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Abstract
The conflict between Pareto optimality and incentive compatibility, that

is, the fact that some Pareto optimal (efficient) allocations are not incen-
tive compatible is a fundamental fact in information economics, mechanism
design and general equilibrium with asymmetric information. This impor-
tant result was obtained assuming that the individuals are expected utility
maximizers. Although this assumption is central to Harsanyi’s approach to
games with incomplete information, it is not the only one reasonable. In
fact, a huge literature criticizes EU’s shortcomings and propose alternative
preferences. Thus, a natural question arises: does the mentioned conflict
extend to other preferences? We show that when individuals have (a special
form of) maximin expected utility (MEU) preferences, then any efficient al-
location is incentive compatible. Conversely, only MEU preferences have
this property. We also provide applications of our results to mechanism de-
sign and show that Myerson-Satterthwaite’s negative result ceases to hold in
our MEU framework.
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1 Introduction
One of the fundamental problems in mechanism design and equilibrium theory
with asymmetric information is the conflict between efficiency and incentive com-
patibility. That is, there are allocations that are efficient but not incentive com-
patible. This important problem was alluded to in early seminal works by Wil-
son (1978), Myerson (1979), Holmstrom and Myerson (1983), and Prescott and
Townsend (1984). Since incentive compatibility and efficiency are some of the
most important concepts in economics, this conflict generated a huge literature
and became a cornerstone of the theory of information economics, mechanism
design and general equilibrium with asymmetric information.

It is a simple but perhaps important observation, that this conflict was pred-
icated on the assumption that the individuals were expected utility maximizers
(EUM), that is, they would form Bayesian beliefs about the type (private infor-
mation) of the other individuals and seek the maximization of the expected utility
with respect to those beliefs. Since the Bayesian paradigm has been central to
most of economics, this assumption seemed not only natural, but the only one
worth pursuing.

The Bayesian paradigm is not immune to criticism, however, and many im-
portant papers have discussed its problems; e.g. Allais (1953), Ellsberg (1961)
and Kahneman and Tversky (1979) among others. The recognition of those prob-
lems have led decision theorists to propose many alternative models, beginning
with Bewley (1986, 2002), Schmeidler (1989) and Gilboa and Schmeidler (1989),
but extending in many different models. For syntheses of these models, see Mac-
cheroni, Marinacci, and Rustichini (2006), Cerreia, Maccheroni, Marinacci, and
Montrucchio (2008) and Ghirardato and Siniscalchi (2010).

The fact that many different preferences have been considered leads naturally
to the following questions: Does the conflict between efficiency and incentive
compatibility extend to other preferences? Is there any preference under which
there is no such conflict? Does the set of efficient and incentive compatible allo-
cations increases or reduces if a different preference is considered other than EU?
The purpose of this article is to answer these questions.

We show that (a special form of) the maximin expected utility (MEU) in-
troduced by Gilboa and Schmeidler (1989) has the remarkable property that all
efficient (Pareto optimal) allocations are also incentive compatible. This property
is probably best understood in a simple example, based on Myerson and Satterth-
waite (1983)’s setting.
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Myerson-Satterthwaite example. A seller values the object as v ∈ [0, 1] and a
buyer values it as t ∈ [0, 1]. Both values are private information. An allocation
will be efficient in this case if trade happens if and only if t > v. Under the
Bayesian paradigm, that is, the assumption that both seller and buyer are expected
utility maximizers (EUM), Myerson and Satterthwaite (1983) have proved that
there is no incentive compatible, individual rational mechanism (without subsi-
dies) that would achieve ex post efficiency in this situation.

Consider now the following simple mechanism: the seller places an ask a and
the buyer, a bid b. If the bid is above the ask, they trade at p = a+b

2
; if it below,

there is no trade. Therefore, if they negotiated at price p, the (ex post) profit for
the seller will be p − v, and for the buyer, t − p; if they do not negotiate, both
get zero. By Myerson and Satterthwaite (1983)’s result mentioned above, if the
individuals are EUM, this mechanism does not always lead to efficient allocations.
The problem is that this mechanism would be efficient if and only if both seller
and buyer report truthfully, that is, a = v and b = t, but these choices are not
incentive compatible if the individuals are EUM. Now, we will show that a = v
and b = t are incentive compatible choices if both seller and buyer have maximin
preferences, which we will define now.

For this, we depart from the Bayesian assumption used by Harsanyi and do not
assume that each player form a prior about the distribution of the other player’s
value. Indeed, in most real-life cases it would be hard to accept that a buyer knows
the definitive distribution generating the seller’s value (and vice-versa). In sum,
both buyer and seller are in a case of uncertainty. Classical statistics has a well
known prescription for these cases: Wald (1950)’s maximin criterion. Adopting
such criterion, we assume that each individual considers the worst-case scenario
for each action, and chooses the action that leads to the best worst-case outcome.

Now recall that a = v and b = t are incentive compatible if buyer and seller
do not have any incentive to choose a different action. If the buyer chooses b = t,
the worst-case scenario is to end up with zero (either by buying by p = t or by
not trading). Can she do better than this? If she chooses b > t, the worst-case
scenario is to buy by p > t, which leads to a (strict) loss. If she considers b < t,
the worst-case scenario is to get zero (it always possible that there is no trade).
Therefore, neither b < t nor b > t is better (by the maximin criterion) than b = t
and she has no incentive to deviate. The argument for the seller is analogous.

Note that our notions of efficiency and incentive compatibility are completely
standard. The only difference from the classic framework is the preference consid-
ered. Also, although the individuals are pessimistic, they achieve the best possible
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outcome, even from an EU point of view, that is, the outcome is efficient.1 Thus,
our results have a clear implication on the problem of adverse selection and the
“market for lemons” (see Akerlof (1970)).

Another interesting property of these preferences is that the set of efficient
allocations is not small. At least in the case of one-good economies, the set of
efficient allocations under maximin preferences includes all allocations that are
incentive compatible and efficient for EU individuals. This result seems somewhat
surprising, since other papers have indicated that ambiguity may actually be bad
for efficiency, limiting trading opportunities. See for instance Mukerji (1998) and
related comments in section 8.

It is important to know if there are other preferences that present no conflict
between incentive compatibility and efficiency. Since maximin preferences may
seem somewhat restrictive, it is important to know if other preferences can have
the strong property that all efficient allocations are incentive compatible. We an-
swer this question in the negative: only the maximin preferences considered in
this paper have this property (Theorem 4.3). In other words, we show that all effi-
cient (first-best) allocations are incentive compatible under maximin preferences
and only these preferences have this property in general.

The paper is organized as follows. In section 2, we describe the setting and in-
troduce definitions and notation. Section 3 shows that in economies with (a special
form of) MEU preferences, all Pareto optimal allocations are incentive compati-
ble. Section 4 establishes that the maximin preferences are the only preferences
where efficiency and incentive compatibility are fully consistent. We illustrate
how our results can be cast in the mechanism design perspective in section 5.
Section 6 establishes that the set of efficient and incentive compatible allocations
in the EU setting are also MEU efficient. Section 8 reviews the relevant literature
and section 9 discusses future directions of research. An appendix collects some
technical proofs.

1The reader may be concerned with the multiplicity of equilibria in this example. Indeed,
to choose b < t could also be an equilibrium. However, the multiplicity of equilibria is also
possible in the standard Bayesian framework and is also a concern there, specially in issues related
to implementation. Since this issue is not restricted to our framework and a large part of the
mechanism design literature does not discuss it, we will follow the standard practice and leave
further discussions to future work.
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2 Preliminaries
The set I = {1, ..., n} represents the set of individuals in the economy. Each
agent i ∈ I observes a signal in some finite set of possible signals, ti ∈ Ti.
The restriction to finite signals is not crucial and is assumed here just for sim-
plicity. Write T = T1 × · · · × Tn.2 A vector t = (t1, . . . , ti, . . . , tn) rep-
resents the vector of all types. T−i denotes Πn

i 6=jTj and, similarly, t−i denotes
(t1, . . . , ti−1, tt+1, . . . , tn). Occasionally, it will be convenient to write the vector
t = (t1, . . . , ti, . . . , tj, . . . , tn) as (ti, tj, t−i−j).

For clarity, it is useful to specify the following periods (timing structure) for
information and decision makings by the individuals:

1. Ex-ante: contracts are negotiated.

2. Interim: types are privately known by each individual. Then, individuals
announce their types (truthfully or not).

3. Ex post: contracts are executed and consumption takes place.

Now, it remains to clarify the preferences of the agents with respect to the
goods to be consumed.

2.1 Goods and allocations
Each individual cares about an outcome (e.g. consumption bundle) b ∈ B. The set
of bundles B is assumed to be a topological vector space. To fix ideas, the reader
may find it useful to identify B with R`

+, for some ` ∈ N. We assume that there is
a continuous function ui : T × B → R such that ui(t, b) represents individual i’s
utility for consuming b when types t ∈ T are realized. The ex post preference on
B depending on t ∈ T is denoted by <t and defined by:

a <t
i b ⇐⇒ ui(t, a) > ui(t, b),∀a, b ∈ B. (1)

2Although this specification is not essential for our development, we could fix ideas and as-
sume that this type space corresponds to “payoff types,” that is, types associated to the payoff
uncertainty. This is the most common kind of types spaces in the mechanism design literature (see
Bergemann and Morris (2005)). It is also possible to add another set of payoff relevant states S to
parametrize the uncertainty, as in Morris (1994). Since this would slightly complicate our notation
and offer no new insights, we refrain from doing this straightforward extension. Our theory can
also be developed for partition models, as we have done in the first version of this paper, de Castro
and Yannelis (2008), and also in section 7.4 below.
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A particular case of interest below is the one-good economy:

Definition 2.1 (One-good economy) We say that the economy is one-good if B ⊆
R, and for every i ∈ I and t ∈ T , a 7→ ui(t, a) is strictly increasing.

For future discussion, it will be useful to define private values.

Definition 2.2 (Private values) We say that we have private values if the utility
function of agent i depends on ti but not on tj for j 6= i, that is, ui(ti, t−i, a) =
ui(ti, t

′
−i, a) for all i, ti, t−i, t′−i and a.

We are most interested in the interim stage, that is, the moment in which each
individual knows her type ti, but not the types of other individuals (tj, j 6= i),
that is, the interim stage. Since individuals do not know others’ types, Harsanyi
assumes that they form Bayesian beliefs about these other types. Finally, he as-
sumes that there is an ex ante stage, where the types of all players are drawn
according to those beliefs (with the additional assumption that those beliefs come
from a common prior).

This paper departs from Harsanyi’s assumption of Bayesian beliefs and as-
sumes that individual i has an interim preference <ti

i (depending on ti) defined
by:

a <ti
i b ⇐⇒ min

t−i∈T−i
ui(ti, t−i, a) > min

t−i∈T−i
ui(ti, t−i, b). (2)

It is easy to see that this is a maximin preference and it belongs to the class of
preferences studied for modeling complete ignorance. See for instance Milnor
(1954) and Luce and Raiffa (1989). Therefore, our model differs from Harsanyi’s
in the sense that, instead of assuming that the individuals have Bayesian beliefs
about other individuals’ types, they are completely ignorant about the distribution
of those types and adopt pessimist views.3 Although there is a large literature
criticizing the Bayesian framework (see references on section 8), we do not need
to assume that maximin preferences are descriptively better than Bayesian prefer-
ences in games with incomplete information. Rather, our objective here is to re-
port some properties of this maximin preference. For further discussion on these
preferences and how it relates to Harsanyi’s approach, see section 7.

As it turns out, the definition in (2) is yet not satisfactory, because at the interim
stage, in general the individual faces a set of bundles instead of a single bundle—
the actual bundle to be consumed in the ex post stage is determined depending on

3The situation would be more properly described as one of “partial ignorance,” because the
agent is informed of his type. See more discussion about this point on section 7.
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other individuals’ types. That is, individual i has to compare individual allocations
f : T → B and g : T → B and the preference has to be defined on these functions
rather than on bundles. In this case, equation (2) should be changed to:4

f <ti
i g ⇐⇒ min

t−i,t′−i∈T−i
ui(ti, t−i, f(ti, t

′
−i)) > min

t−i,t′−i∈T−i
ui(ti, t−i, g(ti, t

′
−i)).

