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Abstract

Let L be an ordered topological vector space with topological dual L' and order dua
L~. Also, let f and g be two order-bounded linear functionals on L for which the
supremum fV g existsin L. We say that f Vv g satisfies the Riesz—Kantorovich formula if
for any 0 < w € L we have

fvg(e)= sup [f(x)+9(e-x)].

0<x<w

Thisis always the case when L is a vector lattice and more generally when L has the Riesz
Decomposition Property and its cone is generating. The formula has appeared as the crucia
step in many recent proofs of the existence of equilibrium in economies with infinite
dimensional commodity spaces. It has also been interpreted by the authors in terms of the
revenue function of a discriminatory price auction for commodity bundles and has been
used to extend the existence of equilibrium results in models beyond the vector lattice
settings. This paper addresses the following open mathematical question:

- Isthere an example of a pair of order-bounded linear functionals f and g for which
the supremum f v g exists but does not satisfy the Riesz—Kantorovich formula?

We show that if f and g are continuous, then fVv g must satisfy the Riesz—Kantorovich
formulawhen L has an order unit and has weakly compact order intervals. If in addition L
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islocally convex, fV g existsin L~ for any pair of continuous linear functionals f and g
if and only if L has the Riesz Decomposition Property. In particular, if L™ separates points
in L and order intervals are o (L, L™ )-compact, then the order dual L~ isavector lattice if
and only if L has the Riesz Decomposition Property — that is, if and only if commodity
bundles are perfectly divisible. © 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

It has for sometime been well-understood that one cannot hope to prove the
existence of general equilibrium — or establish the validity of the welfare
theorems — under the standard finite dimensional assumptions when the commod-
ity space is infinite dimensional and consumption sets lack interior points. In this
literature, the commodity space is most often a Riesz space (vector lattice) and
primitive data of the economy are supposed to satisfy various assumptions known
as ‘‘ properness conditions’’ (see Aliprantis et al., 1990, Aliprantis et al., 2000).

A digtinctive feature of this literature is the non-trivial use of the lattice
structure of the commaodity space. Indeed, Aliprantis and Burkinshaw (1991) show
that when the commaodity space is a vector lattice, the lattice structure of the dual
space is basically equivalent to the validity of the welfare theorems. ! Further-
more, the various proofs in this literature can be delineated by means of the Riesz
Decomposition Property of the commodity space. For example, Mas-Colell (1986)
and Aliprantis et al. (1987) use the Decomposition Property to facilitate a
separating hyperplane argument, while Y annelis and Zame (1986) use the property
to show the continuity and extendibility of the equilibrium prices of truncated
economies. This is in sharp contrast to the case where consumption sets are
assumed to have interior points and where the existence of a continuous quasi-
equilibrium price can be proven with little reference to the lattice structure of the
commodity space (see for example, Bewley, 1972; Florenzano, 1983).

In the more recent approach of Mas-Colell and Richard (1991) and Richard
(1989) (see aso Deghdak and Florenzano, 1999; Podczeck, 1996; Tourky, 1998,
1999) the Decomposition Property is used in an indirect manner. Here, the authors
consider economies in the more genera setting of a Riesz commodity space that
need not be locally solid. In this setting a supporting hyperplane argument in the
space of alocations furnishes a list of prices and the crucia part of the proof is
showing that the supremum of these prices is indeed the required supporting
(equilibrium) price. In this second group of papers, the Decomposition Property is
used through two of its consequences. First, the fact that the order dua of the

L Of course, here we are tal king about those welfare theorems that are traditionally proven using a
separating hyperplane argument, i.e., the second welfare theorem and the equivalence of Edgeworth
and Walrasian equilibria.
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commodity space is a vector lattice and second the Riesz—K antorovich formula for
calculating the supremum of any two order-bounded linear functionals. It is also
quite clear that the decentralization arguments in these more recent papers go
through with little fuss if both of these properties are present, and without regard
to whether the commodity space is a Riesz space or has the Riesz Decomposition
Property.

