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Abstract

We prove non-emptiness of the α-core for balanced games with

non-ordered preferences, extending and generalizing in several aspects

the results of Scarf (1971), Border (1984), Florenzano (1989), Yannelis

(1991b) and Kajii (1992). In particular we answer an open question in

Kajii (1992) regarding the applicability of the non-emptiness results to

models with infinite dimensional strategy spaces. We also provide two

different models, one with Knightian preferences and one with vot-

ing preferences for which the results of Scarf (1971) and Kajii (1992)

cannot be applied but our alpha-core existence result does apply.
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1 Introduction

The core is one of the most popular cooperative solution concept. It is

adapted to a situation in which players behave cooperatively within each

coalition and competitively across coalitions. A feasible allocation for the

grand coalition, also called social state, belongs to the core if no other coali-

tion has an incentive to form and deviate from the social state. For economic

environments with externalities, the payoff of an agent depends not only on

the agent’s action but also on the actions of other agents. In this context,

an issue arises concerning the definition of deviation or “blocking”. When

a coalition plans to block a given social state, actions of the agents outside

the coalition affect the welfare of the members of the coalition. They should

then anticipate how the agents outside the coalition react.

We may assume that outsiders stick to a given strategy while the coalition

attempts to improve its welfare. The corresponding solution concept is the

strong Cournot–Nash equilibrium. Unfortunately, strong equilibria often fail

to exist since it is too easy for a coalition to block a given social state.

Alternatively, it sounds sensible to suppose that the outsiders of a block-

ing coalition do not stick to a given strategy and try to take revenge or to

adapt themselves to the new situation. Aumann (1961) proposed to consider

that agents act very conservatively when forming a coalition to block a social

state. A coalition is compelled to change its strategies only if, for any possi-

ble choice of strategies made by the counter-coalition, each coalition member

prefers the resulting joint strategy over the social state. If a coalition is

compelled to form and change its strategies, it is said to αa-block the social

state. A social state belongs to the αa-core if no coalition can αa-block it.

When entering a blocking coalition, each agent considers that the outsiders

are allowed considerable freedom to react against the coalition. It is then dif-

ficult to αa-block a feasible joint strategy and hence the αa-core is relatively
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large. Scarf (1971) proved non-emptiness of the αa-core for games in normal

form where agents’ preference relations are represented by continuous and

quasi-concave utility/payoff functions.

In the spirit of Border (1984), Kajii (1992) proposed to investigate whether

transitivity and completeness of preference relations are crucial for the va-

lidity of Scarf’s result. He proved that generalized games with possibly non-

ordered preferences also have a non-empty αa-core if continuity of preferences

and compactness of feasible strategies is satisfied for a topology derived from

a norm. This additional requirement is innocuous for finite dimensional strat-

egy spaces.1 However, as pointed out by Kajii himself, the norm-compactness

assumption on the sets of feasible strategies puts a serious limitation on the

applicability of his non-emptiness result in the context of games with an in-

finite dimensional strategy space. Mas-Colell and Zame (1991) contains a

detailed discussion on this problem: in particular they show that for gener-

alized games derived from exchange economies, the set of feasible trades is

in general just weakly compact but not norm-compact.2

It should also be noted that the non-emptiness result in Kajii (1992),

does not contain as a particular case the existing results in the literature.

Specifically, Florenzano (1989) proved that if preference relations are non-

ordered but exhibit no externalities in consumption, then for generalized

games derived from exchange economies, non-emptiness of the αa-core is

guaranteed under compactness and continuity assumptions for any Hausdorff

linear topology. The same generality in terms of the topology is obtained by

Scarf (1971) for generalized games where preferences relations (may) exhibit

externalities but are ordered (i.e., represented by a utility/payoff function).3

1Any Hausdorff linear topology on a vector space with finite dimension coincides with

the Euclidean topology.
2In Section 5 we provide two additional examples to illustrate this point.
3Rigorously, Scarf (1971) only proved non-emptiness for finite dimensional strategy

spaces. However, his arguments can be straightforwardly adapted to handle any Hausdorff
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Kajii (1992) considers games that are more general than those aforemen-

tioned: preferences relations are non-ordered (as in Florenzano (1989)) and

have externalities in consumption (as in Scarf (1971)). However, the existence

result in Kajii (1992) does not contain as a special case neither the results in

Scarf (1971) nor those in Florenzano (1989) since Kajii (1992) assumes that

the topology is normable.

One may think that the additional (and restrictive) assumption imposed

by Kajii (1992) is the “price to pay” in order to combine non-ordered pref-

erences and externalities. One of the main contributions of this paper is to

show that this is not the case. We prove that non-emptiness of the αa-core

can be obtained for any Hausdorff linear topology, including weak topologies

that play a crucial for compactness of the set of feasible strategies in infinite

dimensions. Our theorem generalizes and unifies the results of Scarf (1971),

Border (1984), Florenzano (1989) and Kajii (1992). We also propose two

possible applications to illustrate the economic relevance of our result.

Actually, we provide an additional contribution to the literature: we in-

troduce a new solution concept where, when reacting to a blocking coalition,

outsiders of the coalition are allowed less freedom than what was suggested

by Aumann (1961). In particular we prove non-emptiness of a smaller set

than the αa-core. There are many alternatives to the solution proposed by

Aumann (1961). We already mentioned the strong Cournot-Nash equilib-

rium for which agents forming a blocking coalition believe the outsiders will

not react. A third solution concept is the β-core for which a blocking coali-

tion is no longer required to select a specific strategy independently of the

remaining players, but rather is permitted to vary its blocking strategy as

a function of the complementary coalition’s choice. Since the blocking pos-

sibilities are larger the β-core is a smaller set than the αa-core. However,

as shown by Scarf (1971), the β-blocking power is so strong that it is easy

topological space. See Section 4.1 for a detailed discussion.
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to construct examples of non-existence. There is another solution concept

introduced by Yannelis (1991b) in the context of generalized games derived

from exchange economies. When agents decide to form a coalition to block

a social state in a generalized game, they are restricted to choose a joint

strategy that is feasible for the coalition. A priori, there is no reason to con-

sider that agents in the counter-coalition are not similarly restricted and can

choose a joint strategy that may not be feasible for the counter-coalition.

Following this line, Yannelis (1991b) proposed an alternative definition of

the α-core: a coalition is said to αy-block a social state if there exists a joint

strategy feasible for the coalition such that each coalition member prefers

the resulting joint strategy over the social state, whatever are the reactions

of the agents in the counter-coalition among those that are feasible for the

counter-coalition. In the adaptation of Aumann’s blocking power to gener-

alized games proposed by Kajii (1992), agents of a blocking coalition do not

consider that outsiders should choose feasible strategies. Since agents enter-

ing a coalition consider that the outsiders can react with less freedom, it is

easier to αy-block a feasible joint strategy and hence the αy-core is smaller

than the αa-core. Yannelis (1991b) (see also Koutsougeras and Yannelis

(1993)) succeeded to prove non-emptiness of the αy-core for pure exchange

economies with at most two agents. For games with more than two agents,

the αy-blocking power is too strong. Indeed, Holly (1994) proposed an ex-

ample of a pure exchange economy with three agents, satisfying standard

assumptions but with an empty αy-core.

We introduce an alternative definition of the α-core where, when reacting

to a blocking coalition, outsiders of the coalition are allowed less freedom

than what was suggested by Aumann (1961) but more freedom than what

was proposed by Yannelis (1991b). We prove non-emptiness of our α-core

under very general conditions, implying non-emptiness of the “standard” αa-

core. Moreover, when there are at most two agents, our α-core coincides with
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the αy-core. Therefore, we obtain a general non-emptiness result having the

additional interesting feature of unifying the results of non-emptiness of the

αa-core and the αy-core.