(3)
For each function f : T → B, it is convenient to define:

f(ti) ≡ min
t−i,t′−i∈T−i

ui(ti, t−i, f(ti, t
′
−i)). (4)

We can also define an ex ante preference <i correspondent to this interim
preference. This step is not essential for our results, however, and can be made
in the same way that Harsanyi did, that is, by assuming that there is a measure µi
generating ti. Following the above notation, the ex ante preference would be:

f <i g ⇐⇒
∫
Ti

f(ti)µi(dti) >
∫
Ti

g(ti)µi(dti). (5)

We will assume throughtout the paper that µi puts positive probability on all types
on Ti, that is, µi({ti}) > 0,∀ti ∈ Ti. In this case, the ex ante preference <i and
the interim preference <ti

i will agree for all types ti. See also a “construction” of
these preferences from another perspective in section 7.4.

It is useful to observe that the preference just defined is an instance of the
Maximin Expected Utility (MEU) preferences defined by Gilboa and Schmeidler
(1989). To see this, let ∆i denote the set of measures π on Ti × T−i × T−i. For
π ∈ ∆, let π|Ti denote the marginal of π in Ti. Define, for each i, the following
set:

Pi ≡ {π ∈ ∆ : π|Ti = µi}. (6)

Then, the preference defined by (5) is equivalently defined by:

f <i g ⇐⇒ min
π∈Pi

∫
Ti×T−i×T−i

ui(ti, t−i, f(ti, t
′
−i)) dπ(ti, t−i, t

′
−i)

> min
π∈Pi

∫
Ti×T−i×T−i

ui(ti, t−i, g(ti, t
′
−i)) dπ(ti, t−i, t

′
−i),

4The reader may think that the most natural definition of the preference would involve the
min with respect to only one t−i, that is, compare mint−i∈T−i ui(ti, t−i, f(ti, t−i)). However,
if one remembers the “complete ignorance” motivation cited above, definition (8) could be con-
sidered more natural. In any case, under the private values assumption, these two definitions are
equivalent. Our results require (8) only for the general (interdependent values) case.
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which is easily seen to be a particular case of Gilboa and Schmeidler’s MEU.5

Finally, we will adopt the usual notation for the strict and symmetric part of
the preference defined above. That is, we will write f �i g if f <i g but it is not
the case that g <i f and we will write f ∼i g if f <i g and g <i f .

We will always assume that the preferences are as described above, unless
otherwise explicitly stated.

2.2 Allocations and endowments
An individual allocation is a function f : T → B. Each individual has an initial
endowment ei : T → B. We assume that individual i’s endowment depends only
on ti and not on the types of other individuals, that is, we have the following:

Assumption 2.3 (Private information measurability of the endowments) For
every i ∈ I , ti ∈ Ti and t−i, t′−i ∈ T−i, the endowments satisfy: ei(ti, t−i) =
ei(ti, t

′
−i), that is, we assume that ei is Fi-measurable.6

This assumption is almost always assumed in the literature regarding general
equilibrium with asymmetric information, no-trade, auctions and mechanism de-
sign. In the latter, endowments are usually assumed to be constant with respect to
types (as in Morris (1994)) or not explicitly considered. Note that if endowments
are constant, assumption 2.3 is automatically satisfied. In auctions, the players
are assumed to be buyers or sellers with explicit fixed endowments, which again
implies assumption 2.3. Even when the endowments may vary with types, as in
Jackson and Swinkels (2005), where the private information is given by (ei, vi),
i.e., endowments and values, assumption 2.3 is still satisfied, because the endow-
ment depends only on player i’s private information. Note also that since we
allow interdependent values, the ex post value of the endowment may vary across
all states. The assumption is about only the quantity endowed, not values. In this
sense, it may be considered a mild and natural assumption.

An allocation is a profile x = (xi)i∈I , where xi is an individual allocation
for individual i. An allocation is feasible if

∑
i∈I xi(t) =

∑
i∈I ei(t), for every t.

Unless otherwise explicitly defined, all allocations considered in this paper will
be feasible.

5 This is a particular case of the maximin expected utility axiomatized by Gilboa and Schmei-
dler (1989) because we require Pi to have the format given by (17), while the set Pi in Gilboa and
Schmeidler (1989) has to be only compact and convex.

6 Fi denotes the (σ)-algebra generated by the partition ∪ti∈Ti
{ti} × T−i.
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2.3 Incentive compatibility
Our definition of incentive compatibility is standard. Formally, an allocation x =
(xi)i∈I is incentive compatible provided that there is no individual i and type ti
that could benefit from reporting t′′i instead of his true type t′i, assuming that all
other individuals report truthfully.

Before formalizing this notion, we would like to call attention to two aspects.
First, when deciding to make a false report, the individual is at the interim stage
and, therefore, makes all comparisons with respect to his interim preference. Sec-
ond, note that in the case that individual i reports t′′i instead of his true type
t′i, he will receive the allocation ei (t′i, t−i) + xi (t

′′
i , t−i) − ei (t

′′
i , t−i) instead of

xi (t
′
i, t−i), because xi (t′′i , t−i)− ei (t′′i , t−i) is the trade that i is entitled to receive

at the state (t′′i , t−i). Therefore, we have the following:

Definition 2.4 An allocation x is incentive compatible (IC) if there is no i, t′i, t
′′
i

such that [ei (t
′
i, ·) + xi (t

′′
i , ·)− ei (t′′i , ·)] �

t′i
i xi (t

′
i, ·). For the maximin prefer-

ence, this last condition can be expressed as:

min
t−i,t′−i∈T−i

ui
(
t′i, t−i, ei

(
t′i, t

′
−i
)

+ xi
(
t′′i , t

′
−i
)
− ei

(
t′′i , t

′
−i
))

> min
t−i,t′−i∈T−i

ui
(
t′i, t−i, xi

(
t′i, t

′
−i
))
. (7)

2.4 Notions of efficiency
Given the ex post, interim and ex ante preferences defined above, the following
definitions are standard:

Definition 2.5 Consider a feasible allocation x = (xi)i∈I and let <i,<
ti
i and <t

i

represent respectively the ex ante, interim and ex post preferences of agent i ∈ I ,
as defined above (see section 2.1). We say that x is:

1. ex post efficient if there is no feasible allocation y = (yi)i∈I such that
yi(t) <t

i xi(t) for every i and t ∈ T , with strict preference for some i
and t.

2. interim efficient if there is no feasible allocation y = (yi)i∈I such that yi <ti
i

xi for every i and ti ∈ Ti, with strict preference for some i and ti.

3. ex ante efficient if there is no feasible allocation y = (yi)i∈I such that
yi <i xi for every i, with strict preference for some i.
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Let EA, EI and EP denote, respectively, the sets of ex ante, interim and ex post
efficient allocations.

Let A denote the set of allocations a : T → B and DA(x), DI(x) and DP (x)
denote, respectively, the set of ex post, interim and ex ante deviations of x ∈ A.
That is, DA(x) is the set of those y ∈ A that satisfy the property defined in the
item 1 above. Thus, EA = {x : DA(x) = ∅}. Analogous statements hold for
DI(x), DP (x), EI and EA.

Holmstrom and Myerson (1983) note that EA ⊂ EI ⊂ EP for Bayesian pref-
erences. However, in our maximin expected utility setting we have the following:

Proposition 2.6 EA ( EI but we may have EP 6⊂ EI , EI 6⊂ EP and EA 6⊂ EP .

Proof. See the appendix.

The fact that the inclusion EI ⊂ EP may fail for maximin preferences is,
however, not essential. First, it holds in one-good economies. Second, we could
require the ex post efficiency together with the interim and the ex ante efficiency.
We clarify both issues in the sequel.

Lemma 2.7 In an one-good economy, EI ⊂ EP .

Proof. Suppose that x ∈ EI \ EP . Then there exists y, j, t′ such that yi <t
i xi

for all i ∈ I, t ∈ T and yj �t
′
j xj . Since utilities are strictly increasing, we have∑

i∈I yi(t
′) >

∑
i xi∈I(t) =

∑
i∈I ei(t), that is, y is not feasible.

Now, let us consider the requirement of strong efficiency.

Definition 2.8 We say that an allocation x is strongly efficient if x ∈ EA ∩ EI ∩
EP . The set of strongly efficient allocations is denoted E ≡ EA ∩ EI ∩ EP .

We are interested in the following:

Proposition 2.9 There exist strongly efficient allocations, that is, E 6= ∅.

Proof. Trivially, there exists x ∈ EA. By Proposition 2.6, x ∈ EI . If x /∈ EP ,
then there exists ex post efficient y such that yi <t

i xi for all i, t (and it improves
upon x at least for one i, t). But then this implies that yi <ti

i xi and yi <i xi also
hold for all i, ti. Since x ∈ EA ∩ EI , y ∈ E = EA ∩ EI ∩ EP .
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In this paper, we will be most concerned with the interim efficiency (which
is equivalent to ex ante efficiency by the proposition above), because the interim
stage is the one that most interests us, as discussed above. More explicitly, we
consider the following:

Definition 2.10 An allocation x is maximin efficient if it is interim efficient in the
sense of definition 2.5, that is, there is no feasible allocation y = (yi)i∈I such that
yi <

ti
i xi for every i and ti ∈ Ti, with strict preference for some i and ti, where

<ti
i is the maximin preference, i.e.,

f <ti
i g ⇐⇒ min

t−i,t′−i∈T−i
ui(ti, t−i, f(ti, t

′
−i)) > min

t−i,t′−i∈T−i
ui(ti, t−i, g(ti, t

′
−i)).

(8)

3 Efficiency and incentive compatibility
The conflict between efficiency and incentive compatibility, that is, the fact that
some (or even all) efficient allocations may fail to be incentive compatible for
expected utility preferences is well-known. For an illustration of this conflict,
see the appendix. In this section, we show that such conflict does not exist if
the preferences are maximin. That is, we show that maximin efficiency implies
incentive compatibility.

Theorem 3.1 If x = (xi)i∈I is a maximin efficient allocation, then x is incentive
compatible.

It should be noted that the interim efficiency required in the definition of max-
imin efficiency (see definition 2.10) is the most natural for the above result, since
the incentive compatibility condition is an interim notion. In other words, the
theorem above maintains a parallelism of timing (interim) between premise and
conclusion.

Proof of Theorem 3.1: Suppose that x is not incentive compatible. This means
that there exists an individual i and types t′i, t

′′
i such that:

min
t−i,t′−i∈T−i

ui
(
t′i, t−i, ei

(
t′i, t

′
−i
)

+ xi
(
t′′i , t

′
−i
)
− ei

(
t′′i , t

′
−i
))

> min
t−i,t′−i∈T−i

ui
(
t′i, t−i, xi

(
t′i, t

′
−i
))
. (9)
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We will prove that x cannot be maximin Pareto optimal by constructing another
feasible allocation y = (yi)i∈I that Pareto improves upon x. For this, define

yj (ti, t−i) =

{
xj (ti, t−i) , if ti 6= t′i
ej (t′i, t−i) + xj (t′′i , t−i)− ej (t′′i , t−i) , if ti = t′i

(10)

To see that (yj)j∈I is feasible, it is sufficient to consider what happens when ti =
t′i: ∑

j∈I

yj (t′i, t−i) =
∑
j∈I

ej (t′i, t−i) +
∑
j∈I

xj (t′′i , t−i)−
∑
j∈I

ej (t′′i , t−i)

=
∑
j∈I

ej (t′i, t−i) ,

because
∑

j∈I xj (t′′i , t−i) =
∑

j∈I ej (t′′i , t−i), from the feasibility of xj at (t′′i , t−i).