This observation was recently made by Aliprantis et a. (1998), who extended
the literature on the existence of equilibrium and on the welfare theorems in
infinite dimensional spaces to commodity spaces that are not lattice ordered. They
were able to drop the requirement that both the commodity space and the price
space be lattice ordered by introducing a new class of non-linear prices based on
the Riesz—Kantorovich formula. They also provide concrete economic interpreta-
tions to the Riesz Decomposition Property and the Riesz—Kantorovich formula.
The Riesz—Kantorovich formula coincides with the revenue function of a discrimi-
natory price auction — a generaization of the revenue function of the single
commodity US Treasury Bill Auction. They interpreted the Riesz Decomposition
Property (and its extension termed ‘‘Consumption Decomposability’’) as the
perfect divisibility of commodity bundles and showed that in the presence of such
perfectly divisible bundles the revenue function of the auctioneer is always linear.

Motivated by these observations, we address in this paper the following long
standing open mathematical question.

- Isthere an example of a pair of order-bounded linear functionals for which
the supremum exists but does not satisfy the Riesz—Kantorovich formula?

We consider an arbitrary ordered vector space L with order unit and weakly
compact order intervals. We show if f and g are continuous linear functionals on
L and fV g exists in the order dua L™, then fv g must satisfy the Riesz—
Kantorovich formula. Therefore, we provide a negative answer to our question in
the important setting of an ordered vector space with order unit and o(L,L™)-
compact order intervals.

We aso show that if, in addition, L is locally convex with weakly compact
intervals, then fVv g existsin L™ for any pair of continuous linear functionals f
and g if and only if L has the Riesz Decomposition Property (see also Andb,
1962). In particular, if L separates pointsin L and order intervals are o (L,L™)-
compact then L~ is avector lattice if and only if L has the Riesz Decomposition
Property — hence, if and only if commodity bundles are perfectly divisible.

Commodity spaces with order units often arise in the study of economies with
infinitely many commaodities even when the underlying commodity space does not
have an order unit. Consider an exchange economy with an ordered vector space L
as a commodity space, with total endowment « > O, and consumption sets that
coincide with the positive cone of L. Since all economic activity takes place inside
the Edgeworth box [0, w], it is often useful to restrict the commodity space to the
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ideal L, generated by w. Thisideal consists of al bundles that are dominated by
multiples of w, i.e,

L,={XxeL:+x< Aw for some \ > 0}.

The space L, is the canonical example of a commodity space that satisfies our
assumptions. For an extensive analysis of economies truncated to L, see Alipran-
tis et al. (1987).

The paper is organized as follows. The mathematical preliminaries are outlined
in Section 2. Our main results are in Section 3. In Section 4 we show the
usefulness of our main results in the theory of value with non-linear prices as
developed by Aliprantis et al. (1998). We show that the perfect divisibility of
commodity bundles, the linearity of the non-linear prices, and the lattice ordering
of the order dual are equivaent.

2. Mathematical preliminaries

Unless otherwise stated in this work, L shall denote an ordered vector space.
Recall that a (real) vector space L is called an ordered vector space if L is
equipped with an order relation > such that x>y imply x+z>y+ z for al
zel and ax=> ay for each > 0. We shal say that x dominatesy if x>y
holds. The convex set L, ={x € L:x> 0} is caled the positive cone of L and its
members are referred to as positive vectors. The positive cone L, satisfies the
following properties:
1L, +L,CcL,,

2. aL,cL, foreach a>0, and

3. L.n(-L,)={0}.

Any subset C of avector space that satisfies the above properties (1), (2), and (3)
is called a convex cone. Every convex cone C induces a natura order > on X by
letting x >y whenever x —y € C. This order makes X an ordered vector space
satisfying X, = C. In other words, an ordered vector space is completely charac-
terized by its positive cone.

