the bid might change from type subprofile to type subprofile. As a result, if, for
some (b;,s—i, t;) € Bi x S—; x T;, Vi(bi, s—;; t;) > 0 and there are ties at b;, then the aggregate
effect of getting rid of ties at b; by raising the bid a little might look ambiguous. However, it
is shown in Lemma 2 that if the other players employ nondecreasing strategies, the number of
bidders tied at b; at the type subprofiles #_; where V; is negative tends to be smaller than the
number of bidders tied at b; at the type subprofiles z_; where V; is positive, which follows from
the fact that each u; is nondecreasing in the other bidders’ types.

Lemma 2. If, in the game T, for some i € I, a bid b; € B;, a subprofile of strategies s_; € S_;,
and a type t; € T; are such that u(tj € Tj : bi = sj(tj)) > 0 for some j € I\{i}, then for every
€ > 0 there exists b € B; such that: (i) V; (b,,s_,, ;) > Vi(bi,s_i;t;) —&; and (ii) u(tj € T; :
b, =s5j(tj)) =0 for each j € I\{i}.

The proof of Lemma 2 can be found in the Appendix.

Corollary 3. In thf game T, for_ everyiel, s_;€S_;, t; €T, and > 0, there exists 3, € B;
such that: (i) Vi(bi,s—i;t;) > Vi(s—i; t;) — &; and (ii) u(tj € Tj : by = 5j(tj)) = 0 for each
JjeI\{i}

The following proposition states an important property of V;, its transfer lower semicontinuity
in (s—i, ti).

Proposition 1. In T, each interim payoff function V; : B; x S_; x T; — R is transfer lower
semicontinuous in (s_;, t;).

Proof. Fix some i € I, (b;,s_;,t;) € B; x S_; x T; and € > 0. We need to show that there
exisi a bid E € B; and an open neighborhood N'(s—;,#) of (s—i,#) in S—; x T; such that
Vi(bi, s’ ;5 1)) > Vi(bi,s—i; t;) — € forevery (s';,t)) e N(s—i, ;). If u(tj € Tj : by =5;(tj)) =
for all j € I\\{i}, then the claim follows immediately from Lemma 1. Otherw1se by Lemma 2
there exists b; € B; such that V; (b,,s_,, t;) > Vi(bi,s_i; t;) — €. and u(t; € T; b =s;(t;)) =
for all j € I\{i}. Then, by Lemma 1, V; is continuous at (b,,s_,, ), wh1ch completes the
proof. O

o The transfer lower semicontinuity of V; in (s—;, ¢;) implies the joint lower semicontinuity of
Viin (s—;, t;) (see, e.g., Prokopovych, 2011, Lemma 4).

Corollary 4. In the game T, each interim value function V; : S_; x T; — R is lower semicontin-
uous.

If the players employ nondecreasing strategies, the interim value functions are also continu-
ous.

Proposition 2. In the game T, each interim value function V; : S_; x T; — R is continuous.

The proof of Proposition 2 is relegated to the Appendix.
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An important corollary of Propositions 1 and 2 is that the interim e-best-reply correspon-
dences have the local intersection property.

Corollary 5. In T, for each i and every € > 0, the correspondence M; : S_; x T; — B; defined
by

M (s—i; t;) = {bi € Bi : Vi(bi, s—i; t;) > Vi(s—i; t;) — &}

has the local intersection property.

Proof. Since, by Proposition 1, V; is transfer lower semicontinuous in (s—;; ¢;) and, by Proposi-
tion 2, V; is continuous in (s—i, t;), the function g : B; x S_; x T; — R defined by g(b;, s—i, ;) =
Vi(bi,s—i; t;) — Vi(s—;; t;) is transfer lower semicontinuous in (s_;, #;), which implies that Mf
has the local intersection property. O

Unfortunately, Corollary 5 cannot be applied directly to the equilibrium existence problem
since the correspondences act from S—; x 7; to B;, not from S_; to S;.

4. Nondecreasing approximate interim best-reply strategies

In this section, we study sufficient conditions for every approximate interim best-reply cor-
respondence to have a nondecreasing selection. First, we introduce, for the Bayesian game T,
the tieless single-crossing property (TSCP). Then we study a number of combinations of As-
sumptions A.1, A.2, B.1, and B.2 that are sufficient for I" to possess the TSCP. This property, in
conjunction with the fact that every approximate interim best-reply correspondence has the lo-
cal intersection property, makes it possible to choose, in a constructive manner, a nondecreasing
single-valued selection from every approximate interim best-reply correspondence of the game.’

Definition 1. The Bayesian game I"' = (B;, T;, f, u;);c; satisfies the upward TSCP (the down-
ward TSCP) if for each i € I, all b;1, bj2 € B; with bj» > b;1 (resp., bi2 < b;1), and all non-
decreasing strategies s; : T; — Bj of the other players j € I\{i} such that u(t; € Tj : b;; =
s5j(t;)) =0, 1 =1,2, the following condition holds: If V;(bi2,s—;; t;) — Vi(bi1,5-i; ;) > 0 for
some #; € T;, then the inequality holds when ¢; rises (resp., falls). If I satisfies the upward and
downward TSCPs, then we say that it satisfies the TSCP.

Reny and Zamir (2004) showed that, in the first-price auction environment, Milgrom-
Shannon’s (1994) single-crossing property ought to take the form of the individually rational
tieless single-crossing condition (IRT-SCC). The TSCP is akin to Reny and Zamir’s (2004) IRT-
SCC, with a number of minor distinctions. In the TSCP, (i) all nonzero-measure ties are excluded
from consideration, not only such ties at winning bids; (ii) there is no individual rationality
condition; and (iii) it is explicitly divided into two directional parts.'® A number of negative con-
sequences of having to deal with nonzero-measure ties are described in Reny and Zamir (2004)
and McAdams (2007).

9 As shown by Amir and de Castro (2017), replacing monotonicity with quasimonotonicity can be helpful in games
with complete information. For the purposes of this paper, we need the existence of monotone approximate interim
best-reply strategies.

10 gee Prokopovych and Yannelis (2017) and Kukushkin (2018) for the rationale behind the separation in games with
complete information.
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Another equivalent definition of the TSCP is the following: The Bayesian game I' =
(Bi, T;, f,u;)icy satisfies the strong upward TSCP (the strong downward TSCP) if for eachi € I,
all b1, bi» € B; with bjz > b;1 (resp., bia < b;1), and all nondecreasing strategies s; : T} — Bj
of the other players j € I\{i} such that u(¢; € T} : bj; = 5;(tj)) =0, =1, 2, the following con-
dition holds: If V;(bi2, s—i; t;) — Vi(bi1,s—i; t;) > O for some #; € T;, then the inequality holds
when ¢; rises (resp., falls). If T satisfies the strong upward and strong downward TSCPs, then it
also satisfies the TSCP. That is, the weak inequality in the definition of the TSCP can be replaced
with the strict inequality.

We begin with studying the TSCP in two special cases where increasing differences are needed
only between each player’s bids and her own types (Assumption A.1). The first one is the case
of independent private values.

Proposition 3. If Assumptions A.1 and B.2 hold in the game T, then it satisfies the TSCP.

The proof of Proposition 3 is relegated to the Appendix.

If the bidders have interdependent values (Assumption B.1), it is also possible to avoid as-
suming increasing differences between their bids and the other bidders’ types (Assumption A.2)
in the two-bidder case.

Proposition 4. If Assumptions A.1 and B.1 hold in the game I" and I = {1, 2}, then it satisfies the
TSCP.

Proof. We will now show that the upward TSCP holds for bidder 1. Let by, bj; € By with by; <
b12, and let 5o be a nondecreasing strategy of bidder 2 such that u(t; € T» : by = 52(82)) =0,
I =1,2. Denote AVi(t;) = Vi(b12,52;t1) — Vi(b11, 52; t1) for t; € T;. Pick some #11,t12 € T}
with #11 < t12. We need to show that AVj(#11) > 0 implies that AV (¢12) > 0.

Consider the following two subsets of 75:

U={neT:b >}
W ={trh € T> : b11 < s2(t2) and b2 > s2(12)}.

