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Full Implementation under Ambiguity†

By Huiyi Guo and Nicholas C. Yannelis*

This paper introduces the maxmin expected utility framework into 
the problem of fully implementing a social choice set as ambiguous 
equilibria. Our model incorporates the Bayesian framework and the 
Wald-type maxmin preferences as special cases and provides insights 
beyond the Bayesian implementation literature. We establish neces-
sary and almost sufficient conditions for a social choice set to be 
fully implementable. Under the Wald-type maxmin preferences, we 
provide easy-to-check sufficient conditions for implementation. As 
applications, we implement the set of ambiguous Pareto-efficient and 
individually rational social choice functions, the maxmin core, the 
maxmin weak core, and the maxmin value. (JEL D71, D81, D82)

In implementation theory, a mechanism designer aims to elicit information from 
agents and realize an exogenous social choice set or function. If a mechanism 

can be designed such that all its equilibria coincide with the social choice set, then 
the set is said to be fully implementable. When agents have private information, the 
subjective expected utility framework has been widely adopted in the literature to 
model agents’ preferences. However, we have known from Ellsberg (1961) that the 
subjective expected utility hypothesis is problematic. To this end, nonexpected util-
ity decision theory has been developed.1 In particular, the seminal work of Gilboa 
and Schmeidler (1989) proposes the maxmin expected utility, which is one of the 
successful alternatives in describing agents’ decision-making under ambiguity. 
When maxmin expected utility is adopted, new insights have emerged in different 
mechanism design problems. However, the full implementation problem has not 
been considered yet under maxmin preferences.

By assuming that agents are maxmin expected utility maximizers, we provide 
a new framework to study full implementation. Gilboa and Schmeidler’s (1989) 
maxmin expected utility postulates that a decision-maker may have multiple beliefs 
about the underlying state of the world and makes decisions with the worst-case 
belief. In our asymmetric information environment, we assume that agents know 

1 See, e.g., Wald (1945); Bewley (2002); Gilboa and Schmeidler (1989); Maccheroni, Marinacci, and Rustichini 
(2006); Cerreia-Vioglio et al. (2011).
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little about each other’s private information and thus may form ambiguous beliefs 
about the private information held by others. As special cases, this setup includes 
both the Bayesian framework, where each multi-belief set is a singleton, and the 
Wald-type maxmin preferences, where each agent’s decision-making is based on the 
worst-case information of other agents.

The solution concept we adopt is essentially the Bayesian (Nash) equilibrium with 
ambiguous beliefs, which we call an ambiguous equilibrium. Echoing the results in 
the Bayesian implementation literature, we show that the conditions of ambiguous 
incentive compatibility and ambiguous monotonicity are necessary and almost suf-
ficient for a social choice set to be fully implementable as ambiguous equilibria. 
When establishing sufficient conditions for full implementation, we strengthen the 
two key conditions by imposing a bad outcome property. The bad outcome property 
is usually a weak requirement in environments like exchange economies or transfer-
able utility environments.

The mechanism we construct to implement a social choice set differs from the 
ones in the Bayesian implementation literature. In the Bayesian framework, each 
agent’s belief satisfies a full support assumption. This fact has been utilized in the 
proof to achieve full implementation of social choice sets in the literature. However, 
with ambiguous beliefs, especially those under the Wald-type maxmin preferences, 
there may exist non-full-support beliefs in the ambiguous belief set. This neces-
sitates a different construction to establish full implementation under ambiguity. 
Although the seminal works by Postlewaite and Schmeidler (1986), Palfrey and 
Srivastava (1989a), and Jackson (1991) have been useful in carrying out the new 
construction, the details and arguments are nontrivial.

In exchange economies, when agents have Wald-type maxmin preferences and 
private value utility functions, we provide easy-to-check and also weak conditions 
that are sufficient for full implementation. This contrasts with the fact that the con-
ditions for Bayesian implementation are usually either relatively demanding or dif-
ficult to check. De Castro and Yannelis (2018) have shown that each ambiguous 
Pareto-efficient social choice function is ambiguous incentive compatible. We fur-
ther find that if the social choice set is ambiguous Pareto efficient and every unac-
ceptable deception profile lowers at least one agent’s interim utility, then the social 
choice set also satisfies the ambiguous monotonicity condition. At last, the ambigu-
ous individual rationality condition is sufficient to guarantee the bad outcome prop-
erty when agents have nonzero initial endowments.

By applying the simplified sufficient conditions, we are able to implement a few 
solution concepts in exchange economies that are not only of interest but also may 
not be implemented under a Bayesian framework. In particular, under the Wald-type 
maxmin preferences and private value utility functions, we show that the set of all 
ambiguous Pareto-efficient and individually rational social choice functions is fully 
implementable as ambiguous equilibria. This extends the result of de Castro, Liu, 
and Yannelis (2017a, b) on partial implementation of a social choice function to full 
implementation of a social choice set. Also, we show that the maxmin core of de 
Castro, Pesce, and Yannelis (2011), the maxmin weak core, and the maxmin value 
of Angelopoulos and Koutsougeras (2015) are fully implementable as ambiguous 
equilibria. This contrasts with the Bayesian framework, under which notions like 
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efficient social choice sets and the core are generally not implementable (see, for 
example, Palfrey and Srivastava 1987).

Our paper is related to two strands of the literature. The first one is on mecha-
nism design with ambiguity-averse agents. Instead of fully implementing a social 
choice set, these papers implement a given social choice function and impose some 
assumptions on equilibrium selection. Under the Wald-type maxmin preferences, de 
Castro and Yannelis (2018) prove that every Pareto-efficient social choice function 
is incentive compatible. De Castro, Liu, and Yannelis (2017a, b) and Liu (2016) 
partially implement efficient social choice functions as maxmin equilibria. Their 
maxmin equilibrium is different from the ambiguous equilibrium in the current 
paper: their agents make decisions based on opponents’ worst-case information and 
worst-case strategies, but we assume that agents anticipate opponents to use equi-
librium strategies. A few other partial implementation papers, for example, Bose 
and Renou (2014), Wolitzky (2016), and Guo (2019), adopt solution concepts that 
are essentially the ambiguous equilibrium and allow for maxmin preferences that 
are not Wald type. In these various setups, ambiguity aversion can help the designer 
soften the conflict between efficiency and incentive compatibility, although the 
conflict may still exist. There are also papers studying revenue maximization with 
ambiguity-averse agents, e.g., Bodoh-Creed (2012) and di Tillio, Kos, and Messner 
(2017). All the abovementioned papers focus on incentive compatibility, and none 
is concerned with the issue of multiple equilibria. Nonetheless, the current paper 
studies fully implementing an exogenous social choice set as ambiguous equilibria 
and thus is different from the abovementioned works. To the best of our knowledge, 
no similar results to ours exist in the literature.

The second strand of the literature is full implementation. The problem of full 
implementation has been studied extensively in both a complete information envi-
ronment and in one with asymmetric information. With complete information, 
Maskin (1999), Saijo (1988), Repullo (1987), and Dutta and Sen (1991) among 
others show that a monotonicity condition is the key condition for Nash imple-
mentation. With asymmetric information, the Bayesian implementation literature 
(e.g., Postlewaite and Schmeidler 1986; Palfrey and Srivastava 1987, 1989a, b; and 
Jackson 1991) has established necessary and almost sufficient conditions to imple-
ment a social choice set as Bayesian equilibria. The current paper differs from the 
abovementioned works in the maxmin expected utility setup, in implications, and 
in the construction of the mechanism. From the perspective of setup, this paper 
provides a unified treatment for full implementation with maxmin preferences. In 
particular, the benchmark models of the Bayesian framework and the Wald-type 
maxmin framework are covered as special cases. In terms of implications, under the 
Wald-type maxmin preferences, we provide weak and easy-to-check sufficient con-
ditions for full implementation. This contrasts with the Bayesian framework under 
which the conditions for implementation are often demanding or difficult to check. 
Solution concepts including the ambiguous Pareto-efficient and individually ratio-
nal social choice set, the maxmin core, the maxmin weak core, and the maxmin 
value are implementable under the Wald-type maxmin framework, while various 
efficient social choice sets have been demonstrated by Palfrey and Srivastava (1987) 
to be nonimplementable in a Bayesian framework. From the viewpoint of technical 
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details in the construction of our mechanism, we do not assume that every belief in 
the ambiguous belief set has full support, which requires the design of new mecha-
nisms for full implementation under ambiguity.

The paper proceeds as follows. Section  I presents the primitives of the paper 
and introduces key conditions for full implementation. In Section II, we establish 
the necessity and almost sufficiency of the key conditions. Section III adopts the 
Wald-type maxmin preferences and provides easy-to-check conditions for full 
implementation. Several applications in exchange economies are provided in this 
section. Section IV concludes. All proofs are relegated to the Appendix.

I.  The Model

A. Environment

Consider an environment with a finite set of agents ​I  = ​ {1, …  , n}​​.
Each agent ​i​’s private information is summarized by a type ​​t​ i​​  ∈ ​ T​ i​​​. We focus 

on the case that each type set ​​T​ i​​​ is finite to avoid technical complication. The set of 
all type profiles is denoted by ​T  = ​ ∏ i∈I​ 

  ​​​ T​ i​​​, where a generic element is ​t  = ​​ (​t​ i​​)​​i∈I​​​. 
Similarly, for an agent ​i​, denote the set of all others’ type profiles by ​​T​ −i​​  = ​ ∏ j≠i ​ 

  ​​​ T​ j​​​, 
where a generic element is ​​t​ −i​​  = ​​ (​t​ j​​)​​j≠i​​​.

Following Gilboa and Schmeidler (1989), we assume that agents have multiple 
probability assessments toward others’ types. Each agent ​i​ with type ​​t​ i​​​ has an 
ambiguous belief ​​Π​i​​​(​t​ i​​)​​, where the function ​​Π​i​​ : ​T​ i​​  → ​ 2​​ Δ​(​T​ −i​​)​​​ maps each type 
of agent ​i​ into a nonempty, compact, and convex set of distributions over ​​T​ −i​​​. 
An  element ​​π​i​​​(​t​ i​​)​  ∈ ​ Π​i​​​(​t​ i​​)​​ assigns probability ​​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​ to the event that others 
have type profile ​​t​ −i​​​.

When each ​​Π​i​​​(​t​ i​​)​​ is a singleton, the system of ambiguous beliefs degenerates to 
the Bayesian case as in Postlewaite and Schmeidler (1986), Palfrey and Srivastava 
(1989a), Jackson (1991), etc., where every agent’s interim belief is updated from a 
prior of himself or a prior shared among all agents.

Let ​A​ denote the set of feasible outcomes, i.e., the set of all lotteries over a pure 
feasible outcome set ​X​. A social choice function is a mapping ​f : T  →  A​. A social 
choice set is a set of social choice functions.

Agent ​i​’s utility function ​​u​ i​​ : X × T  →  ℝ​ defines his utility of receiving 
a pure outcome ​a  ∈  X​ when the realized type profile is ​t  ∈  T​. To accommo-
date lotteries whose realizations follow objective distributions, we extend the 
domain of ​​u​ i​​​ to ​A × T​ and define the payoff from a lottery using the expected  
utility.

As in Gilboa and Schmeidler (1989), each type-​​t​ i​​​ agent ​i​’s interim payoff from a 
social choice function ​f​ takes the form of the maxmin expected utility,

	​​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(t)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​.

Namely, an agent takes into account the worst-case belief toward other agents’ 
private information when evaluating his interim payoff. When ambiguous beliefs 
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are singletons, the interim preferences are consistent with the subjective expected 
utility theory adopted to study Bayesian implementation.

Subsequently, we introduce two assumptions on ambiguous beliefs. We will 
be explicit when imposing either of these assumptions. Each assumption below is 
stated for type ​​t​ i​​  ∈ ​ T​ i​​​ of agent ​i  ∈  I​. When ​​T​ −i​​​ is not a singleton, Assumptions 1 
and 2 are incompatible.

The first assumption assumes that every distribution in the ambiguous belief of 
type ​​t​ i​​​ has full support.

ASSUMPTION 1: ​​π​i​​​(​t​ i​​)​​[​t​ −i​​]​  >  0​ for all ​​t​ −i​​  ∈  ​T​ −i​​​ and ​​π​i​​​(​t​ i​​)​  ∈  ​Π​i​​​(​t​ i​​)​​.

The second assumption postulates that type-​​t​ i​​​ agent ​i​ is extremely ambiguity 
averse: he believes that all distributions over the set ​​T​ −i​​​ are possible.

ASSUMPTION 2: ​​Π​i​​​(​t​ i​​)​  =  Δ​(​T​ −i​​)​​.

When Assumption 2 holds for type ​​t​ i​​​ of agent ​i​, we say this type exhibits 
Wald-type  maxmin preference. This type’s maxmin expected utility takes a 
particularly simple form:

	​​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f​(t)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​  = ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(t)​, t)​​.

Namely, type-​​t​ i​​​ agent ​i​ makes decisions based on the worst-case type profile of other 
agents.

B. Implementation

A mechanism designer aims to implement an exogenously given social choice 
set ​F​. A mechanism is a pair ​​(M, g)​  = ​ (​∏ i∈I​ 

  ​​​ M​ i​​, g)​​, where ​​M​ i​​​ is the set of all 
messages that agent ​i​ can submit to the mechanism designer. We call ​M  = ​ ∏ i∈I​ 

  ​​​ M​ i​​​ 
the message space. When ​M  =  T​, the mechanism is a direct mechanism. However, 
we follow the full implementation literature and adopt a general message space 
to achieve full implementation more easily. An outcome function is a map-
ping ​g : M  →  A​, which assigns a feasible outcome to each message profile. Agent ​i​’s 
strategy ​​σ​i​​  : ​T​ i​​  → ​ M​ i​​​ is a private information contingent plan of submitting mes-
sages. A strategy profile of all agents is given by ​σ  = ​​ (​σ​i​​)​​i∈I​​​. Similarly, let ​​σ​−i​​​ 
denote the strategy profile of all agents except ​i​. Following most of the papers on 
Bayesian implementation and on mechanism design with ambiguity-averse agents, 
we restrict attention to pure strategies.2

The solution concept we adopt in the paper is an adaptation of the Bayesian 
equilibrium with ambiguous beliefs. We call it ambiguous equilibrium to differenti-
ate from the Bayesian equilibrium.