The paper is organized as follows. Section 2 defines generalized games

and core solutions are presented in Section 3. Sufficient conditions for non-

emptiness are introduced in Section 4 and the details of the proof are pre-

sented in Section 6. The main theorem is applied in Section 5 where we

illustrate the economic relevance of our general result by means of two appli-

cations. The definition of standard continuity properties of correspondences

is postponed to the appendix, where we also provide the proofs of technical

results.

2 Generalized Games

We consider a cooperative generalized game (in normal form) with a finite

set I of agents. A subset E ⊂ I represents a coalition and we fix a subset I
of the set of all non-empty subsets of I that represents the family of admis-

sible coalitions.4 We assume that the grand coalition I and each individual

coalition {i} belong to I. Each agent i ∈ I chooses an individual strategy xi

in his strategy set Xi.

Assumption 2.1. For each agent i, the strategy set Xi is a non-empty and

convex subset of a Hausdorff linear topological space L.

An element x = (xi)i∈I of X ≡
∏

i∈I Xi is called a joint strategy (or an

allocation) and may be thought as a social state. If E is a subset of I, then

the we denote by XE the product set
∏

i∈E Xi.
5 Given a subset S ⊂ I, if y

4Usually it is assumed that I coincides with 2I \ {0} the set of non-empty subsets of I.

We allow for the possibility that some coalitions cannot form.
5Both notations XI and X will be used for

∏
i∈I Xi.
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belongs to XS and w belongs to XI\S then z = (y, w) denotes the allocation

defined by πS(z) = y and πI\S(z) = w, where for any E ⊂ I, the mapping

πE : X → XE is the natural projection defined by πE(x) = (xi)i∈E for each

x = (xi)i∈I ∈ X.6 For each i, we denote by I(i) the collection of all admissible

coalitions E ∈ I containing i.7

For each admissible coalition S ∈ I there is a set F S ⊂ XS which rep-

resents the set of feasible joint strategies for the coalition S. The set F I

of feasible social states will also be denoted by F . We make the standard

convexity and compacity assumption on the sets of feasible strategies.

Assumption 2.2. For each admissible coalition S ∈ I, the set F S is non-

empty compact and the set F is additionally assumed to be convex.

Remark 2.1. We impose that for each admissible coalition S ∈ I the set F S

is non-empty. For coalitions different from the grand coalition or individu-

als, this assumption is imposed without any loss of generality. Indeed, it is

sufficient to replace the set I by the set {S ∈ I : F S 6= ∅}.8

We consider the case where agents have (possibly non-ordered) prefer-

ences displaying externalities (also called interdependent preferences). For-

mally, each agent i has a preference relation on X which is described by a

correspondence Pi from X to X. If x ∈ X is an allocation, then Pi(x) repre-

sents the set of allocations y ∈ X that are strictly preferred to x by agent i.

We make the standard assumption that preferences are convex.

Assumption 2.3. For each x ∈ X and each agent i, we have x 6∈ coPi(x).

Our generalized game can be represented by the family

G =
{
L, (Xi, Pi)i∈I , F, (F

S)S∈I
}
.

6We still denote by πE the restriction of πE to any subset XF where E ⊂ F ⊂ I and

for each i ∈ I, the projection π{i} is denoted by πi.
7Observe that the set I(i) is always non-empty since it contains {i} and I.
8This is the reason why we do not assume that all coalitions are admissible.
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When the feasible sets are degenerate, in the sense that F S = XS, we obtain

the standard definition of a game in normal form. Throughout the paper we

will assume that Assumptions 2.1, 2.2 and 2.3 are always satisfied.

An important class of games is constituted by those derived from pure

exchange economies, as defined below.

Definition 2.1. A game G =
{
L, (Xi, Pi)i∈I , F, (F

S)S∈I
}

is said to be derived

from a standard pure exchange economy if the space L is endowed with a

linear order > such that for each agent i, the strategy set Xi coincides with

the cone L+ = {z ∈ L : z > 0} and an allocation (yi)i∈S in LS+ is feasible

for coalition S, i.e., belongs to F S, if∑
i∈S

yi =
∑
i∈S

ei

where ei ∈ L+ is agent i’s initial endowment.

Remark 2.2. If we have a finite number g of commodities, the set L coincides

with Rg and the consumption set of each agent coincides the non-negative

cone Rg
+. Under uncertainty with infinitely many states of nature repre-

sented by a probability space (S,S, σ), one may choose L to be the space

L∞(S,S, σ) of essentially bounded functions and L+ to be the cone of non-

negative functions. We have considered standard pure exchange economies

for simplicity. The strategy (or consumption) set Xi may be a strict sub-

set of L+ as it is the case in models with differential information considered

in Yannelis (1991a) (see also Podczeck and Yannelis (2008)). For instance,

one can restrict agent i’s strategies to lie in L∞+ (S,S i, σ) where S i is a sub

σ-algebra of S representing the states agent i can discern ex-post.

Remark 2.3. In Border (1984) and Kajii (1992), the set of feasible strategies

for a coalition S may depend on the current social state. For simplicity,

we have considered the special case where the set of feasible strategies for a

8



coalition is independent of the current social state.9 However, by suitably

adapting our set of assumptions, we can extend the results of this paper to

the more general framework considered in Border (1984) and Kajii (1992).

In our modeling of preference relations, each agent i ranks allocations in

X. Naturally, this modeling encompasses preferences without externalities

where agent i only ranks his own strategies in Xi. Indeed, if agent i’s pref-

erence relation is described by a correspondence P̂i defined from Xi to Xi,

then we can construct the correspondence Pi as follows:

∀x ∈ X, Pi(x) = {(yk)k∈I ∈ X : yi ∈ P̂i(xi)}.

In that case, we say that agent i’s preference relation has no externalities.

Our framework also encompasses the case where agent i ranks individual

strategies but his taste is affected by the “current” social state. This happens

when the correspondence Pi is derived from a correspondence P̃i defined from

X to Xi, as follows

∀x ∈ X, Pi(x) = {(yk)k∈I ∈ X : yi ∈ P̃i(x)}.

In that case, we say that agent i’s preference relation displays weak external-

ities.

If there exists an ordinal utility function ui defined from Xi to [−∞,∞)

such that

∀x = (xk)k∈I ∈ X, Pi(x) = {(yk)k∈I ∈ X : ui(yi) > ui(xi)}

then agent i’s preference relation exhibits no externalities. In the majority of

non-cooperative games analyzed in the literature, each agent i’s preference

relation depends on the actions of the other agents through a payoff function

ui defined from the product space X to [−∞,∞). If the correspondence P i

9This property is satisfied for generalized games derived from exchange economies.
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is given by

∀x ∈ X, Pi(x) = {(yk)k∈I ∈ X : ui(yi, x−i) > ui(xi, x−i)}

then agent i’s preference relation displays weak externalities. Florenzano

(1989) assumed that agents preference relations satisfy the above property.

This kind of modeling could make sense if we were considering a framework

where deviations are only unilateral. Since we are interested in a cooperative

solution, it seems more natural to consider the following definition

∀x ∈ X, Pi(x) = {y ∈ X : ui(y) > ui(x)}

which is consistent with coalitional deviations and corresponds to the model

considered in Scarf (1971).