Denote u1(b12; t1, t2) — ui(b11; t1, t2) by hi(t1, 12), and u1(b12; t1, 2) by g1(t1, 2), and define
Iy : Ty — R and Iy : T} — R as follows:

() = / hi(t1. ) fotalt))da,

U

Iw(tl)=/gl(t1,t2)f2(t2|11)dt2-
W

Since u is nonincreasing in by and b1z > b11 > s2(t2) for all 1 € U, Iy(t11) < 0. Since
AVy(t11) = Iy (t11) + Iw (t11) = 0, we have Iy (t11) > 0.

Put ), = infy, e, {t2 € W: g1(t11,22) > 0}. Denote W ={rr e W: 12 <5} and W' ={tr € W:
2&2:;:3 It follows from the affiliation of f
that %%;—};i—f; <k forevery , e UU W’ and k < %;% for every t, € W”. Also recall that h
takes on only nonpositive values. Then, for all #; € U,

t2 > t5}. Clearly, W’ might be empty. Denote k =

h1(t12, 1) fo(82]t12) = hy(t11, 1) f2(B2]t12) = By (t11, 1) fa(B2lt10)ks
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and, forall t, € W U W”,

g1(t12, 1) fa(t2|t12) = g1(t11, ) fa(t2]t12) > g1(t11, 12) fa(t2]t11)k.

Therefore, AVi(t12) = Iy (t12) + Iw (t12) = (Iy (t11) + Iw (t11))k = 0.
A similar argument can be used to show that I" has the downward TSCP. O

If more than two bidders take part in the auction, we also need to assume increasing differ-
ences between own bids and the other bidders’ types.

Proposition 5. If Assumptions A.2 and B.1 hold in the game T, then it possesses the TSCP.

The proof of Proposition 5 is relegated to the Appendix.
An important question is under what conditions the approximate interim best-reply correspon-
dences have a nondecreasing single-valued selection.

Proposition 6. If the game I" satisfies the TSCP, then, for everyi € I, e >0, and s_; € S_;, the
interim g-best-reply correspondence Mf (s—i; ) : T; — B; has a single-valued selection s; € S;
satisfying the following two properties: (i) it is a nondecreasing step function; and (ii)

wu(tj €T;:s5i(t;) =sj(t;)) =0 forevery t; € T; and each j € I\{i}.

Proof. Fix some ¢ >0,i € I, and s_; € S_;. It follows from Corollary 3, Lemma 1, and Propo-
sition 2 that, for every % € [0, 1], there exist b; (7;) and an open ball B(;: 8;) in T; with center 7;
and radius §; such that

Vibi @), s—i5 1)) > Vi(s—is 1}) — ¢ for all 1] € B(;; &)
and pu(tj € T; : b;(t;) = sj(t;)) =0 for each j € I\{i}.

The open cover {B(;; 52—")},76[0’1] of [0, 1] has a finite minimal subcover, denoted by {B(#;

811

%’)}1=1 ,,,,, m- Without loss of generality, 1 <...<ty and 51 + < 1. Denote T;; =

0,51+ 58), Ty = Gy + 252, %+ %1 for =2, ..., m—1,and T,m = Gim—1) + 220 1],

We will construct a nondecreasing single-valued interim g-best reply s; using an iterative
procedure. Put stl = b; (t;1), where, for convenience, s . denotes the bid chosen in step k of the
iterative procedure on the interval T;;.

If b; (t;2) > sill, put sl.z1 = sl.ll and siz2 =b; (). If b;(G2) < sill, then either V,-(sl.ll, S_jitp) =
Vi (bi(ti2), s—is t;) for all t; € Tjp or Vi(b;(ti), s—is ;) > V,-(sill,s_,-; t;) for some t; € T;». In the
former case, slzj — s}l for j =1, 2. In the latter case, the downward TSCP implies that b; (i) €
M (s_i; t;) for all t; € Tj1, and, therefore, put sl.2j =bi(tr) for j =1, 2.

Consider the k-th step with 2 < k <m.1fb;(Gy) > s,"(;‘ 1> put s, =s§‘j—1 forj=1,....,k—1,
and s = b; (). Ifb @) < s* (k 1> then either ACH e 1),s_,-; ) > Vi(b;Gr), s—i; t;) for all

tieTirorV; (s ik— 1),s_,, ) < Vi(b;(t, (k) s_;i; t;) for some ¢; € Tj. In the former case, put sk =

kj ! for j=1,...,k—1,and sl = sl (k 1 In the latter case, the downward TSCP implies that

Vi (S,-(k_l), S—i; ti) < Vi(bi(tik), s—i; t;) for all #; € Tj—1y; that is, b; () € ME(s—;; #;) for all
t; € Tyg—1y. If bi(@p) > s{‘(;lz), then put s¥; = sk_l for j=1,....k —2, and sk = b; () for

j=k— 1,k If ;) <s* (k »)» then again elther Vi (sl(k 2y S—ist) = V; (bi (tix), s—i; t;) for
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all ; € Ti—1) or V,-(s!‘(;iz),s_i; t;) < Vi(bi(tix), s_i: t;) for some t; € T;(k—1)- In the former
case, put s!‘j = sfj_l for j=1,...,k—2,and sl{‘j = sg‘(ziz for j =k — 1, k, which is suitable,
owing to the upward TSCP. In the latter case, we have b; ék) € Mf (5—i,; t) forall t; € Ti(k—2)
and again we have to consider two cases. If needed, the backward procedure is repeated until a
nondecreasing approximate interim best reply is constructed on the first & intervals of the cover.

Since the number of intervals covering 7; = [0, 1] is finite, the process will terminate in a
finite number of steps. O

In particular, Proposition 6, along with Corollary 2, implies the ex-ante payoff security of the
auction game in the class of nondecreasing strategies, without employing any kind of uniform
payoff security.!!

The next corollary examines the continuity of the ex-ante value functions.

Corollary 6. If the game T" satisfies the TSCP, then V;k(s_,-) = fTi Vils—i:t;) fi(t)dt; for all

s_; € S_;. Therefore, each ex-ante value function V; : S_; — R is continuous.

Proof. Assume, by contradiction, that le ViG—i: t) fi(t)Hdt > V?(E_i) for some 5_; € S_;.
Pute = (fTi Vi(5_i; ;) f; (t:)dt; — V}k (5-i))/2. By Proposition 6, M? (5, -) has a single-valued
selection s5; € S;. Then V;(5;,5_;) > le ViG_iit;) fi(t;)dt; — e, which contradicts the initial
premise. Therefore, V:-k (s—i) = fT, Vi(s_i; ;) fi (t;)dt; for every s_; € S_;, and the continuity of

V;on S_; x T; implies the continuity of VT onS_;. O
Another useful corollary of Proposition 6 is the following.

Corollary 7. If the game I satisfies the TSCF, then, for every € >0 and s_; € S_;, there exists
si € S such that V*(s;.s—i) > V?(s_,-) — &, and, therefore, Vf(s_,-) = sup;, s, V;*(si, 5-i) for
everys_j € S_;.

In particular, Corollary 7 implies that the monotone equilibrium strategy profiles described in
Theorems 3 and 4 below are indeed Bayesian-Nash equilibria of the game.

5. Equilibria of the first-price auction

In this section, we first apply Horvath’s (1987) fixed-point theorem to the problem of existence
of monotone approximate interim equilibria in the first-price auction (Theorem 2). Then, the
existence of a monotone pure-strategy Bayesian-Nash equilibrium in the first-price auction is
established under the additional condition that the auction is aggregate upper semicontinuous in
bids, which, in particular, covers the common-value case (Theorem 3). In Theorem 4, we employ
another condition guaranteeing the existence of a monotone Bayesian-Nash equilibrium, namely
that the bidders’ payoff functions are strictly increasing in own type. A number of examples
illustrate the equilibrium existence conditions.