2 See, for example, Postlewaite and Schmeidler (1986); Palfrey and Srivastava (1989a); Jackson (1991); 
di Tillio, Kos, and Messner (2017); Wolitzky (2016); and de Castro and Yannelis (2018). 
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DEFINITION 1: A strategy profile ​​σ​​ ⁎​​ is an ambiguous equilibrium of the  
mechanism ​​(M, g)​​ if

	​​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(g​(​σ​​ ⁎​​(t)​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​

	 ≥ ​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(g​(​σ​ i​ ′ ​​(​t​ i​​)​, ​σ​ −i​ 
⁎ ​​(​t​ −i​​)​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​

for all ​i  ∈  I​, ​​t​ i​​  ∈ ​ T​ i​​​, and ​​σ​ i​ ′ ​ : ​T​ i​​  → ​ M​ i​​​ .

A mechanism ​​(M, g)​​ fully implements a social choice set ​F​ as ambiguous 
equilibria if the following two conditions are satisfied:

	 (i)	 for any ​f  ∈  F​, there exists an ambiguous equilibrium ​σ​ of the mechanism ​​

(M, g)​​ such that ​g​(σ​(t)​)​  =  f​(t)​​ for all ​t  ∈  T​;

	 (ii)	 if ​σ​ is an ambiguous equilibrium of the mechanism ​​(M, g)​​, then there exists ​
f  ∈  F​ such that ​g​(σ​(t)​)​  =  f​(t)​​ for all ​t  ∈  T​.

If the first requirement is satisfied, then the social choice set ​F​ is said to be 
partially implemented by ​​(M, g)​​. In this case, for each function in the social choice 
set, there exists a “good” equilibrium leading to consistent outcomes. If the second 
requirement is satisfied, then there does not exist any “bad” equilibrium, which 
leads to outcomes inconsistent with functions in the social choice set.

C. Conditions

In this subsection, we introduce conditions that are useful for full implemen-
tation under ambiguity. They are the ambiguous incentive compatibility condi-
tion, the ambiguous monotonicity condition, and the bad outcome property. These 
conditions are defined for social choice sets. When a singleton social choice set  
​F  = ​ { f }​​ satisfies these conditions, we say that the social choice function ​f​ satisfies 
these conditions.

Our first condition is a version of the incentive compatibility condition. It says 
that for each ​f  ∈  F​, truthful reporting is an ambiguous equilibrium in the direct 
mechanism with outcome function ​f​. Formally, the definition is presented as follows.

DEFINITION 2: A social choice set ​F​ is said to satisfy the ambiguous incentive 
compatibility condition if

 ​​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(t)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​  ≥ ​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(​t​ i​ ′ ​, ​t​ −i​​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​

for all ​f  ∈  F​, ​i  ∈  I​, and ​​t​ i​​, ​t​ i​ ′ ​  ∈ ​ T​ i​​​.

This condition guarantees the existence of good equilibria, i.e., equilibria that are 
consistent with functions in the social choice set.
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To introduce the ambiguous monotonicity condition, we first define the notion 
of deceptions, which can be viewed as strategies in direct mechanisms. We remark 
that the mechanism we design for implementation is not a direct mechanism, but the 
notion of deception plays an important role in the analysis. A deception of agent ​i​ 
is a mapping ​​α​i​​ : ​T​ i​​  → ​ T​ i​​​. Under ​​α​i​​​, type-​​t​ i​​​ agent ​i​ reports ​​α​i​​​(​t​ i​​)​​ to the mechanism 
designer. Specifically, when ​​α​i​​ : ​T​ i​​  → ​ T​ i​​​ is the identity mapping, it represents truth-
ful reporting of private information. We denote by ​α​ the deception profile ​​​(​α​i​​)​​i∈I​​​ 
and by ​​α​−i​​​ the profile ​​​(​α​j​​)​​j≠i​​​.

Given a social choice set ​F​ and a social choice function ​f  ∈  F​, the deception 
profile ​α​ is acceptable if there exists ​f ′  ∈  F​ such that ​f ′​(t)​  =  f ​(α​(t)​)​​ for 
all ​t  ∈  T​. Otherwise, the deception profile is unacceptable.

For a social choice function ​f  ∈  F​, an agent ​i​, and a type ​​t​ i​ ′​  ∈ ​ T​ i​​​, let the set  
​​H​ ​t​ i​ ′ ​​ 

f ​​ be the collection of all social choice functions ​h : T  →  A​ such that

	​​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f​(t)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​ 

	 ≥ ​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(h​(​t​ i​ ′ ​, ​t​ −i​​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​,  ∀ ​t​ i​​  ∈ ​ T​ i​​​ .

The set ​​H​ ​t​ i​ ′ ​​ 
f ​​ is called a reward set, and a function in it is called a reward function.

The ambiguous monotonicity condition is presented below.

DEFINITION 3: A social choice set ​F​ is said to satisfy the ambiguous monotonicity 
condition if for any social choice function ​f  ∈  F​ and unacceptable deception 
profile ​α​, there exists ​i  ∈  I​, ​​t​ i​​  ∈ ​ T​ i​​​, and ​h  ∈ ​ H​ ​α​i​​​(​t​i​​)​​ 

f ​​  such that

	​​   min​ 
​π​i​​​(​t​ i​​)​∈​Π​i​​​(​t​ i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(h​(α​(t)​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​ 

	 > ​   min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(α​(t)​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​.​

The condition implies that whenever agents unanimously choose a social choice 
function and adopt an unacceptable deception profile, there is an agent who can 
benefit from deviating unilaterally and proposing a reward function. Such an agent 
is often called a “whistle-blower” since this agent can signal to the mechanism 
designer that a bad equilibrium is reached.

Along with the conditions of ambiguous incentive compatibility and ambiguous 
monotonicity, the following sufficient condition is imposed to fully implement a 
social choice set.

DEFINITION 4: A social choice set ​F​ is said to satisfy the bad outcome property if 
there exists ​​ a _ ​  ∈  A​ and ​δ  >  0​ such that

	​​   min​ 
​t​−i​​∈​T​−i​​,t′∈T

​​ ​u​ i​​​( f ​(t′)​, t)​ − ​ max​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(​ a _ ​, t)​  ≥  δ​

for all ​f  ∈  F​, ​i  ∈  I​, and ​​t​ i​​  ∈ ​ T​ i​​​ .
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With this property, there exists a bad outcome ​​ a _ ​​, whose maximum payoff to 
type-​​t​ i​​​ agent ​i​ is lower than and bounded away from the worst-case payoff from any 
social choice outcome.

Our bad outcome property holds naturally for a few common social choice sets. 
In Section  III, we will formally define an exchange economy where every agent 
has nonzero initial endowment and private evaluation. If we wish to implement an 
individually rational social choice set, then appropriating all initial endowments 
from all agents may serve as a bad outcome. In environments other than exchange 
economies, there may exist other bad outcomes. For instance, in a quasi-linear envi-
ronment, appropriating a sufficiently large amount of money from all agents can 
usually serve as a bad outcome for any individually rational social choice set. In a 
matching environment, if all types of agents prefer being matched to other agents to 
being unmatched, then the outcome of no matching may serve as a bad outcome for 
Pareto-efficient social choice sets. In an election environment where all voters prefer 
having an elected candidate to having no leader, the outcome of having no leader 
could be a bad outcome for Pareto-efficient social choice sets.

II.  Main Result

A. Statement of the Theorem

The following theorem is the main result of the paper. It provides conditions that 
are necessary and sufficient for fully implementing a social choice set under ambig-
uous beliefs in general environments.

THEOREM 1: 

	 (i )	 If a social choice set ​F​ is fully implementable as ambiguous equilibria,  
then ​F​ satisfies ambiguous incentive compatibility and ambiguous 
monotonicity.

	 (ii )	 For each ​i  ∈  I​, suppose every ​​t​ i​​  ∈ ​ T​ i​​​ satisfies either Assumption 1 or 
Assumption 2. If a social choice set ​F​ satisfies ambiguous incentive compati-
bility, ambiguous monotonicity, and the bad outcome property, then ​F​ is fully 
implementable as ambiguous equilibria.

The formal proof of the theorem is relegated to the Appendix. We provide an idea 
of the proof in Section IIB.

Notice that the second part of the theorem does not rely on the cardinality restric-
tion ​n  ≥  3​ commonly seen in the literature. This is because we adopt a stochastic 
mechanism for full implementation.

We assume that every type satisfies either Assumption 1 or Assumption 2 in the 
second part of the theorem. Thus, the closure condition in the implementation liter-
ature is automatically satisfied. Note that neither Assumption 1 nor Assumption 2 is 
needed for the first part of Theorem 1. Also, neither is needed for implementing a 
singleton social choice set. Thus, we also have the result below.
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COROLLARY 1: If a social choice function ​f​ satisfies ambiguous incentive 
compatibility, ambiguous monotonicity, and the bad outcome property, then ​f​ is 
fully implementable as ambiguous equilibria.

B. Discussion of the Proof

The proof of the first part of the theorem is standard. The proof of the second part 
requires new arguments that are not found in the literature. We provide here a sketch 
of the proof of the second part.

We construct a mechanism ​​(M, g)​​ to implement ​F​. Each agent ​i​’s message ​​m​ i​​  ∈ ​ M​ i​​​ 
has five components: the first component ​​m​ i​ 

1​​ is a type of agent ​i​; the second compo-
nent ​​m​ i​ 

2​​ proposes a social choice function in ​F​; the third and fourth components ​​m​ i​ 
3​​ 

and ​​m​ i​ 
4​​ are nonnegative integers; the fifth component ​​m​ i​ 

5​​ proposes a social choice 
function, which is not required to be in ​F​. We partition the message space ​M​ into 
sets ​​M​​ 1​​, ​​M​​ 2​​, and ​​M​​ 3​​ as follows:

	​​ M​​ 1​  = ​ {m  ∈  M  |  ∃ f  ∈  F  such that  ​ m​ i​ 
2​  =  f  and  ​ m​ i​ 

3​  =  0,  ∀ i  ∈  I}​,​

	​​ M​​ 2​  = ​ {m  ∈  M  |  ∃  f  ∈  F,  i  ∈  I,  h  ∈ ​ H​ 
​m​ i​ 

1​
​ f ​   such that 

		 ​ m​ i​ 
3​  >  0, ​ m​ i​ 

5​  =  h, ​ m​ j​ 
2​  =  f, ​ m​ j​ 

3​  =  0,  ∀ j  ≠  i}​,​

	​​ M​​ 3​  =  M \​{​M​​ 1​ ∪ ​M​​ 2​}​.​

Our mechanism incorporates a “bad lottery” that is formalized in the Appendix 
to dissolve bad equilibria. The lottery has two realizations: the bad outcome and 
an outcome that is better for every agent. The probability of the realization of the 
better outcome is increasing in ​​∑ j∈I​ 

 
 ​​​ m​ j​ 

4​​. If assigned the lottery, every ​i​ can benefit 
from reporting a larger ​​m​ i​ 

4​​ to increase the probability of the realization of the better 
outcome. Thus, the bad lottery creates an “open set” over which agents have strict 
preferences so that best responses may not exist.

Our mechanism assigns the following rules. Rule 1 applies when the message 
profile ​m  ∈ ​ M​​ 1​​. In this case, the reported types in the first components of the mes-
sages and the common social choice function in the second components determine 
the outcome. Rule 2 applies when ​m  ∈ ​ M​​  2​​. Let ​i​ denote the agent reporting ​​m​ i​ 

3​  
>  0​. The mechanism assigns a compound lottery between the reward function ​​m​ i​ 

5​​ 
and the bad lottery constructed above. In the compound lottery, the probability of 
the realization of ​​m​ i​ 

5​​ is increasing in ​​m​ i​ 
3​​. Rule 3 is triggered in all other cases, where 

agents are assigned the bad lottery.
For each ​f  ∈  F​, Claim 1 in the Appendix establishes the existence of a good equi-

librium that triggers Rule 1: every agent truthfully reports, proposes ​f​, and submits 
zero in the first, second, and third components of his message. To see this, first notice 
that ​f​ satisfies ambiguous incentive compatibility, and thus no agent has the incen-
tive to remain under Rule 1 and misrepresent his type. According to the definition of 
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reward functions and the bad lottery construction, no agent has the incentive to devi-
ate and trigger Rule 2. Due to the bad lottery construction, no agent has the incentive 
to deviate and trigger Rule 3.

Claims 2 through 4 demonstrate that every ambiguous equilibrium in the mecha-
nism is a good equilibrium.

Claim 2 first shows that every agent reports zero in the third component of 
the message in equilibrium. To see this, suppose that some type-​​t​ i​​​ agent ​i​ reports  
​​m​ i​ 

3​  >  0​. Notice that for each ​​t​ −i​​​, either Rule 2 or Rule 3 is triggered at ​t​. In both 
cases, the bad lottery is used with positive probability. Thus, type-​​t​ i​​​ agent ​i​ can 
benefit from deviating with a larger ​​m​ i​ 

4​​ to increase the probability that the better 
outcome is realized in the bad lottery.

Claim 3 then shows that in any ambiguous equilibrium, agents agree on a 
common ​f  ∈  F​ in the second components of their messages. Otherwise, there 
exists ​​t​​ ⁎​  ∈  T​ under which agents propose different social choice functions. One 
can fix any ​i  ∈  I​ and show that type-​​t​ i​ 

⁎​​ agent ​i​ can profitably deviate by reporting 
a larger ​​m​ i​ 

4​​. To see this, notice that for each ​​t​ −i​​  ∈ ​ T​ −i​​​ , either Rule 1 or Rule 3 is 
triggered at ​​(​t​ i​ 

⁎​, ​t​ −i​​)​​. We discuss the following two cases. First, when ​​t​ i​ 
⁎​​ satisfies 

Assumption 1, each distribution in the ambiguous belief has full support. As the 
deviation improves the outcome when Rule 3 is triggered and does not change the 
outcome when Rule 1 is triggered, the agent’s interim payoff will increase. Second, 
when ​​t​ i​ 

∗​​ satisfies Assumption 2, the agent’s interim payoff is solely determined by the 
worst one or multiple ​​t​ −i​​  ∈ ​ T​ −i​​​. Due to the bad lottery design, the worst ​​t​ −i​​  ∈ ​ T​ −i​​​ 
triggers Rule 3. By deviating with a larger ​​m​ i​ 

4​​, the bad lottery imposes more weight 
on the better outcome, which increases the worst-case payoff of ​​t​ i​ 

⁎​​.
Claim 4 further shows that agents adopt an acceptable deception profile for 

a social choice function ​f  ∈  F​ in equilibrium, and thus ​F​ is fully implemented. 
Otherwise, some agent ​i​ can benefit from proposing a profitable reward function ​​m​ i​ 

5​​ 
(by ambiguous monotonicity of ​F​ ) and submitting a sufficiently large ​​m​ i​ 

3​  >  0​. 
In this case, the outcome function approximates the reward function, and thus the 
deviation is profitable.

