Online Appendix: Equilibria and Incentives in Private Information Economies

Xiang Sun

Economics and Management School, Wuhan University, 299 Bayi Road, Wuhan, 430072, China

Yeneng Sun

Department of Economics, National University of Singapore, 1 Arts Link, Singapore 117570

Lei Wu

JPMorgan Chase, 168 Robinson Road, Captial Tower, Singapore 068912

Nicholas C. Yannelis

Department of Economics, Henry B. Tippie College of Business, The University of Iowa, 108 John Pappajohn Business Building, Iowa City, IA 52242-1994, United States

The online appendix contains the omitted proofs of Lemmas 2–4.

Lemma 2. For each $i \in I$, \bar{u}_i is well-defined and continuous. Furthermore, if $u_i(z, q)$ is (strictly) monotone in z for each fixed $q \in T^0$, then \bar{u}_i is (strictly) monotone.

Proof. Since $u_i(\cdot, q)$ is assumed to be continuous on \mathbb{R}^m_+ for any fixed $q \in T^0$, U_i is continuous. It is clear that for each $z \in \mathbb{R}^m_+$, $y_z = z$ and $q \in T^0$. Thus, $E_i^{-1}(z)$ is nonempty. Since $\mu_i(q) > 0$ for any $q \in T^0$, $E_i^{-1}(z)$ is compact for any $z \in \mathbb{R}^m_+$. Hence, U_i attains the maximum on $E_i^{-1}(z)$. Thus, \bar{u}_i is well-defined.

Take a sequence \{z^n\}$_{n \in \mathbb{N}}$ in \mathbb{R}^m_+ which converges to $z^0 \in \mathbb{R}^m_+$. Pick a y^n from the set $E_i^{-1}(z^n)$ for each $n \in \mathbb{N}$. Then for each $n \in \mathbb{N}$, we have $z^n = \sum_{q \in T^0_i} \mu_i(q) \cdot y^n(q)$. Since T^0_i is finite, there is a subsequence \{y^{n_j}\}$_{j \in \mathbb{N}}$ of \{y^n\}$_{n \in \mathbb{N}}$ such that for each $q \in T^0_i$, $y^{n_j}(q)$ converges to some point in \mathbb{R}^m_+, denoted by $y^0(q)$. Clearly, $z^0 = \sum_{q \in T^0_i} \mu_i(q) \cdot y^0(q)$. That is, $y^0 \in E_i^{-1}(z^0)$. Thus, the correspondence E_i^{-1} is upper hemicontinuous. Since U_i is continuous and E_i^{-1} is nonempty, compact-valued and upper hemicontinuous, Berge’s maximum theorem implies that $\bar{u}_i(z)$ is continuous.

The (strict) monotonicity follows from the fact that U_i is (strictly) monotone if u_i is also (strictly) monotone and the fact that if $z \leq z'$, then for any $y \in E_i^{-1}(z)$ there is $y' \in E_i^{-1}(z')$ such that $y \leq y'$. This completes the proof.

Email addresses: xiangsun.econ@gmail.com (Xiang Sun), ynsun@nus.edu.sg (Yeneng Sun), lei.wu.web@gmail.com (Lei Wu), nicholasyannelis@gmail.com (Nicholas C. Yannelis)
Lemma 3. Let \mathcal{E} be a private information economy and $\bar{\mathcal{E}}$ the induced large economy. Assume that f is an idiosyncratic signal process. If \bar{x} is an allocation of $\bar{\mathcal{E}}$, then there exists an allocation x of \mathcal{E} with the following properties:

(i) For each $i \in I$, x_i depends only on agent i’s private signal;
(ii) For λ-almost all $i \in I$, $\bar{x}_i = E_i(x_i)$;
(iii) For λ-almost all $i \in I$, $\bar{u}_i(\bar{x}_i) = U_i(x_i)$;
(iv) For any coalition $W \in \mathcal{I}$, if $\int_W \bar{x}(i) \, d\lambda(i) = \int_W \bar{e}(i) \, d\lambda(i)$, then $\int_W x(i, f(i, t)) \, d\lambda(i) = \int_W e(i, f(i, t)) \, d\lambda(i)$ for P-almost all $t \in T$. In particular, if \bar{x} is feasible in $\bar{\mathcal{E}}$, then x is feasible in \mathcal{E}.