From (9) and (10), we have yi �
t′i
i xi and yi ∼tii xi for any ti 6= t′i. It remains

to prove that yj <
tj
j xj for any j 6= i and tj . The fact that ej depends only on tj

implies that ej (t′i, t−i) = ej (t′′i , t−i) for all t−i ∈ T−i. Then, for every t−i ∈ T−i,

yj (t′i, t−i) = ej (t′i, t−i) + xj (t′′i , t−i)− ej (t′′i , t−i) = xj (t′′i , t−i) . (11)

For each tj ∈ Tj , define X tj
j as the set {xj(tj, t−j) : t−j ∈ T−j} and Y

tj
j ≡

{yj(tj, t−j) : t−j ∈ T−j}. Fix a t = (ti, tj, t−i−j). If ti 6= t′i, the definition (10)
of yj implies that yj(t) = xj(t) ∈ Xj(tj). If ti = t′i, (11) gives yj (t′i, t−i) =
xj (t′′i , t−i) ∈ Xj(tj). Thus, Yj(tj) ⊂ Xj(tj), for all tj ∈ Tj . Therefore,

y
j
(tj) = min

t−j ,y∈Y
tj
j

uj(tj, t−j, y) > min
t−j ,x∈X

tj
j

uj(tj, t−j, x) = xj (tj) . (12)

This shows that yj <
tj
j xj for all j 6= i and tj ∈ Tj . Thus, y is a Pareto improve-

ment upon x, that is, x is not maximim efficient.

The reader can observe that the only place where we used the specific defini-
tion of the interim preference as the minimum was to conclude (12). Indeed if we
were to use other preferences (in particular the expected utility preferences), this
step would not go through.

Maximin efficiency in fact implies coalitional incentive compatibility, which
is a strictly stronger notion. For this consider the following definition, which cor-
responds to a definition introduced by Krasa and Yannelis (1994) for the partition
model.
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Definition 3.2 (Blocking Coalition) A nonempty set C ⊂ I is a blocking coali-
tion to an allocation x = (xi)i∈I if there exist two profiles t′C = (t′i)i∈C and
t′′C = (t′′i )i∈C and transfers τC = (τ i)i∈C ∈ B|C| such that

[ei (t
′
i, ·) + xi (t

′′
i , ·)− ei (t′′i , ·) + τ i] �

t′i
i xi (t

′
i, ·) ,

for all i ∈ C, where �t
′
i
i denotes the strict maximin interim preference at type t′i.

Definition 3.3 An allocation x is coalitional incentive compatible (CIC) if there
is no blocking coalition to x.

Thus, the following result is actually a stronger version of Theorem 3.1:

Theorem 3.4 If x is maximin efficient, x is coalitional incentive compatible.

Proof. It is enough to adapt Theorem 3.1’s proof, substituting i by the blocking
coalition C.

4 Necessity of maximin preferences
From the results presented in section 3, a natural question is: does any other
preference also have the property of no conflict between efficiency and incentive
compatibility? In this section, we answer this question in the negative, that is, we
show that if the preferences satisfy some reasonably weak properties (which we
will define in a moment) but are not maximin, then there are allocations which are
efficient but not incentive compatible. In other words, only maximin preferences
present no conflict between efficiency and incentive compatibility in this sense.
For formalizing these results, we need some definitions.

For this section, assume that B = R`
+, for some ` ∈ N. Let & be a preference

over the set F of all functions f : T → B.

Definition 4.1 We say that & is:

1. complete if for every f, g, f & g or g & f .

2. transitive if for every f, g, h, f & g and g & h imply f & h.

3. monotonic if f(ω) > (�)g(ω), ∀ω ∈ Ω implies f & (m)g.7

7By f(ω) � g(ω) we mean that all coordinates of f(ω) are strictly above all coordinates of
g(ω). We write f m g if f & g but it is not the case that g & f .
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4. continuous if for all f, g, h ∈ L, the sets {α ∈ [0, 1] : αf + (1− α)g & h}
and {α ∈ [0, 1] : h & αf + (1− α)g} are closed.

We wish to state results about preferences {&i}i∈I , such that they agree with
the maximin preference < on constant acts and such that each type is important
for the ex ante preference. We will also require that the (ex post) utility function
has a convex image. These mild conditions are summarized in the following:

Definition 4.2 We say &i is adequate if the following conditions hold:

• it agrees ex post with the maximin preferences <i, that is, if f(t) = a and
g(t) = a′ for all t ∈ T , then,8

f &i g ⇐⇒ f <i g ⇐⇒ ui(t, a) > ui(t, a
′). (13)

• the image of the function a 7→ ui(t, a) is an interval I ⊆ R, for every t ∈ T ;

• if f &ti
i g for all ti ∈ Ti and there is t′i ∈ Ti such that f mt′i

i g, then f m g.

In this section, we want to prove the following:

Theorem 4.3 Let 1 and 2 be individuals with preferences &1 and &2, respec-
tively, which are adequate, complete, transitive, monotonic and continuous. If
at least one of these preferences is not maximin, then there exists an allocation
x = (x1, x2) which is Pareto optimal but not incentive compatible.

This Theorem’s proof can be easily extended to the following:

Theorem 4.4 Let I = {1, ..., N} be a set of individuals with preferences &i, for
i = 1, ..., N , which are adequate, complete, transitive, monotonic and continuous.
If at least one of these preferences is not maximin, then there exists an allocation
x = (xi)i∈I which is Pareto optimal but not coalitionally incentive compatible.

For establishing these results, we begin by providing a new “axiomatization”
of maximin preferences, which will be useful in the proof of the above results.9

This is done in section 4.1 below. The proofs of all results in this section are
included in the appendix.

8Remember that <i denotes the ex ante maximin preference.
9Some purist decision theorists may oppose the qualification of Theorem 4.7 below as an “ax-

iomatization” of maximin preferences on the grounds that one of its assumptions— namely, “sup-
ported by minimal prices,” introduced below— is not a standard axiom in the decision theory
tradition. In this case, it would be better to read “characterization” whenever we write “axiomati-
zation.”
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4.1 Characterization of Maximin preferences
For providing an axiomatization of maximin preferences, it is convenient to adopt
a slightly more abstract setting than the rest of the paper and consider the standard
setup of decision under complete ignorance. Thus, in this section let the finite
set W represent the alternatives w about which a decision maker is completely
ignorant. The decision maker has a preference & over the set F of all real valued
functions f : W → I ⊆ R, with m denoting, as before, its strict part. We can
identify F with (a subset of) the Euclidean space R|W | and use its Euclidian norm,
topology, etc. Recall that & is maximin if for all f, g ∈ F ,

f & g ⇐⇒ min
w∈W

f(w) > min
w∈W

g(w).

Our main assumption depends on the set of supporting probabilities. As usual,
let ∆(W ) denote the set of probabilities in W .

Definition 4.5 Fix a preference &. For each f ∈ F , the set of supporting proba-
bilities at f is

S&
f ≡ {p ∈ ∆(W ) : g & f ⇒ p · g > p · f}.

Whenever & is clear from the context, we will write Sf instead of S&
f .

Definition 4.6 & is supported by minimal prices if for all f ∈ F and p ∈ S&
f ,

f(w′) > min
w∈W

f(w) =⇒ p(w′) = 0. (14)

We have the following characterization:

Theorem 4.7 A preference & is maximin if and only if it is complete, transitive,
monotonic, continuous and supported by minimal prices.

Proof. See the appendix.

The following result is used in the proof of theorems 4.3 and 4.4 and might be
of interest in its own.

Proposition 4.8 Suppose that & is complete, transitive, monotonic and continu-
ous. If & is not maximin, there exists

h ∈ E ≡ {f ∈ F : ∃w′ ∈ W such that f(w′) > min
w∈W

f(w)},

such that for every g 6= h satisfying h > g, we have hm g.

Proof. See the appendix.
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5 A mechanism design perspective
It is natural to ask what is the relevance of the above results from a mechanism de-
sign perspective. This section clarifies this issue. We begin by translating the usual
mechanism design setting into our framework. The set of individuals and their in-
formation is exactly as we described before and there is a mechanism designer
who wants to implement an efficient allocation. Instead of initial endowments,
the mechanism design literature uses to consider only initial levels of utility, to
inform whether it is individually rational or not to participate in the mechanism.
Of course, this is made only for simplicity and in many cases, endowments could
be explicitly defined. In the sequel, we consider separately the two cases.

5.1 Case with explicit initial endowments
Suppose that the individuals have initial endowments e = (ei)i∈I . The mechanism
designer wants to find a mechanism that implements a feasible allocation x =
(xi)i∈I . Here, we are concern with efficient allocations. In particular, allocations
that are efficient in the strongest sense.10 A mechanism is incentive compatible if
no individual has an interest of misreporting his information (see definition 2.4).
A mechanism is budget balanced if it can be implemented for any report by the
agents, without the need of extra goods.

Theorem 5.1 Suppose that x = (xi)i∈I is a strongly efficient feasible allocation
and each agent i ∈ I has a maximin preference as defined in section 2.1. Then,
there exists a mechanism that implements x and is incentive compatible and bud-
get balanced.

Moreover, if x dominates (ex ante, interim, ex post) the initial endowment e for
each consumer, then the mechanism is also (ex ante, interim, ex post) individually
rational.

Proof. Let us define a simple mechanism that implements the strongly efficient
allocation x. The space of messages for individual i is just the set of types Ti.
The mechanism simply implements the transfers that are supposed to occur at
the reported types. That is, if agents report the profile of types t′ = (t′1, ..., t

′
n),

while their true types are t = (t1, ..., tn) then individual i’s final allocation will
be ei(t) + xi(t

′) − ei(t′), since xi(t′) − ei(t′) is transfer supposed to occur if the
types are t′. Now the fact that this mechanism is budget balanced comes from the

10See definition 2.8.
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fact that x is feasible, that is,
∑

i∈I (xi(t
′)− ei(t′)) = 0 for every t′ ∈ T . This

mechanism is incentive compatible by Theorem 3.1.
Note that the initial endowments mark the reference point for each individual.

Therefore, besides their role of defining feasibility, they also define whether it is
individually rational for each individual to participate in the mechanism. If the
outcome will be better for the individual, then it is in his interest to participate in
the mechanism. Thus, the claim in the second paragraph is straightforward.

5.2 Public outcomes
In some models, as in d’Aspremont and Gérard-Varet (1979), the individuals
may care about the whole allocation, that is, the set of bundles is B = O × R,
where O ⊂ R`

+ indicates the set of possible physical outcomes, as in the set
of all possible public projects. The last component of B, namely R, refers to
monetary transfers among the n individuals. The (ex post) utility is given by:
ui(t, (a, τ i)) = vi(ti, a) + τ i, where τ i ∈ R and a ∈ O ⊂ R`

+. In this case, it is
natural to consider outcome efficiency instead of the normal efficiency.

Definition 5.2 We say that a∗ ∈ O is outcome efficient if:∑
i∈I

vi(ti, a
∗) = sup

a∈O

∑
i∈I

vi(ti, a).

Note that the setting above is slightly more general than in the rest of the
paper (at least in one direction), since the consumers may care not only about
their own consumption (ai) but above the entire a. Indeed, in this setup we do
not need even to refer to individual consumptions. In other words, it is possible
to consider externalities in this setup. The following simple result establishes
the connection between outcome efficiency and (strong) Pareto efficiency. Since
we are not considering endowments here, we need to substitute the feasibility
constraint by a condition of the type

∑
i∈I τ i = c, for some c ∈ R. Although

the actual c is not important, we will focus on the case of budget balance, that is,
c = 0. Therefore, it is straightforward to adapt for this setup the notion of strong
efficiency introduced in definition 2.8.