3 Core solutions

A core allocation is a feasible social state that is robust to all possible de-

viations (or blocking) by coalitions. Since actions of the agents outside a

blocking coalition affect the welfare of the members of the coalition, it is nec-

essary to consider the way the agents outside the coalition react in order to

define a core solution. More precisely, when a group of agents forms a coali-

tion to block an allocation, one should specify what are the expectations of

these agents about the possible reactions of the agents outside the coalition.

3.1 Weak blocking power: αA-core

Aumann (1961) suggested the following blocking power: an admissible coali-

tion S ∈ I is said to αa-block a given social state represented by a feasible

joint strategy x ∈ F if there exists a joint strategy y = (yi)i∈S feasible for

the coalition S, i.e., y ∈ F S, such that the coalition S can ensure a social
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state preferred by all the agents in it regardless of any strategies the other

agents may choose, i.e.,

{(y, w) : w ∈ XI\S} ⊂
⋂
i∈S

Pi(x).

The αA-core is then the set of feasible strategies x ∈ F such that no coali-

tion can αa-block x. When entering a blocking coalition S, each agent i ∈ S
is very conservative and considers that the outsiders are allowed consider-

able freedom to react against the coalition.10 It is then difficult to αa-block

a feasible strategy and hence the αa-core is relatively large. Scarf (1971)

proved the non-emptiness of the αa-core for games where agents’ preference

relations are represented by continuous and quasi-concave utility functions.

This existence result was generalized to possibly non-ordered preferences by

Kajii (1992).

3.2 Strong blocking power: αY-core

For generalized games that are not standard,11 Yannelis (1991b) proposed to

increase the blocking power of coalitions by assuming that blocking agents

expect agents outside the blocking coalition to react by choosing feasible

strategies. More precisely, an admissible coalition S ∈ I is said to αy-block

a given social state represented by a feasible strategy x ∈ F if there exists

a feasible strategy y ∈ F S with which the coalition S can ensure a social

state strictly preferred by all the agents in it regardless of feasible strategies

w ∈ F I\S that the coalition I \ S of outsiders may choose, i.e.12

{(y, w) : w ∈ F I\S} ⊂
⋂
i∈S

Pi(x).

10In particular outsiders may take revenge by choosing the worst strategies regarding

agent i’s preferences.
11In the sense that for at least one coalition S, the set FS is different from XS .
12If I \ S = ∅ then by convention we pose {(y, w) : w ∈ F ∅} = {y}.
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The αY-core is then the set of feasible strategies x ∈ F such that no coalition

can αy-block x.13 If the game is not generalized (that is, F S = XS for each

coalition S) then the αy-core and the αa-core coincides. However, if the game

is generalized (that is, F S is a strict subset of XS for at least one coalition S)

then the αy-core may be strictly smaller than the αa-core. Indeed, since

agents entering a coalition consider that the outsiders can react with less

freedom, it is easier to αy-block a feasible strategy.

This solution concept seems natural for generalized games derived from

exchange economies. If a coalition S forms to block a social state x, the agents

within the coalition will choose strategies (or equivalently consumption plans)

(yi)i∈S reallocating their own initial endowments, i.e.,∑
i∈S

yi =
∑
i∈S

ei.

The allocation (zj)j 6∈S chosen by the agents in the counter-coalition has to

be consistent with the scarcity of resources available to the counter-coalition

I \ S, i.e., ∑
j∈I\S

yi =
∑
i∈I\S

ei.

One may imagine that agents in I \ S decide to form several coalitions and

redistribute their resources within each sub-coalition. More precisely, one

may have that the reaction (zj)j 6∈S of the counter-coalition is such that

I \ S =
⋃
k∈K

T k and ∀k ∈ K,
∑
`∈Tk

z` =
∑
`∈Tk

e`

where (T k)k∈K a finite partition of I \ S. Nonetheless, the reaction (zj)j 6∈S

will still belong to F I\S.

13Observe that for the validity of this concept, we need to assume that for each admissible

coalition S ∈ I, the coalition of outsiders I \ S is also admissible, i.e.

∀S ⊂ I, S ∈ I =⇒ I \ S ∈ I.

This is obviously satisfied if all coalitions are admissible, i.e., I = 2I \ {∅}.
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Yannelis (1991b) (see also Koutsougeras and Yannelis (1993)) proved

that the αy-core is non-empty for economies with at most two agents. For

economies with more than two agents, the αy-blocking power may be too

strong. Indeed, Holly (1994) proposed an example of a pure exchange econ-

omy (satisfying standard assumptions) with three agents and having an

empty αy-core.

3.3 Intermediate blocking power: our α-core concept

When proving the non-emptiness of the αa-core, we realized that actually

our arguments enable us to prove the non-emptiness of a smaller set. To

this end we introduce a new α-core notion which coincides with the αy-core

in the 2-agents case. We obtain a general non-emptiness result having the

additional interesting feature of unifying the results of non-emptiness of the

αa-core and the αy-core.

Before providing the rigorous definition of our solution concept, we need

to introduce some notations. Fix an admissible coalition S ∈ I and an

outsider i 6∈ S. We let Fi be the set of all zi ∈ Xi corresponding to agent i’s

individual strategy in a feasible joint strategy z = (ze)e∈E ∈ FE where

E ∈ I(i) is an admissible coalition containing i and different from the grand

coalition I, i.e.,

Fi ≡ {πi(z) : z ∈ FE, E ∈ I(i) and E 6= I}.

The set Fi contains all strategies agent i may expect to obtain if he joins any

coalition different from the grand coalition.

Definition 3.1. A coalition S ∈ I is said to α-block the feasible joint

strategy x ∈ F if there exists a strategy y ∈ F S feasible for coalition S such

that the social state (y, w) is strictly preferred to x by every agent i in the

coalition S whatever is the reaction w = (wj)j 6∈S of the counter-coalition,
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where each wj belongs to the set Wj ≡ coFj.
14 The α-core of the game G is

the set of all feasible strategies x in F such that no coalition can α-block x.

A feasible strategy x is α-blocked by coalition S ∈ I if there exists a

feasible strategy y ∈ F S satisfying

{(y, w) : w ∈ W I\S} ⊂
⋂
i∈S

Pi(x) (3.1)

where W I\S is the product set
∏

j 6∈SWj. This leads us to consider the fol-

lowing definition. If S is an admissible coalition then we let P S be the

correspondence from X to XS defined by

P S(x) ≡ {y ∈ XS : {y} ×W I\S ⊂
⋂
i∈S

Pi(x)},

where {y}×W I\S ≡ {(y, w) : w ∈ W I\S}. Following this notation, a feasible

joint strategy x ∈ F belongs to the α-core if and only if there does not exist

a feasible coalition S ∈ I such that

F S ∩ P S(x) 6= ∅.

Note that for each admissible coalition S ∈ I, we have

F I\S ⊂ W I\S ⊂ XI\S.

Therefore the αy-core is a subset of the α-core, and the α-core is a subset

of the αa-core. For non-generalized games, the three concepts coincide since

FE = XE for every coalition E ∈ I. For generalized games with two players

and convex feasible sets, the α-core coincides with the αy-core.15 Indeed, the

only coalition E ∈ I(i) different from the grand coalition is the singleton {i}.
14If S = I then the notation (y, w) represents y.
15In a game with two players {i, j}, we say that feasible sets are convex if F {i} and F {j}

are convex. Observe that we have already assumed that F I is convex. For generalized

games derived from standard pure exchange economies, feasible sets are always convex.
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This implies that Fi coincides with F {i} and therefore W I\S coincides with

F I\S for any possible blocking coalition.