C. Connection with the Literature

Although our mechanism shares similarities with those in Postlewaite and 
Schmeidler (1986), Palfrey and Srivastava (1987), and Jackson (1991), their mech-
anisms do not work under the maxmin framework. This is because not all beliefs 
have full support in the maxmin framework. To prevent a bad strategy profile, i.e., 
one leading to outcomes that are inconsistent with ​F​, from being an equilibrium, 
their mechanisms rely on the full support assumption. In particular, under some bad 
strategy profiles, there is a type-​​t​ i​​​ agent ​i​, who by deviating can weakly increase 
his ex post utility under all ​​t​ −i​​  ∈ ​ T​ −i​​​ and can strictly increase his utility under 
some ​​t​ −i​​  ∈ ​ T​ −i​​​. As a Bayesian agent with full-support belief, this type ​​t​ i​​​ agent ​i​ has 
the incentive to deviate, which prevents the bad strategy profile from being an equi-
librium. However, when this agent has the Wald-type maxmin preference instead, 
his payoff is solely decided by the worst ​​t​ −i​​  ∈ ​ T​ −i​​​. Without being able to increase 
the ex post utility under all the worst ​​t​ −i​​  ∈ ​ T​ −i​​​, the agent does not have the incentive 
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to deviate. Thus, under the maxmin framework, there may exist bad equilibria in the 
mechanisms of Postlewaite and Schmeidler (1986), Palfrey and Srivastava (1987), 
and Jackson (1991).

Our stochastic mechanism is related to the one in Bergemann and Morris (2011), 
but their mechanism works for implementing social choice functions only. In par-
ticular, they do not need to argue how to dissolve the bad equilibria where agents 
propose to implement different social choice functions. However, this argument is 
needed to implement a social choice set and is challenging when agents do not have 
full-support beliefs. To make this argument go through, we introduce a stronger 
bad outcome property than theirs and assume that each type of each agent satisfies 
either Assumption 1 or Assumption 2. The case-by-case discussion in Claim 3 of the  
Appendix shows how we dissolve the bad equilibria where agents propose different 
social choice functions.

III.  Wald-Type Maxmin Preferences: Applications

Throughout this section, we impose Assumption 2 on all types of all agents. 
Namely, we consider the Wald-type maxmin preferences. We also assume that 
agents have private value utility functions, i.e., ​​u​ i​​​(a, ​(​t​ i​​, ​t​ −i​​)​)​  = ​ u​ i​​​(a, ​(​t​ i​​, ​t​ −i​ ′ ​ )​)​​ for 
all ​a  ∈  A​, ​i  ∈  I​, ​​t​ i​​  ∈ ​ T​ i​​​, and ​​t​ −i​​, ​t​ −i​ ′ ​   ∈ ​ T​ −i​​​. Thus, we can denote the ex post utility 
for each type-​​t​ i​​​ agent ​i​ to receive outcome ​a​ by ​​u​ i​​​(a, ​t​ i​​)​​ for simplicity. These assump-
tions are of interest because under them we can provide weak and easy-to-check 
sufficient conditions to guarantee ambiguous incentive compatibility and ambigu-
ous monotonicity.

We also restrict our discussion to exchange economies in this section, mainly 
because the bad outcome property can be easily verified for several useful solu-
tion concepts defined in exchange economies in Sections IIIB through IIID. In an 
exchange economy, there are ​L​ goods, and the total amount of each good ​l​ is a positive 
number ​​e​​ l​  ∈ ​ ℝ​++​​​. Each agent ​i​ is assumed to have a nonzero deterministic initial 
endowment: ​​e​ i​​  = ​ (​e​ i​ 

1​, ​e​ i​ 
2​,  …  , ​e​ i​ 

L​)​  ∈ ​ ℝ​ +​ L ​\​{0}​​. Let ​e  = ​​ (​e​ i​​)​​i∈I​​​ denote the no trade 
outcome. For each good, the aggregate initial endowment across agents is consistent 
with the total resource of this good, i.e., ​​∑ i∈I​ 

 
 ​​​ e​ i​ 

l​  = ​ e​​ l​​ for each good ​l  =  1, …  , L​ .
Agents cannot consume more than their aggregate initial endowment. Hence, the 

set of feasible pure outcomes, ​X​, is defined by

	​ X  = ​ {​​(​x​ i​​)​​i∈I​​  |  ​x​ i​​  ∈ ​ ℝ​ +​ L ​, ∀ i  ∈  I; ​∑ 
i∈I

​ ​​ ​x​ i​ 
l​  ≤ ​ ∑ 

i∈I
​ ​​​e​ i​ 

l​, ∀ l  =  1, 2, …  , L}​​.

The set of all feasible outcomes is ​A  =  Δ​(X)​​.
A coalition is a nonempty subset of ​I​. When an outcome is feasible within a 

coalition, agents in the coalition cannot consume more than their aggregate initial 
endowment. Hence, for each coalition ​S​, the set of pure outcomes that are feasible 
within ​S​, ​​X​ S​​​, is defined by

	​​ X​ S​​  = ​ {​​(​x​ i​​)​​i∈I​​  ∈  X | ​​∑ 
i∈S

​ ​​​ x​ i​ 
l​  ≤ ​ ∑ 

i∈S
​ ​​​e​ i​ 

l​​, ∀ l  =  1, 2, …  , L}​.​
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Define ​​A​ S​​  =  Δ​(​X​ S​​)​​ as the set of outcomes that are feasible within ​S​. Notice 
that ​X  = ​ X​ I​​​ and ​A  = ​ A​ I​​​.

Since free disposal is allowed, the zero outcome ​0  ∈ ​ ℝ​ +​ nL​​ is a feasible pure out-
come. When defined on pure outcomes, each agent’s utility function is assumed 
to be increasing and continuous in each dimension of his private consumption and 
independent of others’ consumption.

We now introduce ambiguous Pareto efficiency, adopting the interim dominance 
notion of Holmström and Myerson (1983). Under this notion, a social choice func-
tion dominates the other if the first function is at least as good as the second one for 
all agents and all types, and at least one agent prefers the first function under one of 
his types.

DEFINITION 5: A social choice set ​F​ is said to satisfy the ambiguous Pareto effi-
ciency condition if there does not exist a social choice function ​f  ∈  F​ and another 
social choice function ​y : T  →  A​ such that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(t)​, ​t​ i​​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(t)​, ​t​ i​​)​​

for all ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​, and the strict inequality holds for some ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​.

Below, we define the ambiguous individual rationality condition.

DEFINITION 6: A social choice set ​F​ is said to satisfy the ambiguous individual 
rationality condition if

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(​t​ i​​, ​t​ −i​​)​, ​t​ i​​)​  ≥ ​ u​ i​​​(e, ​t​ i​​)​​

for all ​f  ∈  F​, ​i  ∈  I​, and ​​t​ i​​  ∈ ​ T​ i​​​ .

In fact, it is easy to see that ​F​ satisfies the ambiguous individual rationality con-
dition if and only if

	​​ u​ i​​​( f​(​t​ i​​, ​t​ −i​​)​, ​t​ i​​)​  ≥ ​ u​ i​​​(e, ​t​ i​​)​​

for all ​f  ∈  F​, ​i  ∈  I​, ​​t​ i​​  ∈ ​ T​ i​​​, and ​​t​ −i​​  ∈ ​ T​ −i​​​. This means that ​F​ is ambiguous individ-
ually rational if and only if it is ex post individually rational. In the rest of the paper, 
we choose to adopt the term of ambiguous individual rationality because all notions 
considered in Sections IIIB through IIID are interim notions.

A. Easy-to-Check Sufficient Conditions

De Castro and Yannelis (2018) have shown that every ambiguous Pareto-efficient 
social choice function is ambiguous incentive compatible if and only if agents have 
Wald-type maxmin preferences. This means that the conflict between efficiency 
and incentive compatibility is resolved under Wald-type maxmin preferences. Their 
result is presented below.
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LEMMA 1 (de Castro and Yannelis 2018): Every ambiguous Pareto-efficient social 
choice function ​f​ satisfies the ambiguous incentive compatibility condition.

The intuition can be captured by the following two-by-one example. Suppose 
that agent ​1​’s types are labeled by ​​t​ 1​ 

1​​ and ​​t​ 1​ 
2​​ and that agent ​2​’s type is ​​t​ 2​​​. When 

type-​​t​ 1​ 
1​​ agent ​1​ prefers to misreport ​​t​ 1​ 

2​​, one can define a new social choice func-
tion ​y​ by ​y(​t​ 1​ 1​, ​t​ 2​​)  =  y(​t​ 1​ 2​, ​t​ 2​​)  =  f  (​t​ 1​ 2​, ​t​ 2​​)​. The new social choice function ​y​ makes 
type-​​t​ 1​ 

1​​ agent ​1​ better off compared to ​f​ in the interim stage and preserves his 
interim payoff under ​​t​ 1​ 

2​​. Also, type-​​t​ 2​​​ agent ​2​ is not worse off by receiving ​y​. To 
see this, the sure outcome of ​y(​t​ 1​ 1​, ​t​ 2​​)  =  y(​t​ 1​ 2​, ​t​ 2​​)  =  f  (​t​ 1​ 2​, ​t​ 2​​)​ is assigned under the 
new function ​y​, and the uncertain outcome ​f (​t​ 1​ 1​, ​t​ 2​​)​ or ​f (​t​ 1​ 2​, ​t​ 2​​)​ is assigned under ​f​. 
As agent ​2​ has the Wald-type maxmin preference and private valuation, ​y​ is at 
least as good as ​f​ to him. This contradicts the fact that ​f​ is ambiguous Pareto effi-
cient. Hence, an ambiguous Pareto-efficient social choice function is ambiguous 
incentive compatible.

We also establish a weak condition that is sufficient for ambiguous monotonicity. 
If a social choice set is ambiguous Pareto efficient and every unacceptable deception 
profile lowers at least one agent’s interim payoff, then the ambiguous monotonicity 
condition is satisfied.

LEMMA 2: Let ​F​ be an ambiguous Pareto-efficient social choice set. If for any 
social choice function ​f  ∈  F​ and unacceptable deception profile ​α​, there exists an 
agent ​i  ∈  I​ and type ​​t​ i​ 

⁎​  ∈ ​ T​ i​​​ such that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  > ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(f ​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​t​ i​ 
⁎​)​,​

then the social choice set ​F​ satisfies the ambiguous monotonicity condition.

To understand why this lemma holds, we claim that type-​​t​ i​ 
⁎​​ agent ​i​ satisfying the 

strict inequality above can be a whistle-blower: he can unilaterally deviate from the 
bad equilibrium inducing ​f ◦ α​ by proposing a profitable reward function ​h​ defined 
by ​h​(t)​  =  f​(​t​ i​ 

⁎​, ​t​ −i​​)​​ for all ​t  ∈  T​. We know that ​h​ is a reward function since Lemma 1 
tells us that ​f​ satisfies ambiguous incentive compatibility. Furthermore, when ​​t​ −i​​​ is 
unknown, the set of possible realized outcomes under ​h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​  =  f​(​t​ i​ 

⁎​, ​α​−i​​​(​t​ −i​​)​)​​  

is a subset of those under ​f​(​t​ i​ 
⁎​, ​t​ −i​​)​​. This means that when ​​t​ −i​​​ is unknown, ​h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​​  

is “less uncertain” compared to ​f​(​t​ i​ 
⁎​, ​t​ −i​​)​​, and thus ​h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​​ leads to a weakly 

higher interim payoff to type-​​t​ i​ 
⁎​​ agent ​i​ than ​f​(​t​ i​ 

⁎​, ​t​ −i​​)​​. This, along with the inequality 
stated in Lemma 2, concludes that the reward function ​h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​​ can be proposed 
by ​​t​ i​ 

⁎​​ to dissolve the bad equilibrium inducing ​f ​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​​.
Furthermore, we establish an easy-to-check sufficient condition for the bad out-

come property in an exchange economy. It is the ambiguous individual rationality 
condition.

LEMMA 3: If the social choice set ​F​ satisfies the ambiguous individual rationality 
condition, then it satisfies the bad outcome property.
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We prove in the Appendix that the zero outcome ​0  ∈ ​ ℝ​ +​ nL​​ can serve as a bad 
outcome. To see this, notice that all agents have nonzero initial endowments. Thus, 
every ambiguous individually rational social choice function should assign agents 
nonzero private consumption.

We remark that the exchange economy setup is not needed for Lemmas 1 and 2 to 
hold. Nonetheless, in an exchange economy, one can explicitly find a bad outcome, 
the zero outcome, for ambiguous individually rational social choice sets. Hence, 
we adopt the exchange economy setup to guarantee the bad outcome property. The 
assumptions of Wald-type maxmin preferences and private value utility functions 
play a role in the proof of all three lemmas above.

In the Bayesian implementation literature, useful results have been established 
under private value environments. For example, Palfrey and Srivastava (1989b) have 
shown that every incentive-compatible social choice function can be fully imple-
mented as the unique undominated Bayesian equilibrium. Such a result provides a 
simple sufficient condition for full implementation under the private value Bayesian 
environment. However, their solution concept is different from the one adopted in 
the current paper. Their solution concept, the undominated Bayesian equilibrium, is 
a refinement of the Bayesian equilibrium, but ours, the ambiguous equilibrium, is a 
variant of the Bayesian equilibrium under ambiguous beliefs. Because of this, our 
results on full implementation under private value environments do not follow as 
corollaries of their paper.

In the following subsections, we apply our simplified sufficient conditions to verify 
the implementability of several common solution concepts in exchange economies.

B. Pareto-Efficient and Individually Rational Social Choice Sets

We can fully implement the set of all ambiguous Pareto-efficient and individually 
rational social choice functions in an exchange economy with Wald-type maxmin 
preferences and private value utility functions.

By applying Theorem 1 and the simplified sufficient conditions in Section IIIA, 
we have the following result.

COROLLARY 2: The set of all ambiguous Pareto-efficient and ambiguous individu-
ally rational social choice functions ​F​ is fully implementable as ambiguous equilibria.

Corollary 2 is related to the main result of de Castro, Liu, Yannelis (2017b). The 
main difference is that we look at full implementation of a social choice set, while 
their paper studies partial implementation of a social choice function.