Lemma 5.3 a∗ is outcome efficient if and only if there exists τ = (τ i)i∈I ∈ Rn

such that (a∗, τ) is strongly Pareto efficient and
∑

i∈I τ i = 0.
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Proof. Let (a∗, τ) be strongly efficient, with
∑

i∈I τ i = 0 but a∗ is not outcome
efficient. Then there exists o ∈ O such that

r ≡
∑
i∈I

vi(ti, o) = max
a∈O

∑
i∈I

vi(ti, a) >
∑
i∈I

vi(ti, a
∗) ≡ s.

Then, for any τ ∈ Rn, the allocation (a∗, τ) is dominated by (o, τ ′), where

τ ′i = vi(ti, a
∗) + τ i − vi(ti, o) +

r − s
n

.

Indeed, vi(ti, o) + τ ′i > vi(ti, a
∗) + τ i and

∑
i∈I τ

′
i =

∑
i∈I τ i. This shows that

there is no τ ∈ Rn such that (a∗, τ) is Pareto optimal.
Conversely, assume that a∗ is outcome efficient. Let (o, τ) be a strongly effi-

cient allocation with
∑

i∈I τ i = 0. By the first part of the proof, o is outcome effi-
cient, that is,

∑
i∈I vi(ti, o) =

∑
i∈I vi(ti, a

∗). Define τ ′i ≡ vi(ti, o)+τ i−vi(ti, a∗).
Then for each i, (a∗, τ ′i) is indifferent (ex post, interim and ex ante) to (o, τ i).
Therefore, (a∗, τ ′) is strongly efficient and

∑
i∈I τ

′
i = 0.

In a sense, this result shows that when we have monetary transfers, we just
need to worry about outcome efficiency, instead of Pareto efficiency. This justifies
the focus on this definition of efficiency, usually considered in the mechanism
design literature.

Now, we consider decision rules, which are functions d : T → O from types
to outcomes. We say that d is outcome efficient if d(t) is outcome efficient for
every t ∈ T . A mechanism m = (d, τ) consists of a decision rule d : T → O and
transfers τ : T → Rn. A mechanism m is budget balanced if

∑
i∈I τ(t) = 0 for

all t ∈ T and it is incentive compatible if there is no individual i and types ti, t′i
such that

min
t−i∈T−i

[vi (ti, d(t′i, t−i)) + τ(t′i, t−i)] > min
t−i∈T−i

[vi (ti, d(ti, t−i)) + τ(ti, t−i)] .

Finally, we say that d is incentive compatible if there exist transfers τ : T → Rn

such that (d, τ) is incentive compatible.

Theorem 5.4 Assume that individuals have private values and maximin prefer-
ences.11 If the decision rule d : T → O is outcome efficient, then it is incentive
compatible.

11The assumption of private values is not important for the result. It is used just to simplify the
minimizations. It can be extended to interdependent values as we did in Theorem 3.1.
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Proof. By Lemma 5.3, we can find τ : T → Rn such that (d, τ) is strongly
efficient. Suppose that (d, τ) is not incentive compatible. This means that there
exists an individual i and types t′i, t

′′
i such that:

min
t−i∈T−i

[vi (t
′
i, d(t′′i , t−i)) + τ i(t

′′
i , t−i)] > min

t−i∈T−i
[vi (t

′
i, d(t′i, t−i)) + τ i(t

′
i, t−i)] .

(15)
Let T ′−i denote the set of those t′−i ∈ T−i that realize the minimum for t′i, that is:

vi
(
t′i, d(t′i, t

′
−i)
)

+ τ i(t
′
i, t
′
−i) = min

t−i∈T−i
[vi (t

′
i, d(t′i, t−i)) + τ i(t

′
i, t−i)] .

Define d′ : T → O and τ ′ : T → Rn as follows: if ti 6= t′i or t−i /∈ T ′−i, put
d′(ti, t−i) = d(ti, t−i) and τ ′(ti, t−i) = τ(ti, t−i); otherwise, define:

d′(t′i, t−i) = d(t′′i , t−i); and τ ′(t′i, t−i) = τ(t′′i , t−i).

Since
∑

j∈I τ
′
j(ti, t−i) =

∑
j∈I τ j(ti, t−i) = 0 if ti 6= t′i or t−i /∈ T ′−i, and∑

j∈I τ
′
j(t
′
i, t−i) =

∑
j∈I τ j(t

′′
i , t−i) = 0 otherwise, then

∑
j∈I τ

′
j(t) = 0 for every

t ∈ T .
For each j 6= i, define the set of utilities achieved by individual j with type tj:

Uj(tj) ≡ {vj(tj, d(tj, t−j)) + τ j(tj, t−j) : t−j ∈ T−j}.
Observe that we used (d, τ) in the definition of Uj(tj). Thus, unless ti = t′i and
t−i ∈ T ′−i, we have

vj(tj, d
′(tj, t−j)) + τ ′j(tj, t−j) = vj(tj, d(tj, t−j)) + τ j(tj, t−j) ∈ Uj(tj).

Now consider t′ = (t′i, t
′
−i), where t′−i = (tj, t

′
−i−j) ∈ T ′−i, tj ∈ Tj . Then,

vj(tj, d
′(tj, t

′
i, t
′
−i−j))+τ ′j(tj, t

′
i, t
′
−i−j) = vj(tj, d(tj, t

′′
i , t
′
−i−j))+τ j(tj, t

′′
i , t
′
−i−j).

Note, however, that (t′′i , t
′
−i−j) = t−j for some t−j ∈ T−j . Therefore, for any

j 6= i, tj ∈ Tj and t−j ∈ T−j ,
vj(tj, d

′(tj, t−j)) + τ ′j(tj, t−j) ∈ Uj(tj).
This allows us to obtain the following inequality:

min
t−j∈T−j

[vj (tj, d(tj, t−j)) + τ j(tj, t−j)]

= minuj∈U(tj)uj

6 min
t−j∈T−j

[
vj (tj, d

′(tj, t−j)) + τ ′j(tj, t−j)
]
.

This shows that (d′, τ ′) is not interim worse than (d, τ) for any j 6= i. On the other
hand, (15) shows that (d′, τ ′) is strictly (interim) better for i. Therefore, (d, τ)
cannot be strongly efficient.
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5.3 Myerson-Satterthwaite setup
It is now straightforward to apply Theorem 5.4 to the Myerson-Satterthwaite setup
described in the introduction. We can in fact be a little bit more general. Suppose
that there are n buyers ( individuals 1,2,...,n) and m sellers (individuals n+ 1, ...,
n+m) of indivisible objects. Individual i ∈ I ≡ {1, ..., n+m} has valuation ti for
the object.12 Since the objects are indivisible, we consider: O = {o ∈ {0, 1}n+m :∑

i∈I oi = m}. Then, an allocation (decision) rule d : T → O is outcome efficient
if for every t ∈ T , di(t) = 1 if and only if ti is among the m highest valuations.
Let us denote by d∗ an outcome efficient allocation rule. It is easy to see that d∗

is essentially unique (there is room for multiplicity only in the way that ties are
broken). Then we have the following:

Corollary 5.5 Let d∗ be an outcome efficient allocation rule. There are trans-
fers τ : T → Rn such that (d∗, τ) is incentive compatible, budget balanded and
individually rational.

6 How do Bayesian and maximin efficiency compare?
From the fact that all maximin efficient allocations are incentive compatible, the
reader may wonder whether maximin efficiency is not an excessively strong re-
quirement, which could explain our results. In this section, we address this ques-
tion in particular cases. For one-good economies, we show that whenever an
allocation is Bayesian efficient and incentive compatible, then it is also maximin
efficient. That is, the set of maximin efficient allocations is at least as large as
the set of Bayesian efficient and incentive compatible allocations. For economies
with numéraire, studied in section 5.2, we show that maximin strong efficiency is
equivalent to Bayesian strong efficiency.

However, the formal statement of these results require a clarification of the
relationship between the maximin and the Bayesian preferences. For this, it is
useful to recall how we defined the ex ante maximin preference, at the end of
section 2.1—see discussion after equation (4). There, we assumed the existence
of a measure µi generating the types ti for each agent i ∈ I . In fact, µi could
be consider just the marginal of agent i’s belief πi over Ti, if this agent were
Bayesian. In other words, we consider two economies:

12We could describe a Jackson and Swinkels (2005) double auction model, where each individ-
ual can be a buyer or seller and can have endowments of multiple units. This setup is essentially
the one already covered by Theorem 3.1 and it does not seem necessary to reconsider it here.
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• a maximin economy, exactly as described and studied up to now, which will
denote (in this section only) by EM ; and

• a Bayesian economy, where the agents have Bayesian preferences &i, de-
fined by ex post utility functions ui : T × B → R (the same as in the
maximin economy) and the priors πi, satisfying πi|Ti = µi, that is,

f &i g ⇐⇒
∫
T

ui(t, f(t)) πi(dt) >
∫
T

ui(t, g(t)) πi(dt).

The interim and ex post preferences are defined in the usual way. This
variant will be denoted by EB.

6.1 One-good economies
Our result for one-good economies is the following:

Theorem 6.1 Consider a one-good economy with private values. If x is an in-
terim efficient allocation in EB which is also coalitionally incentive compatible,13

it is an interim efficient allocation in EM , i.e., x is maximin Pareto optimal. The
reverse is not true.

Proof. See the appendix.

This result shows that the maximin preferences do not destroy efficient and
incentive compatible outcomes. To the contrary, any incentive compatible out-
come that is efficient under a Bayesian preference will be also efficient under the
corresponding maximin preference.

6.2 Economies with numéraire
Now, consider an economy as described in section 5.2, that is, the set of bundles
is B = O × R, where O ⊂ R`

+ indicates the set of possible physical outcomes.
The last part of B (R) refers to monetary transfers among the n individuals. The
(ex post) utility is given by: ui(t, (a, τ i)) = vi(ti, a) + τ i, where τ i ∈ R and
a ∈ O ⊂ R`

+. Recall that an allocation is strongly efficient if it is ex ante,

13See definitions 3.2 and 3.3 for the definition of coalitionally incentive compatible in the max-
imin setting. The definition in the Bayesian setting is practically the same: the only difference is
that we consider the interim Bayesian preference instead of the interim maximin preference.
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interim and ex post efficient. In this section, we will consider two variations
of this concept: Bayesian strongly efficient and maximin strongly efficient, if the
agents have Bayesian and maximin preferences, respectively. The following result
shows that maximin strong efficiency is the same as Bayesian strong efficiency:

Proposition 6.2 In the economy with transfers described above, an allocation is
Bayesian strongly efficient allocation if and only if it is also maximin strongly
efficient.

Proof. In Lemma 5.3, we show that (a∗, τ) is maximin strongly Pareto efficient
for some τ = (τ i)i∈I ∈ Rn satisfying

∑
i∈I τ i = 0 if and only if a∗ is outcome

efficient. An examination of the proof of that Lemma shows that it establishes the
same equivalence for Bayesian strong efficiency. Therefore, the two concepts are
equivalent to outcome efficiency of a∗.

Despite the fact that strong efficiency agree for the two kind of preferences, in-
centive compatibility does not. That is, a strong efficient allocation will be incen-
tive compatible under maximin preferences but will not be incentive compatible
under Bayesian preferences in general.

7 Maximin preferences—a reassessment
As we emphasized previously, it is not important for our contribution whether or
not maximin preferences are realistic or representative of actual market partici-
pants’ preferences. This is ultimately an empirical question, which goes beyond
the scope of this paper.

However, we recognize that the pessimism exhibited in the maximin prefer-
ences may suggest that they are unrealistic. Despite being able to explain the Ells-
berg paradox, for instance, some readers may find this pessimism excessive. Such
skeptical readers may then ask what is the contribution of our exercise after all.
Notwithstanding the fact that unrealistic assumptions are useful (and overly used)
in economic theory,14 such a skeptical reader can learn that the conflict between ef-
ficiency and incentive compatibility is so severe as to disappear only under (what
he considers) unacceptably restrictive conditions on the preferences. From this

14Some important papers in economics, as Modigliani and Miller (1958), have presented strik-
ing conclusions under unrealistic assumptions. Thus, the fact that a fundamentally important
economic conclusion depends on restrictive assumptions can be of general economic interest.
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point of view, our contribution highlights the difficulties associated to obtaining
incentive compatibility and reminds that incentive compatibility can (should?) be
studied with respect to more general preferences.15 This obvious direction of fu-
ture research is further discussed in section 9 below.