Proof. For each $i \in I$, we define $C(i) = \{y \in E_i^{-1}(\bar{x}_i) \mid U_i(y) = \bar{u}_i(\bar{x}_i)\}$, i.e., $C(i)$ is the set of all maximal elements of U_i in $E_i^{-1}(\bar{x}_i)$. It can be easily proved that C is a compact-valued measurable correspondence. Hence, we can obtain a measurable selection x such that $x_i \in C(i)$. It is easy to see that x satisfies the first three properties.

We shall verify that x satisfies the fourth property. For any fixed coalition $W \in \mathcal{I}$, suppose that $\int_W \bar{x}(i) \, d\lambda(i) = \int_W \bar{e}(i) \, d\lambda(i)$. Since $\bar{x}(i) = E_i(x_i)$ and $\bar{e}(i) = E_i(e_i)$, we have $\int_W E_i(x_i) \, d\lambda(i) = \int_W E_i(e_i) \, d\lambda(i)$. By the definition of E_i, we have

$$\int_W \int_{T^0} x_i(q) \, d\mu_i(q) \, d\lambda(i) = \int_W \int_{T^0} e_i(q) \, d\mu_i(q) \, d\lambda(i).$$

Since $\mu_i = P f_i^{-1}$,

$$\int_W \int_T x(i, f(i, t)) \, dP(t) \, d\lambda(i) = \int_W \int_T e(i, f(i, t)) \, dP(t) \, d\lambda(i).$$

Because f is essentially pairwise independent, we have

$$\int_W \int_T x(i, f(i, t)) \, dP(t) \, d\lambda(i) = \int_W x(i, f(i, t)) \, d\lambda(i) \text{ for } P\text{-almost all } t \in T,$$

and

$$\int_W \int_T e(i, f(i, t)) \, dP(t) \, d\lambda(i) = \int_W e(i, f(i, t)) \, d\lambda(i) \text{ for } P\text{-almost all } t \in T.$$

Thus, we have $\int_W x(i, f(i, t)) \, d\lambda(i) = \int_W e(i, f(i, t)) \, d\lambda(i)$ for P-almost all $t \in T$. \qed
Lemma 4. Assume that f is an idiosyncratic signal process.

(i) Suppose that x is a private core allocation of \mathcal{E}. Define an allocation \bar{x} for the economy $\bar{\mathcal{E}}$ such that $\bar{x}(i) = E_i(x_i)$ for each $i \in I$. Then \bar{x} is a core allocation of $\bar{\mathcal{E}}$.

(ii) Suppose that \bar{x} is a core allocation of $\bar{\mathcal{E}}$. Then there exists a private core allocation x of \mathcal{E} such that $\bar{x}_i = E_i(x_i)$ and $\bar{u}_i(\bar{x}_i) = U_i(x_i)$ for λ-almost all $i \in I$.

Proof. Statement (i). To prove \bar{x} to be a core allocation of the economy $\bar{\mathcal{E}}$, we need to show that

(1) \bar{x} is feasible, i.e., $\int_x \bar{x}(i) d\lambda(i) = \int_x e(i) d\lambda(i)$.

(2) there is no coalition W and no feasible allocation \bar{x}' such that $\int_{W'} \bar{x}'(i) d\lambda(i) = \int_{W'} e(i) d\lambda(i)$ and $\bar{u}_i(\bar{x}') > \bar{u}_i(\bar{x})$ for λ-almost all $i \in W$.

For part (1), since x is feasible, the following equation holds for P-almost all $t \in T$,

$$\int_T x(i, f(i, t)) d\lambda(i) = \int_T e(i, f(i, t)) d\lambda(i).$$

Integrating the above equation with respect to t on T under P, we get

$$\int_T \int_T x(i, f(i, t)) d\lambda(i) dP(t) = \int_T \int_T e(i, f(i, t)) d\lambda(i) dP(t).$$

Changing the order of integration (since f is $\mathcal{I} \otimes \mathcal{T}$-measurable), we have

$$\int_T \int_T x(i, f(i, t)) dP(t) d\lambda(i) = \int_T \int_T e(i, f(i, t)) dP(t) d\lambda(i).$$

Since the left hand side is $\int T \bar{x}(i) d\lambda(i)$ and the right hand side is $\int T e(i) d\lambda(i)$, we have

$$\int T \bar{x}(i) d\lambda(i) = \int T e(i) d\lambda.$$

Hence, \bar{x} is feasible. Part (1) has thus been proved.