A (non-empty) subset A of L is bounded from above (respectively, from
below) if there exists some x € L satisfying a < x (respectively, x < a) for all
a e A, the vector x iscalled an upper bound (respectively, lower bound) of A. A
set is order-bounded if it is bounded from above and below. Any set of the form
[x,yl={zeL:x<z<y} is cdled an order interval or simply an interval.
Clearly, asubset of L is order-bounded if and only if it isincluded in an interval.

A subset A of L has a least upper bound (or a supremum), denoted sup A,
if supA is an upper bound of A and whenever x is an upper bound of A, then
sup A<x. The greatest lower bound (or infimum) is defined analogously.
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Following the standard lattice terminology, the supremum and infimum of the set
{x,y} will be denoted by xVy and x Ay, respectively. That is,

XVy=sup{x,y} and x A y=inf{x,y}.

An ordered vector space L is called a Riesz space (or a vector lattice) if xV'y
and x Ay existin L for al x,y < L. In aRiesz space, the elements

IX|=xV (=x), x*=xV0,and x =(—-x) VO

are called the absolute value, the positive part, and the negative part of the
vector X, respectively. We have the identities

x=xXx"—=x" and [x| =x"+x". (1)

For extensive and detail treatments of Riesz spaces, see Luxemburg and Zaanen
(1971) and Aliprantis and Burkinshaw (1985).

The cone L, is said to be generating if for each x € L there exist y,ze L,
such that x=y—z Equivaently, L, is generating if every vector of L is
dominated by some positive vector. If L isa Riesz space, then it follows from (1)
that the cone L, is generating.

Recall that a vector a€ A, where A is a subset of a vector space X, is an
internal point of A if for each x& X there exists some A,> 0 such that
a+Ax€A for eech — Ay < A < A, (or, equivalently, if for each x there exists
some A, > O suchthat a+ Axe AforeachO< A < A,. Avector ec L, iscaled
an order unit if for each x € L there exists some A > 0 such that x < Ae. Clearly,
if L has an order unit, then the cone L, is automatically generating. Also, if
e€ L, isan order unit, the so are ae for « > 0and e+ x for each x€L,. The
next well-known result (see for instance, Theorem 1.3.1 of Jameson, 1970, p. 11)
that characterizes the order units will play an important role in this work.

Lemma 2.1. Avector e€ L, isan order unit if and only if it is an internal point
of L,. In particular, if eis an order unit, then the zero vector is an internal point
of the convex set e— L, ={xeL:x< €}

Proof. Assume first that e is an internal point of L, and let x € L. Then there
exists some « > 0 such that e+ a(—x) > 0. Thisimplies x<(1/a)e, so that e
is an order unit.

Next, suppose that e is an order unit and let x € L. Fix some A, > 0 such that
Ao{—X) < e Now notice that for each 0 < A < A, we have

A A
M —X) =(/\—O)/\O(—x) s/\—oes e.

So, e+ Ax>0 for al 0< A <Ay, which shows that e is an internal point of
L,. |
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Some known relationships between order units and interior points are included
in the next result.

Lemma 2.2. For an ordered vector space L we have the following.

1. If the positive cone L, of L has an interior point e with respect to a linear
topology on L, then e is an order unit — and so L, is also generating.

2. When L isfinite dimensional, the positive cone L, is generating if and only if it
has an interior point with respect to the Euclidean topology of L.

3. If Lisinfinite dimensional and L, is generating, then L, can have no interior
points for many Hausdorff locally convex topologies on L.

Proof. (1) Assume that L, has an interior point e with respect to some linear
topology 7 on L. Pick asymmetric m-neighborhood V of zero suchthat e+ V CL,.
Now let xe V. Thenwehave —xeVandso et x€L, or —e<x<e Thatis,
V c[—e,e], which shows that the order interval [—e,€] is a mneighborhood of
zero. This implies that e is an order unit.