11 See, for details regarding uniform payoff security, Monteiro and Page (2007), Carbonell-Nicolau and Ok (2007);
Allison and Lepore (2014); Prokopovych and Yannelis (2014); He and Yannelis (2016); and Carbonell-Nicolau and
McLean (2018).
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Fix some i € I and ¢ > 0. Consider bidder i’s e-best-reply correspondence A?f S > S
whose values consist of bidder i’s interim ¢-best replies; that is, for every s—; € S—;,

A’Zf(s_,-) ={s;i €S;:Vi(si(t;),s—i; t;) > Vi(s—i: t;) — ¢ for almost all t; € T:}.

It is nonempty-valued by Proposition 6. Fix any s_; € S_;. Since any piecewise combination
of two interim e-best replies is also an interim e-best reply, it is clear that, for any finite family
of bidder i’s strategies A; = {sy;, ..., S} in A?f(s_,-), Fy, C Mf (s—;). Therefore, though Mf is
not necessarily convex-valued, it is H-convex-valued. In order to be able to apply Theorem 1,
we also need to show that M? possesses the local intersection property.

Proposition 7. If the game T satisfies the TSCF, then, for every & > 0, each correspondence
M; : S_; — S; defined just above has the local intersection property.

Pr?of. Fix some i € I, ¢ > 0, and s_; € S_;. Then, by Proposition 6, there exists §; €
M? (s—i) C 117IlE (s—;) satisfying the following two properties: (i) 5; is a nondecreasing step func-
tion from 7; into B; that can be represented as 5;(t) = Z,le ¢k Xp, (t), where Dy are disjoint
intervals whose union is 7; and c; € B; for all k € {1,...,K}; and (ii) u(t; € T; : 5;(%) =
s5j(tj)) =0 for every #; € T; and each j € I'\{i}.

By Lemma 2, there exists a neighborhood N7 (s—;) of s—; in S_; such that V;(5; (¢;), s”_ i ti) >
Vi(5i(t:),s—i; t;) — 5 for every s_; € Ni(s_;) and every t; € T;. On the other hand, by Propo-
sition 2, V; is continuous on S_; x T;, which implies, in particular, its uniform continuity on
S_; x T;. Therefore, there exists a neighborhood N3 (s_;) of s_; in S_; such that V;(s_;; ;) >
V,-(sﬁi; t) — % for every s”;, € N2(s—;) and every #; € T;. Then, for every 5_; € N'(s—;) =
Ni1(s—i) NN(s_;) and almost every t; € T;, we have V; (5 (t;),5—i; ;) > Vi (5 (), s_i; ;) — % >
Vils_iit;) — 23—5- > Vi(5_i; ;) — &. Therefore, 5; € M?(5_;) for every 5_; € N'(s_;); that is, M?
has the local intersection property. O

The next statement follows from Corollary 1, since each Mf is H-convex-valued and has the
local intersection property.

Theorem 2. If the game T has the TSCP, then it has a monotone interim g-equilibrium for every
e>0.

If a first-price auction has no pure-strategy Bayesian-Nash equilibrium, it is reasonable to turn
to studying whether the game has approximate equilibria.

Example 1. Consider the following two-bidder first-price auction. Let 77 = 7, = [0, 1], B; =
B, = [0,c], ¢ > 1. The functions u; and u; are defined as follows: ui(by;t) = —b; and
uy(by;t) =ty — by for all (b,t) € B x T, and the bidders’ types are independently uniformly
distributed on [0, 1].

The auction has no pure-strategy Bayesian-Nash equilibrium (see Lebrun, 1996, p. 422). At
the same time, the auction has a pure-strategy monotone interim g-equilibrium for every ¢ > 0
by Theorem 2.

A natural question appears whether the nonexistence of pure-strategy Bayesian-Nash equilib-
ria in Example 1 results from the fact that it is degenerate in the sense that the bidders’ payoffs
do not depend in any way on bidder 1’s type. Example 2 shows that it is not so.
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Example 2. Consider the game studied in Example 1 with the only difference that u;(b;;t) =
—by for all (by,t) € By x T with t; € [0, %] and u1(by;t) =1—by forall (by,t) € By x T with
t € (%, 1]. The discontinuity of #; plays no significant role in the argument below. If needed, u
can be easily smoothed in an arbitrarily small ball around #; = %

To show that the game has no pure-strategy Bayesian-Nash equilibria, assume, by contra-
diction, that (s1, 52) is one of them. Since there are arbitrarily small, positive types of bidder 2
and s2(#2) < 12 for almost all 7, € [0, 1], almost all types of bidder 1 in [0, %] bid zero; that is,
ess Suptle[O,%]sl(tl) = 0. Then s7(#;) > 0 for almost all #, € [0, 1]. If essinftle(%’l]sl(tl) > 0,

then bidder 2’s types in (0, ess 'mftl 1151 (t1)] have no best reply to s;. If ess inftl et t) =

0, then, for every (whatever small) ¢ > 0, the set of bidder 1’s types in (%, 1] with s1(¢1) < € is
of positive measure. On the other hand, since u(t2 € 73 : s2(t2) = 0) =0, for every § > 0 there
exists €(8) > 0 such that u(t2 € T : s2(t2) < €(8)) < 8. Consequently, for every y > O there is a
nonzero-measure subset D of (%, 1] such that Vi (s1(t1), s2; t1) < y for every ¢; € D, which con-
tradicts the fact that Vi (s1(t1), s2; t1) = Vi(s2; 1) > Vl(%, s 1) > % for almost all #; € (%, 1].

If bidders’ valuations are not strictly increasing in own type, another major problem can arise,
namely, the absence of Bayesian-Nash equilibria in strictly increasing strategies, which precludes
using the inverse functions of strategies.'”

Example 3. Consider another two-bidder first-price auction. Let 71 = T, = [0, 1], B; = B, =
[0, c], ¢ > 1. The functions #; and u, are defined as follows: u1(b;t) = —b; and uy(by; t) =
% — by forall (b,t) € B x T, and the bidders’ types are independently uniformly distributed on
[0, 1].

Despite the fact that the bidders’ valuations of the item do not depend on the bidders’ types
and are distinct, this game has Bayesian-Nash equilibria in nondecreasing strategies. Consider,
for example, the strategy profile (s1, sp) € S defined as follows: s1 () = %tl for all 1 € T7 and

52(t) = 1 for all 1, € T». Clearly, Va(3,s1; 1) = 1 for all t, € T and Va(by, 513 1) < 1 for all
(b2, 12) € By x T>. For example, for every ¢ € (0, %],

1 1 1
Vo(- — i) =(= 1 —4e) = — —4¢2.
By —ensi) =18 (148 = r~4e

On the other hand, Vi (s1(#1), s2; t1) = 0 for every #; € T1, and, given bidder 2’s strategy s2,
every type of bidder 1 cannot get a positive payoff by choosing a bid different from the bid
prescribed by s1. Therefore, the strategy profile (s, s2) constitutes a Bayesian-Nash equilibrium
of the game.

At the same time, the game has no Bayesian-Nash equilibrium in strictly increasing strate-
gies. Assume, by contradiction, that (s1, s3) is a Bayesian-Nash equilibrium in strictly increasing
strategies. Clearly, esssup,, (o 1752(f2) < %, and it must be the case that ess supy, 0,1 51(11) =
esssup,, ¢(o,1752(#2). The fact that s, is a strictly increasing strategy implies that
essinfy, 0,11 52(¢2) < ess SUP;, e[0,1] 52 (t) and, therefore, Vi (s1(t1), s2; 1) < 0 on some nonzero-
measure subset of 77. Consequently, bidder 1’s ex-ante payoff at (s1, s2) is negative, a contradic-
tion.

12 The inverse functions of bidders’ strategies play an important role in auction theory (see, e.g., Lebrun, 1999; Maskin
and Riley, 2000; Krishna, 2010).
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In order to ensure the existence of a pure-strategy monotone Bayesian-Nash equilibrium in the
first-price action, some additional condition is needed. We begin with the case where the game is
aggregate upper semicontinuous in bids; that is, Y . _; v;(-; #) : B— R is upper semicontinuous
foreveryteT.

iel

Lemma 3. If; in the game T, ) ;. vi(:;t) : B — R is upper semicontinuous for every t € T,
then the sum of the ex-ante payoff functions Y ;.; V*: S — R is upper semicontinuous as well.
Proof. By definition, V*(s) = fT v (85;(8),5—i(t_;);t) f(t)dt for i € I and s € S. Pick some
59 € S and consider a sequence {s¥}, s* € S, converging to s°. Without loss of generality, the
sequence {s¥} converges to s° pointwise by Helly’s selection theorem for sequences of monotone
functions. We need to show that limsup; > ; ., V/* (s < Yia Ve (s9).