Under the set of assumptions that we will impose to get non-emptiness of

the αa-core, we also obtain non-emptiness of the α-core. Therefore, we will

get as a direct corollary of the our existence result, both the non-emptiness

result of the αa-core in Kajii (1992) and the non-emptiness result of the

αy-core in Yannelis (1991b).

4 Non-emptiness of the α-core

The main contribution of this paper is to provide conditions on primitives

(additional to the standard Assumptions 2.1, 2.2 and 2.3) that are sufficient

for non-emptiness of the α-core. We will need to make a continuity assump-

tion on preference relations and impose a balancedness condition for feasible

correspondences. The notion of a “balanced” n-person game was first dis-

cussed by Bondareva (1962) and Shapley (1965) in the context of a game

with transferable utility. For the case of non-transferable utility, balanced-

ness was used by Scarf (1967) for a game in characteristic form and Scarf

(1971) for a game in normal form.

Let ∆ be the set of weights λ = (λS)S∈I ∈ RI
+ satisfying the condition

∀i ∈ I,
∑
S∈I(i)

λS = 1.

An element λ in ∆ is called a balancing weight and the associated family of

coalitions {S ∈ I : λS > 0} is said balanced.

Remark 4.1. Observe that ∆ is always non-empty. Indeed, let κ = (κS)S∈I

be the balancing weight defined as follows: κS = 1 if S is a singleton and

κS = 0 elsewhere. Since all singletons {i} belong to I, we obtain that κ ∈ ∆.
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We recall the definition of a balanced generalized game.16

Definition 4.1. The generalized game G =
{
L, (Xi, Pi)i∈I , F, (F

S)S∈I
}

is

balanced if for each balancing weight λ ∈ ∆, if yS ∈ F S is a feasible

strategy for each coalition S ∈ I with λS > 0, then the strategy z = (zi)i∈I

defined by

∀i ∈ I, zi ≡
∑
S∈I(i)

λSy
S
i (4.1)

is a feasible social state, i.e., z ∈ F .

Throughout the paper we will assume the game G is balanced. It is

straightforward to check that generalized games derived from pure exchange

economies are always balanced.

Remark 4.2. Let (xi)i∈I be a family of strategies that are individually feasible,

i.e., xi ∈ F {i} for each agent. Since the game G is balanced, the associated

social state x = (xi)i∈I is feasible for the grand coalition, i.e., x ∈ F . To see

this, we can choose the specific balancing weight κ defined in Remark 4.1

and apply (4.1).

In order to motivate the continuity assumption we will impose, we review

the existence results in the literature.

4.1 The literature

Agent i’s preference relation is said to be ordered if there exists a function

ui : X → [−∞,∞) such that a joint strategy y is strictly preferred to another

joint strategy x if and only if we have ui(y) > ui(x). When agents have or-

dered preferences, we can construct the associated αa-game in characteristic

16Many generalizations of this concept have been proposed in the literature: π-

balancedness of Billera (1970), Π-balancedness of Predtetchinski and Herings (2004), and

payoff-dependent balancedness of Bonnisseau and Iehlé (2007).
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form (Va(S))S∈I defined by

Va(I) ≡
{

(vi)i∈I ∈ RI : ∃y ∈ F, ∀i ∈ I, vi 6 ui(y)
}

and for every coalition S ∈ I′ = I \ {I},

Va(S) ≡
{

(vi)i∈I ∈ RI : ∃y ∈ F S, ∀i ∈ S, vi 6 inf
w∈XI\S

ui(y, w)

}
.

Observe that a social state x ∈ F belongs to the αa-core of the game in

normal form if and only if the associated profile of payoffs (ui(x))i∈I is a core

of the associated αa-game in the sense that

(ui(x))i∈I ∈ Va(I) \
⋃
S∈I′

intVa(S).

Assume now that the game G is balanced and fix a balancing weight λ ∈ ∆.

Denote by I(λ) the subset of coalitions S ∈ I satisfying λS > 0. The main

contribution in Scarf (1971) consists on showing that⋂
S∈I(λ)

Va(S) ⊂ Va(I)

implying that the αa-game in characteristic form is π-balanced17 where π =

(πS)S∈I is given by πS = 1. If, moreover, the utility function of each agent is

assumed to be continuous and quasi-concave then the αa-game in character-

istic form satisfies the following conditions.

(G1) For all S ∈ I, the set Va(S) is non-empty proper and closed.

(G2) For all S ∈ I, if x ∈ Va(S) and y ∈ RI satisfy yi 6 xi for all i ∈ S,

then y ∈ Va(S).

(G3) The set Va(I) \
⋃
i∈I intV ({i}) is non-empty and compact.18

17As defined by Billera (1970).
18The fact that the set Va(I) \

⋃
i∈I intVa({i}) is non-empty follows from the balanced-

ness of the game and Remark 4.2.

17



It is well-known that under balancedness of the αa-game, the above con-

ditions are sufficient for non-emptiness of the core (see Scarf (1967) and

Predtetchinski and Herings (2004)). Using the above arguments Scarf de-

rived the following non-emptiness result.

Theorem 4.1 (Scarf (1971)). If agents’ preference relations are represented

by continuous and quasi-concave functions then the αa-core is non-empty.

Rigorously, Scarf (1971) proved a less general result than the one stated

above since he assumes that strategy sets are subsets of finite-dimensional

Euclidean spaces. However, all the arguments in Scarf (1971) can be straight-

forwardly adapted to handle the general case.

Kajii (1992) proposed to investigate whether the assumption that pref-

erence relations are ordered can be relaxed. This question was already ad-

dressed by Border (1984) when agents’ preference relations have no exter-

nalities and by Florenzano (1989) for the case of weak externalities.19 Both

existence results deal with the non-emptiness of the core and not the α-core

since they do not allow for externalities.

As far as we know, Kajii (1992) is the only non-emptiness result of the

α-core for (NTU) games with non-ordered preferences displaying externali-

ties. Kajii adapted (and generalized) Border’s approach by constructing a

“pseudo-utility function” ui : X × X → R+ where ui(x, y) is the distance

between the pair (x, y) and the complement of the graph of the correspon-

dence P i. If the correspondence P i has an open graph then we get the fol-

lowing important property: ui(x, y) > 0 if and only if y is strictly preferred

to x. In order to apply Scarf (1971), one should prove that the function

y 7→ ui(x, y) is quasi-concave, which is true when the distance d is derived

from a norm. This explains the following result.

19Actually Florenzano (1989) proves the non-emptiness of the core of a production

economy. However her arguments can be adapted to handle generalized games.
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Theorem 4.2 (Kajii (1992)). Assume that the topology of the strategy vector

space L (for which strategy sets are compact) is derived from a norm. If the

correspondences defining agent’s preference relations have open graphs then

the αa-core is non-empty.

This is an important contribution but one may not be fully satisfied by

this result. As pointed out by Kajii (1992) the main problem concerns the

restriction to normed strategy spaces. From a theoretical perspective, Kajii’s

result does not generalize neither Scarf’s nor Florenzano’s results since both

encompass general Hausdorff topological vector spaces. Regarding possible

applications, the assumption that strategy sets are norm compact imposes a

strong restriction when the strategy space is infinite dimensional. This issue

is well-documented in Mas-Colell and Zame (1991) where it is shown that

for exchange economies, the set of feasible trades is in general just weakly

compact but not norm compact.20

Despite the fact that Kajii (1992) does not provide any counter-example,

one may think that the price to pay in order to handle non-ordered pref-

erences and externalities is to restrict attention to normed strategy spaces.