We remark that Corollary 2 implements the set of ambiguous Pareto-efficient and 
individually rational social choice functions. This does not mean that every subset of 
ambiguous Pareto-efficient and individually rational social choice functions is fully 
implementable because full implementation requires the set of equilibria to coincide 
with the social choice set. Hence, in the following two subsections, we provide two 
examples of implementable social choice sets that are ambiguous Pareto efficient 
and individually rational: the maxmin core and the maxmin value. Their imple-
mentability does not follow from Corollary 2.
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C. Maxmin Core and Maxmin Weak Core

The core of an economy is an important solution concept that is immune to coali-
tional manipulations. Under the Bayesian framework, Palfrey and Srivastava (1987) 
have shown that the core notions under asymmetric information are generally not 
implementable as Bayesian equilibria. The core notions are further studied under 
the ambiguity aversion framework. See, for example, de Castro, Pesce, and Yannelis 
(2011) and Moreno-García and Torres-Martínez (2020). In this subsection, we fully 
implement two core notions under the Wald-type maxmin preferences and private 
value utility functions.

The first notion is a minor modification of de Castro, Pesce, and Yannelis’ (2011) 
maxmin core allocation. We say a coalition ​S​ can block a social choice function 
under the type profile ​​t​​ ⁎​​ if by redistributing initial endowment within the coali-
tion, at least one agent ​i  ∈  S​ has a higher interim payoff under ​​t​ i​ 

⁎​​, and every other 
agent ​j​ is not worse off under ​​t​ j​ 

⁎​​. As a blocking coalition only needs to improve the 
interim payoff of one member, this maxmin core notion is slightly different from 
definition 3.12 of de Castro, Pesce, and Yannelis (2011). A maxmin core allocation 
is unblockable under every type profile ​​t​​ ⁎​  ∈  T​. In this version of the core notion, 
agents in a coalition ​S​ only propose an alternative social choice function that is 
feasible given the initial endowments within themselves. They neither share pri-
vate information with each other nor jointly coordinate on misreporting their types. 
Hence, each agent ​i  ∈  S​ evaluates his interim payoff by considering the worst-case 
scenario among all possible realizations of ​​t​ −i​​  ∈ ​ T​ −i​​​.

DEFINITION 7: A social choice function ​f​ is said to be a maxmin core allocation if 
there does not exist ​S  ⊆  I​, ​​t​​ *​  ∈  T​, and a social choice function ​y : T  → ​ A​ S​​​, such 
that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​​

for all ​i  ∈  S​, and the strict inequality holds for some ​i  ∈  S​.

One could also consider a weaker core concept by adopting the interim domina-
tion notion of Holmström and Myerson (1983). A blocking coalition needs to make 
one type of some agent better off without hurting any type of any agent in the coa-
lition. As the requirement for such a blocking coalition to exist is rather strong, we 
call the core concept that is immune to this type of blocking the maxmin weak core.

DEFINITION 8: A social choice function ​f​ is said to be a maxmin weak core 
allocation if there does not exist a coalition ​S  ⊆  I​ and another social choice func-
tion ​y : T  →  ​A​ S​​​ such that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(t)​, ​t​ i​​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(t)​, ​t​ i​​)​​

for all ​i  ∈  S​ and ​​t​ i​​  ∈ ​ T​ i​​​, and the strict inequality holds for some ​i  ∈  S​ and  
​​t​ i​​  ∈ ​ T​ i​​​.
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The following corollary shows that both of the core concepts are fully 
implementable.

COROLLARY 3: 

	 (i )	 The set of all maxmin core allocations is fully implementable as ambiguous 
equilibria.

	 (ii )	 The set of all maxmin weak core allocations is fully implementable as 
ambiguous equilibria.

A key observation in the proof is that both the maxmin core and the maxmin 
weak core are ambiguous Pareto efficient. This follows from the definitions of 
the two notions. Moreover, the maxmin core is ambiguous individually rational, 
which guarantees the bad outcome property. The maxmin weak core may not sat-
isfy the ambiguous individual rationality condition defined in Definition 6, but 
we demonstrate in the Appendix that the zero outcome can still serve as a bad 
outcome.

Through the results above, we provide a noncooperative foundation for the 
maxmin core and the maxmin weak core. It is worth mentioning that theorem 3.1 of 
Hahn and Yannelis (2001) fully implements the private core as coalitional Bayesian 
equilibria under the Bayesian framework, although core notions are generally not 
implementable as Bayesian equilibria. The main difference between our Corollary 3 
and their result is that the ambiguous equilibrium adopted in the current paper is a 
noncooperative game solution concept. It can be interpreted as the Bayesian equilib-
rium in the ambiguous belief framework. However, their coalitional Bayesian equi-
librium can be viewed as a cooperative game solution concept and is a refinement 
of Bayesian equilibrium. The same difference also exists between our application in 
Section IIID and their theorem 4.1.

D. Maxmin Value

The Shapley value is a widely used solution concept in economic theory. It 
assigns to each agent his marginal contribution to total surplus in the game. 
Angelopoulos and Koutsougeras (2015) extend the idea of Shapley value to an 
asymmetric information economy with Wald-type maxmin preferences. In this 
subsection, we show that the (interim) maxmin value introduced by them is fully 
implementable.

For each type profile ​t  ∈  T​ and weight profile ​λ​(t)​  = ​​ (​λ​i​​​(t)​)​​
i∈I

​​  ∈ ​ ℝ​ +​ n ​\​{0}​​, 
define the characteristic function ​​V​ λ, t​​ : ​2​​ I​  →  ℝ​ by ​​V​ λ,t​​​(∅)​  =  0​ and

	​​ V​ λ, t​​​(S)​  =  max​{​∑ 
i∈S

​ ​​​λ​i​​​(t)​​ min​ 
​t​ −i​ ′ ​ ∈​T​ −i​​

​​ ​u​ i​​​(x​(​t​ i​​, ​t​ −i​ ′ ​ )​, ​t​ i​​)​ | x : T  → ​ A​ S​​}​​



164	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� FEBRUARY 2021

for each coalition ​S  ⊆  I​. The characteristic function measures the coalition’s interim 
worth, i.e., the maximal weighted sum of coalition members’ interim payoffs given 
their initial endowments. From the definition of the characteristic function, it is easy to 
see that for any disjoint coalitions ​​S​​ 1​, ​S​​ 2​  ⊆  I​, ​​V​ λ, t​​​(​S​​ 1​ ∪ ​S​​ 2​)​  ≥ ​ V​ λ, t​​​(​S​​ 1​)​ + ​V​ λ, t​​​(​S​​ 2​)​​.  
This inequality implies that the joint worth of two coalitions is weakly higher than 
that of having the two coalitions work separately.

The Shapley value of agent ​i​ under type profile ​t​ is defined as

	​​ Sh​  i​​​(​V​ λ, t​​)​  = ​ ∑ 
S∋i

​ ​​​ 
​(| S | − 1)​ !​(| I | − | S |)​!

  _________________ | I | !  ​​[​V​ λ, t​​​(S)​ − ​V​ λ, t​​​(S \​{i}​)​]​,​

which is a way to measure the marginal contribution of agent ​i​, taking into con-
sideration all possible coalitions agent ​i​ may join and all possible orders in which 
members join these coalitions.

The notion below comes from definition 2 of Angelopoulos and Koutsougeras 
(2015). It requires that each agent’s interim payoff from the maxmin value allocation 
should reflect his marginal contribution.

DEFINITION 9: A social choice function ​f : T  →  A​ is a maxmin value allocation 
if for each ​t  ∈  T​, there exists a nonzero weight profile ​λ​(t)​  ∈ ​ ℝ​ +​ n ​\​{0}​​ such that

	​​ λ​i​​​(t)​​ min​ 
​t​ −i​ ′ ​ ∈​T​−i​​

​​ ​u​ i​​​( f ​(​t​ i​​, ​t​ −i​ ′ ​ )​, ​t​ i​​)​  =  S​h​  i​​​(​V​ λ, t​​)​,  ∀ i  ∈  I.​

We denote ​λ​(t)​  ∈ ​ ℝ​ ++​ n  ​​ when every dimension of ​λ​(t)​​ is positive. The set of all 
maxmin value allocations is fully implementable when each maxmin value alloca-
tion has weights in ​​ℝ​ ++​ n  ​​. The proof relies on the fact that a maxmin value alloca-
tion is ambiguous Pareto efficient and ambiguous individually rational. The positive 
weight restriction is used to guarantee ambiguous Pareto efficiency and ambiguous 
individual rationality.

COROLLARY 4: Let ​F​ be the set of all maxmin value allocations. If for each  
​f  ∈  F​, its weight profile satisfies ​λ​(t)​  ∈ ​ ℝ​ ++​ n ​​  for all ​t  ∈  T​, then ​F​ is fully 
implementable as ambiguous equilibria.

The result above provides a noncooperative foundation for the maxmin value.

IV.  Conclusion

This paper introduces the maxmin expected utility framework into the problem 
of fully implementing a social choice set as ambiguous equilibria. This allows us 
to implement social choice sets that may not be implementable under the Bayesian 
framework. Under the Wald-type maxmin preferences, we provide easy-to-check 
sufficient conditions for full implementation, which help us to implement the set of 
all ambiguous Pareto-efficient and individually rational social choice functions, the 
maxmin core, the maxmin weak core, and the maxmin value.
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Appendix A

PROOF OF THEOREM 1 :
Part (i ).—The proof of this part is along the line of Jackson (1991). For com-

pleteness, we include it here. Let ​F​ be an implementable social choice set. Thus, 
there exists a mechanism ​​(M, g)​​ that implements ​F​.

First, to establish the ambiguous incentive compatibility condition for ​F​, we 
suppose by way of contradiction that there exists ​f  ∈  F​, ​i  ∈  I​, and two different 
types ​​t​ i​​  ≠ ​ t​ i​ ′ ​​ such that type ​​t​ i​​​ is better off by misreporting ​​t​ i​ ′ ​​. As ​f  ∈  F​, there 
exists an ambiguous equilibrium ​σ​ such that ​g​(σ​(t)​)​  =  f​(t)​​ for all ​t  ∈  T​. Define 
a constant strategy ​​​σ – ​​i​​​ for agent ​i​ by ​​​σ – ​​i​​​(​t​ i​ ″​)​  = ​ σ​i​​​(​t​ i​ ′ ​)​​ for all ​​t​ i​ ″​  ∈ ​ T​ i​​​. Notice that  
​g​(​​σ – ​​i​​​(​t​ i​​)​, ​σ​−i​​​(​t​ −i​​)​)​  =  g​(​σ​i​​​(​t​ i​ ′ ​)​, ​σ​−i​​​(​t​ −i​​)​)​  =  f​(​t​ i​ ′ ​, ​t​ −i​​)​​ for all ​​t​ −i​​  ∈ ​ T​ −i​​​. Strategy ​​​σ – ​​i​​​ is 
profitable for type-​​t​ i​​​ agent ​i​, contradicting the fact that ​σ​ is an ambiguous equilib-
rium. Hence, ​F​ is ambiguous incentive compatible.

Second, to establish the ambiguous monotonicity condition for ​F​, we fix a 
social choice function ​f  ∈  F​ and an unacceptable deception profile ​α​. As ​f  ∈  F​ 
and ​f ◦ α  ∉  F​, there exists an ambiguous equilibrium ​σ​ such that ​σ ◦ α​ is not an 
equilibrium. Hence, there exists a type-​​t​ i​​​ agent ​i​ and a strategy ​​σ​ i​ ′ ​​ such that ​​σ​ i​ ′ ​​(​t​ i​​)​​ 
is a profitable deviation from ​​σ​i​​ ◦ ​α​i​​​ when other agents follow ​​σ​−i​​ ◦ ​α​−i​​​. Define a 
constant strategy ​​​σ – ​​i​​​(​t​ i​ ′ ​)​  = ​ σ​ i​ ′ ​​(​t​ i​​)​​ for all ​​t​ i​ ′ ​  ∈ ​ T​ i​​​ and a social choice function ​h​  
by ​h​(t ′ )​  =  g​(​​σ – ​​i​​​(​t​ i​ ′ ​)​, ​σ​−i​​​(​t​ −i​ ′ ​ )​)​​ for all ​t′  ∈  T​. Notice that agent ​i​’s type does not 
affect  the outcome assigned by ​h​ as ​​​σ – ​​i​​​ is constant. As ​​​σ – ​​i​​​ cannot be a profitable 
deviation from ​​σ​i​​​ when other agents adopt ​​σ​−i​​​ , we can conclude that ​h  ∈ ​ H​ ​α​i​​​(​t​ i​​)​​ 

 f ​ ​. 
As ​​​σ – ​​i​​​ is a profitable deviation from ​​σ​i​​ ◦ ​α​i​​​ for type ​​t​ i​​​ when other agents adopt  
​​σ​−i​​ ◦ ​α​−i​​​, we can conclude that ​h ◦ α​ gives type ​​t​ i​​​ a higher maxmin expected utility 
than ​f ◦ α​. Hence, we have established the ambiguous monotonicity condition  
for ​F​.

Part (ii ).—To prove the second part of the theorem, we construct a mechanism ​​

(M, g)​​ to implement a social choice set ​F​ that satisfies ambiguous incentive compat-
ibility, ambiguous monotonicity, and the bad outcome property.

Each agent ​i​ reports a message ​​m​ i​​  = ​ (​m​ i​ 
1​, ​m​ i​ 

2​, ​m​ i​ 
3​, ​m​ i​ 

4​, ​m​ i​ 
5​)​​, where ​​m​ i​ 

1​  ∈ ​ T​ i​​​, 
​​m​ i​ 

2​  ∈  F​, ​​m​ i​ 
3​  ∈ ​ ℕ​+​​​, ​​m​ i​ 

4​  ∈ ​ ℕ​+​​​, and ​​m​ i​ 
5​​ is a function from ​T​ to ​A​. We partition the 

message space into ​​M​​ 1​​, ​​M​​ 2​​, and ​​M​​ 3​​ as follows:

	​​ M​​ 1​  = ​ {m  ∈  M  |  ∃  f  ∈  F such that  ​m​ i​ 
2​  =  f and  ​m​ i​ 

3​  =  0,  ∀  i  ∈  I}​,​

	​​ M​​ 2​  = ​ {m  ∈  M  |  ∃  f  ∈  F,  i  ∈  I,  h  ∈ ​ H​ 
​m​ i​ 

1​
​ f ​   such that

	​ m​ i​ 
3​  >  0, ​ m​ i​ 

5​  =  h, ​ m​ j​ 
2​  =  f, ​ m​ j​ 

3​  =  0,  ∀ j  ≠  i}​,​

	​​ M​​ 3​  =  M \​{​M​​ 1​ ∪ ​M​​ 2​}​.​

As the bad outcome property holds for ​F​, there exists ​​ a _ ​  ∈  A​ and ​δ  >  0​ such  
that ​​u​ i​​​( f​(t′)​, ​(​t​ i​​, ​t​ −i​ ″ ​)​)​ − ​u​ i​​​(​ a _ ​, t)​  ≥  δ​ for all ​i  ∈  I​, ​f  ∈  F​, ​​t​ i​​, ​t​ i​ ′ ​  ∈ ​ T​ i​​​,  and  
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​​t​ −i​​, ​t​ −i​ ′  ​, ​t​ −i​ ′′ ​  ∈ ​ T​ −i​​​. Fix an arbitrary ​​f​​  0​  ∈  F​ for the remainder of this proof.  
Define a social choice function ​​​ a _ ​​ϵ​​ : T  →  A​ where for each ​t  ∈  T​,

	​​​  a _ ​​ϵ​​​(t)​  = ​ {​
​f​​  0​​(t)​

​ 
with probability ϵ

​  
​ a _ ​

​ 
with probability 1 − ϵ.