These remarks clarify that the skepticism with respect to the descriptive power
of maximin preferences do not strip this paper of relevant content. However, the
objective of this section is to revisit the normative reasons for the dismissal of
maximin preferences and reassess its suitability for the economic environment
studied in this paper. For this, we begin by discussing Harsanyi’s approach to the
problem of incomplete information in games in section 7.1. We show that max-
imin preferences could be seen as a reasonable alternative to Harsanyi’s approach.
Then, in section 7.2 we discuss the motivation of maximin preferences through
games and observe that its classic justification is suitable for the economic envi-
ronment studied in this paper.

7.1 Uncertainty in games and Harsanyi’s approach
In a seminal paper, Harsanyi (1967-8) proposed an approach to treat games of
incomplete information that begins with a parametrization of the utility functions
and beliefs of the game’s participants, through “types.” Assuming also common
priors, he turns games of incomplete information into tractable objects. Later,
Mertens and Zamir (1985) developed a rigorous construction of Harsanyi’s types.
See also Böge and Eisele (1979). In sum, Harsanyi’s approach is composed of the
following main ideas:

1. The uncertainty of the game is described in terms of “types” of players;

2. “Each player is assumed to know his own actual type but to be in general
ignorant about the other players’ actual types;”16

3. “In dealing with incomplete information, every player iwill use the Bayesian
approach. That is, he will assign a subjective joint probability distribution
Pi to all variables unknown to him—or at least to all unknown independent
variables, i.e., to all variables not depending on the players’ own strategy

15Our point concerns a non-expected utility preference and therefore is not covered by previ-
ous works that considered risk aversion, even in extreme forms. It is well-known that ambiguity
aversion has distinct implications from risk aversion. For a short and direct discussion about the
maximin criterion and risk aversion, see Binmore (2008, p. 52-3). See also Bodoh-Creed (2010).

16Harsanyi (1967-8, Part I, p. 172). Emphasis added.
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choices. Once this has been done he will try to maximize the mathematical
expectation of his own payoff xi in terms of this probability distribution Pi.
This assumption will be called the Bayesian hypothesis.”17

In our model, we keep the first two points above, while we drop the third,
that is, the Bayesian hypothesis. Note that Harsanyi describes each participant
as “ignorant” about the others’ types. If they are ignorant, they could use any
of the criterion proposed for decision under ignorance, among which there is the
maximin criterion.18 Therefore, our change in the basic model is actually a minor
(and natural) departure from Harsanyi’s: instead of the Bayesian assumption that,
in face of uncertainty, everybody has a prior, we consider an alternative decision
criterion that was studied in the literature since the 1940’s (see below).

A couple of remarks are in order. First, some authors (as Luce and Raiffa
(1989), discussed below) refer to situations where the maximin criterion is applied
or suggested as situations of “complete ignorance,” while the Bayesian criterion
is used in situations of “partial ignorance.” Although this terminology suggests a
scope of applicability, it does not offer clear boundaries. In a classic paper about
decision criterion for situations under “complete ignorance,” Milnor (1954, p. 49)
notes that a situation of partial ignorance could be reformulated to one of complete
ignorance.19 We illustrate how this reformulation can be done in section 7.4 below,
when we use the “ignorance” perspective to revisit the famous Ellsberg’s paradox.

Another observation is that the construction of types as executed by Mertens
and Zamir (1985) already presumes Bayesian beliefs. In this case, it would not be
clear how to construct hierarchies of “beliefs” if the preferences are not Bayesian.
Fortunately, Epstein and Wang (1996) already solved this problem, extending
Mertens and Zamir (1985)’s construction to general preferences.

These brief comments are collected here to point out the opportunity of revisit-
ing Harsanyi’s approach. We still know very little about how the classical criteria

17Harsanyi (1967-8, Part I, p. 167). Emphasis as in the original.
18Milnor (1954) consider three other: minimax regret, the principle of insufficient reason and

the Hurwicz criterion. See more discussion on this topic below.
19For readers’ convenience, we transcribe here the quote: “ Our basic assumption that the player

has absolutely no information about Nature may seem too restrictive. However, such no informa-
tion games may be used as a normal form for a wider class of games in which certain types of
partial information are allowed. For example if the information consists of bounds for the proba-
bilities of the various states of Nature, then by considering only those mixed strategies for Nature
which satisfy these bounds, we construct a new game having no information. Unfortunately in
practice partial information often occurs in vague, non-mathematical forms which are difficult to
handle.” Milnor (1954, p. 49).
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for decision under ignorance and different preferences interact with Harsanyi’s
approach to games. This paper is but an initial exploration of this matter.

7.2 Maximin preferences and games
In their classic book about game theory, Luce and Raiffa (1989, p. 275) classify
individual decision making “according to whether it is being carried out under
conditions of certainty, risk, or uncertainty.” Then they make the interesting ob-
servation that most of their book concerns a “very particular context of uncertainty
known as a game.”20 From this, Luce and Raiffa (1989, p. 279) discuss different
criteria for decision under complete ignorance. Among them, they present the
maximin criterion and comment:

The maximin principle can be given another interpretation which, al-
though often misleading in our opinion, is sufficiently prevalent to
warrant some comment. According to this view the decision prob-
lem is a two-person zero-sum game where the decision maker plays
against a diabolical Miss Nature. The maximin strategy is then a best
retort against nature’s minimax strategy, i.e., against the “least favor-
able” a priori distribution nature can employ. We recall that in a two-
person zero-sum game the maximin strategy makes good sense from
various points of view: it maximizes 1’s security level; and it is good
against player 2’s minimax strategy, which there is reason to suspect 2
will employ since it optimizes his security level and, in turn, it is good
against 1’s maximin strategy. In a game against nature, however, such
a cyclical reinforcing effect is completely lacking.

Note how Luce and Raiffa dismiss the parallel with games because nature
could hardly be accepted as strategic. In the cases we study, there are strategic
agents reporting the types instead of a non strategic nature. Therefore, this dis-
missal does not directly apply. Indeed, Luce and Raiffa (1989, p. 307) briefly
considers the case when the opponent is again a strategic player instead of the
“diabolical Miss Nature” and observes that most of the axioms that characterize
maximin preferences make (even more) sense in this situation. However, they
refrain from re-evaluating the criterion in this case.

20 That games can be considered a “context of uncertainty” already suggests how models of
decision under uncertainty and incomplete information games are deeply related. This observation
is, of course, not novel at all and it has been previously explored in detail. See for instance, Tan
and Werlang (1988), who reduce any game to a decision problem under uncertainty.
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Wald (1950, p.27), who advocates for the use of the maximin criterion on
normative grounds, explores this connection:

The analogy between the decision problem and a two-person game
seems to be complete, except for one point. Whereas the experimenter
wishes to minimize the risk r(F, δ), we can hardly say that Nature
wishes to maximize r(F, δ). Nevertheless, since Nature’s choice is
unknown to the experimenter, it is perhaps not unreasonable for the
experimenter to behave as if Nature wanted to maximize the risk. But,
even if one is not willing to take this attitude, the theory of games
remains of fundamental importance for the problem of statistical de-
cisions, since as will be seen in Chapter 3, it leads to basic results
concerning admissible decision functions and complete classes of de-
cision functions.

Note again that Wald’s main concern is the interpretation of Nature as a strategic
player.

It should also be noted that a particular case of our model—namely, the one-
good economy with constant aggregate endowment—literally corresponds to the
case of a zero-sum game. In this case, the maximin preferences just encapsu-
late the natural equilibrium solution for this game. Of course, this justification
is suitable only under conditions that lead to zero sum games. Whether people
learn these choices in this kind of games and misapply them in other situations
or whether it is possible to offer a more fundamental and general justification for
maximin preferences can be themes of future research.

7.3 Criticism of the maximin criterion
Most common objections to maximin preferences concern variations on the fol-
lowing example. Two actions are to be chosen, where payoffs (in utils) depend on
two situations (1 and 2) and are given in the following table.21

actions situation 1 situation 2
a1 x 100
a2 1 1

By the maximin criterion, action a2 will be strictly preferred to a1 whenever x <
1. In this case, the individual ignores the possible upside of getting 100 >>

21 Luce and Raiffa (1989, p.279) discusses this example with x = 0.
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1 if the actual situation is 2. In a game “against nature,” this seems indeed an
unreasonable choice if x is sufficiently close to 1. However, if situations 1 and
2 correspond to actions of a strategic player in a zero-sum game, this choice is
not only more reasonable but it is in fact predicted by our game theory concepts.
As we discussed above, all situations analyzed in this paper could be seen as an
interaction between strategic agents, which makes this objection less relevant for
our purposes.

7.4 Ignorance, Non-measurability and the Ellsberg’s Paradox
One of the most repeated justifications for using maximin expected utility pref-
erences (MEU) or other ambiguity averse preference is the Ellsberg’s paradox.
In this section, we revise and reframe it in the language of the asymmetric infor-
mation literature. That is, we describe Ellsberg’s paradox in terms of ignorance.
Then, we use this asymmetric information language to “construct” MEU prefer-
ences in subsection 7.4.1.22 Throughout this section, it will be more convenient to
describe the decision maker information through partitions rather than types.

Consider an urn with three balls, one of which is red, and the other two are
either black or yellow, but the exact composition is unknown. We will drawn a ball
from this urn and we offer two different pair of bets for an individual to choose.
In the first pair, it is offered the choice between the act23 f1 that pays $1 if the red
ball is drawn and zero otherwise and the act f2 that pays $1 if the ball is black and
zero otherwise. In the second pair, the choice is between an act f3 that pays $1 if
the ball is either red or yellow and zero otherwise and the act f4 that pays $1 if the
ball is either black or yellow and zero otherwise. To summarize, fi is given, for
i = 1, ..., 4 as follows:

f1(ω) =

{
1, ω = R
0, otherwise f2(ω) =

{
1, ω = B
0, otherwise

f3(ω) =

{
1, ω ∈ {R, Y }
0, otherwise f4(ω) =

{
1, ω ∈ {B, Y }
0, otherwise

Most individuals exhibit preferences as: f1 � f2 and f4 � f3. This is called
the Ellsberg Paradox because there is no expected utility that can rationalize this

22 The way we frame this analysis is somewhat unusual, but it is just a matter of interpretation.
This interpretation—or rather reinterpretation—is not central to this paper and none of our results
depend on it.

23“Acts” is the terminology used by Savage (1954, 1972) for bets.
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choice. To see this, assume w.l.o.g. u(0) = 0, u(1) = 1. The first preference
would imply π({R}) > π({B}), while the second

π({B, Y }) = π({B}) + π({Y }) > π({R, Y } = π({R}) + π({Y }),

that is, π({B}) > π({R}) and these implications contradict each other.
Now, let’s formulate this example in the asymmetric information terminology.

Let Ω = {R,B, Y }, corresponding to the color of a ball (red, black, yellow)
to be extracted from an urn. For simplicity, let us assume that the utility index
of the individual is u(x) = x. The agent’s information about the state of the
nature is described by the algebra generated by the following partition: F =
{{R}, {B, Y }}, and let us assume that, based on the information that the decision
maker receives, his belief is defined µ : F → [0, 1] is given by µ({R}) = 1

3

and µ({B, Y }) = 2
3
. Therefore, the acts f1 = 1{R} and f4 = 1{B,Y } are F-

measurable, while the acts f2 = 1{B} and f3 = 1{R,Y } are not F-measurable
since the events {B} and {R, Y } are not elements of F . Thus, while U(f1) =∫
u(f1) dµ = µ({R}) = 1

3
and U(f4) =

∫
u(f4) dµ = µ({B, Y }) = 2

3
, the

integrals U(f2) =
∫
u(f2) dµ and U(f3) =

∫
u(f3) dµ are not defined. Therefore,

the individual is unable to compare act f1 with f2 (and f4 with f3). In other words,
this preference is incomplete, because it does not obey the completeness axiom,
which requires that either f1 < f2 or f2 < f1. However, in the above example we
have forced the individual to make a choice. This means that the individual had to
find a way to complete her preferences.