This paper shows that this not the case. We prove that non-emptiness can

still be obtained for general preference relations (non-ordered with external-

ities) and general topologies on the strategy vector space. In particular we

show that it is possible to generalize and unify the results of Scarf (1971),

Florenzano (1989) and Kajii (1992).

4.2 The Main Theorem

In order to prove that the α-core is non-empty, we impose a continuity re-

quirement on preferences that is consistent with the blocking power we con-

sider. Recall that for each coalition S, the correspondence P S from X to XS

20We also provide examples in Section 5.
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is defined by

P S(x) =

{
y ∈ XS : {y} ×W I\S ⊂

⋂
i∈S

Pi(x)

}
where {y}×W I\S is the set of all allocations (y, w) where w belongs to W I\S.

In other words, an allocation y = (yi)i∈S in XS belongs to the set P S(x) if

each agent i ∈ S strictly prefers (y, w) to x, whatever is w in W I\S.

Definition 4.2. The generalized game G is said to be α-continuous if

for each admissible coalition S ∈ I, the correspondence P S has open lower

sections in X, that is, for each agent i ∈ S and each feasible strategy y ∈ F S

the set {x ∈ X : {y} ×W I\S ⊂ Pi(x)} is open in X.21

This is the only assumption that is not standard. It seems to require

a uniform continuity property of preferences but we show in the following

remarks that it is weaker than the corresponding assumptions imposed in

the literature.

Remark 4.3. Assume that each agent i’s preference relation has weak exter-

nalities, in the sense that

Pi(x) = {y ∈ X : yi ∈ P̂i(x)}

where P̂i is a correspondence from X to Xi. In that case the game is α-

continuous if P̂i has open lower sections, i.e., for every yi ∈ Xi the set {x ∈
X : yi ∈ P̂i(x)} is open in X. In particular, α-continuity is satisfied in the

framework considered by Florenzano (1989) (see also Lefebvre (2001)).

Remark 4.4. There is another simple framework where α-continuity is satis-

fied. Assume that each agent i’s preference relation is ordered by a function

ui : X → [−∞,∞), i.e.,

Pi(x) = {y ∈ X : ui(y) > ui(x)}.
21We refer to Appendix A.1 for precise definitions of all continuity properties for corre-

spondences.
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In that case, α-continuity is satisfied if each function ui is continuous as

assumed by Scarf (1971). Indeed, fix an agent i ∈ I, a feasible coalition

S ∈ I(i), a feasible strategy y ∈ F S and a social state x ∈ X such that for

every w ∈ W I\S, we have ui(y, w) > ui(x). Let α ≡ inf{ui(y, w) : w ∈ W I\S}.
Since ui is continuous and W I\S is compact, the set {z ∈ X : ui(z) < α} is

open, contains x and is a subset of {z ∈ X : {y} ×W I\S ⊂ Pi(z)}.

If the game has two agents, say I = {i, j}, then α-continuity is satisfied if

each correspondence Pi has open lower sections.22 For the general case (more

than two agents) α-continuity is in particular satisfied if each preference

correspondence has an open graph as assumed by Kajii (1992).

Proposition 4.1. If the correspondence Pi has an open graph for each i,

then the game is α-continuous.

The proof follows from a direct application of Proposition A.1 (see Ap-

pendix A.2) which states that if a correspondence has an open graph then it

satisfies automatically a uniform continuity property with respect to compact

sets. This property is very intuitive and generalizes the well-know result that

every continuous function is actually uniformly continuous on every compact

set.

We can now state the main result of the paper whose proof is postponed

to Section 6.

Main Theorem. If the generalized game is α-continuous then its α-core is

non-empty.

The above non-emptiness result unifies and generalizes the results in Scarf

(1971) (see Remark 4.4), Florenzano (1989) and Lefebvre (2001) (see Re-

mark 4.3), and Kajii (1992) (see Proposition 4.1). More importantly, it an-

swers an open question in (Kajii 1992, Section 4) by allowing for any linear

22Indeed, fix a coalition S ⊂ {i, j}. If S = I then PS(x) = Pi(x) ∩ Pj(x) and has open

lower sections. If S = {i}, then PS(x) = Pi(x) ∩ [Xi × {ej}] and has open lower sections.
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topology on the underlying strategy vector space. We propose in Section 5

two settings where our result applies while no existing result does.

Our non-emptiness result contributes to the literature in another aspect

since we prove the non-emptiness of a smaller core. Our α-core coincides

with the αy-core when there are at most two agents and feasible sets are

convex. In particular, we get as a direct corollary of the Main Theorem the

non-emptiness result of Yannelis (1991b) (see also Koutsougeras and Yannelis

(1993)).

Remark 4.5. Recently, Bonnisseau and Iehlé (2007) proved the non-emptiness

of the core of an NTU game satisfying a condition of payoff-dependent bal-

ancedness, based on transfer rate mappings (see also Predtetchinski and Her-

ings (2004) for a related result). They applied their result to recover Kajii’s

non-emptiness theorem. Their proof is also based on the construction of

pseudo-utility functions (as in Border (1984) and Kajii (1992)). In particu-

lar, to get quasi-concavity, they also need to assume that the strategy space

is a normed vector space.

5 Applications

We illustrate the applicability of the Main Theorem, by considering the two

following settings.

5.1 Mixed strategies over infinitely many pure actions

We fix a compact set (A, τ). Consider the (non-generalized) game where

each agent i chooses a mixed strategy σi in the space Xi of Borel probability

measures over a closed subset Ai ⊂ A of pure actions. The strategy space

is then M the vector space of Borel signed measures on A. If M is endowed

with the weak topology σ(M,C) where C is the vector space of τ -continuous
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real valued functions defined on A, then Xi is a compact set.23

In many models, agent i’s payoff of a joint strategy σ = (σi)i∈I is defined

by the expected utility

Eσ[vi] ≡
∫
A

vi(a)σ(da)

for some “felicity” function vi : A→ R continuous for the product topology

on A =
∏

i∈I Ai. We consider an alternative way of modeling agent i’s

preference relation. Assume that agent i is a decision maker representing

a set Ki of individuals. Each k ∈ Ki is endowed with a continuous felicity

function vi(k, ·) : A → R. Individual preferences are aggregated through a

family Ki of non-empty subsets of the (index) set Ki as defined hereafter.

Definition 5.1. Agent i is said to have voting preferences represented by

Ki if a profile of mixed strategies η is strictly preferred to another profile σ

when there exists a set κi ∈ Ki such that

∀k ∈ κi, Eη [vi(k)] > Eσ [vi(k)] .

In other words, the set Pi(σ) of agent i’s strictly preferred mixed strategies

is defined by

Pi(σ) ≡
⋃
κi∈Ki

⋂
k∈κi

Pi,k(σ)

where Pi,k(σ) is the set of all η satisfying Eη [vi(k)] > Eσ [vi(k)], representing

individual k’s preferences. If Ki is reduced to the singleton {Ki}, then agent i

prefers η to σ if all individuals in Ki prefer η to σ: this is the unanimity rule.

We identify several types of “voting rules” for which the α-core is non-empty.

Theorem 5.1. Assume that for each agent i, the set Ki of represented in-

dividuals is finite and the “voting rule” Ki satisfies⋂
κi∈Ki

κi 6= ∅. (5.1)

23The topology σ(M,C) also goes by the names of the weak-star topology or possibly

the topology of convergence in distribution.
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Then the α-core of the game with voting preferences represented by (Ki)i∈I
is non-empty.