​​​

In particular, ​ϵ​ is sufficiently small and satisfies that

(A1)	​​ u​ i​​​(​​ a ¯ ​​ϵ​​​(t′)​, t)​  =  ϵ ​u​ i​​​(​ f​​  0​​(t′ )​, t)​ + ​(1 − ϵ)​ ​u​ i​​​(​ a _ ​, t)​ 

	 < ​ u​ i​​​(​ a _ ​, t)​ + δ  ≤ ​ u​ i​​​( f​(t′′ )​, ​(​t​ i​​, ​t​ −i​ ‴ ​)​)​​

for all ​f  ∈  F​, ​i  ∈  I​, ​​t​ i​​, ​t​ i​ ′ ​, ​t​ i​ ″​  ∈ ​ T​ i​​​ and ​​t​ −i​​, ​t​ −i​ ′ ​ , ​t​ −i​ ″ ​, ​t​ −i​ ‴ ​  ∈ ​ T​ −i​​​. Notice that the ​“=”​ fol-
lows from the expected utility of the lottery. The ​“<”​ relies on the continuity of the 
expected utility of the lottery with respect to ​ϵ​ and the fact that ​δ  >  0​. The ​“≤”​ is a 
result of the bad outcome property.

By the bad outcome property and the construction of the social choice  
function ​​​ a _ ​​ϵ​​​, we also know that

(A2)  ​​  u​ i​​​(​​ a _ ​​ϵ​​​(t′ )​, t)​  =  ϵ ​u​ i​​​(​ f​​  0​​(t′ )​, t)​ + ​(1 − ϵ)​ ​u​ i​​​(​ a _ ​, t)​ 

	 ≥  ϵ​(​u​ i​​​(​ a _ ​, t)​ + δ)​ + ​(1 − ϵ)​ ​u​ i​​​(​ a _ ​, t)​  = ​ u​ i​​​(​ a _ ​, t)​ + ϵδ​

for all ​t, t′  ∈  T​ and ​i  ∈  I​. Hence, the social choice function ​​​ a _ ​​ϵ​​​ always delivers a 
higher payoff to all agents than the bad outcome ​​ a _ ​​.

Let ​​m​​ 1​​ denote ​​​(​m​ i​ 
1​)​​i∈I​​​. Consider any lottery between ​​ a _ ​​ and ​​​ a _ ​​ϵ​​​(​m​​ 1​)​​. From expres-

sion (A1) and the bad outcome property, we know

(A3)	​​   max​ 
​t​−i​​∈​T​−i​​,t ′∈T

​​​{α ​u​ i​​​(​ a _ ​, t)​ + ​(1 − α)​ ​u​ i​​​(​​ a _ ​​ϵ​​​(t ′)​, t)​}​  < ​   min​ 
​t​−i​​∈​T​−i​​,t′′∈T

​​ ​u​ i​​​( f​(t ′′)​, t)​​

for all ​f  ∈  F​, ​i  ∈  I​, ​​t​ i​​  ∈ ​ T​ i​​​, and ​α  ∈ ​ [0, 1]​​. This means that for any type-​​t​ i​​​ 

agent ​i  ∈  I​, every lottery between ​​ a _ ​​ and ​​​ a _ ​​ϵ​​​(​m​​ 1​)​​ achieves a lower best-case ex post 
payoff than the worst-case payoff from any social choice outcome. Hence, we call 
a lottery between ​​ a _ ​​ and ​​​ a _ ​​ϵ​​​(​m​​ 1​)​​ a “bad lottery.” Other things equal, we know from 
expression (A2) that the lower weight the bad lottery imposes on ​​ a _ ​​, the better the 
lottery is.

Now we formally define the outcome function ​g​ of the mechanism.
If ​m  ∈ ​ M​​ 1​​, let the outcome be ​g​(m)​  =  f ​(​m​​ 1​)​​, where ​f​ is the second component 

of every agent’s message.
If ​m  ∈ ​ M​​ 2​​, let ​i​ be the agent who reports ​​m​ i​ 

3​  >  0​. Denote ​​m​ i​ 
5​​ by ​h​. 

Let ​g​(m)​​ be a lottery whose realization is ​h​(​m​​ 1​)​​ with probability ​​m​ i​ 
3​ / ​(1 + ​m​ i​ 

3​)​​,  
​​​ a _ ​​ϵ​​​(​m​​ 1​)​​ with probability ​​(​∑ j∈I​ 

 
 ​​ ​ m​ j​ 

4​)​ / ​[​(1 + ​m​ i​ 
3​)​​(1 + ​∑ j∈I​ 

 
 ​​ ​ m​ j​ 

4​)​]​​, and ​​ a ¯ ​​ with proba-

bility ​1 / ​[​(1 + ​m​ i​ 
3​)​​(1 + ​∑ j∈I​ 

 
 ​​ ​ m​ j​ 

4​)​]​​.
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If ​m  ∈ ​ M​​ 3​​, let ​g​(m)​​ be a lottery whose realization is ​​​ a _ ​​ϵ​​​(​m​​ 1​)​​ with probability ​​

(​∑ j∈I​ 
 
 ​​​ m​ j​ 

4​)​ / ​(1 + ​∑ j∈I​ 
 
 ​​ ​ m​ j​ 

4​)​​ and ​​ a _ ​​ with probability ​1/​(1 + ​∑ j∈I​ 
 
 ​​ ​ m​ j​ 

4​)​​.

For each agent ​i  ∈  I​, type ​​t​ i​​  ∈ ​ T​ i​​​, strategy ​​σ​i​​ : ​T​ i​​  → ​ M​ i​​​, and number  
​k  =  1, …  , 5​, let ​​σ​ i​ 

k​​(​t​ i​​)​​ denote the ​k​ th component of the message ​​σ​i​​​(​t​ i​​)​​. Hence, we 
can decompose ​​σ​i​​​ into ​​σ​i​​  = ​ (​σ​ i​ 

1​, ​σ​ i​ 
2​, ​σ​ i​ 

3​, ​σ​ i​ 
4​, ​σ​ i​ 

5​)​​.
To establish that the above mechanism fully implements ​F​, we first fix any ​f  ∈  F​ 

and have the following claim.

CLAIM 1: A strategy profile ​​σ​​ ⁎​​ satisfying ​​σ​ i​​ 
⁎ 1​​(​t​ i​​)​  = ​ t​ i​​​, ​​σ​ i​​ 

⁎ 2​​(​t​ i​​)​  =  f​, and  
​​σ​ i​​ 

⁎3​​(​t​ i​​)​  =  0​ for all ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​ is an ambiguous equilibrium of ​​(M, g)​​.

PROOF:
Notice that ​​σ​​ ⁎​​(t)​  ∈ ​ M​​ 1​​ and ​g​(​σ​​ ⁎​​(t)​)​  =  f​(t)​​ for all ​t  ∈  T​. Fix any agent ​i  ∈  I​ 

and type ​​t​ i​​  ∈ ​ T​ i​​​ for the remainder of the proof of this claim. Consider any alterna-
tive strategy ​​σ​ i​ ′ ​​. The subsequent discussion shows that ​​σ​ i​ ′ ​​ is not a profitable deviation 
from ​​σ​ i​ 

⁎​​ for ​​t​ i​​​.

Case 1: Suppose ​​σ​ i​ ′ ​​(​t​ i​​)​​ satisfies that ​​​σ​ i​​ ′ ​​​ 2​​(​t​ i​​)​  =  f​ and ​​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​  =  0​. The new mes-
sage ​​(​σ​ i​ ′ ​​(​t​ i​​)​, ​σ​ −i​ 

⁎ ​​ (​t​ −i​​)​)​​ stays in ​​M​​ 1​​ for all ​​t​ −i​​  ∈ ​ T​ −i​​​. By the ambiguous incentive 
compatibility condition, the deviation is not profitable for ​​t​ i​​​.

Case 2: Suppose that ​​σ​ i​ ′ ​​(​t​ i​​)​​ satisfies ​​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​  >  0​ and ​​​σ​ i​​ ′ ​​​ 5​​(​t​ i​​)​  ∈ ​ H​ 
​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​

​  f ​ ​.  

We denote ​​​σ​ i​​ ′ ​​​ 5​​(​t​ i​​)​​ by ​h​. The new message ​​(​σ​ i​ ′ ​​(​t​ i​​)​, ​σ​ −i​ 
⁎ ​​ (​t​ −i​​)​)​​ falls in ​​M​​ 2​​ for all 

​​t​ −i​​  ∈ ​ T​ −i​​​. For each ​​t​ −i​​  ∈ ​ T​ −i​​​, the outcome under type profile ​t​ is a lottery of  
realization ​h​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​​ with probability ​​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​ / ​(1 + ​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​)​​, of realization  

​​​ a ¯ ​​ϵ​​​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​​ with probability ​​(​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

*4​​(​t​ j​​)​)​/​[​(1 + ​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​)​​(1 + 
​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

∗4​​(​t​ j​​)​)​]​​, and of realization ​​ a ¯ ​​ with probability ​1/​[​(1 + ​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​)​ 

×​(1 + ​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

∗4​​(​t​ j​​)​)​]​​ .

Let ​​π​ i​ 
h​​(​t​ i​​)​  ∈ ​ Π​i​​​(​t​ i​​)​​ and ​​π​ i​ 

 f​​(​t​ i​​)​  ∈ ​ Π​i​​​(​t​ i​​)​​ satisfy

​​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(h​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​, t)​​π​ i​ 
h​​(​t​ i​​)​​[​t​ −i​​]​	   = ​  min​ 

​π​i​​​(​t​ i​​)​∈​Π​i​​​(​t​ i​​)​
​​​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(h​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​

and

(A4)	 ​​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f​(t)​, t)​ ​π​ i​ 
 f​​(​t​ i​​)​​[​t​ −i​​]​  = ​   min​ 

​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​
​​ ​  ∑ 
​t​ −i​​∈​T​−i​​

​​​​u​ i​​​( f​(t)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​,

respectively. As ​h  ∈ ​ H​ 
​​​σ′​ i​​ 1​​(​t​ i​​)​

​ f  ​​, for this type-​​t​ i​​​ agent ​i​,

(A5)	​​   ∑ 
​t​−i​​∈​T​ −i​​

​​​​u​ i​​​(h​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​, t)​ ​π​ i​ 
h​​(​t​ i​​)​​[​t​ −i​​]​  ≤ ​   ∑ 

​t​−i​​∈​T​−i​​
​​​​u​ i​​​( f​(t)​, t)​ ​π​ i​ 

 f​​(​t​ i​​)​​[​t​ −i​​]​.​
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In addition, expression (A3) implies that

(A6)  ​​    ∑ 
​t​−i​​∈​T​−i​​

​​​​
[

​ 
​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

⁎4​​(​t​ j​​)​
  _____________________  

1 + ​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

⁎4​​(​t​ j​​)​
 ​ ​u​ i​​​(​​ a _ ​​ϵ​​​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​, t)​ 

	 +  ​  1  _____________________  
1 + ​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

⁎4​​(​t​ j​​)​
 ​ ​u​ i​​​(​ a _ ​, t)​

]
​ ​π​ i​ 

h​​(​t​ i​​ ) [​t​ −i​​]​

	  ​   < ​   ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(t)​, t)​ ​π ​ i​ 
f​​(​t​ i​​)​​[​t​ −i​​]​.​

Hence, we further know that

​​  min​ 
​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​[​u​ i​​​(g​(​σ​ i​ ′ ​​(​t​ i​​)​, ​σ​ −i​ 
⁎ ​​ (​t​ −i​​)​)​, t)​]​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​​

	​ ≤ ​   ∑ 
​t​−i​​∈​T​−i​​

​​​​
[

​ 
​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​

 _________ 
1 + ​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​

 ​ ​u​ i​​​(h​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​, t)​

	 + ​ 
​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

⁎4​​(​t​ j​​)​
   _________________________________   

​(1 + ​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​)​​(1 + ​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

⁎4​​(​t​ j​​)​)​
 ​ ​u​ i​​​(​​ a _ ​​ϵ​​​(​​σ​ i​​ ′ ​​​ 1​​(​t​ i​​)​, ​t​ −i​​)​, t)​

	 + ​  1  _________________________________    
​(1 + ​​σ​ i​​ ′ ​​​ 3​​(​t​ i​​)​)​​(1 + ​​σ​ i​​ ′ ​​​ 4​​(​t​ i​​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

⁎4​​(​t​ j​​)​)​
 ​ ​u​ i​​​(​ a _ ​, t)​

]
​ ​π​​ i​ 

h​ ​(​t​ i​​ )[​t​ −i​​]​

	​ < ​   ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(​t​ i​​, ​t​ −i​​)​, t)​ ​π ​ i​ 
f​​(​t​ i​​)​​[​t​ −i​​]​  = ​   min​ 

​π​i​​​(​t​i​​)​∈​Π​i​​​(​t​i​​)​
​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​( f ​(​t​ i​​, ​t​ −i​​)​, t)​ ​π​i​​​(​t​ i​​)​​[​t​ −i​​]​,​

where the first inequality follows from the fact that ​​π​ i​ 
h​​(​t​ i​​)​  ∈ ​ Π​i​​​(​t​ i​​)​​, the second 

inequality follows from expressions (A5) and (A6), and the equality comes from 
expression (A4). Hence, we know that such a deviation ​​σ​ i​ ′ ​​ is not profitable for type-​​t​ i​​​ 
agent ​i​.

Case 3: Otherwise, the new message ​​(​σ​ i​ ′ ​​(​t​ i​​)​, ​σ​ −i​ 
⁎ ​​(​t​ −i​​)​)​​ falls in ​​M​​ 3​​ for all ​​t​ −i​​  ∈ ​ T​ −i​​​. 