From this perspective, we see that the decision maker’s ignorance translates
into incomplete preferences. The need of completing preferences in situations of
ignorance is a problem that goes back at least to the 50’s. Returning to this issue,
Binmore (2008, Chapter 9) discusses the following criteria: Wald’s minimax,24

Savage’s minimax regret, the principle of insufficient reason and the Hurwicz cri-
terion. He notes that Savage prescribed his expected utility to be used in “small
worlds”, which are worlds about which the decision maker knows enough to be
capable of evaluating the odds. Thus, the need of the extension of the preference
arises as long as the decision maker faces a “large world”, that is, a world in which
she cannot properly evaluate the likelihood of possible outcomes.

Now, of course a modeler could assume that the decision maker actually at-
tributes probabilities to all events (a position known as “Bayesian doctrine”).

24The term minimax (instead of maximin) used by Wald (1950) comes from the fact that instead
of maximization of utility, he models the objective as minimization of “risk”, as it is usual in
statistics.
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However, the choices obtained in the Ellsberg’s paradox show that this is not con-
sistent with the way in which many people make choices. The impossibility of
accommodating both the assumption of expected utility defined for all events and
the choices in the Ellsberg’s paradox, motivated the ambiguity aversion literature
to reject the expected utility framework and consider other forms of preferences.

In the following subsection we show how MEU preferences can solve the Ells-
berg paradox.25

7.4.1 Incomplete Expected Utility Preferences and Maximin Completion

Assume that the agents have standard Expected Utility preferences, as usually
described in the asymmetric information literature, with a subtle caveat that we
will explain in a moment. For each agent i ∈ I , (Ω,Fi, µi) is a probability space.
Then, the preference <◦i of the individual i is described as:26,27

f <◦i g ⇐⇒
∫

Ω

ui(f(ω))µi(dω) >
∫

Ω

ui(g(ω))µi(dω),∀f, g ∈ Li. (16)

The preferences above described are just expected utility preferences that take
in account the private information of each individual. As such, these preferences
are incomplete. To see this, it is sufficient to observe that the preference is capable
of comparing only Fi-measurable acts. If h is not Fi-measurable, its integral∫
h dµi is not defined and, therefore, it is not possible for individual i to compare

h with any other act. In other words: neither f <◦i h nor h <◦i f hold for any
act f , which is the same as saying that the preference is incomplete.28 This was

25That MEU preferences solve the Ellsberg paradox is, of course, well-known since Gilboa and
Schmeidler (1989).

26We use the notation <◦i for this incomplete expected utility preference and reserve the more
standard <i for the complete preferences given in (18) below . Note that µi is just a partial
probability, that is, a probability restricted only to some events (those in Fi).

27Although Ω is finite, the integral
∫
f dµi of some function f : Ω → R is not equal to∑

ω∈Ω f(ω)µi({ω}). The reason is that µi({ω}) is defined only if {ω} ∈ Fi. The correct def-
inition of the integral would be as follows. Let agent i’s partition be Fi ≡ {A1, ..., An} and fix
any ωk ∈ Ak. If f : Ω → R is Fi-measurable, then f(ω) = f(ωk) for any ω ∈ Ak. Then,∫
f dµi =

∑n
k=1 f(ωk)µi(Ak). From this, we see that the integral notation is simpler than the

sum notation, and this is the reason why we write integrals.
28 Although Savage’s original theory considers complete preferences, Kopylov (2007) has

shown that completeness is not essential at all for an axiomatization of expected utility. That
is, Savage’s expected utility theory can be developed in such a way that the probability is de-
fined only in a restricted class of events, exactly as we do here. Lehrer (2008) also presents an
axiomatization of partially defined probabilities.
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exemplified in the discussion of the Ellsberg paradox above. We solve the problem
of incompleteness by adopting the MEU completion.

Let ∆ denote the set of measures π : F → [0, 1]. Define, for each i, the
following set:

Pi ≡ {π ∈ ∆ : π(A) = µi(A), ∀A ∈ Fi}. (17)

Thus, Pi is the set of all extensions of µi to from Fi to F , that is, the set of all
probability measures defined in F that agree with µi in the events that individual
i is informed about. It should be noted that this represents partial ignorance. The
individual is “completely” ignorant only inside of its partition, but has sufficient
knowledge as to attribute probabilities to the elements of the partition.

Let L denote the set of all acts f : Ω → R`
+. Then, the maximin preference

<i extends <◦i from Li to the set of all acts, L:

f <i g ⇐⇒ min
π∈Pi

∫
Ω

ui(f(ω))π(dω) > min
π∈Pi

∫
Ω

ui(g(ω))π(dω),∀f, g ∈ L.
(18)

It is also not difficult to see that if f : Ω → R`
+ and g : Ω → R`

+ are Fi-
measurable, then

f <◦i g ⇐⇒ f <i g. (19)

Indeed, if f is Fi-measurable, it is constant on any event in Fi and therefore, for
every π ∈ Pi, ∫

Ω

ui(f(ω))π(dω) =

∫
Ω

ui(f(ω))µi(dω).

Now, we can return to the Ellsberg’s urn example and show how the choices
described in section 7.4 are represented by MEU preferences. The following ex-
ample clarifies the issue:29

Example 7.1 (Ellsberg’s Experiment) See section 7.4 for a description of the
Ellsberg’s thought experiment. Given the partition: F = {{R}, {B, Y }}, the set
of probabilities defined by (17) is:

Pi ≡ {π ∈ ∆ : π({R}) =
1

3
; π({B, Y }) =

2

3
}.

29As clarified before, it is well known that MEU preferences can rationalize Ellsberg’s paradox.
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Let us assume that 0 = u(0) < u(1) = 1. Thus,

U(f1) = min
π∈Pi

∫
Ω

1{R} dπ = min
π∈Pi

π({R}) =
1

3
;

U(f2) = min
π∈Pi

∫
Ω

1{B} dπ = min
π∈Pi

π({B}) = 0;

U(f3) = min
π∈Pi

∫
Ω

1{R,Y } dπ = min
π∈Pi

π({R, Y }) =
1

3
;

U(f4) = min
π∈Pi

∫
Ω

1{B,Y } dπ = min
π∈Pi

π({B, Y }) =
2

3
.

This implies f1 � f2 and f4 � f3, exactly as in the Ellsberg’s thought experi-
ment.30

8 Discussion of the Related Literature

8.1 General Equilibrium with Asymmetric Information
It is well known that in a finite economy with asymmetric information once people
exhibit standard expected utility, then it is not possible in general to find alloca-
tions which are Pareto optimal and also incentive compatible; see for an example
the appendix. The key issue is the fact that, in a finite economy each agent’s pri-
vate information has an impact and therefore an agent will take advantage of this
private informational effect to influence the equilibrium allocation to favor her-
self. This is what creates the incentive compatibility problem. To get around this
problem, Yannelis (1991) imposes the private information measurability condi-
tion, and in this case indeed, any ex ante private information Pareto optimal allo-
cation is incentive compatible (see Krasa and Yannelis (1994), (Koutsougeras and
Yannelis 1993) and Hahn and Yannelis (1997) for an extensive discussion of the
private information measurability of allocations). In fact, the private information
measurability is not only sufficient for proving that ex ante efficient allocations
are incentive compatible, but it is also necessary in the one-good case.

It is useful to try to understand why measurability was used to solve the prob-
lem of the conflict between efficiency and incentive compatibility. If an agent

30Note that f2 and f3 are not F- measurable and therefore, could not be compared using the ex-
pected utility preference <◦i . Now, the preference <i is complete and we can compare every acts,
including the non-measurable ones. In this sense, the maximin criterion completes the preference
relation.
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trades a non-measurable contract, this means that the contract makes promises de-
pending on conditions that she cannot verify. Therefore, other agents may have
an incentive to cheat her and do not deliver the correct amount in those states.
This possibility is exactly the failure of incentive compatibility. To the contrary,
if she insists to trade only measurable contracts (allocations), then she cannot be
cheated and incentive compatibility is preserved.

However, the requirement of private information measurability raises two main
concerns. First, it is an exogenous, theoretical requirement, which may be diffi-
cult to justify in real economies. The second concern, which is more relevant,
is that the private information measurability restriction may lead to reduced effi-
ciency and in certain cases even to no-trade. Thus, on the one hand, the private
information measurability restriction implies incentive compatibility, but on the
other hand, it reduces efficiency. To the contrary, the maximin expected utility
allows for trade and results in a Pareto efficient outcome which is also incentive
compatible.

Different solutions to the conflict between efficiency and incentive compati-
bility for the standard (Bayesian) expected utility for replica economies have been
proposed by Gul and Postlewaite (1992) and McLean and Postlewaite (2002).
Those authors impose an “informational smallness” condition and show the ex-
istence of incentive compatible and Pareto optima allocations in an approximate
sense for a replica economy. The informational smallness can be viewed as an
approximation of the idea of perfect competition and as a consequence only ap-
proximate results can be obtained in this replica economy framework. Sun and
Yannelis (2007) and Sun and Yannelis (2008) formulate the idea of perfect com-
petition in an asymmetric information economy with a continuum of agents. In
this case each individual’s private information has negligible influence and as a
consequence of the negligibility of the private information, they are able to show
that any ex ante Pareto optimal allocation is incentive compatible. The above re-
sults are obtained in the set up of standard (Bayesian) expected utilities and they
are only approximately true in large but finite economies.

Subsequently to the completion of this paper, de Castro, Pesce, and Yannelis
(2010) revisited the Kreps (1977)’s example of the non-existence of the ratio-
nal expectation equilibrium. They showed that there is nothing wrong with the
rational expectation equilibrium notion other than the assumption that agents are
expected utility maximizers. Using the maximin preferences studied here, de Cas-
tro, Pesce, and Yannelis (2010) recomputed the Kreps’ example and showed that
the rational expectation equilibrium not only exists, but it is also unique, efficient
and incentive compatible.
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Another related paper is Morris (1994). He departures from the Milgrom
and Stokey (1982) no-trade theorem, which requires the common prior assump-
tion, and shows that the incentive compatibility requirement allows for obtaining
equivalent no-trade theorems under assumptions weaker than the common prior
assumption. In this context, no trade theorems may be interpreted as a loss of
efficiency created by the constraint of incentive compatibility.

Correia-da Silva and Hervés-Beloso (2009) used a MEU for a general equilib-
rium model with uncertain deliveries, and proved the existence of a new equilib-
rium concept, which they called prudent equilibrium. Although they considered
MEU preferences, their focus was different and did not consider the incentive
compatibility studied here.

8.2 Decision Theory
The maximin criterion has a long history. It was proposed by Wald (1950) and
Rawls (1971), and axiomatized by Milnor (1954), Maskin (1979), Barbera and
Jackson (1988), Nehring (2000) and Segal and Sobel (2002). Binmore (2008,
Chapter 9) presented an interesting discussion of the principle, making the con-
nection of the large worlds of Savage (1972). Gilboa and Schmeidler (1989) gen-
eralized at the same time the maximin criterion (see footone 5) and Bayesian
preferences by allowing for multiple priors. Bewley (2002) introduced a model of
decision under incomplete information. His model also included the preference
<◦i described in subsection 7.4.1, as a special case.

The approach discussed in section 7.4 is very much related to Gilboa, Mac-
cheroni, Marinacci, and Schmeidler (2010). They consider decision makers who
have two preferences. One of these preferences is incomplete and corresponds
to the part of her preference that she can justify for third persons. They call this
preference objective and model it as a Bewley incomplete preference. The other
preference corresponds to a subjective preference, where the decision maker can-
not be proven wrong and this is modeled as a maximin expected utility preference.