Denote by π?i the set of individuals that belong to all κi in Ki. The

interpretation of (5.1) is that π?i is a set of individuals whose opinion is

mandatory for the decision maker who prefers a profile η to another profile

σ only if all individuals in κ?i also prefer η to σ.

Example 5.1. An example of voting rule Ki satisfying (5.1) is as follows. Fix

a specific individual k?i ∈ Ki and a ratio α ∈ [0, 1]: we denote by Ki(k?i , α)

the set of all subsets of agents κi ⊂ Ki containing k?i and representing at

least the proportion α, i.e., #κi > α#Ki. For this example, decision maker i

prefers the profile η if this profile is preferred by a sufficiently large group κi

of agents in Ki containing k?i .
24

Let η be a profile of mixed strategies strictly preferred by agent i to

σ. This means that there exists a set κi ∈ Ki such that every individual

k ∈ κi strictly prefers η to σ. It is important to observe that the set κi

may depend on the pair (η, σ). This implies that in general the binary

relation defined by the voting preferences is neither transitive nor complete.25

Therefore we cannot apply Scarf (1971) to conclude that the α-core is non-

empty. The topology for which the strategy set Xi is compact is the weak-

topology σ(M,C) which is not normable if Ai is infinite. Therefore we cannot

apply Kajii (1992) to prove Theorem 5.1.

Proof of Theorem 5.1. We show that we can apply the Main Theorem to

conclude that the α-core is non-empty. Assumptions 2.1 and 2.2 are trivially

satisfied. Since the game is not generalized (that is, F S = XS for each

coalition S) it is automatically balanced. In order to prove that it is α-

continuous, we show that the graph of each Pi is open for the (product)

24One may assume that the decision maker is one of the individuals.
25This is the case in Example 5.1 if Ki has three elements and α = 2/3.
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weak topology σ(M,C)I . The graph gphPi of Pi satisfies

gphPi =
⋃
κi∈Ki

⋂
k∈κi

gphPi,k

where gphPi,k ≡ {(η, σ) : Eη[ui(k)] > Eσ[ui(k)]}. Since ui(k) is a continuous

function on A it follows that each set gphPi,k is open for the (product) weak

topology σ(M,C)I . The fact that Pi has an open graph follows from the fact

that κi is finite.

The last property we should verify is the convexity condition defined by

Assumption 2.3. Let σ be a profile of mixed strategies and assume by way

of contradiction that there exists a finite family (η`)`∈L such that

∀` ∈ L, η` ∈ Pi(σ) and σ =
∑
`∈L

x`η`

where x = (x`)`∈L is a probability measure over L. Fix an agent k?i that

belongs to the intersection defined by (5.1). Since the taste of agent k?i

always matters, we get the following contradiction:

Eσ [vi(k
?
i )] =

∑
`∈L

x`Eη` [vi(k
?
i )] > Eσ [vi(k

?
i )] .

We can thus apply the Main Theorem to conclude that the α-core of this

game is non-empty.

5.2 Uncertainty with infinitely many states of nature

We fix a countable set S of states of nature representing uncertainty. We

denote by B(n) the space of bounded functions from S to Rn. For each s,

we let

G(s) =
{
L, (Xi, ui)i∈I , F (s), (FE(s))E∈I

}
be a generalized balanced game satisfying the following assumptions: the

strategy space L is the finite dimension vector space Rn; the set Xi is a
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non-empty and convex subset of L; the function ui : X → R is a continuous,

bounded and concave function defined on X =
∏

i∈I Xi; for every coalition

E ∈ I the set FE(s) is non-empty compact and the set F (s) is additionally

assumed to be convex. An example of a game satisfying the above assump-

tions is the generalized game derived from a pure exchange economy E(s)

where agents trade n commodities and have initial endowments (ei(s))i∈I .

Given the family (G(s))s∈S of state contingent games, we consider the

associated ex-ante generalized game where each agent i chooses a state

contingent strategy xi which is assumed to be a bounded function in B(n)

such that xi(s) ∈ Xi for every s. The associated strategy set is denoted by

Xi. It follows that the strategy vector space, denoted by L, coincides with

B(n). Given a coalition E ∈ I, the set of feasible strategies FE is the space

of contingent strategy profiles xE = (xi)i∈E in LE such that xE(s) ∈ FE(s)

for every s. As in Bewley (2002) and Rigotti and Shannon (2005), we assume

that each agent i has a Knightian preference relation defined as follows:

the state contingent joint strategy y is strictly preferred to x, denoted by

y ∈ Pi(x), if

∀q ∈ Qi,

∫
S

ui(y(s))q(ds) >

∫
S

ui(x(s))q(ds)

where Qi is a non-empty subset of Prob(S) the space of probability distri-

butions over S. The ex-ante generalized game is then characterized by the

family

G = {L, (Xi, Pi)i∈I ,F , (FE)E∈I}.

Theorem 5.2. Consider the ex-ante generalized game G defined above where

each agent i has a Knightian preference relation defined by a set Qi of sub-

jective beliefs. Assume that each set Qi is a non-empty convex and compact

for the weak star topology.26 Then the α-core is non-empty.

26The weak star topology on Prob(S) is the weak topology σ(Prob(S), B) where B =

B(1) is the space of bounded functions from S to R.
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Proof of Theorem 5.2. We show that the generalized G satisfies all the condi-

tions of the Main Theorem. First, the ex-ante game G is balanced since each

state game G(s) is balanced. Second, Assumptions 2.1 and 2.3 are clearly

satisfied. To prove that the other conditions are satisfied, we endow the strat-

egy space B(n) with the product topology. The fact that Assumption 2.2 is

satisfied follows from Tychonoff Product Theorem. Fix now an agent i. We

propose to prove that the graph of the preference correspondence Pi is open

for the product topology. Let x and y be two joint strategies in X such that

y ∈ Pi(x). Let ϕ : Prob(S)→ R be the function defined by

ϕ(q) ≡
∫
S

[ui(y(s))− ui(x(s))]q(ds).

By definition of the weak star topology σ(Prob(S), B), the function ϕ is

weakly star continuous. Since Qi is weakly star compact, we can conclude

that there exists ε > 0 such that

inf
q∈Qi

∫
S

[ui(y(s))− ui(x(s))]q(ds) > 2ε.

It is well-known that weak star compactness of Qi implies tightness. It then

follows that there exists a finite set S(ε) ⊂ S such that

∀q ∈ Qi, q(S \ S(ε)) 6
ε

5M

where M > 0 is an upper bound of ui. Since the function ui is continuous,

there exist Vy and Vx open neighborhoods of (y(s))s∈S(ε) and (x(s))s∈S(ε)

respectively such that

sup
s∈S(ε)

|ui(x̃(s))− ui(x(s))|+ |ui(ỹ(s))− ui(y(s))| 6 ε/2

for every (x̃(s))s∈S(ε) ∈ Vx and every (ỹ(s))s∈S(ε) ∈ Vy. Let Wx and Wy be

the set of all x̃ ∈ B(n) and ỹ ∈ B(n) respectively, satisfying

(x̃(s))s∈S(ε) ∈ Vx and (ỹ(s))s∈S(ε) ∈ Vy.
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The set Wx×Wy is an open neighborhood of (x, y) for the product topology

satisfying

∀(x̃, ỹ) ∈ Wx ×Wy, ỹ ∈ Pi(x̃). (5.2)

Indeed, fix q ∈ Qi, a pair (x̃, ỹ) ∈ Wx ×Wy and let

∀s ∈ S, g(s) ≡ [ui(ỹ(s))− ui(x̃(s))]− [ui(y(s))− ui(x(s))].