(2) Assume L=R" and that L, is generating. We claim that L contains a
basis consisting of positive vectors. To seethis, let {e,...,e} be amaximal set of
linearly independent vectors lying in L. Now, let x € L. Since L, is generating,
we can choose y,z€ L, such that x=y— z It follows that both y and z liein
the span of the set {e,...,e}, and from this we infer that x likewise lies in the
span of {e,...,eJ}. In other words, {e,,...,e} isabasisof L and so k=n.

Next, put e= X ;. We claim that e is an interior point of L,. To prove
this, notice first that the set V = {x = X{_,A;e:X[_,|A;| < 1} is an open neighbor-
hood of zero for the Euclidean topology. Moreover, if x=X ;A€ €V, then
e+x=X" (1+X)egelL,. Thisshowsthat e+ VL, sothat eisan interior

point of L,.
(3) If L=1,, then its standard cone | is generating while its interior is empty
with respect to the topology induced by the |,-norm. ]

The symbol L* denotes the vector space of al linear functionals on L (the
algebraic dual of L). A linear functional f < L* is said to be positive if f(x) >0
holds for all x€ L. The collection of positive linear functionals on L is denoted
L% and is known as the cone of positive linear functionals. If the cone L is
generating, then the cone L* makes L* an ordered vector space by letting f>g
if f—gel*,or f(x)>g(x) foreach xeL,.

A linear functiona f is said to be order-bounded if f carries order-bounded
sets of L to bounded subsets of R. The collection of al order-bounded linear
functionals on L is a vector subspace of L* called the order dual of L and
denoted L~ . Clearly, every positive linear functional is order-bounded, and so
every regular linear functional (i.e., every linear functional that can be written as
a difference of two positive linear functionals) is likewise order-bounded. If L~
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denotes the vector space of al regular linear functionas, then we have the
following vector subspace inclusions:

L'cL~cL*.
It should be noticed that if L~ is a Riesz space, then L' = L.

An ordered vector space L is said to have the Riesz Decomposition Property
(or simply the Decomposition Property) whenever 0 <y < x, + X, with x;,X, €
L, guarantees the existence of two vectors y,,y, €L satisfying 0 <y, <X,
0<y,<X,, and y;, +y, =Y. Every Riesz space has the Decomposition Property
(see Aliprantis and Burkinshaw, 1985, Theorems 1.9 and 1.15). An ordered vector
space with the Decomposition Property need not be a vector lattice (see for
instance, Peressini, 1967, p. 14). For a simpler example, let L = R? and consider
the cone L,={0} U{(x,y):x>0 and y> 0}. Then the ordered vector space
(L,L,) isnot a Riesz space but it satisfies the Decomposition Property.

The ‘‘ice cream’’ cones do not satisfy the Decomposition Property. The
following example clarifies the situation.

Example 2.3. Consider the *“ice cream’’ convex cone C in R® defined by
C={A(xy,2):A>0and x*+y* <1}
={(x,y,2):€R*z>0and 2% > 4( x* + y?)}.
That is, C is the convex cone with vertex zero generated by {(x,y,2): x? + y? < 1}.
Its graph is shown in Fig. 1.

We denote the order induced by C on R® by > or <, i.e, x>_y if and
only if x—ye& C. Some straightforward verifications show that the cone C and
the ordered vector space (R3,C) equipped with its Euclidean topology satisfy the
following properties.

(1) Cisaclosed cone.

(2) (R3,C) has order units — and hence, C is also a generating cone. For
instance, the vector e = (0,0,2) is an order unit. To seethis, fix u=(x,y,z) € R3.
Choose some « >0 such that the rea number A =(—z+ 2«a)/2 satisfies
A > /x? +y? and note that

X
—u+ae=(—-X—-Y,—2z)+a(0,0,2) =A(T,Ty,2) eC.

Thisimplies u < ae.

(3) C has a non-empty interior. For instance, the open ball centered at (0,0,2)
with radius 1 /2 lies entirely in C. This can also be derived from Lemma 2.2 via
part (2) above.

(4) The order intervals of (R3,C) are compact.