By expression (A3), it is easy to see that the deviation is not profitable for type-​​t​ i​​​ 
agent ​i​.

This completes the proof of the claim. ∎

As ​g​(​σ​​ ⁎​​(t)​)​  =  f ​(t)​​ for all ​t  ∈  T​, the first part of the implementability of ​F​ has 
been established.

Now we fix any ambiguous equilibrium ​σ​ of the mechanism ​​(M, g)​​ 
for the remainder of the proof of the theorem. Define a new strategy by  
​​σ​ i​ ′ ​​(​t​ i​​)​  = ​ (​σ​ i​ 

1​​(​t​ i​​)​, ​σ​ i​ 
2​​(​t​ i​​)​, ​σ​ i​ 

3​​(​t​ i​​)​, 1 + ​σ​ i​ 
4​​(​t​ i​​)​, ​σ​ i​ 

5​​(​t​ i​​)​)​​ for each ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​. Also, 
for each type-​​t​ i​​​ agent ​i​, we partition ​​T​ −i​​​ into subsets ​​T​ −i​ 

1 ​​(​t​ i​​)​​, ​​T​ −i​ 
2 ​​(​t​ i​​)​​, and ​​T​ −i​ 

3 ​​(​t​ i​​)​​, 
where ​​T​ −i​ 

k ​​(​t​ i​​)​  = ​ {​t​ −i​​  ∈ ​ T​ −i​​ | σ​(​t​ i​​, ​t​ −i​​)​  ∈ ​ M​​ k​}​​ for ​k  =  1, 2, 3​. Below, we use three 
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claims to establish that the ambiguous equilibrium ​σ​ must lead to an outcome that 
is consistent with ​F​.

CLAIM 2: For all ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​, ​​σ​ i​ 
3​​(​t​ i​​)​  =  0​.

PROOF: 
Suppose there exists ​i  ∈  I​ and ​​t​ i​ 

⁎​  ∈ ​ T​ i​​​ such that ​​σ​ i​ 
3​​(​t​ i​ 

⁎​)​  >  0​. We fix this ​i​ and ​​t​ i​ 
⁎​​ 

for the remainder of the proof of the claim. As ​σ​(​t​ i​ 
⁎​, ​t​ −i​​)​  ∈ ​ M​​ 2​ ∪ ​M​​ 3​​ for all ​​t​ −i​​  ∈ ​ T​ −i​​​, 

we have ​​T​ −i​​  = ​ T​ −i​ 
2 ​​(​t​ i​ 

⁎​)​ ∪ ​T​ −i​ 
3 ​​(​t​ i​ 

⁎​)​​.
Suppose type-​​t​ i​ 

⁎​​ agent ​i​ deviates with the strategy ​​σ​ i​ ′ ​​ . The deviation will impose 
a smaller weight on ​​ a _ ​​ at each state ​​(​t​ i​ 

⁎​, ​t​ −i​​)​​ for all ​​t​ −i​​  ∈ ​ T​ −i​​​. Hence, the increase 
in type-​​t​ i​ 

⁎​​ agent ​i​’s expected utility by adopting ​​σ​ i​ ′ ​​ instead of ​​σ​i​​​ under belief  
​​π​i​​​(​t​ i​ 

⁎​)​  ∈ ​ Π​i​​​(​t​ i​ 
⁎​)​​, denoted by ​Δ​(​π​i​​​(​t​ i​ 

⁎​)​)​​, is equal to 

​​  1 _________ 
1 + ​σ​ i​ 

3​​(​t​ i​ 
⁎​)​

 ​ ​  ∑ 
​t​−i​​∈​T​ −i​ 

2 ​​ (​t​ i​ 
⁎​)​

​​​​ 
​u​ i​​​(​​ a _ ​​ϵ​​​(​σ​​ 1​​(​t​ i​ 

⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​ − ​u​ i​​​(​ a _ ​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​
    __________________________________________    

​(2 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​ ​ σ​ j​ 

4​​(​t​ j​​)​)​​(1 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​ ​ σ​ j​ 

4​​(​t​ j​​)​)​
 ​ ​π​i​​​(​t​ i​ 

⁎​)​​[​t​ −i​​]​​

  ​  + ​  ∑ 
​t​ −i​​∈​T​ −i​ 

3 ​​ (​t​ i​ 
⁎​)​

​​​​ 
​u​ i​​​(​​ a _ ​​ϵ​​​(​σ​​ 1​​(​t​ i​ 

⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​ − ​u​ i​​​(​ a _ ​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​
    ____________________________________________     

​(2 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​ ​ σ​ j​ 

4​​(​t​ j​​)​)​​(1 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​ ​ σ​ j​ 

4​​(​t​ j​​)​)​
 ​ ​π​i​​​(​t​ i​ 

⁎​)​​[​t​ −i​​]​.​

Notice that there exists ​​t​ −i​​  ∈ ​ T​ −i​​  = ​ T​ −i​ 
2 ​​(​t​ i​ 

⁎​)​ ∪ ​T​ −i​ 
3 ​​(​t​ i​ 

⁎​)​​ such that ​​π​i​​​(​t​ i​ 
⁎​)​​[​t​ −i​​]​  >  0​. 

This, along with expression (A2), demonstrates that ​Δ​(​π​i​​​(​t​ i​ 
⁎​)​)​  >  0​.

After deviation, the maxmin expected utility for type-​​t​ i​ 
⁎​​ agent ​i​ is

	​​   min​ 
​π​i​​​(​t​ i​ 

⁎​)​∈​Π​i​​​(​t​ i​ 
⁎​)​

​​​{​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(g​(σ​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​ ​π​i​​​(​t​ i​ 

⁎​)​​[​t​ −i​​]​ + Δ​(​π​i​​​(​t​ i​ 
⁎​)​)​}​

	 > ​   min​ 
​π​i​​​(​t​ i​ 

⁎​)​∈​Π​i​​​(​t​ i​ 
⁎​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​[​u​ i​​​(g​(σ​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​]​ ​π​i​​​(​t​ i​ 

⁎​)​​[​t​ −i​​]​,​

where the strict inequality comes from the compactness of ​​Π​i​​​(​t​ i​ 
⁎​)​​ and the fact that  

​Δ​(​π​i​​​(​t​ i​ 
⁎​)​)​  >  0​ for all ​​π​i​​​(​t​ i​ 

⁎​)​  ∈ ​ Π​i​​​(​t​ i​ 
⁎​)​​. Hence, type-​​t​ i​ 

⁎​​ agent ​i​ is better off by 
deviating, contradicting the fact that ​σ​ is an ambiguous equilibrium. ∎

CLAIM 3: For all ​t  ∈  T​, ​σ(t)  ∈ ​ M​​ 1​​.

PROOF: 
For each ​t  ∈  T​, Claim 2 implies that ​σ​(t)​  ∉ ​ M​​ 2​​, and thus we only need to show 

that ​σ​(t)​  ∉ ​ M​​ 3​​ to establish Claim 3. Suppose by way of contradiction that there 
exists ​​t​​ ⁎​  ∈  T​ such that ​σ​(​t​​ ⁎​)​  ∈ ​ M​​ 3​​. We fix this ​​t​​ ⁎​​ and an arbitrary agent ​i  ∈  I​ for 
the remainder of the proof of the claim. Notice that ​​t​ −i​ 

⁎ ​  ∈ ​ T​ −i​ 
3 ​​(​t​ i​ 

⁎​)​​.
Messages ​​σ​ i​ ′ ​​(​t​ i​ ⁎​)​​ and ​​σ​i​​​(​t​ i​ 

⁎​)​​ only differ in their fourth components. From the design 
of ​​(M, g)​​, we have the following two observations. First, for each ​​t​ −i​​  ∈ ​ T​ −i​ 

1 ​​(​t​ i​ 
⁎​)​​,  

​g​(​σ​ i​ ′ ​​(​t​ i​ ⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​  =  g​(​σ​i​​​(​t​ i​ 
⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​​. Second, for each ​​t​ −i​​  ∈ ​ T​ −i​ 

3 ​​(​t​ i​ 
⁎​)​​,  

​​(​σ​ i​ ′ ​​(​t​ i​ ⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​  ∈ ​ M​​ 3​​. The only difference between lotteries ​g​(​σ​ i​ ′ ​​(​t​ i​ 
⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​​ 
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and ​g​(σ​(​t​ i​ ⁎​, ​t​ −i​​)​)​​ is that the bad outcome ​​ a ¯ ​​ is realized with lower probability under  
​g​(​σ​ i​ ′ ​​(​t​ i​ ⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​​. 

Suppose Assumption 1 holds for ​​t​ i​ 
⁎​​. Under each ​​π​i​​​(​t​ i​ 

⁎​)​  ∈ ​ Π​i​​​(​t​ i​ 
⁎​)​​, the increase 

in type-​​t​ i​ 
⁎​​ agent ​i​’s expected utility by adopting ​​σ​ i​ ′ ​​ instead of ​​σ​i​​​, denoted by  

​Δ​(​π​i​​​(​t​ i​ 
⁎​)​)​​, is

 ​​   ∑ 
​t​−i​​∈​T​ −i​ 

3 ​​ (​t​ i​ 
⁎​)​

​​​​ 
​u​ i​​​(​​ a _ ​​ϵ​​​(​σ​​ 1​​(​t​ i​ 

⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​ − ​u​ i​​​(​ a _ ​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​
    ____________________________________________     

​(2 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​)​​(1 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​)​
 ​ ​π​i​​​(​t​ i​ 

⁎​)​​[​t​ −i​​]​  >  0.​

The strict inequality above uses the assumption that ​​π​i​​​(​t​ i​ 
⁎​)​​[​t​ −i​​]​  >  0​ for all  

​​t​ −i​​  ∈ ​ T​ −i​​​, the fact that ​​t​ −i​ 
⁎ ​  ∈ ​ T​ −i​ 

3 ​​(​t​ i​ 
⁎​)​​, and expression (A2). Thus, by an argument 

that is similar to Claim 2, it is profitable for type-​​t​ i​ 
⁎​​ agent ​i​ to deviate from ​​σ​i​​​(​t​ i​ 

⁎​)​​ to  
​​σ​ i​ ′ ​​(​t​ i​ ⁎​)​​, which contradicts the fact that ​σ​ is an ambiguous equilibrium.

Suppose Assumption 2 holds for ​​t​ i​ 
⁎​​ instead. Thus, type ​​t​ i​ 

⁎​​ has Wald-type maxmin 
preference. Thus, by deviating with ​​σ​ i​ ′ ​​, type-​​t​ i​ 

⁎​​ agent ​i​ has a payoff of

 ​​  min​ 
​t​−i​​∈​T​ −i​​

​​ ​u​ i​​​(g​(​σ​ i​ ′ ​​(​t​ i​ ⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​​

	​ = ​   min​ 
​t​−i​​∈​T​ −i​ 

3 ​​(​t​ i​ 
⁎​)​

​​ ​
{

​ 
1 + ​σ​ i​ 

4​​(​t​ i​ 
⁎​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
  ____________________  

2 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
 ​ ​u​ i​​​(​​ a _ ​​ϵ​​​(​σ​​ 1​​(​t​ i​ 

⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​

	 + ​  1 ____________________  
2 + ​σ​ i​ 

4​​(​t​ i​ 
⁎​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
 ​ ​u​ i​​​(​ a _ ​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​
}

​​

​	 > ​   min​ 
​t​−i​​∈​T​ −i​ 

3 ​​(​t​ i​ 
⁎​)​

​​ ​
{

​ 
​σ​ i​ 

4​​(​t​ i​ 
⁎​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
  ____________________  

1 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
 ​ ​u​ i​​​(​​ a _ ​​ϵ​​​(​σ​​ 1​​(​t​ i​ 

⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​

	 + ​  1 ____________________  
1 + ​σ​ i​ 

4​​(​t​ i​ 
⁎​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
 ​ ​u​ i​​​(​ a _ ​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​
}

​​

	​ = ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(g​(σ​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​.​

To see where the two equalities come from, first notice that ​​T​ −i​ 
3 ​​(​t​ i​ 

⁎​)​  ≠  ∅​ as 
​​t​ −i​ 
⁎ ​   ∈ ​ T​ −i​ 

3 ​​(​t​ i​ 
⁎​)​​. Also, recall the definition of ​g​ on ​​M​​ 1​​ and ​​M​​ 3​​ as well as  

expression (A3). Hence, the minimums in the first and last rows are attained by type 
profiles ​​t​ −i​​  ∈ ​ T​ −i​ 

3 ​​(​t​ i​ 
⁎​)​​. The strict inequality comes from the decreased weight on ​​ a _ ​​ 

under the ​​σ​ i​ ′ ​​, expression (A2), and compactness of ​​T​ −i​ 
3 ​​(​t​ i​ 

⁎​)​​. Hence, ​​σ​ i​ ′ ​​(​t​ i​ 
⁎​)​​ is more 

profitable than ​​σ​i​​​(​t​ i​ *​)​​, contradicting the fact that ​σ​ is an ambiguous equilibrium.
This completes the proof of the claim. ∎

CLAIM 4: There exists ​f ′  ∈  F​ such that ​g​(σ​(t)​)​  =  f  ′​(t)​​ for all ​t  ∈  T​.
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PROOF: 
From the previous claim, there exists ​f  ∈  F​ such that ​g​(σ​(t)​)​  =  f ​(​σ​​ 1​​(t)​)​​ for 

all ​t  ∈  T​. Suppose by way of contradiction that there does not exist ​f ′  ∈  F​ such 
that ​g​(σ​(t)​)​  =  f ′​(t)​​ for all ​t  ∈  T​. Define a deception profile ​α​ by ​​α​i​​​(​t​ i​​)​  = ​ σ​ i​ 

1​​(​t​ i​​)​​ 
for all ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​. Given the social choice set ​F​ and the social choice func-
tion ​f  ∈  F​, the deception profile ​α​ is unacceptable. By ambiguous monotonicity 
of ​F​, there exists ​i  ∈  I​, ​​t​ i​ 

⁎​  ∈ ​ T​ i​​​, and ​h  ∈ ​ H​ 
​α​i​​​(​t​ i​ 

⁎​)​
​ f ​ ​ such that

(A7)	​​   min​ 
​π​i​​​(​t​ i​ 

⁎​)​∈​Π​i​​​(​t​ i​ 
⁎​)​

​​  ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​ ​π​i​​​(​t​ i​ 

⁎​)​​[​t​ −i​​]​

	     > ​   min​ 
​π​i​​​(​t​ i​ 

⁎​)​∈​Π​i​​​(​t​ i​ 
⁎​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(f​(α​(​t​ i​ 
⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​ ​π​i​​​(​t​ i​ 
⁎​)​​[​t​ −i​​]​.​

Fix this agent ​i​, type ​​t​ i​ 
⁎​​, and reward function ​h​ for the rest of the proof.