It follows from Fatou’s lemma that

limsup » ~ V;*(s*) < f limsup " vi(sf (t), 5%, (t-); ) £ (.
kel b icl
Since limy slk )= s? (#;) forevery t; € T; and each i € I and ), ; v; (-; t) is upper semicontinu-
ous for every t € T, limsup; D ;; vi (s{‘ @), S’i,-(t—i)§ 1)< e Vi (s?(ti), sO_i (t—;); t) for every
t € T, and the claim obtains. O

In particular, the aggregate upper semicontinuity of the ex-ante payoff functions implies the
reciprocal upper semicontinuity of T'; that is, if {s¥}, s* € S, is a sequence of strategy profiles
converging to 50 such as each sequence {V* (55} is convergent and limy Vj?" 5 > V]Tk (s9) for
some j € I, then limy V;*(s¥) < V;*(s°) for some other / € I (Simon, 1987).

We now show that If I" is aggregate upper semicontinuous in bids and has the TSCP, then
every limit point of a sequence of monotone interim e-equilibria, with ¢ tending to zero, is a
Bayesian-Nash equilibrium of the game.

Theorem 3. If the game I has the TSCP and ) ; .; vi(-; 1) : B — R is upper semicontinuous for
everyt € T, then I has a monotone Bayesian-Nash equilibrium.

Proof. Since I" satisfies the TSCP, Theorem 2 implies that, for each k = 1,2, ..., it pos-
sesses a monotone interim %-equilibrium sk = (s’lc — sff) € S such that V,-(sll‘ ), s* ki) >
V,-(sfi; ) — % for almostevery t; € T; and each i € I. Then, foreachi € I andeachk =1, 2,...,
— 1
Vst sk > ViGk) - o

Without loss of generality, the sequence {s¥} tends pointwise to some s° in S and each sequence
{v* (s%)} is convergent.

Assume, by contradiction, that s° is not a Bayesian-Nash equilibrium of TI'; that is, for

—% : —% . i .

some jel, Vj* (so) <V j (sg j). Since V j 1s continuous on S_j by Corollary 6, limg Vj*(sk) =
limg Vj- (s* j) = V; (sg j) > V; (s9), and, therefore, by Lemma 3, there exists / € I\{j} such that

limg V;*(s%) < V;*(s°). On the other hand, we have limy V;*(s) = limg V (s%)) = V;(s)), a
contradiction. O

Aggregate upper semicontinuity in bids holds in common-value auctions.
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Example 4. Consider the following n-bidder first-price common-value auction. Let 7; = [0, 1],
B, =[0,c],c>1foralli e I ={1,...,n}. Each function u; is defined as follows: u;(b;; t) =
max{2 ¥, ti, 3} — b; for all (b;,1) € B; x T, and the bidders’ types are independently uni-
formly distributed on [0, 1].

The common value of the item being sold is modeled as the average of the bidders’ types
bounded above by %.13 Having the upper bound in the definition of the common value of the item
is not counterintuitive. Its presence makes the common value weakly (not strictly) increasing in
the bidders’ types; otherwise, the existence of pure-strategy Bayesian-Nash equilibria in this
game would follow not only from Theorem 3 but also from Athey’s (2001) and Reny-Zamir’s
(2004) results and Theorem 4 below.

If the common value of an item pertains to the resale price of a painting or the market value
of a firm, another specification of bidders’ payoff functions is possible.

Example 5. Consider the following n-bidder first-price common-value auction. Let 7; =
[0,1], B; =[0,c], ¢ > 1 for all i € I. Each function u; is defined as follows: u;(b;;t) =
max{ty,...,t,} — b; for all (b;,t) € B; x T. The function f : [0, 1]* — (0, +o00) is the den-
sity function of an n-variate truncated logsupermodular Gaussian distribution with mean pu =0
and covariance matrix ¥.'4

Clearly, the functions u;’s are not strictly increasing in #;. Equilibrium existence in this game
follows from Theorem 3.

In private-value auctions, the condition that each u; is strictly increasing in own type can be
employed to ensure the existence of a monotone Bayesian-Nash equilibrium. This condition is
often used in first-price auction literature (see, e.g., Maskin and Riley, 2000; Athey, 2001; Reny
and Zamir, 2004). However, it does not guarantee that the limit of every convergent sequence of
monotone interim g-equilibria, with ¢ tending to 0, is a Bayesian-Nash equilibrium of the game.

Example 6. Consider the following two-bidder first-price auction. Let 71 = 7> = [0, 1], B; =
B> =10, 10] for i = 1, 2. The functions #1 and u> are defined as follows: u(b1;t) =t — b1 and
uy(by;t) =ty —by+7forall (b,t) € B x T, and the bidders’ types are independently uniformly
distributed on [0, 1]. Clearly, each u; is strictly increasing in own type ;.

It follows from Theorem 2 that the game has a monotone interim e-equilibrium for every ¢ >
0. However, we now describe a convergent sequence of monotone interim approximate equilibria
of the game whose limit is not a Bayesian-Nash equilibrium.

Let, for k € {1, 2, ...}, bidder 1’s strategy s{‘ : Ty - Bj be s’f(tl) = ﬁtl + G- ﬁ) and
bidder 2’s strategy s¥ : T — B, be s¥ (1) = 5. Put & = 1 fork € {1, 2, ...}. Itis not difficult to
see that each strategy profile (s{‘, s§) is a monotone interim &x-equilibrium of the game. However,
the limit of the convergent sequence {s¥} is not a Bayesian-Nash equilibrium of the game.

However, if each u; is strictly increasing in own type ¢;, it is possible to construct a convergent
sequence of approximate ex-ante equilibria whose limit is a Bayesian-Nash equilibrium of the
first-price auction. A similar problem was handled by Athey (2001) and Reny and Zamir (2004)
for finite-bid approximations of first-price auctions.

13 gee, e.g., Bikhchandani and Riley, 1991; Goeree and Offerman, 2003; Krishna, 2010, for some examples of the use
of the average of the bidders’ types as the common value.

14 1f the off-diagonal elements of the inverse of X are nonpositive, then f is logsupermodular (see, e.g., Karlin and
Renott, 1980, Example 3.1).
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Theorem 4. If the game T" has the TSCP and each u; is strictly increasing in t;, then it has a
monotone Bayesian-Nash equilibrium.

The proof of Theorem 4 can be found in the Appendix.

Example 7. Consider the following two-bidder first-price auction with subsidies (see, e.g., Athey
et al., 2013). Let T} = T, = [0, 1], B; = B, = [0, 3]. The functions u#; and u, are defined as
follows: u1(by;t) =t — %1 and uy(by;t) = (t1+1)tp — by for all (b, t) € B x T, and the bidders’
types are independently uniformly distributed on [0, 1].

The existence of a monotone pure-strategy Bayesian-Nash equilibrium in this game follows
from Theorem 4.

6. Conclusions

This paper develops a new approach to investigating monotone equilibrium existence in
asymmetric first-price auctions with interdependent values and affiliated types. Instead of using
finite-bid approximations, we study properties of the approximate best-reply correspondences.
In particular, it is shown that if the tieless single-crossing property holds and the other bidders
employ nondecreasing strategies, then each approximate best-reply correspondence consisting
of bidder i’s monotone interim &-best replies has the local intersection property; that is, the cor-
respondence possesses a multivalued selection with open lower sections.

On the other hand, though the values of the approximate best-reply correspondences need
not be contractible, they can be described as collections of contractible sets, each of which is
associated with a finite number of monotone single-valued approximate best replies; that is,
they are H-convex. Consequently, the existence of monotone approximate interim equilibria in
the game follows from Horvath’s (1987) extension of Browder’s (1968) fixed-point theorem. In
particular, this approach makes it possible to study approximate monotone equilibria of first-price
auctions with no pure-strategy Bayesian-Nash equilibria.