We prove part (2) by contradiction. Suppose that there exists a coalition W and a feasible allocation \bar{x}' such that $\int_W \bar{x}'(i) d\lambda(i) = \int_W e(i) d\lambda(i)$ and $\bar{u}_i(\bar{x}') > \bar{u}_i(\bar{x})$ for λ-almost all $i \in W$. By Lemma 3, there exists a feasible allocation x' of the private information economy E such that

- For each $i \in I, x'_i$ depends only on agent i's private signal.
- $x'_i = E_i(x'_i)$ for λ-almost all $i \in I$.
- $\bar{u}_i(x'_i) = U_i(x'_i)$ for λ-almost all $i \in I$.

We shall show that x' blocks x on W. Since $\int_W \bar{x}'(i) d\lambda(i) = \int_W e(i) d\lambda(i)$, Lemma 3 also indicates that

$$\int_W x'(i, f(i, t)) d\lambda(i) = \int_W e(i, f(i, t)) d\lambda(i).$$
for \mathbf{P}-almost all $t \in T$. Note that for each $i \in I$, $x_i \in E_i^{-1}(\bar{x}_i)$, and hence $\bar{u}_i(\bar{x}_i) = \max_{y \in E_i^{-1}(\bar{x}_i)} U_i(y) \geq U_i(x_i)$. Since $\bar{u}_i(\bar{x}_i') > \bar{u}_i(\bar{x}_i)$ for λ-almost all $i \in W$ and $\bar{u}_i(\bar{x}_i') = U_i(x_i')$, we have

$$U_i(x_i') = \bar{u}_i(\bar{x}_i') > \bar{u}_i(\bar{x}_i) \geq U_i(x_i)$$

for λ-almost all $i \in W$. It follows that x' blocks x on W, contradicting the fact that x is a private core allocation. Part (2) is thus proved. This completes our proof of the statement (i).

Statement (ii). Let \bar{x} be a core allocation of the economy \bar{E}. By Lemma 3, we have an allocation x of E such that

- For each $i \in I$, x_i depends only on agent i’s private signal.
- $\bar{x}_i = E_i(x_i)$ for λ-almost all $i \in I$.
- $\bar{u}_i(\bar{x}_i) = U_i(x_i)$ for λ-almost all $i \in I$.
- x is feasible for the economy E (Since \bar{x} is feasible for the economy \bar{E}).

Suppose that x is not a private core allocation of E. Then we have a coalition W and a feasible and private information measurable allocation x' for the economy E such that

1. $\int_W x'(i, f(i, t)) \, d\lambda(i) = \int_W e(i, f(i, t)) \, d\lambda(i)$ for \mathbf{P}-almost all $t \in T$.
2. $U_i(x_i') > U_i(x_i)$ for λ-almost all $i \in W$.

Define an allocation \bar{x}' for the economy \bar{E} by letting $\bar{x}_i' = E_i(x_i')$. It is easy to verify that \bar{x}' is feasible and $\int_W \bar{x}'(i) \, d\lambda(i) = \int_W e(i) \, d\lambda(i)$.

Since $\bar{u}_i(\bar{x}_i') = \max_{y \in E_i^{-1}(\bar{x}_i)} U_i(y) \geq U_i(x_i')$ and $\bar{u}_i(\bar{x}_i) = U_i(x_i)$, we have $\bar{u}_i(\bar{x}_i') \geq U_i(x_i') > U_i(x_i) = \bar{u}_i(\bar{x}_i)$ for λ-almost all $i \in W$. Thus, \bar{x}' blocks \bar{x} on W, which leads to a contradiction. Hence, x is a private core allocation of E. \[\square\]