For agent ​i​, define a strategy ​​σ​ i​ ″​​ by ​​σ​ i​ ″​​(​t​ i​ 
⁎​)​  = ​ (​σ​ i​ 

1​​(​t​ i​ 
⁎​)​, ​σ​ i​ 

2​​(​t​ i​ 
⁎​)​, ​K​​ ⁎​, ​σ​ i​ 

4​​(​t​ i​ 
⁎​)​, h)​​  

and ​​σ​ i​ ″​​(​t​ i​​)​  = ​ σ​i​​​(​t​ i​​)​​ for ​​t​ i​​  ≠ ​ t​ i​ 
⁎​​, where ​​K​​ ⁎​  >  0​ is a large integer. Thus,  

​​(​σ​ i​ ″​​(​t​ i​ 
⁎​)​, ​σ​−i​​​(​t​ −i​​)​)​  ∈ ​ M​​ 2​​ for all ​​t​ −i​​  ∈ ​ T​ −i​​​. By deviating, type-​​t​ i​ 

⁎​​ agent ​i​ has an 
interim payoff of

​​  min​ 
​π​i​​​(​t​ i​ 

⁎​)​∈​Π​i​​​(​t​ i​ 
⁎​)​

​​ ​
{

​  ∑ 
​t​−i​​∈​T​−i​​

​​​​
[

​  ​K​​ ⁎​ _ 
1 + ​K​​ ⁎​

 ​ ​u​ i​​​(h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 
⁎​, ​t​ −i​​)​)​

	 + ​  1  ______________________________   
​(1 + ​K​​ ⁎​)​​(1 + ​σ​ i​ 

4​​(​t​ i​ 
⁎​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​)​
 ​ ​u​ i​​​(​ a _ ​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​

	 + ​ 
​σ​ i​ 

4​​(​t​ i​ 
⁎​)​ + ​∑ j≠i​ 

 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​
   ______________________________   

​(1 + ​K​​ ⁎​)​​(1 + ​σ​ i​ 
4​​(​t​ i​ 

⁎​)​ + ​∑ j≠i​ 
 
 ​​​ σ​ j​ 

4​​(​t​ j​​)​)​
 ​ 

� × ​u​ i​​​(​​ a _ ​​ϵ​​​(α​(​t​ i​ 
⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​
]

​​π​i​​​(​t​ i​ 
⁎​)​​[​t​ −i​​]​

}
​.​

When ​​K​​ ⁎​​ is sufficiently large, the value above is sufficiently close to

	​​   min​ 
​π​i​​​(​t​ i​ 

⁎​)​∈​Π​i​​​(​t​ i​ 
⁎​)​

​​ ​  ∑ 
​t​−i​​∈​T​−i​​

​​​​u​ i​​​(h​(α​(​t​ i​ 
⁎​, ​t​ −i​​)​)​, ​(​t​ i​ 

⁎​, ​t​ −i​​)​)​ ​π​i​​​(​t​ i​ 
⁎​)​​[​t​ −i​​]​.​

By expression (A7), this deviation is profitable for type-​​t​ i​ 
⁎​​ agent ​i​ with a large ​​K​​ ⁎​​, 

a contradiction.
This completes the proof of the claim. ∎

In view of the four claims, we have established that ​​(M, g)​​ implements ​F​. ∎

PROOF OF COROLLARY 1: 
To establish this corollary, we adopt the same mechanism as in the Proof of 

Theorem 1 and replace ​F​ with the singleton ​​{ f }​​. For any ambiguous equilibrium  
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​σ​, after establishing Claim 2, it is immediate that ​​σ​ i​ 
2​​(​t​ i​​)​  =  f​ and ​​σ​ i​ 

3​​(​t​ i​​)​  =  0​ for 
all ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​. Namely, we can claim that ​σ​(t)​  ∈ ​ M​​ 1​​ for all ​t  ∈  T​ without 
going through the Proof of Claim 3. The rest of the argument follows from Theorem 
1. Assumptions 1 and 2 are not used in the proof when ​F  = ​ { f }​​. ∎

PROOF OF LEMMA 1: 
The proof comes from proposition A.1 of de Castro and Yannelis (2018) and is 

omitted here. ∎

PROOF OF LEMMA 2: 
Suppose for any ​f  ∈  F​ and unacceptable deception profile ​α​, there exists ​i  ∈  I​ 

and ​​t​ i​ 
⁎​  ∈ ​ T​ i​​​ satisfying

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  > ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(α​(​t​ i​ 
⁎​, ​t​ −i​​)​)​, ​t​ i​ 

⁎​)​.​

Let a social choice function ​h​ be defined as ​h​(t)​  =  f​(​t​ i​ 
⁎​, ​t​ −i​​)​​ for 

all ​t  ∈  T​. Define ​H​(​t​ i​ 
⁎​)​  = ​ {a  ∈  A  |  ∃ ​t​ −i​​  ∈ ​ T​ −i​​  such that  a  =  h​(​t​ i​ 

⁎​, ​t​ −i​​)​}​​ and  
​H​(​t​ i​ 

⁎​, α)​  = ​ {a  ∈  A  |  ∃ ​t​ −i​​  ∈ ​ T​ −i​​ such that a  =  h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​}​​. It is easy to show 
that ​H​(​t​ i​ 

⁎​, α)​  ⊆  H​(​t​ i​ 
⁎​)​​. To see this, for any ​a  ∈  H​(​t​ i​ 

⁎​, α)​​, there exists ​​t​ −i​​  ∈ ​ T​ −i​​​ 
such that ​a  =  h​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​  =  f​(​t​ i​ 

⁎​, ​α​−i​​​(​t​ −i​​)​)​  =  h​(​t​ i​ 
⁎​, ​α​−i​​​(​t​ −i​​)​)​  ∈  H​(​t​ i​ 

⁎​)​​. Thus, 
we know

​​  min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(h​(α​(​t​ i​ 
⁎​, ​t​ −i​​)​)​, ​t​ i​ 

⁎​)​  = ​   min​ 
a∈H​(​t​ i​ 

⁎​,α)​
​​ ​u​ i​​​(a, ​t​ i​ 

⁎​)​  ≥ ​   min​ 
a∈H​(​t​ i​ 

⁎​)​
​​ ​u​ i​​​(a, ​t​ i​ 

⁎​)​​

�​ = ​  min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(h​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  = ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  > ​  min​ 
​t​−i​​∈​T​ −i​​

​​ ​u​ i​​​( f ​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​t​ i​ 
⁎​)​.​

In the expression above, the first two equalities follow from the definition of  
​H​(​t​ i​ 

⁎​, α)​​ and ​H​(​t​ i​ 
⁎​)​​, the Wald-type maxmin preferences, and the private value utility 

functions. The third equality follows from the definition of ​h​. The weak inequality 
comes from the fact that ​H​(​t​ i​ 

⁎​, α)​  ⊆  H​(​t​ i​ 
⁎​)​​. The strict inequality comes from the 

supposition.
The argument below shows that ​h  ∈ ​ H​ 

​α​i​​​(​t​ i​ 
⁎​)​

​ f ​ ​. As ​f​ is ambiguous incentive 
compatible, we know

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(t)​, ​t​ i​​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​​)​​

for all ​​t​ i​​  ∈ ​ T​ i​​​. Also, since ​h​(​t​ i​​, ​t​ −i​​)​  =  f ​(​t​ i​ 
⁎​, ​t​ −i​​)​​ for all ​t  ∈  T​, by replacing  

​f ​(​t​ i​ 
⁎​, ​t​ −i​​)​​ with ​h​(​α​i​​​(​t​ i​ 

⁎​)​, ​t​ −i​​)​​ on the right-hand side of the weak inequality above, one 

has established that ​h  ∈ ​ H ​ ​α​i​​​(​t​ i​ 
⁎​)​​ 

 f ​ ​.
Hence, we have proved the lemma. ∎
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PROOF OF LEMMA 3: 
For each ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​, define a set ​​A​ i,​t​i​​​​  ⊆  A​ in the following way:

	​​ A​ i,​t​i​​​​  = ​ {a  ∈  A | ​u​ i​​​(a, ​t​ i​​)​  ≥ ​ u​ i​​​(e, ​t​ i​​)​}​.​

Notice that the set ​​A​ i,​t​i​​​​​ is a compact set since ​​u​ i​​​ is continuous in outcomes 
due to the expected utility setup and ​A​ is compact in this exchange economy.  
Define ​​ A _ ​  = ​ ∪​t∈T​​ ​∩​i∈I​​ ​A​ i,​t​i​​​​​, which is also a compact set due to the finiteness of ​I​ 
and ​T​.

We claim that for each ​a  ∈ ​  A _ ​​, ​i  ∈  I​, and ​​t​ i​​  ∈ ​ T​ i​​​, it must be true that  
​​u​ i​​​(a, ​t​ i​​)​  > ​ u​ i​​​(0, ​t​ i​​)​​, where ​0  ∈ ​ ℝ​ +​ nL​​. Otherwise, there exists ​a  ∈ ​  A _ ​​, ​i  ∈  I​, 
and ​​t​ i​​  ∈ ​ T​ i​​​, such that ​​u​ i​​​(a, ​t​ i​​)​  ≤ ​ u​ i​​​(0, ​t​ i​​)​​. This inequality, along with the fact that  
​​u​ i​​​ is monotone, implies that ​a​ gives agent ​i​ zero consumption at almost all realiza-
tions. This contradicts the fact that ​a  ∈ ​  A _ ​​, as ​e​ is a nonzero pure outcome.

Notice that the sets ​​ A _ ​​, ​I​, and ​​T​ i​​​ are compact. Thus, ​δ​ below is well defined and 
positive:

(A8)	​ δ  = ​   min​ 
a∈​ A _ ​, i∈I, ​t​i​​∈​T​i​​

​​​{​u​ i​​​(a, ​t​ i​​)​ − ​u​ i​​​(0, ​t​ i​​)​}​  >  0.​

As ​F​ satisfies the ambiguous individual rationality condition, by the equivalence 
between ambiguous individual rationality and ex post individual rationality, we 
know ​​{a  ∈  A  |  ∃ t ′  ∈  T such that  a  =  f ​(t ′ )​}​  ⊆ ​  A _ ​​ for each ​f  ∈  F​. Thus,

(A9)	​​ min​ 
​t ′ ​∈T

​ ​ ​u​ i​​​(f​(​t ′ ​)​, ​t​ i​​)​ − ​u​ i​​​(0, ​t​ i​​)​  ≥ ​ min​ 
a∈​ A ¯ ​

​ ​ ​u​ i​​​(a, ​t​ i​​)​ − ​u​ i​​​(0, ​t​ i​​)​  ≥  δ​

for all ​f  ∈  F​, ​i  ∈  I​, and ​​t​ i​​  ∈ ​ T​ i​​​. Notice that the first inequality relies on the fact that ​​

{a  ∈  A | ∃ t′  ∈  T  such that  a  =  f ​(t′ )​}​  ⊆ ​  A _ ​​ and that agents have the Wald-type 
maxmin preferences as well as private valuations. The second inequality follows 
from expression (A8).

From expression (A9), we know that ​0  ∈ ​ ℝ​ +​ nL​​ is a “bad outcome.” The bad 
outcome property thus holds for ​F​. ∎

PROOF OF COROLLARY 2: 
Since each ​f  ∈  F​ is ambiguous Pareto efficient, ​F​ satisfies the ambiguous incen-

tive compatibility condition by Lemma 1.
Given the social choice set ​F​ and any social choice function ​f  ∈  F​, 

if ​α​ is unacceptable, then ​f ◦ α​ is not ambiguous Pareto efficient or not ambiguous 
individually rational. We claim that there must exist an agent ​i  ∈  I​ and a type  
​​t​ i​ 
⁎​  ∈ ​ T​ i​​​ such that

	​​  min​ 
​t​−i​​∈​T​ −i​​

​​ ​u​ i​​​( f ​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  > ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​t​ i​ 
⁎​)​.​

Otherwise, since ​f ◦ α​ is at least as good as ​f  ∈  F​ for every agent under every 
type, ​f ◦ α​ should also be ambiguous Pareto efficient and ambiguous individually 
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rational. This would contradict the supposition that ​f ◦ α  ∉  F​. Hence, we know 
from Lemma 2 that ​F​ satisfies the ambiguous monotonicity condition.

As ​F​ satisfies ambiguous individual rationality, the bad outcome property of ​F​ 
holds by Lemma 3.

In view of Theorem 1, ​F​ is implementable as ambiguous equilibria. ∎

PROOF OF COROLLARY 3: 
Part (i ).—Let ​F​ be the set of all maxmin core allocations.
By setting ​S  =  I​, it is easy to see that ​F​ satisfies the ambiguous Pareto efficiency 

condition. By Lemma 1, ​F​ is ambiguous incentive compatible.
To establish the ambiguous monotonicity condition, we begin with the social 

choice set ​F​, a social choice function ​f  ∈  F​, and an unacceptable deception 
profile ​α​. As ​f ◦ α​ is not a maxmin core allocation, there exists ​S  ⊆  I​, ​​t​​ ⁎​  ∈  T​, 
and ​y : T  → ​ A​ S​​​ such that

(A10)	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​t​ i​ 
⁎​)​​

for all ​i  ∈  S​, and the strict inequality holds for some ​i  ∈  S​. Suppose by way of 
contradiction that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(α​(t)​)​, ​t​ i​​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(t)​, ​t​ i​​)​  ∀ i  ∈  I, ​ t​ i​​  ∈ ​ T​ i​​ .​

From expression (A10), we further know that

(A11)	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​​)​  ≥ ​   min​ 

​t​−i​​∈​T​−i​​
​​ ​u​ i​​​( f ​(​t​ i​ 

⁎​, ​t​ −i​​)​, ​t​ i​ 
⁎​)​​

for all ​i  ∈  S​, and the strict inequality holds for some ​i  ∈  S​. This contradicts the 
fact that ​f  ∈  F​, the maxmin core, as ​y : T  → ​ A​ S​​​. Hence, we know that there exists 
an agent ​i  ∈  I​ and a type ​​t​ i​​  ∈ ​ T​ i​​​ such that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(​t​ i​​, ​t​ −i​​)​, ​t​ i​​)​  > ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f​(α​(​t​ i​​, ​t​ −i​​)​)​, ​t​ i​​)​.​

By Lemma 2, ​F​ satisfies the ambiguous monotonicity condition.
By setting ​S​ to be singleton coalitions in Definition 7, we know each ​f  ∈  F​ 

satisfies ambiguous individual rationality. By Lemma 3, ​F​ satisfies the bad outcome 
property.