Then we provide two sets of sufficient conditions for an auction to possess a sequence of
approximate equilibria that converges to a pure-strategy Bayesian-Nash equilibrium. The first
set is designed for common-value auctions where bidders’ valuations are not necessarily strictly
increasing in own type. The second set of sufficient conditions is akin to Athey’s (2001) and
Reny-Zamir’s (2004) results, with its proof based on approximate equilibria, not finite-action
approximations.
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Appendix A

The Appendix contains the proofs of a number of auxiliary results.
A.l. Proof of Corollary 2

Proof. Fix some ¢ > 0. Player i’s strategy s; can be represented as s; (#;) = Z,{;l ¢k Xp, (t;) for
t; € T;, where Dy, are disjoint intervals whose union is 7; and ¢ € B; forall k € {1, ..., K}.
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First, consider the case when s; is a constant function; that is, there exists ¢; € B; such that
si(t;) = c1 for all t; € T;. It follows from Lemma 1 that for every ¢#; € T;, there exist a neighbor-
hood NV (s_;) of s_; in L_; and a neighborhood N/ (¢;) of ¢; in T; such that

€
Vi(er, s’ 1) > Viler, s—is ti) — Gl Vi(cr,s—i; ) —¢
for every (s”;,t/) € N(s—;) x N(t;). Since T; is compact, the cover {N'(t;)},er, of T; has

—i3%

a finite subcover {N (ti“), LN (til’”)}. Consider the corresponding neighborhoods of s_;,

m

Mi(s=i), ..., Nim(s—i), associated with the points ti”, S o til'". Let Mi(s—;) = ﬂN]j(S_[).
j=1

Then Vi(c1,s" ;5 t;) > Vi(c1,5-i;t;) — € forevery s’ ; € Ni(s—;) and every t; € T;.

A similar argument can also be provided for each of c»,...,cx. Denote the corresponding

K
neighborhoods of s_; in S—; by N2(s—;), ..., Nk (s—;). Then Ny (s—;) = ﬂ N (s—;) is a neigh-
Jj=1
borhood for which the statement holds. O

A.2. Proof of Lemma 2

Before providing the proof of Lemma 2, we state a couple of basic properties of Lebesgue
measurable functions.

Lemma 4. Ifh : [0, 1] — [0, +00) be a Lebesgue measurable function, then:

@A) the set {r € [0, +00) : u(s € [0, 1] : h(s) =r) > 0} is not more than countable;
(ii) for every r € [0, +00) and every € > 0, there exists § > 0 such that u(t € [0,1] : h(¢) €
[r =6,r+8]1N ([0, +00)\{r}) <e.

Item (i) of Lemma 4 follows from the finiteness of the Lebesgue measure px on [0, 1], and
item (ii) follows from the fact that if {A;} is a decreasing sequence of measurable subsets of

[0, 1], then ,u(m Ap) = lilzn 4 (Ak). Statements similar to Lemma 4 are often employed in studies
k

concerning the existence of mixed strategy equilibria in normal-form games (see, e.g., Dasgupta
and Maskin, 1986; and Prokopovych and Yannelis, 2014).

Proof of Lemma 2. For the simplicity of further notation, let i = 1. Fix some ¢ > 0. Let b; =0.
Since u#1(0; ¢) > 0 forevery t € T and u, is jointly continuous in its variables, player 1’s interim
payoff function cannot jump upward at b; = 0. Consequently, it is possible, using Lemma 4, to
pick by > 0 close enough to 0 such that both of the conditions concerning by are satisfied. If
b1 = c, then again it is possible to choose b1 < ¢ close enough to ¢ to satisfy both conditions.

Consider the case when 0 < by < c. Since each s, j € I'\{1}, is a nondecreasing strategy, 71
can be divided into three subsets (some of these might be empty):

T ={t_1 € T_y :max jenys; (t)) < b1}
T2 ={t_1 € T_y :max jep(ys;(t;) = bi};
TE] ={t_1e€T_ 2manel\(1}Sj(tj) > b1 }.
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If Vi(b1,s_1;t1, T_21) < 0, then, since Vi(b},s_1; 11, Tfl) = 0 for every bj € [0, by), it is
possible to choose 31 slightly below b; and satisfy (i) and (ii).
The case when Vi(b1,s—1;1t1, T_Zl) > 0 needs a more detailed explanation. Obviously,

u(T_Zl) > (0. We need to investigate whether there exists a slight increase in b; which is not
accompanied by a downward jump in V;. For each j € I\{1}, denote

T} ={tj € Tj:s5;(tj) <b1},

ﬁ:menwmp=my

Then, up to a set of zero measure,
T2, =T} xT?x...T> | xTHUT xTEx...xT* | x T U...
U(T21 X T31 X...X Tnl_l X Tnz),

where some of the Cartesian products might be empty or of zero measure.

Denote J(by,s—1) ={j € I\{1}: p,(TJ?‘) > 0}, and let g = |J (b1, s—1)| be the cardinality of
J(b1,s5-1). Denote by U,?(bl,s_l), ke{l,...,q}, a subset of TEI which is the union of all
Cartesian products in TEI with sz for k bidders from J (b, s—1) exactly. We need to show that,
whatever g € {2,...,n — 1} is, if Vi(b1, s—1; 11, UZ(bl,s_l)) > (0 for some k € {1,...,q — 1},
then Vi(by,s—1; 11, U,f+1(b1,s_1)) > 0. Assume, without loss of generality, ,u,(le);,L(sz) >0
forj=2,...,q9+1.

Consider the case when g = 2. Without loss of generality, let J(b1,s—_1) = {2,3}. For m €
{2,...,n},denote T, =T} x ... x T!. Then, up to a set of zero measure,

Ud(by,s—1) =T} x T x T, UTE x T x T},

UZ(b1,s-1) =TF x TE x T},
We need to show that Vi (b1, s—1; t1, U3 (b1, s—1)) > 0 implies Vi (b1, s—1; t1, U (b1, 5-1)) > 0.
Assume, without loss of generality, that V| (b1, s_1; t1, T21 X T_,,2 X T41n) > 0. Then, since u; is
nondecreasing in #,, we have Vi (b1, s_1; t1, Tz2 X T32 X T41n) > 0.

In general, whatever g € {1, ...,n — 1} is, the inequality V1(b1, s—1; t1, Tfl) > ( implies that
Vi(by,s-1; 1, Ug (b1, s-1)) > 0 since u; is nondecreasing in the other bidders’ types; that is, the
case g = 2 is trivial, but we will rely on the provided argument later.

For the sake of developing intuition, consider the case when g = 3. Without loss of gener-
ality, let J(by,s—1) = {2, 3,4}. We need to show that Vy(by,s_1; 11, U13(b1, s—1)) > 0 implies
Vi(by,s—1; t1, US’ (b1,s-1)) > 0. Notice that, up to a set of zero measure,

Udbr,s_1) =T} x T} x T} x T{, UT) x T x T} x TS, UT} x T} x T2 x T4,
and
Uy, s—)) =TF x T x T} x T4, UT) x T§ x T§ x T4, UTE x T x T x T4,
Since V1 (b1, s—1; t1, U13(b1, s—1)) > 0, there exists j € {2, 3,4}, let it be j =2, such that
Vilbr,s—13t1, Ty x TE X T} x TS UT) x T} x T} x Td) > 0;
that is, V1(b1, s—1; t1, -) is positive on the Cartesian products with T:,_l. Then

Vi(by,s_13t1, T} x TE X T} x TE UTZ x T} x T} x Td) > 0,
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since u; is nondecreasing in #. On the other hand, with T21 fixed, an argument similar to
the one provided for the case with ¢ =2 can be employed to show that Vi (b1, s—1; t1, Tzl X
T32 X T42 X Tsln) > 0. Another possible explanation of the last inequality is as follows. Con-
sider a nondecreasing s : T» — By such that s)(t2) = s2(2) for all 1, € T21 and wu(t €
T» : s5(t2) = b1) = 0. Then the inequality follows from the case g = 2 for the strategy
subprofile (s, s3,...,5,), where Vi(b1,s),53,...,5:1, Ulz(bl,sé,s;;, ..., 8,)) > 0 implies
Vi(bi; 55, 53, ooo0 Sui by U22(b1,s§,.93, ...,8,)) > 0. At the same time, U%(bl,sé.s& ey Sp) =
T21 X T32 X T42 X Tsln up to a set of zero measure. Consequently, Vi (b1, s_1; t1, US’ (b1,5-1)) > 0.