In a recent paper, Gul and Pesendorfer (2009) proposed an axiomatization of
preferences that allowed them to deal with unmeasurable acts, but our models of
behavior differ. Note also, that their focus was not the asymmetric information,
as it is in this paper. Lehrer (2008) axiomatized a model with partial probabili-
ties. Our preferences are a particular case of his, although our presentation and
motivation is quite different from his. Rigotti, Shannon, and Strzalecki (2008),
de Castro and Chateauneuf (2010), characterized conditions for ex ante efficiency
for convex preferences (the first) and MEU preferences (the second). Kajii and
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Ui (2009) and Martins-da Rocha (2010) characterized interim efficiency for MEU
and Bewley preferences, but do not mention incentive compatibility issues.

Mukerji (1998) used a model with ambiguity to analyze the problem of in-
vestment holdup and incomplete contracts in a model with moral hazard. Inter-
estingly, he obtained results that go in the opposite direction than those obtained
here: in the moral hazard model that he considered, ambiguity makes harder to ob-
tain incentive compatibility, not easier as we proved for our general equilibrium
with asymmetric information model.31 The connection between ambiguity and
information has been addressed before by Mukerji (1997) and Ghirardato (2001).
With respect to efficiency and incentive compatibility, Haller and Mousavi (2007)
presented evidence that ambiguity improves the second-best in a simple Roth-
schild and Stiglitz (1976)’s insurance model.

The analysis of games with ambiguity averse players has also a limited liter-
ature. Klibanoff (1996) considered games where players have MEU preferences.
Salo and Weber (1995), Lo (1998) and Ozdenoren (2000, Chapter 4) analyzed auc-
tions where players have ambiguity aversion. More recently, Bose, Ozdenoren,
and Pape (2006) and Bodoh-Creed (2010) studied optimal auction mechanisms
when individuals have MEU preferences, while Lopomo, Rigotti, and Shannon
(2009) investigated mechanisms for individuals with Bewley’s preferences. How-
ever, none of these papers have uncovered the property of no conflict between ef-
ficiency and incentive compatibility for the maximin preferences considered here.

9 Concluding Remarks and Open questions
We showed that maximin preferences present no conflict between incentive com-
patibility and efficiency. Our MEU preferences are not only sufficient for any
efficient allocation to be incentive compatible but they are also necessary. Addi-
tionally, this paper provides an axiomatization of the maximin preferences. Ap-
plications of our results to mechanism design were given. Finally, we applied our
results to the Myerson-Satterthwaite’s setup and showed that their negative result
does not hold in our framework. We close now by discussing some open questions
and directions of future research.

It is of interest to know the incentive compatibility properties for all uncer-
tainty averse preferences (as defined by Cerreia, Maccheroni, Marinacci, and
Montrucchio (2008)). In other words, fixing a profile of uncertainty averse prefer-

31We are grateful to Sujoy Mukerji for bringing this paper to our attention.
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ences, we would like to know how close the sets of efficient and incentive compat-
ible allocations are. Or yet: how close are the set of second-best outcomes (that
is, outcomes that are efficient subject to being incentive compatible) and first-best
(just efficient) outcomes?

In an earlier version of this paper, we introduced notions of maximin core
and maximin perfect equilibrium. It is natural to investigate these concepts in
more detail. Also, we have not pursued the issue of implementation. It is our
conjecture that in view of the inherent efficiency and incentive compatibility of the
new equilibrium notions, one should be able to show that they are implementable
as a maximin perfect equilibrium and thus provide non cooperative foundations
for the maximin core and maximin value.

Finally, it would be interesting to study an evolutionary model of populations
of agents with different preferences. Will a society formed only by maximin
agents outperform societies formed by individuals with diverse preferences? What
happens if some mutations lead to Bayesian subjects inside this maximin society?

In sum, we hope this paper stimulates new venues of investigation.

A Proofs
For the examples below, it will be convenient to use a concise notation for the
allocations. Consider two-individual economies, with set of types T1 = {U,D}
and T2 = {L,R}. The allocation x = (x1, x2) will be represented by:

x1 L R
U x1(U,L) x1(U,R)
D x1(D,L) x1(D,R)

and
x2 L R
U x2(U,L) x2(U,R)
D x2(D,L) x2(D,R)

where xi(t1, t2) ∈ B. Sometimes, we will write the above in just one table and
often omit the types in the columns and rows. For example, an allocation x =
(x1, x2) ∈ B × B = R2

+ will appear as:

(x1, x2)
(5, 3) (6, 1)
(2, 5) (3, 4)

A.1 Proofs for results in section 2
Proof of Proposition 2.6.
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Assume that x ∈ EA \ EI . Then there exists y, j, tj such that yi <ti
i xi for all

i ∈ I, ti ∈ Ti and yj �
tj
j xj . Since µi({ti}) > 0, this implies that yi <i xi, for all

i and yj �j xj for some j, that is, y ∈ DA(x), which contradicts x ∈ EA.
Now we offer counterexamples for the other inclusions.

• EI 6⊂ EA. Let n = 2, B = R+, Ti = {t′i, t′′i }, ui(t, a) = a , for i = 1, 2
and any t ∈ T . Put µ1({t′1}) = 0.3 and µ2({t′2}) = 0.6. Consider the
allocations x = (x1, x2) and y = (y1, y2) defined as follows:

(x1, x2) t′2 t′′2
t′1 (2, 2) (2, 2)
t′′1 (3, 3) (2, 2)

and
(y1, y2) t′2 t′′2

t′1 (1, 3) (2, 2)
t′′1 (3, 3) (3, 1)

Thus, x1(t′1) = x1(t′′1) = 2; y
1
(t′1) = 1; y

1
(t′′1) = 3, which implies that

y1 �1 x1 because µ1({t′1}) = 0.3 < µ1({t′′1}) = 0.7. On the other hand,
x2(t′2) = 2;x2(t′′2) = 2; y

2
(t′2) = 3; y

2
(t′′2) = 1, which implies y2 �2 x2

because µ2({t′2}) = 0.6 > µ2({t′′2}) = 0.4. Therefore, y ∈ DA(x), that
is, x /∈ EA. Now suppose that there is z such that z ∈ DI(x), that is,
zi <ti

i xi, ∀i, ti ∈ Ti and zj �
tj
j xj for some j ∈ I . This means that

z1(t′1), z1(t′′1), z2(t′2), z2(t′′2) > 2 and at least one of these inequalities has to
be strict. Observe that this requires z1(t1, t2) > 2 and z2(t1, t2) > 2, for any
(t1, t2) ∈ T1 × T2. But then feasibility implies z1(t1, t2) = z2(t1, t2) = 2,
for any (t1, t2) 6= (t′′1, t

′
2). In turn, this implies that none of the inequalities

z1(t′1), z1(t′′1), z2(t′2), z2(t′′2) > 2 can be strict. Therefore, z /∈ DI(x), which
is a contradiction that shows x ∈ EI .

• EP 6⊂ EI . Consider that n = 2, B = R+ and u1(t1, t2, a) = u2(t1, t2, a) =
a, where T1 = T2 = {1,−1}. Let e1(t) + e2(t) = 1 for all t. Consider the
allocation x = (x1, x2) defined by:

(x1, x2) t2 = 1 t2 = −1
t1 = 1 (1, 0) (0, 1)

t1 = −1 (0, 1) (1, 0)

Then x is feasible and ex post efficient, that is, x ∈ EP . However, x /∈ EI .
Indeed, consider the deviation y = (y1, y2) defined by y1(t) = 1

2
= y2(t).

This satisfies: yi �tii xi, i = 1, 2 because:

1

2
= min

t′−i∈{1,−1}
ui(ti, yi(ti, t

′
−i)) > min

t′−i∈{1,−1}
ui(ti, xi(ti, t

′
−i)) = 0.
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This shows that EP 6⊂ EI .

• EI 6⊂ EP and EA 6⊂ EP . Let n = 2, B = R2
+, T1 = T2 = {1, 2},

ui(t, (a1, a2)) = a1a2 and ei(t) = (ti, ti), for i = 1, 2. Consider the follow-
ing allocation:

(x1, x2) t2 = 1 t2 = 2
t1 = 1 ((1, 1), (1, 1)) ((1.5, 1.5), (1.5, 1.5))
t1 = 2 ((1.5, 1.5), (1.5, 1.5)) ((3, 1), (1, 3))

In this case, we have xi(1) = 1; xi(2) = 2.25, i = 1, 2, which are the best
possible levels for both players (it is not possible to improve these minima
for both players). Therefore, x = (x1, x2) is interim efficient and ex ante
efficient. However, it is clearly not ex post efficient, because we can define
yi(t) = xi(t) for all t 6= (2, 2) and yi(2, 2) = (2, 2), i = 1, 2 and this
is clearly better than (x1(2, 2), x2(2, 2)) = ((3, 1), (1, 3)). This shows that
EI 6⊂ EP and EA 6⊂ EP .

A.2 Example of the conflict between efficiency and incentive
compatibility

This section provides an example to illustrate the conflict between efficiency and
incentive compatibility when agents have expected utility preferences. There are
two agents, with ex post utilities ui(t, a) = a for all t ∈ T , where T1 = {U,D}
and T2 = {L,R}. The priors at each pair of profile of types π1({(t1, t2)}) and
π2({(t1, t2)}) are given by the following tables:32

π1 L R
U 1/3 1/3
D 1/6 1/6

and
π2 L R
U 1/6 1/3
D 1/6 1/3

For simplicity, we assume that ei(t) = 2, for all i ∈ I and t ∈ T . Then, the
following allocation is (strongly) efficient:

(x1, x2) L R
U (4, 0) (2, 2)
D (2, 2) (0, 4)

32It is possible to construct analogous examples with common priors.
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Observe that the negotiated trade z = (z1, z2) is given by:

(z1, z2) L R
U (2,−2) (0, 0)
D (0, 0) (−2, 2)

Transfers (in the amount of 2) occur only at types (U,L) and (D,R). However,
this allocation is not incentive compatible, because when t1 = D individual 1 has
an incentive to misreport t′1 = U and end up with the better consumption (x′1):

x′1
4 2
4 2

=
e1

2 2
2 2

+
z′1

2 0
2 0

�1

x1

4 2
2 0

= e1 +
z1

2 0
0 −2

This incentive to misreport is exactly the failure of incentive compatibility in the
Bayesian setup.

A.3 Proofs of results in section 4
Proof of Theorem 4.7.

Necessity: If & is maximin, it is clearly complete, transitive, monotonic and
continuous. Therefore, it is sufficient to show that & is supported by minimal
prices. For an absurd, assume the contrary.

Thus, there exist f : W → I ⊆ R, p ∈ Sf and w′ ∈ W such that p(w′) > 0
and f(w′) > m ≡ minw∈W f(w). Let p̄ ≡

∑
w∈W p(w) > 0 and choose ε > 0

such that p̄ε < p(w′) [f(w′)−m]. Define g : Ω→ R+ by:

g (w) =

{
f (w) + ε, if w 6= w′

m+ ε, if w = w′

It is clear that minw g(w) > m+ ε > m, which implies that g m f . However,

p · g = p · f + p̄ε− p(w′) [f(w′)−m] < p · f,

which contradicts p ∈ Sf .
Sufficiency: Assume that & is complete, transitive, monotonic, continuous

and supported by minimal prices. For each f ∈ F , define mf ∈ F by mf (w
′) ≡

minw∈W f(w) for all w′ ∈ W . Since & is complete and transitive, it is sufficient
to show that f ∼ mf for every f ∈ F . For each α ∈ [0, 1], define fα(w) =
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αf(w) + (1−α)mf (w). Note that mfα = mf and that for every α ∈ (0, 1], {w ∈
W : fα(w) = minw∈W fα(w)} = {w ∈ W : f(w) = minw∈W f(w)} ≡Mf .