Condition (5.2) is satisfied if we prove that∫
S

g(s)q(ds) > −3ε

2
.

Since |g(s)| 6 4M , the definition of S(ε) implies∫
S

g(s)q(ds) > −4ε

5
+

∫
S(ε)

g(s)q(ds).

Given the choices of Vx and Vy we have g(s) > −ε/2. It then follows that∫
S

g(s)q(ds) > −4ε

5
− ε

2
= −13ε

10
> −3ε

2
.

We have thus proved that the correspondence Pi has an open graph, implying

that the ex-ante game is α-continuous.

6 Proof of the Main Theorem

The proof of the Main Theorem is inspired by the proof of Proposition 1

and Proposition 2 in Florenzano (1989) and the proof of Theorem 2.1 in

Lefebvre (2001). Our framework is more general that the one in Florenzano

(1989) and Lefebvre (2001) since we allow for externalities in preferences.

The crucial difference between our proof and the one in Florenzano (1989) is

that we make use of a representing result of balanced collections proved by

(Scarf 1971, pp. 178–179). The combination of the techniques used by Scarf
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(1971) and Florenzano (1989) constitutes our main technical contribution.

We split the proof in two steps. We first assume that the strategy space is

finite dimensional. The general result is then derived from a Bewley-type

limit argument.

6.1 The finite dimensional case

The fixed-point theorem we use (see Lemma A.1 in Appendix A.1) is valid

for finite dimensional spaces. This is the reason why we first study the case

where the dimension of the strategy space L is finite.

Proposition 6.1. Let G =
{
L, (Xi, Pi)i∈I , F, (F

S)S∈I
}

be a balanced and

α-continuous generalized game satisfying Assumptions 2.1–2.3. If L is finite

dimensional, then G has a non-empty α-core.

Proof of Proposition 6.1. We denote by Z the non-empty, compact and con-

vex set defined by

Z ≡ co
∏
S∈I

F S.

Recall that ∆ denotes the set of balancing weights defined in Section 4. For

each (z, λ) in Z ×∆, where z = (zS)S∈I and zS = (zSi )i∈S, we let

θ(z, λ) ≡ {(yi)i∈I} where for each i ∈ I, yi ≡
∑
S∈I(i)

λSz
S
i .

Since the generalized game is balanced, we have θ(Z × ∆) ⊂ coF = F ,

implying that θ is a continuous correspondence from Z×∆ to F .27 For each

x ∈ F , we let

ϕ(x) ≡
∏
S∈I

ϕS(x)

where for each S ∈ I,

ϕS(x) ≡ co[F S ∩ P S(x)].

27Actually θ is a function.
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Recall that for each S ∈ I,

P S(x) ≡

{
y ∈ XS : {y} ×W I\S ⊂

⋂
i∈S

Pi(x)

}
.

For each x ∈ F , we let

I(x) ≡ {S ∈ I : ϕS(x) 6= ∅}.

We let Σ be the subset of RI
+ defined by

Σ ≡

{
µ = (µS)S∈I ∈ RI

+ :
∑
S∈I

µS = 1

}
.

For each (x, µ) ∈ F × Σ, we let

ψ(µ) ≡ argmax {µ · λ : λ ∈ ∆}

and

ξ(x) ≡ {ν ∈ Σ : νS = 0, ∀S 6∈ I(x)} .

Following Assumption 2.2, the set K defined by

K ≡ F × Z ×∆× Σ

is a non-empty convex compact subset of a finite dimensional vector space.

We consider now χ the correspondence from K to K defined by

∀(x, z, λ, µ) ∈ K, χ(x, z, λ, µ) ≡ θ(z, λ)× ϕ(x)× ψ(µ)× ξ(x).

In order to apply Lemma A.1 in Appendix A.1, we propose to prove that

correspondences in the definition of χ have convex values and are either

lower semi-continuous or upper semi-continuous with closed values.

• The correspondence θ is clearly continuous with compact convex and

non-empty values.
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• Since the game is α-continuous, for each S ∈ I, the correspondence

ϕS : x 7→ co[F S ∩ P S(x)] has open lower sections.

• Since ϕS has open lower sections, it follows that for each x ∈ F there

exists a neighborhood W of x such that

∀x′ ∈ W, I(x) ⊂ I(x′).

As a consequence, we get that ξ has open lower sections.

• The correspondence ψ is clearly convex and compact valued. Moreover

from Berge Maximum Theorem, it is upper semi-continuous.

It follows from Lemma A.1 that there exists (x, z, λ, µ) ∈ K such that

x = θ(z, λ) (6.1)

∀S ∈ I,
[
zS ∈ ϕS(x) or ϕS(x) = ∅

]
(6.2)

λ ∈ ψ(µ) (6.3)

µ ∈ ξ(x) or I(x) = ∅. (6.4)

We propose to prove that x belongs to the α-core of G. If I(x) = ∅ then

ϕS(x) = co[F S ∩ P S(x)] = ∅ for each S ∈ I, implying that x belongs to

the α-core. To complete the proof, we only have to show that I(x) = ∅.
Assume by way of contradiction that I(x) 6= ∅. The following claim is a

direct consequence of (6.3) and (6.4).28

Claim 6.1. There exists i0 ∈ I such that for every coalition S 6∈ I(x), if i0 ∈ S
then λS = 0.

28The proof of Claim 6.1 follows from standard Kuhn–Tucker arguments and is similar

to the proof of Claim 3.1 in Lefebvre (2001). For the sake of completeness, we provide

details in Appendix A.3.
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It follows from (6.1) that

∀i ∈ I, xi =
∑
S∈I(i)

λSz
S
i .

The rest of the proof differentiates with Florenzano (1989) and constitutes

the main technical contribution of our paper. Following (Scarf 1971, pp.

178-179), we have the following decomposition of x

x ≡ (xi)i∈I =
∑
S∈I(i0)

λSy(S)

where for each S ∈ I(i0) such that λS > 0, the allocation y(S) = (yi(S))i∈I ∈
X is defined by

∀i ∈ I, yi(S) =


zSi if i ∈ S

(∑
E∈I(i,−i0) λEz

E
i

)
/
(∑

E∈I(i,−i0) λE

)
if i 6∈ S,

where I(i,−i0) ≡ {E ∈ I : i ∈ E and i0 6∈ E}.29 Now Claim 6.1 implies

that

x =
∑

S∈I(i0)∩I(x)

λSy(S).

Observe that for each S ∈ I(i0)∩ I(x), we have πS(y(S)) = zS. In particular

from (6.2) we get y(S) ∈ coPi0(x). Hence x ∈ coPi0(x) which yields a

contradiction.

6.2 The general case

Now as a corollary of Proposition 6.1, we propose to prove the Main Theorem

in the general case: L is a Hausdorff topological vector space.