Letg € {4,...,n — 1}. Again we need to show that V1 (by,s_1; 11, U,?(bl, s—1)) > 0 implies
Vi(by, s—1;t1, U,?_H(bl, s—1)) > 0 foreach k € {1,...,q — 2}, provided that the property holds
for every s’ | € S_ with [J(by,s ;)| =g — 1. Assume that V;(by,s_1; 11, U{ (b1,5-1)) > 0
for some k € {1,...,qg — 2}. Then there exists j € {2,...,q} such that, given by, s_;, and
t1, V1 on the Cartesian products in U,f (b1, s—1) with le is positive. For the sake of the sim-
plicity of notation, let j = 2. Therefore, given by, s_1, and #;, V; on the Cartesian products
in Uf 4+1(b1,5-1) with T22 is positive, since u#; is nondecreasing in f;. On the other hand,
the induction premise implies that V; is also positive on the Cartesian products with T2l in
qu +1- To verify this, consider a nondecreasing s5 : T» — By such that s (12) = s2(t2) for all
€ T21 and u(tr e T : sé(tz) = by) = 0. It is not difficult to see that, up to a set of zero
measure, U,?_l(bl, sé.S3, ceesSn) (U,f_:ll (b1, Sé.S3, ..., 8n)) consists of the Cartesian products in
U,f(bl, s_1) with T21 (resp., U,f_H(bl, s_1)). Therefore, Vi (b1, s_1; 11, Uf+1(b1,s_1)) > 0.

Intuitively, given s_1, by, and 1, the number of bidders tied at b; at the type subprofiles 7_;
where Vj is negative tends to be less than the number of bidders tied at b; at the type subprofiles
t_; where V] is positive; that is, getting rid of nonzero-measure ties at b1 by raising the bid a little
cannot lead to a downward jump in Vi if Vi (b1, s-1; 11, Tfl) > (. Consequently, it is possible,
using Lemma 4, to pick 51 close enough to b; that satisfies (i) and (ii) of Lemma 2. O

A.3. Proof of Proposition 2

Proof. Fix some i € I and some (sgi,tl.o) € S_; x T;. We need to show that V; is upper
semicontinuous at (s(li, tlp). Consider a sequence {(s’ii, tik)}, (s’ii, tik) €S ixT, k=1,2,...,
converging to (sgi, tl.o). Without loss of generality, the sequence (Vi (sfi; tik )} tends to some
K. Assume, by way of contradiction, that K > V;(s.; ). Since V;(s%;;?) > 0, we have

K > 0. Pick some sequence {bl’.‘}, k=1,2,...,in B; such that limy V,-(bl’.‘,sk 'tik) = K and

k k K-V, (sg.,t.o) 2 _.l ’

Z uiieTj:bj=s i (#;)) =0. Let ¢ = ———""—. Without loss of generality, assume that
JeI\{i}

the sequence {bf.‘} converges to some b? and V,~(bf.‘, slit.; tik) >0 forall k € {1,2,...}. Pick some

§ > 0 such that Iu,-(bg; 1) —u; (b}, t)| < ¢ for every b}, b! € B; with |b: - b§’| < 28 and every
teT.

First consider the case when Z ujeT;j: b? = s? (¢;)) = 0. Then, by Lemma 1, the in-

JeI\{i}
terim payoff function V; is continuous at (bl(.), s‘j,., tio), and, therefore, K = lim; V; (bf‘, sk 23 tik) =

V;(?,5°,;1%) < Vi(s°;; t?), a contradiction.

_i!
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Now assume that Z ujeT;: b? = s?(tj)) > 0. Picka € (b?, rnin(b? + 8, ¢)) such that

jel\(i)
> ueT; :bi =s§(tj)) =0forallk =0, 1,.... Then lim Vi (b;, s* ;; ¥) = Vi (b1, s 5 1°)
jel\(i)
by Lemma 1, and, therefore, limy V,-(E-, s< k) <V; (s 0) Without loss of generality, bk
(b° — 8,b;) and V; (bi, s* ;1) + & < V,-(bi, sk 1% for all & e{1,2,...}).

For b; € B; and s_; € S_;, denote T_;(b;,s_;) = {t_; € T_; : sj(tj) < b; for all j €
I\{z}} F1x some k € {1 2,...}. It is not difficult to see that V(b,,s_l, A (bk sk D)) >
Vi (b _t; ; , T—; (b )) — &, since the two integrals are taken over the same set 7__; (b sz )
andb > bk On the other hand, since u; is nondecreasmgmthe other bldders types, the 1nequal—
ity V; (b,,s ,T_, (bf,sk )) > 0 implies that V(b,,s T_; (b,,s INT—i( bk sk ) =0,

where the last inequality becomes an equality if u(7—; (b, , s_,)\T_, i s’i ;)) =0. Therefore,

—l’ l —l’ l’

ViBr, sk 1 15 T_i(Br, s5,)) = Vi Br sF 3 15, Toi (6F 5 ))

1 —l
+Vi By, st t}‘, T (i, s ONT_i (F, $5,)
> VibF, &5 ok T BF, sk ) — e,

a contradiction. O
A.4. Proof of Proposition 3

Proof. We now show that the upward TSCP is satisfied for bidder i = 1. Fix some nondecreasing
strategies s; : T; — Bj, j € I\{1}, and b11, b12 € By with b11 < b12 such that u(z; € Tj : by =
Sj(tj)) =0,l=1,2, forall j € I\{1}. Denote AV;(t;) = Vi1(b12,5-1;t1) — Vi(b11,5-1; t1) for
t1 € T1.

Consider the following two subsets of 7_1:

U={t_1€T_1:by; >max jep(1)s; ()}

W={t_1€T_1:b11 < manel\{l}Sj(tj) and byp > man€1\{1)Sj(tj)}.

For the sake of convenience, denote uj(bi2;t1,7—1) — ui(b11;t1,t—1) by hi(t1,t—1), and
uy1(bra; t1,t—1) by g1(¢1,1-1). Denote f_1(t_1) = fo(tz) X ... X fu(t,) forallt_y € T_;. Then

AVl(tl)=/h1(t1,t—1)f—1(t—1)dt—1+fgl(tl,t—l)f—l(t—l)dt—l-

1% w

The properties of u; imply that both & forall #_; € U and g; for all £_; € W are nondecreasing
in #;. That is, AV] is nondecreasing on 77.

It is not difficult to employ a similar argument to show that I" satisfies the downward
TSCP. O
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A.5. Proof of Proposition 5

First we will show several auxiliary basic results concerning affiliated variables.!> In what
follows, T =Ty x ... x T,, = [0, 11" and n > 3.

Since every truncated distribution resulting from restricting the domain of a distribution sat-
isfying Assumption B.1 is also log-supermodular, the following lemma holds.

Lemma 5. Let f : T — [0, +00) satisfy Assumption B.1, and let D C T_; be a set of nonzero
measure. Then, for each i € I, the function g; : T; x D — R defined by g;(t) = T_ff;’(—(tt’;]lzt—l))&r

p J=il_;ll)ar_;
also satisfies Assumption B.1.

For subsets A and B of an Euclidean space, A < B means that x € A and y € B imply that
x <y, where the inequality is understood coordinatewise (see, e.g., Shaked and Shanthikumar,
2007, p. 42). The next statement is reminiscent of the monotone increasing likelihood property.