In view of Theorem 1, ​F​ is implementable as ambiguous equilibria.

Part (ii ).—Let ​F​ be the set of all maxmin weak core allocations.
The condition of ambiguous Pareto efficiency can be proved immediately by set-

ting ​S  =  I​ in Definition 8. The ambiguous incentive compatibility condition fol-
lows from Lemma 1. The verification of the ambiguous monotonicity condition is 
similar to Part (i) except for minor changes, and thus we omit the details.
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It remains to verify the bad outcome property for ​F​. We define  
​​ A _ ​  = ​ {a  ∈  A  |  ∃ f  ∈  F  and  t′  ∈  T  such that  a  =  f​(t′ )​}​​ and

	​ δ  = ​   inf​ 
a∈​ A _ ​, i∈I, ​t​i​​∈​T​ i​​

​​​{​u​ i​​​(a, ​t​ i​​)​ − ​u​ i​​​(0, ​t​ i​​)​}​.​

To show that ​0  ∈ ​ ℝ​ +​ nL​​ can serve as a bad outcome, it suffices to prove that ​δ  >  0​.
Suppose by way of contradiction that ​δ  =  0​. By compactness of ​I​, ​​T​ i​​​, and ​T​, 

there exists ​i  ∈  I​, ​​t​ i​​  ∈ ​ T​ i​​​, ​t ′  ∈  T​, and a sequence ​​​(​ f​​  k​  ∈  F)​​k=1, 2, …​​​ such that

	​​  lim​ 
k→∞

​​ ​u​ i​​​( ​f​​  k​​(t′ )​, ​t​ i​​)​  = ​ u​ i​​​(0, ​t​ i​​)​.​

By monotonicity and continuity of utility functions, we also have

(A12)	​​  lim​ 
k→∞

​​ ​u​ i​​​(​ f​​  k​​(t′ )​, ​t​ i​ ′ ​)​  = ​ u​ i​​​(0, ​t​ i​ ′ ​)​  < ​ u​ i​​​(e, ​t​ i​ ′ ​)​,​

where the strict inequality comes from the fact that ​e​ is nonzero.
For each ​k​, since ​​f​​  k​  ∈  F​, by setting ​S  = ​ {i}​​ in Definition 8, we 

know it is impossible that ​e​ is better than ​​f​​  k​​ in maxmin expected util-
ity for all types of agent ​i​. Hence, whenever ​k​ is sufficiently large such that  
​​min​​t​ −i​​∈​T​ −i​​​​ ​u​ i​​​( ​f​​  k​​(​t​ i​ ′ ​, ​t​ −i​​)​, ​t​ i​ ′ ​)​  ≤ ​ u​ i​​​(​ f​​  k​​(​t ′ ​)​, ​t​ i​ ′ ​)​  < ​ u​ i​​​(e, ​t​ i​ ′ ​)​​, there exists a type ​​t​ i​ 

⁎​  ≠ ​ t​ i​ ′​​ 
such that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( ​f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  ≥ ​ u​ i​​​(e, ​t​ i​ 
⁎​)​.​

The type ​​t​ i​ 
⁎​​ may depend on ​k​. However, as ​​T​ i​​​ is finite, ​​​( ​f​​  k​  ∈  F)​​k=1,2, …​​​ has 

a subsequence for which the weak inequality holds for the same ​​t​ i​ 
⁎​​. Hence, it is 

without loss of generality to assume that there exists ​​K​ 1​​  >  0​ and ​​t​ i​ 
⁎​  ∈ ​ T​ i​​​ such that

 ​​ u​ i​​​(​ f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( ​f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  ≥ ​ u​ i​​​(e, ​t​ i​ 
⁎​)​,  ∀ ​t​ −i​​  ∈ ​ T​ −i​​,  k  ≥ ​ K​ 1​​.​

Define ​​A ˆ ​  = ​ {a  ∈  A : ​u​ i​​​(a, ​t​ i​ 
⁎​)​  ≥ ​ u​ i​​​(e, ​t​ i​ 

⁎​)​}​​, which is compact due to the 
compactness of ​A​ and continuity of utility functions. As ​​f​​  k​​(​t​ i​ 

⁎​, ​t​ −i​​)​  ∈ ​ A ˆ ​​ for 
all ​​t​ −i​​  ∈ ​ T​ −i​​​ and ​k  ≥ ​ K​ 1​​​, we have

(A13) ​​ u​ i​​​( ​f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ ′ ​)​  ≥ ​ min​ 

a∈​A ˆ ​
​ ​ ​u​ i​​​(a, ​t​ i​ ′​)​  > ​ u​ i​​​(0, ​t​ i​ ′ ​)​,  ∀ ​t​ −i​​  ∈ ​ T​ −i​​,  k  ≥ ​ K​ 1​​.​

The above strict inequality holds because ​​A ˆ ​​ is compact, utility functions are continu-
ous and monotone, and each ​a  ∈ ​ A ˆ ​​ assigns nonzero private consumption to agent ​i​ 
for a positive measure of realizations.

By expressions (A12) and (A13), we further know there exists ​k​ sufficiently large 
such that

	​​ u​ i​​​( ​f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ ′ ​)​  > ​ u​ i​​​( ​f​​  k​​(t′ )​, ​t​ i​ ′ ​)​,  ∀ ​t​ −i​​  ∈ ​ T​ −i​​.​
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Since ​​T​ −i​​​ is finite,

(A14)	 ​​  min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( ​f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ ′ ​)​  > ​ u​ i​​​(​ f​​  k​​(t′ )​, ​t​ i​ ′ ​)​  ≥ ​   min​ 

​t​−i​​∈​T​−i​​
​​ ​u​ i​​​( ​f​​  k​​(​t​ i​ ′ ​, ​t​ −i​​)​, ​t​ i​ ′ ​)​.​

We fix this ​k​ for the remainder of the proof and define an alternative social choice 
function ​y : T  →  A​ as follows:

	​ y​(t)​  = ​
{

​
​f​​  k​​(​t​ i​ 

⁎​, ​t​ −i​​)​
​ 

if ​ t​ i​​  = ​ t​ i​ ′ ​
​  

​f​​  k​​(t)​
​ 

otherwise.
​​​ 

At last, we claim that ​y​ Pareto improves upon ​​f​​  k​​. From expression 
(A14) and the definition of ​y​, we know that ​y​ makes type-​​t​ i​ ′ ​​ agent ​i​ better 
off compared to ​​f​​  k​​ and does not change the payoff of any type ​​t​ i​​  ≠ ​ t​ i​ ′​​. For 
all ​j  ≠  i​ and ​​t​ j​​  ∈ ​ T​ j​​​, define ​​Y​​ y​​(​t​ j​​)​  = ​ {a  ∈  A | ∃ ​t​ −j​​  ∈ ​ T​ −j​​  such that  y​(t)​  =  a}​​ 
and ​​Y​​ ​f​​  k​​​(​t​ j​​)​  = ​ {a  ∈  A | ∃ ​t​ −j​​  ∈ ​ T​ −j​​  such that ​ f​​  k​​(t)​  =  a}​​. It must be the case  
that ​​Y​​ y​​(​t​ j​​)​  ⊆ ​ Y​​ ​f​​  k​​​(​t​ j​​)​​ for all ​j​ and ​​t​ j​​​. To see this, notice that for ​t  ∈  T​ such that  

​​t​ i​​  = ​ t​ i​ ′ ​​, ​y​(t)​  = ​ f​​  k​​(​t​ i​ 
⁎​, ​t​ −i​​)​  ∈ ​ Y​​ ​f​​  k​​​(​t​ j​​)​​, and for other ​t  ∈  T​, ​y​(t)​  = ​ f​​  k​​(t)​  ∈ ​ Y​​ ​f​​  k​​​(​t​ j​​)​​. 

Hence,

 ​​   min​ 
​t​−j​​∈​T​−j​​

​​ ​u​ j​​​(y​(t)​, ​t​ j​​)​  = ​   min​ 
a∈​Y​​ y​​(​t​j​​)​

​​ ​u​ j​​​(a, ​t​ j​​)​​

	​ ≥ ​   min​ 
a∈​Y​​ ​f​​ 

k​​​(​t​j​​)​
​​ ​u​ j​​​(a, ​t​ j​​)​  = ​   min​ 

​t​−j​​∈​T​−j​​
​​ ​u​ j​​​(​ f​​  k​​(t)​, ​t​ j​​)​,  ∀ j  ≠  i, ​ t​ j​​  ∈ ​ T​ j​​.​

The weak inequality above uses the fact that ​​Y​​ y​​(​t​ j​​)​  ⊆ ​ Y​​ ​f​​  k​​​(​t​ j​​)​​. The equalities above 
rely on the Wald-type maxmin assumption, the private value assumption on utility 
functions, and the definitions of ​​Y​​ ​f​​  k​​​(​t​ j​​)​​ and ​​Y​​ y​​(​t​ j​​)​​.

To this end, we have established that ​y​ Pareto improves upon ​​f​​  k​​, contradicting the 
fact that ​​f​​  k​  ∈  F​ is ambiguous Pareto efficient. Hence, we have ​δ  =  0​. Since the 
zero outcome is a bad outcome, ​F​ satisfies the bad outcome property. ∎

PROOF OF COROLLARY 4: 
We first establish that ​F​ satisfies the ambiguous Pareto efficiency condition. 

Suppose not. Thus, there exists ​f  ∈  F​ whose weight profile is ​λ : T  → ​ ℝ​ ++​ n  ​​ and a 
social choice function ​y : T  →  A​, such that

	​​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(t)​, ​t​ i​​)​  ≥ ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(t)​, ​t​ i​​)​​

for all ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​, and the strict inequality holds for some ​i  ∈  I​ and ​​t​ i​​  ∈ ​ T​ i​​​. 
Fix an agent ​j​ and a type ​​t​ j​ 

⁎​​ for which the strict inequality holds and an arbitrary  
​​t​ −j​ 
⁎ ​​ for the remainder of this paragraph. As ​λ​(​t​​ ⁎​)​  ∈ ​ ℝ​ ++​ n  ​​, we know

	​​ ∑ 
i∈I

​ ​​ ​λ​i​​​(​t​​ ⁎​)​​  min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​(y​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  > ​ ∑ 
i∈I

​ ​​ ​λ​i​​​(​t​​ ⁎​)​​  min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​​

	​ = ​ ∑ 
i∈I

​ ​​ ​Sh​ i​​​(​V​ λ, ​t​​ ⁎​​​)​  = ​ V​ λ, ​t​​ ⁎​​​​(I )​,​
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where the last two equalities follow from the definition of maxmin value alloca-
tion and Shapley value. As ​y​ is feasible, this is a contradiction with the definition 
of ​​V​ λ, ​t​​ ⁎​​​​(I)​​. Hence, ​F​ is ambiguous Pareto efficient. By Lemma 1, ​F​ is also ambigu-
ous incentive compatible.

To establish the ambiguous monotonicity condition, we begin with the social 
choice set ​F​, a value allocation ​f  ∈  F​ whose weight profile is ​λ : T  → ​ ℝ​ ++​ n  ​​, and 
an unacceptable deception profile ​α​. We claim that there exists an agent ​i  ∈  I​ and 
a type ​​t​ i​ 

⁎​  ∈ ​ T​ i​​​ such that

	​​  min​ 
​t​ −i​​∈​T​ −i​​

​​ ​u​ i​​​( f ​(​t​ i​ 
⁎​, ​t​ −i​​)​, ​t​ i​ 

⁎​)​  > ​   min​ 
​t​−i​​∈​T​−i​​

​​ ​u​ i​​​( f ​(α​(​t​ i​ ⁎​, ​t​ −i​​)​)​, ​t​ i​ 
⁎​)​.​

To see this, since ​f ◦ α  ∉  F​, ​f ◦ α​ cannot be a maxmin value allocation under the 
same weight profile ​λ  :  T  → ​ ℝ​ ++​ n  ​​. Thus, there must exist some type of an agent to 
whom ​f​ and ​f ◦ α​ lead to different interim utility levels. Since ​f​ is ambiguous Pareto 
efficient, we know ​f ◦ α​ has to lower at least one agent’s interim utility under some 
type. Hence, we can obtain the above inequality. By Lemma 2, ​F​ satisfies the ambig-
uous monotonicity condition.

In the end, we verify the bad outcome property. We first establish ambiguous 
individual rationality. Notice that for each ​t  ∈  T​ and ​i  ∈  I​,

​​λ​i​​​(t)​​ min​ 
​t​ −i​ ′ ​ ∈​T​−i​​

​​ ​u​ i​​​( f​(​t​ i​​, ​t​ −i​ ′ ​ )​, ​t​ i​​)​ ​

​	 = ​ Sh​  i​​​(​V​ λ, t​​)​​​ ​​ = ​ ∑ 
S∋i

​ ​​ ​ 
​(| S | − 1)​ !​(| I | − | S |)​!

  _________________ |  I  |!  ​​[​V​ λ, t​​​(S)​ − ​V​ λ, t​​​(S \​{i}​)​]​​

​� ≥ ​ ∑ 
S∋i

​ ​​ ​ 
​(| S | − 1)​!​(| I | − | S |)​!

  _________________ | I |!  ​​[​V​ λ, t​​​(​{i}​)​ + ​V​ λ, t​​​(S \​{i}​)​ − ​V​ λ, t​​​(S \​{i}​)​]​​

	​ = ​ ∑ 
S∋i

​ ​​ ​ 
​(| S | − 1)​!​(| I | − | S |)​!

  _________________ | I |!  ​ ​V​ λ, t​​​(​{i}​)​  = ​ V​ λ, t​​​(​{i}​)​  = ​ λ​i​​​(t)​ ​u​ i​​​(e, ​t​ i​​)​,​

where the inequality follows from ​​V​ λ, t​​​(S)​  ≥ ​ V​ λ, t​​​(​{i}​)​ + ​V​ λ, t​​​(S \​{i}​)​​, a property 
of the characteristic function. As ​​λ​i​​​(t)​  >  0​, the inequality above implies that

	​​  min​ 
​t​ −i​ ′ ​ ∈​T​−i​​

​​ ​u​ i​​​( f ​(​t​ i​​, ​t​ −i​ ′ ​ )​, ​t​ i​​)​  ≥ ​ u​ i​​​(e, ​t​ i​​)​.​

Hence, ​F​ satisfies the ambiguous individual rationality condition. By Lemma 3, the 
bad outcome property holds for ​F​.

In view of Theorem 1, ​F​ is fully implementable as ambiguous equilibria. ∎
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