29It is important to note that ∑
S∈I(i0,−i)

λS =
∑

E∈I(i,−i0)

λE .
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Proof of the Main Theorem. Let {xS : S ∈ I} be any arbitrary set of feasible

strategies xS in F S and let H be the collection of all finite dimensional

subspaces of L containing all these feasible strategies. For each H ∈ H, we

let GH be the restriction of G to the subspace H:

GH ≡
{
H, (XH

i , P
H
i )i∈I , FH , (F

S
H)S∈I

}
,

where for each i ∈ I, we let XH
i ≡ Xi ∩H and for each x ∈ XH ≡

∏
i∈I X

H
i ,

we let

PH
i (x) ≡ Pi(x) ∩HI and ∀S ∈ I, F S

H ≡ F S ∩HS.30

We can apply Proposition 6.1 to the game GH . Then there exists xH in the

α-core of GH . Since xH ∈ F it follows from Assumption 2.2 that, passing to a

subnet if necessary, (xH)H∈H converges to some x ∈ F . We propose to prove

that x belongs to the α-core of the game G. Assume, by way of contradiction,

that there exists S ∈ I and yS ∈ F S such that yS ∈ F S ∩ P S(x). Since the

game is α-continuous, every set {x ∈ X : yS ∈ P S(x)} is open in X. This

implies that there exists G ∈ H such that yS ∈ F S ∩ P S(xH) for every H in

H containing G. Choosing H to be the linear space generated by G and the

set {yi : i ∈ S}, we get a contradiction with the fact that xH belongs to the

α-core of the finite dimensional game GH .

In his concluding remarks, Kajii (1992) claimed that “the uniformity

involved in the definition of the αa-core prevents us from following a Bewley-

type limit argument: a subnet of the net of αa-core strategies converges but

the convergence is not uniform with respect to potential blocking strategies

which may arise in the limit”. To clarify why this is not in contradiction with

our proof of the Main Theorem, we need to introduce additional notations.

Recall that a feasible joint strategy x ∈ F belongs to the α-core if and only

30It follows that FH = F ∩HI .
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if there does not exist a feasible coalition S ∈ I such that F S ∩ P S(x) 6= ∅
where

P S(x) = {y ∈ XS : {y} ×W I\S ⊂
⋂
i∈S

Pi(x)}.

The definition of P S(x) corresponds to the blocking power of our α-core since

{y} ×W I\S = {(y, w) : w ∈ W I\S}. We can adapt the definition of P S(x)

to capture the blocking power associated to the αa-core. Let P S
a (x) be the

set defined by

P S
a (x) ≡ {y ∈ XS : {y} ×XI\S ⊂

⋂
i∈S

Pi(x)}

where {y} ×XI\S ≡ {(y, z) : z ∈ XI\S}. Given these notations, a feasible

joint strategy x ∈ F belongs to the αa-core if and only if there does not exist

a feasible coalition S ∈ I such that F S ∩ P S
a (x) 6= ∅. Contrary to W I\S,

the set XI\S may not be compact. This implies that the correspondence P S
a

may not have open lower sections even if the graph of each P i is open. In

particular, as suggested by Kajii (1992), our Bewley-type argument could

not be applied if we were trying to prove directly that the αa-core is non-

empty. In other words, the introduction of our intermediate blocking power

plays a crucial role for the validity of our arguments: it enables us to prove

a stronger result under weaker assumptions.

7 Concluding remarks

We proved a new result on the non-emptiness of the α-core which encom-

passes as a special case all the existing results in the literature. Although, the

usefulness of our Main Theorem was indicated by providing new α-core ex-

istence theorems for games with Knightian and voting preferences (these re-

sults cannot be proved by using the theorems of Scarf (1971) or Kajii (1992)),
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we think that our main result will find additional applications in asymmet-

ric information economies with externalities. In particular, the problem of

proving the existence of incentive compatible and efficient contracts with ex-

ternalities, is wide open. Our new results appear to be promising in solving

this problem and we hope to take up the details on a subsequent paper.

A Appendix

A.1 Continuity of correspondences

We provide hereafter definitions and notations about correspondences. Con-

sider X and Y two topological spaces. A correspondence P from X to

Y is said: lower semi-continuous if the set {x ∈ X : P (x) ∩ V 6= ∅}
is open for every open subset V ⊂ Y ; upper semi-continuous if the set

{x ∈ X : P (x) ⊂ V } is open for every open subset V ⊂ Y ; continuous

if it is lower and upper semi-continuous; to have open lower sections if the

set {x ∈ X : y ∈ P (x)} is open for every y ∈ Y ; to have open (closed) graph

if the graph gphP ≡ {(x, y) ∈ X × Y : y ∈ P (x)} is open (resp. closed).

We state hereafter a fixed-point result due to Gourdel (1995) that is used

in our proof of the Main Theorem.

Lemma A.1. Given X =
∏m+n

k=1 Xk where each Xk is a non-empty compact

convex subset of some finite dimensional Euclidean space, let for each k:

ϕk : X → Xk be a convex (possibly empty) valued correspondence. Assume

that for each k = {1, . . . ,m}, ϕk is lower semi-continuous, and that for each

k ∈ {m+1, . . . ,m+n}, ϕk is upper semi-continuous with closed values. Then

there exists x ∈ X such that for each k, either ϕk(x) = ∅ or xk ∈ ϕk(x).
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A.2 Proof of Proposition 4.1

The proof of Proposition 4.1 is a direct consequence of the following uniform

continuity result.

Proposition A.1. Let X, Y and Z be topological spaces and K a compact

subset of Z. If F is a correspondence from X to Y ×Z with an open graph,

then the following set

{(x, y) ∈ X × Y : {y} ×K ⊂ F (x)}

is open in X × Y .

A direct corollary of the above result is that the correspondence FK :

X → Y defined by

FK(x) ≡ {y ∈ Y : {y} ×K ⊂ F (x)}

has open lower sections.

Proof of Proposition A.1. Let (x, y) ∈ X × Y be such that (y, k) ∈ F (x)

for every k ∈ K. Since F has an open graph, for each k ∈ K there exists

an open neighborhood Uk of x, an open neighborhood Vk of y, and an open

neighborhood Wk of k such that

(x′, y′, k′) ∈ Uk × Vk ×Wk =⇒ (y′, k′) ∈ F (x′).

Since K is compact there exists a finite subset J ⊂ K such that

K ⊂
⋃
j∈J

Wj.

We let U and V be defined by

U =
⋂
j∈J

Uj and V =
⋂
j∈J

Vj.
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The set U is an open neighborhood of x and V is an open neighborhood of

y such that

(x′, y′) ∈ U × V =⇒ {y′} ×K ⊂ F (x′).

A.3 Proof of Claim 6.1

Recall that Σ is the simplex of RI, i.e., the set of all families µ = (µS)S∈I

such that

∀S ∈ I, µS > 0 and
∑
S∈I

µS = 1,

and ∆ is the set of balanced weights, i.e., the set of all families λ = (λS)S∈I

such that

∀S ∈ I, λS > 0 and ∀i ∈ I,
∑
S∈I(i)

µS = 1.

Consider µ ∈ Σ such that µS = 0 for every S 6∈ J where J is a non-empty

subset of I. Let λ ∈ argmax{µ · λ : λ ∈ ∆}. It follows from Kuhn–Tucker

Theorem that there exist (αS)S∈I ∈ RI
+ and (ηi)i∈I ∈ RI such that

∀S ∈ I, µS + αS +
∑
i∈S

ηi = 0 and αSλS = 0. (A.1)

Since singletons are admissible coalitions, we can choose S = {i} in (A.1)

implying that ηi 6 0 for every i. Moreover, there exists i0 ∈ I such that

ηi0 < 0. Indeed, we know that µ ∈ Σ. This implies that there exists S0 ∈ I
such that µS0

> 0. Choosing S = S0 in (A.1) implies the desired result.

Now let S ∈ I such that S 6∈ J and i0 ∈ S. We claim that λS = 0. Indeed,

recall that µS = 0 since S 6∈ J. It then follows from (A.1) that

λS
∑
i∈S

ηi = 0.

Since ηi 6 0 for every i and ηi0 < 0, we get the desired result.
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