Lemma 6. Let f : T — (0, +00) satisfy Assumption B.1. If U and W are subsets of T—1 =
T, X ... x T, of nonzero measure such that U < W, then for every t|1,t15 € T| with t| < t12,
Sy f-1@-1lt2)de - Jw f-1(-1lt12)dt
Sy f-1@altde_y = [ foa@oaltin)de—y

Proof. Fix some 11 and #;5 in T} such that #;; < tjp. Since U < W, the affiliation of

fo1(t1t12) < f1”1t2)

TG R ETGALT)

Jo FrEma f16-ldin [y FiGEm 1 G-tlandig
Jy f-1@_1lt)de_y = Jw f-1G_1la)dt_y

the players’ types implies that for every t' | = (t},...,t;) € U and

t",=@),...,t)) € W. Then

Jy F-1(-11t2)dt_, & Jw f-1(—11t12)dt_,
Jy f-1GonDdi_y = [y fo(—ilt)di_y”

at is,

It is well-known that logsupermodularity is preserved under integration (see, e.g., Karlin and
Renott, 1980).

Lemma 7. Let f : T — (0, +-00) satisfy Assumption B.1, and let U; C T be a set of nonzero
measure foreach j € {1,...,h}, 1<h<n,andU =Uy X ... xUp. Then g : Tp41 X ... X Ty, >
(0, +00) defined by g(tph+1,---,th) = fU f@®)dt, ...dty also satisfies Assumption B.1.

A simple proof of Lemma 7 can be found in Quah and Strulovici (2012, Corollary 1).

Corollary 8. Let f : T — (0, +00) satisfy Assumption B.1. Let U = Uy x ... x U, C T—1, and
W=Uyx... xUp,xWpp1 X...x W, CT_1, 2 <h <n — 1, be sets of nonzero measure such
that Upy1 X ... X Uy < Whyt X ... X W,,. Then, for every t11, t12 € T1 with t11 < t12,

Sy f-1@-1lt2)dt_y - Jw f-1(t-11t12)dt_y
Sy f-1@altiyde_y = [, fo@oalti)de—y

15 Most of them in some form or another can be found in Milgrom (2004).
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Proof. Fix some t11, t1p € T; with #11 < t12. Denote U= Uy X ...x Uy. Since f(t_1|t) satisfies
Assumption B.1, g(th+1,...,t|t1) = fﬁ f-1(t-1|t1)dt2 ...t also satisfies Assumption B.1 by
Lemma 7. Then the claim follows from Lemma 6. O

We will need one more auxiliary lemma.

Lemma 8. Let a;, b;,ci, i = 1,2, be positive real numbers, and let g% < %f- If Z—f < Ib’—f, then

a c+by
a; — c1+by”

Proof. It suffices to notice that the inequality Z—f < 2—1% is equivalent to axc; + axby < ajcy +
a1 by, and the latter is clearly valid. O

Now we are ready to proceed to the proof of Proposition 5.

Proof of Proposition 5. Since the case n = 2 is covered by Proposition 4, let n > 3. We will
show TI" that satisfies the strong upward TSCP for i = 1. Fix some bidder 1’s bids b11 < b12 and
a subprofile of nondecreasing strategies s;, j € I\{1} such that u(t; € Tj : by = s5;(¢;)) =0,
[=1,2,forall j € I\{i}, and fix some bidder 1’s types #11 < t12. As before, denote AV;(t;) =
Vi(b1a,s—1;t1) — Vi(b11,5-1; 1)) for t; € T;. We will show that AV;(#;;) > O implies that
AV (t13) > 0. Define the sets U and W as in the proof of Proposition 3. Assume, without loss of
generality, that U is of nonzero measure.
For each j € I\{1}, consider

Uj = {tj € Tj :b1y >Sj(tj)};
Wj = {tj € Tj 1bp > Sj(tj) and by < Sj(tj)}.
Clearly, U = U X ... x U,. For the sake of convenience, for / = 1,2 and all z_; € U, denote

uy(b12; tu, t-1) — u1(bu1; tu, t—1) by h1(tu, t-1), and, for all 7_; € W, denote u;(b12; t1, t-1)
by g1(t1, —1). Since

/h1(t11,t—1)f—1(t—1lt11)dt-1 +fgl(tu,t—1)f—1(t—1|t11)dt—1 >0,

U w

and fh1(111,t—1)f—1(t—1lt11)dt—1 <0,
U

the set W is of nonzero measure. The structure of W is as follows: It is the union of some
zero-measure subset of 7_; and a number of Cartesian products from

n n
Jw; xv_mu | W x W x U_ij)) U U (X, W)),
Jj=2 Jj.k=2,jF#k

where W; x U_1; denotes the Cartesian product of U>, ..., Uy in which Uj is replaced with W;.
The product W; x Wy x U_j i is defined in a similar manner, and so on.
Then

AV1(t12)=/hl(tlz,t-1)f—1(t—1ltlz)dt—1 +/gl(tlz,t-1)f-1(t—1lt12)dt—i
U W
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_ Sy hi(ti2, 1-1) fo1 (=1 |t12)de—
Jy f-1(t-1]ti)dt_y

Jw 81(t12, 1—1) fo1(t-1|t12)d1—
Jw F-1(t-11t12)dt_y

= / f-1@_1|t)de_;
U

1
f f-1@-1|t12)de_y.
14
Since A1 :[0,1] x U — R and g; : [0, 1] x W — R are nondecreasing, Lemma 5 above and
Theorem 5 of Milgrom and Weber (1982) imply that

Jyhi1(a, ) for Gy |t)di_y [ b, t-y) fo1 (-1 lt)de—y
>
Sy F-1@-1lt2)de_ - Sy f-1@-1lt)de—y

and
Jw 81(t12, t_1) fo1(t_1]t12)dt_y - Jw 8111, t-1) fo1(t_11t11)de_y
Jw f-1@-1ltin)dt_y - Jw f-1@_1lt)de_y
Moreover, taking into account the structure of the set W, it is not difficult to see that Corollary 8
and Lemma 8 imply that
Sy f-1@-1lt2)dt - Jw F-1(-11t12)dt_;
Jy f1@_ilt)de_y = [y, fo1@-1lti)de_y

Therefore,

Sy k1@, tog) for ey |11yt
Jy F-1t-1lt11)dt—y

Jwg1(ti, t-1) fo1 (t_1]t11)de_
Jw f-1@_1]t1)de_y

- Jw F-1@-11t12)dt_y
T Jw fe1@oalt)dey
A similar argument can be employed to show that I" has the strong downward TSCP. 0O

Jy f-1@-1lt1p)dt_y
Sy f-1@-1ln)de—y

Jw f-1@_1lt2)dt_;
Jw f-1@-1ltide;

1
AVi(ti2) > /f—l(t—lltn)dt—l
U

‘ f For(tr|tn)dr;
w

AVi(t11) > 0.

A.6. Proof of Theorem 4

Proof. Define the auxiliary game I', [ € {1,2, ...}, by restricting the bidders’ strategy spaces as
follows: each Lf (Sf ) consists of the elements of L; (resp., S;) whose values are equal to 0 on

[0, 757)- Let 8" = 8! x ... x S! for ! € {1,2,...}, and denote bidder i’s interim payoff, interim
value, and ex-ante value functions in I'! by Vil R Vﬁ, and V;-kl, respectively. By definition, each Vil
is the restriction of the corresponding V; to the set B; x Sl_i x T;. It is worth noticing that 75
might differ from V; on S'; x [0, 1;) since Vﬁ (5—-i3t;) = V}O0, s—i; t;) = Vi(0, s—;; ;) for all
(s—i,t;}) € S; x [0, ;&) and all i € 1.

Consider the sequence of games {I" '}. Each Vl.l is transfer lower semicontinuous in (s_;, ;)
on S* ; X [ILOI, 1] and each Vﬁ is jointly continuous on st ;X [ILOZ, 1]. Therefore, for every & > 0,
each correspondence A’Zf Tl ;™ Sf defined for every s_; € S ; by
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A~/If(s_,-) ={s; € Sf : Vil(s,- t),s_i;t;) > Vf (s—i; t;) — e for almost all ¢; € T;}

has the local intersection property. Consequently, for each k € {1,2,...}, each I possesses
a monotone interim %-equilibrium stk = (sllk,...,s,l,k) € §'; that is, ‘/il(sfk(ti),slki;ti) >

Vﬁ (sﬁ‘l.; ti) — % for almost every t; € T; and each i € I.