By monotonicity, f & fα & mf ,∀α ∈ [0, 1]. It is sufficient to show that
f ∼ fα for every α ∈ (0, 1], since this would imply f ∼ mf by continuity and
the fact that f 1/k → mf . Suppose then that there is α ∈ (0, 1] such that f m fα. If
p ∈ Sfα then p · f > p · fα. However, since & is supported by minimal prices,

p · fα =
∑
w∈Mf

p(w)fα(w) =
∑
w∈Mf

p(w)f(w) = p · f,

which contradicts p · f > p · fα. The contradiction establishes the result.

Proof of Proposition 4.8.
Since & is not maximin, there exists f ∈ E such that f m mf . Let W =

{w1, w2, ..., wK}. We will define functions fk, gαk : W → R+, for k = 1, 2, ..., K
and α ∈ [0, 1]. The definition of fk will be recursive. Let f1 ≡ f and suppose that
fk is defined satisfying fk ∼ f . Define gαk as follows:

gαk (w) =

{
fk (w) , if w 6= wk
αfk(w) + (1− α)mf (w), if w = wk

The set Ak = {α ∈ [0, 1] : gαk ∼ fk} contains 1 and is closed. Moreover, by
monotonicity and continuity, there is the smallest αk ∈ Ak. Define fk+1 as gαkk .
Then by definition, for k = 1, ..., K,

fk+1 ∼ fk ∼ f and fk+1 6 fk. (20)

We claim that h ≡ fK+1 satisfies the properties in the statement above.
Indeed, suppose that there is a g 6= h satisfying h > g, such that h ∼ g. Since

g 6= h, the set {k : g(wk) < h(wk)} is non-empty. Let k be the largest element
of this set. Observe that fk+1 ∼ h, fk+1 > h > g and h(wj) = fk(wj) = gαk (wj)
for every j < k and α ∈ [0, 1]. Since gαkk (wk) = fk+1(wk) > h(wk) > g(wk),
there exists α < αk such that g(wk) < gαk (wk) < gαkk (wk) = fk+1(wk). However,
by definition of αk, for any α < αk, fk+1 m gαk . It is easy to see that gαk > g and,
therefore, gαk & g. But then h ∼ fk+1 m gαk & g, which contradicts h ∼ g, thus
concluding the proof.

The proof of Theorem 4.3 will require the following:
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Lemma A.1 (Alternative for corner allocations) Let the preferences {&i}i∈I be
adequate. Suppose that x = (xj)j∈I is a i-corner allocation, that is, xj(ω) = 0 ∈
B = R`

+ for all ω ∈ Ω and all j 6= i. Then one (and only one) of the following
alternatives is true:

1. x is an ex ant efficient allocation;

2. there exists z : T → B and j 6= i such that:

(a) z mj 0;

(b) z > 0;

(c) xi > z;

(d) xi − z ∼i xi.

Proof. It is easy to see that if there exists z satisfying the conditions above, it
is possible to transfer z to individual j, strictly improving j and without making
any individual worse off; therefore x is not ex ante efficient. Conversely, if x is
not ex ante efficient, then there exists a Pareto improving y = (yj)j∈I satisfying
yk &k xk, for all k ∈ I and yj mj xj for some j. Fix such j. Of course, this j
cannot be i, since i already has all the endowment of the economy and cannot be
strictly better by a feasible transfer. Therefore, define z ≡ yj mj xj = 0, which
gives (a) above. Since yk > 0 for all k, then we also have (b). This also allows to
conclude that

∑
k∈I xk = xi =

∑
k∈I yk > yj = z, which establishes (c). For the

same reason, xi > yi + yj = yi + z, that is, xi − z > yi. Since z > 0, we have
xi &i xi − z. By monotonicity, xi − z &i yi. On the other hand, the fact that y is
Pareto improving gives yi &i xi. Transitivity then establishes (d).

Proof of Theorem 4.3. Suppose that individual 1’s preference is not maximin,
that is, there exists some type t′1 such that &t′1

1 is not maximin. Let I be the image
of the function a 7→ ui(t, a) for each t ∈ T and let ē = (1, 1, ..., 1) ∈ B = R`

+

be the unitary bundle. Then, for each α ∈ I , there exists λ(t2) ∈ R+ such
that u1(t1, t2, λ(t2)ē) = α. Let E = {λē : λ ∈ R+}. Thus, given a function
f : {t′1} × T2 → I ⊆ R, we can find for each t2 ∈ T2 a bundle fu1(t′1, t2) ∈ E
such that :

u1(t′1, t2, f
u1(t′1, t2)) = f(t′1, t2).

Let W = {t′1} × T2 and define �∗ over functions f : W → I ⊆ R by:

f �∗ g ⇐⇒ fu1 &
t′1
1 gu1 .
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By Proposition 4.8, there exists

f(t′1, ·) ∈ E = {f : W → I : ∃w′ ∈ W such that f(w′) > min
w∈W

f(w)}

such that for every g(t′1, ·) 6= f(t′1, ·) satisfying f(t′1, ·) > g(t′1, ·), we have
f(t′1, ·) �∗ g(t′1, ·). By the definition of �∗, fu1 and &1’s properties, ∀g : T → B,

fu1 > g ⇒ fu1 mt′1
1 g. (21)

Let Mf ≡ {t2 : u1(t′1, t2, f
u1(t′1, t2)) = mint2∈T2 u1(t′1, t2, f

u1(t′1, t2))}. Fix
t′2 ∈ Mf and define: e1(t′1, ·) = fu1(t′1, t

′
2). For any t2 ∈ T2, define e2(·, t2) ≡

fu1(t′1, t2)− e1(t′1, t2). By the definition of fu1(t′1, ·), e2(·, t2) > 0. Note also that
e2(·, t′2) = 0. Now, for t1 6= t′1, define e1(t1, t2) = 0 and fu1(t1, t2) = e2(t1, t2).
It is easy to see that (fu1 , 0) is then a feasible 1-corner allocation.

Let z : T → B be such that z > 0. Monotonicity implies then that fu1 &t1
1

g ≡ fu1 − z for all t1 ∈ T1 and (21) implies that fu1 mt′1
1 g. Since &1 is adequate,

fu1m1g. Therefore, there is no z satisfying all the assumptions in item 2 of Lemma
A.1, which implies that the i-corner allocation (fu1 , 0) is (ex ante) efficient.33

On the other hand, since f(t1, ·) ∈ E , there is a type t′′2 /∈Mf such that

f(t′1, t
′′
2) > f(t′1, t

′
2)⇒ fu1(t′1, t

′′
2)− fu1(t′1, t′2)� 0. (22)

Then, if individual 2 is of type t′′2, he has an incentive to report t′2. Indeed, if
t2 = t′′2 and individual 2 reports t′2 instead of t′′2, he will consume, for any t1 ∈ T1,

e2(t1, t
′′
2)− e2(t1, t

′
2) = [fu1(t′1, t

′′
2)− e1(t′1, t

′′
2)]− [fu1(t′1, t

′
2)− e1(t′1, t

′
2)]

= fu1(t′1, t
′′
2)− fu1(t′1, t′2)� 0,

where the first equality comes from the definition of e2(·, t2), the second comes
from the definition of e1(t′1, ·) and the inequality comes from (22). Since individ-
ual 2’s allocation under (f, 0) is always zero and the preference is monotonic, he
would be strictly better off. Thus, the allocation is not incentive compatible.

Proof of Theorem 4.4
The proof above works by substituting individual 1 by i and individual 2 by a

coalition of all individuals other than i.
33We have defined the initial endowments here only to make the example completely specified.

The allocation (fu1 , 0) is of course not individually rational, but this is a side issue.
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Proof of Theorem 6.1
Let &i and <i denote respectively the Bayesian and the Maximin preferences.

Assume that x is Bayesian Pareto optimal and coalitional incentive compatible.
We claim that xj is Fj-measurable for each j ∈ I .

We establish this claim by contradiction. Suppose that x is incentive com-
patible but xj is not Fj-measurable for some j ∈ I , that is, suppose that there
exist t−j, t′−j ∈ T−j such that xj(tj, t−j) 6= xj(tj, t

′
−j). Without loss of gener-

ality, we may assume that xj(tj, t−j) > xj(tj, t
′
−j). Since ej is Fj-measurable,

ej(tj, t
′
−j) = ej(tj, t−j). Therefore

xj(tj, t−j)− ej(tj, t−j) > xj(tj, t
′
−j)− ej(tj, t′−j). (23)

Let C ≡ I \ {j}. From feasibility of x and (23), we have:∑
i∈C

[xi(tj, t−j)− ei(tj, t−j)] = − [xj(tj, t−j)− ej(tj, t−j)]

< −
[
xj(tj, t

′
−j)− ej(tj, t′−j)

]
=

∑
i∈C

[
xi(tj, t

′
−j)− ei(tj, t′−j)

]
.

Thus,

δ ≡
∑
i∈C

[
xi(tj, t

′
−j)− ei(tj, t′−j)− xj(tj, t−j) + ej(tj, t−j)

]
> 0.

For each i ∈ C, let

τ i ≡ −xi(tj, t′−j) + ei(tj, t
′
−j) + xi(tj, t−j)− ei(tj, t−j) +

δ

n− 1
,

so that
∑

i∈C τ i = 0 and

ei(tj, t−j) + xi(tj, t
′
−j)− ei(tj, t′−j) + τ i > xi(tj, t−j).

By the monotonicity of ui, we can conclude that for all i ∈ C,

ui
(
ti, ei(tj, t−j) + xi(tj, t

′
−j)− ei(tj, t′−j) + τ i

)
> ui (ti, xi(tj, t−j)) ,

which contradicts the assumption that x is coalitionally incentive compatible. This
establishes the claim that xj is Fj-measurable.
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Now, assume that x is not maximin Pareto optimal. This means that there
exists a feasible allocation y such that yj <

tj
j xj for all j ∈ I, tj ∈ Tj and there

is i ∈ I, t′i ∈ Ti such that yi �tii xi, that is, y
i
(t′i) > xi(t

′
i). Since xi is Fi-

measurable, this implies that ui(t′i, yi(t
′
i, t−i)) > ui(t

′
i, xi(t

′
i, t−i)) for every t−i.

The monotonicity of ui now gives yi(t′i, t−i) > xi(t
′
i, t−i). Similarly, yj <tj

j xj
and the fact that xj is Fj-measurable imply that yj(t′i, t−i) > xj(t

′
i, t−i) for all

j 6= i. But then,
∑

i∈I yi(t
′
i, t
′
−i) >

∑
i∈I xi(t

′
i, t
′
−i) =

∑
i∈I ei(t

′
i, t
′
−i) and y is not

feasible, which is a contradiction.
The counterexample for the reverse implication is based on the example EI 6⊂

EA given in the proof of Proposition 2.6. Since we did not have to specify the full
Bayesian beliefs at that example, we repeat the example here with this specifica-
tion. There are two individuals, B = R+, Ti = {t′i, t′′i }, ui(t, a) = a , for i = 1, 2
and any t ∈ T . The Bayesian beliefs µi({(t1, t2)}) of individual i for the event
{(t1, t2)} are defined by the following:

µ1(·) t′2 t′′2
t′1 0.15 0.15
t′′1 0.35 0.35

and
µ2(·) t′2 t′′2
t′1 0.3 0.2
t′′1 0.3 0.2

Note that the numbers in each table add up to one. Consider the allocations
x = (x1, x2) and y = (y1, y2) defined as follows:

(x1, x2) t′2 t′′2
t′1 (2, 2) (2, 2)
t′′1 (3, 3) (2, 2)

and
(y1, y2) t′2 t′′2

t′1 (1, 3) (2, 2)
t′′1 (3, 3) (3, 1)

It was shown in the proof of Proposition 2.6 that x is maximin efficient. Re-
peating the arguments given in the proof of Proposition 2.6, it is easy to see that
y is a Pareto improvement upon x for the Bayesian preferences defined above.
Thus, the converse does not hold.
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