Fix any / € {1,2,...}. Without loss of generality, the sequence {s”‘},‘:i1 tends pointwise
to some s’ € S'. The strategy profile s’ need not be a Bayesian-Nash equilibrium of I, but
it possesses some propitious properties. Denote Aﬁ (si, b) = {t; € T;\[O, %01) : 5i(t;) = b} for
(si,b) €S x B;andi € I.

Consider the case when VJT” (s’) < V;I(s’_ j) for some j € I. Then there exists b e [0.0)
and a nonzero-measure subset le(sé.,g) of Alj (sﬁ.,E) such that limy V}(si.k(tj),sl_kj;tj) =
Vlj(sl_j; tj) > V;(sé(tj), sl_j; tj) forall t; € Zflj(sé,g), which can be explained only by a drop
in the probability of winning the item by bidder j at (sﬁ. (), sh j) for every t; € A\lj(sé, b). De-
note H'(s',b) = {i € I : u(Al(s!, b)) > 0} and the cardinality of H'(s', b) by r. Without loss of
generality, H’(sl,_g) ={1; wos)s

Assume that b = 0 and r > 2. Since the bidders employ nondecreasing strategies, each
Af. (sf, 0), i € H'(s*,0), contains a segment [t/,t] with 0 <t/ <t/. Then each sequence {sfk 1,
ieH! (0, converges uniformly to sf on [t/, 1] (see, e.g., Resnik, 2008, Section 0.1); that is,

for every ¢ > 0 there exists k(¢) € {1, 2, ...} such that SUPy, ef!,1/] sfk(t,-) < % for all kK > k(¢e) and
all i € H'(s', 0). Moreover, for all i € H'(s',0), limy V! (s’ (), s'; ;) = Vi(s': 1;) > By for

some B; > 0 and almost all #; € [t/, /'], since nﬁnte{t{,t{’lxﬁi u; (0; 1) l> 0 (recall tha't u; is strictly
increasing in #;) and f is positive and continuous on 7.

On the other hand, foreach k € {1, 2, .. .}, there exists h(k) € H'(s', 0) such that u((t1, ..., )
elt], t)1x ... x [t], 1] : s®*(tny) < maxieH,(s,yg)\(h(k)}sf"(t,-)) > (t] —1]) X ... x (] —t))/r.
Since the other bidders employ nondecreasing strategies and each u; is nondecreasing in 7_;,
bidder h(k) can gain, when k is large enough, a discrete amount of utility, not depending on

k, at an infinitesimal cost by bidding § instead of sllfzk) (th)) for all ) € [t}’l(k), t,;’(k)], which is
impossible since V(s 1)) — L < VE(s (1)), s* 3 15) < V(s' ; ;) for almost all ; € Ti\[0, 1ip),
all i e_I ,and all k. That i_s, if b =0, then r has to be equal to 1.

If b > 0, then H' (sl, b) contains at least two elements. An argument similar to the one just
provided can be employed to show this case is impossible.

To sum up, limg V,~(sfk(t,-), s’_kl.; t) = V,~(sf(t,-), sl_i; t;) for almost every ¢; € T;\[O0, ﬁ) and
at least n — 1 bidders. For at most one bidder j, limy V; (sj.k (), sﬁ‘j; tj) might be larger than
V; (s§. (@), st it ;) for the types in some nonzero-measure subset of 77\ [0, ﬁ) where sﬁ. recom-
mends that they choose the zero bid.

Now consider the sequence of strategy profiles {s'}, with each s’ being constructed for I'
as described just above. Without loss of generality, the sequence {s'} tends pointwise to some
s% € S. Since the disturbances, caused by fixing the bidders’ strategies to 0 on [0, ﬁ), tend to
become less pronounced as [/ tends to 0o, we have lim;(V;* s - V? (sl_ ;) =0 foreachiel.

That is, {s'} is a convergent sequence of approximate ex-ante equilibria of I'. Denote A;(s;, b) =
{t,-eT,-:si(t,-)=b}fors,-eS,-,ieI,andbe[(Lc]. B
Assume, by contradiction, that V;‘(so) < V; (s° j) for some j € I. Then there exist b €

[0, ¢) and a nonzero-measure subset A j (sj.’, b) of A j (s?, b) such that limy V; (si. @), st i tj) =
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Vj(s(lj; tj) > Vj(s?(tj), sgj; t;) forall¢; € Xj(s?, b). Denote H(s°,b)={i eI : ,u,(A,-(s?, b))
> 0}. Since V;(s' (1)), 5" ;;1j) > 0 for all / and all #; € (0, 1], the drop in the value of V; at
(s?(tj),so_ ;) for t; € A; (sj?,B) can be explained only by a drop in the probability of win-
ning the item by bidder j at (S?(tj),s(_)_ j). Then there exists a bidder 4 in H(s", b) whose
probability of winning the item jumps up at (s,?(th), s0 ;) for all 7, in some nonzero-measure
subset A (s, b) of An(sY,b). Since limy V;(sh(th), s* 3 tn) = Vi(s®,; 1) > 0 for almost all
th € Ty, and Vh(sg(th),sgh; tn) cannot be larger than V), (sgh; tp), it must be the case that
Vi (s (tn), 52,5 1) = Vi (s°,,5 1) = O for almost all 7, € A (s?, b).

Pick some #; and t#; in Ay (sg,E) with #; < t;/. Denote, as in the proof of Lemma 2,
T_lh ={t_peTy: maxiE,\{h}S?(t,-) < E} and T_2h ={t_peTy: max,-eI\(h}s?(t,-) = B}
Clearly, u(t_y € T, U T?, : up(b;t),t_y) < 0) > 0; otherwise, it would be the case that
Vi (s,? ), s0 s ty) > 0 since uy, is strictly increasing in #;, (though V}, is not necessarily strictly
increasing in #, since, given b and s° 5> the probability of winning the item might be negatively
related to #). Then u(t—j € T_lh U Tzh cup(b; t,’I, t—p) > 0) > 0, and, therefore, u(t—p € Tfh 2
up (E; t,’l, t_p) > 0) > 0. Notice that Vj, (5, s(_)h; t,;, T_zh) > 0. An argument similar to the one pro-
vided in the proof of Lemma 2 can be employed to conclude that there exists a small enough
€ > 0 such that V,,(b + ¢, s(l P t}’l) >0=V, (sg P t;;)’ which is impossible. We will now provide
some details of the argument.

Denote TJ.2 ={tj €T :s;(t;) = b} for j € I\{h}, J(b,s°,) = {j e I\{h}: M(sz) > 0}, and
q=|J(b,5°,)| Also denote by U/, k € {1,...,q}, a subset of 72, which is the union of the
Cartesian products from T2 , With Tj2 for k bidders from J (b, s° ») exactly. To begin with, assume
that g = |J (b, sgh)| = L. If u(T!,) > 0, then it must be the case that V,,(b,s°,;1,, Ul) > 0;
otherwise, Vj (b, s(_)h; th, U 11) = 0 would imply that Vj (b, sgh; t, T_lh) < 0. To understand the
last implication, notice that, since V,(b,s°,;1/,U}) = fo,, %uh B 1), t_p) fon(—plt})dt_p =
0, it must be the case that uy(b; t,’l, t_p) < 0 for some t_j € Tfh, which implies that
Vi (D, sgh; 1, T_lh) < 0. Therefore, V; (b, sgh; 1, T_lh) + Vi (D, so_h; 1, T_2h) < 0, a contradic-
tion. Then there exists a small enough ¢ > 0 such that V}, ®+e,s° P t;l) >0.If u(T_lh) =0and
w(T?,) > 0, then V;, (b, s°,; 15, T1, UT?,) = 0 implies V; (b, s°,; ¢/, T, UT?,) > 0, which is
also impossible.

If g > 1, then it must be the case that V}, (E, so_h; t,’1, U,;I ) > 0 and, as in Lemma 2, the number

of bidders tied at b at the type subprofiles 7z_, where V}, is negative tends to be less than the
number of bidders tied at b at the type subprofiles 7_; where Vj is positive, which explains why
a small increase in b results in an increase in the value of V. O
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