(5) If u=MXxy2eC and x2+y?=1, then a vector v € R® satisfies
0<.v<cuif and only if there exists some 0 < u <1 such that v = pu. (The
half-rays {a(X,y,2):a > 0}, where x? +y? =1, are the extreme half-rays of this
cone.)
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Fig. 1.

To see this, assume that 0 < - A(a,b,2) < (x,y,2) with x? + y? = 1. Clearly,
O<A<l1landif A=0 or A=1, the conclusion should be obvious. So, let
0< A< 1. Since(x,y,2) — XMa,b,2) € C, there exist some pair («,8) with a? +
B?<1 and some u > 0 such that (x,y,2) — A(a,b,2) = u(a,B,2). Hence, (X,y)
= Ma,b) + u(a,B). Since x? + y? = 1, the point (X, y) is an extreme point of the
unit disk, and from this we see that (x,y) = (a,b). Hence, A(a,b,2) = A(X,y,2).

(6) The ordered vector space (R*C) does not have the Decomposition Prop-
erty. To see this, consider the vectors (1,0,2),(—1,0,2),(1,0,2) € C and note that

0<¢(012) <c(004) =(1,0,2) + (-1,0.2).

If (R3C) has the Decomposition Property, we can find vectors u,v € R®
satisfying 0 < cu<(1,0,2), 0<.v<(-102), and u+0v=(0,1,2). Now by
part (5), there exist 0 < A, < 1 such that u= A(1,0,2) and v = u(—1,0,2). But
then,

(012) =u+0v=A10,2) + u( —1,0,2) = (A + .02\ + 1)),

which isimpossible. So (R3,C) does not satisfy the Decomposition Property. ®

Regarding ordered vector spaces with the Decomposition Property we have the
following basic result.
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Theorem 2.4 (Riesz—Kantorovich). If an ordered vector space L has the
Decomposition Property and its cone is generating, then its order dual L™ is a
Riesz space. Moreover, if f,ge L™, then for each xe L, we have:

fvg(x)=sup{f(y)+9(z):y,zeL, and y+ z= x}
= sup [1(y) +9(x=y)]

O<y<x

fAg(x)=inf{f(y) +9(2):y,zeL, and y+ z= X}
= inf [f(y) +9(x=y)]

O<y
[F1(x) = sup{ f(y):lyl<x} = sup f(y).
lyl<x
Proof. See Peressini (1967) (Proposition 2.4, p. 23). -

The preceding theorem is due to the founders of the theory of Riesz spaces, F.
Riesz and L.V. Kantorovich, and lies in the heart of the theory of positive
operators. Theorem 2.4, as stated above, was proven first by Riesz (1940) and was
generalized to arbitrary order-bounded operators from a Riesz space to an order
complete Riesz space by Kantorovich (1936). The formulas describing the lattice
operations in the order dual of a Riesz space are known as the Riesz—Kantorovich
formulas. The following remarkable mathematical problem regarding the Riesz—
Kantorovich formulas is still open.

+ Assume that for two regular operators ST:L — M between two Riesz spaces
the supremum (least upper bound) SV T of the operators exists in the ordered
vector space of regular operators Z"(L,M). Does then the supremum SV T
satisfy the Riesz—Kantorovich formula

SVT(x)= sup [S(y) +T(x—y)]

O<y=<x

for each xe L ?

For more about this problem and related material we refer the reader to Andd
(1962), van Rooij (1985) and Abramovich and Wickstead (1991; 1993). Before
moving on to our main results, let us settle on some further notation. For any
positive integer m> 0 and x € L, define the following non-empty convex sets:

m
Mxm={(y1,..-aym) ELT:ZMSX} and
i-1

m
,/fxm={(yl,...,ym)eLT:Zyi=x}.

i=1
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Also, for a finite number f,,...,f, of order-bounded linear functionals on L we
let

m

m +
V . =sup{f,,f,....f } and ( \/fi) = sup{0,f,,f,,....f.},
i=1 i=1

where the suprema are taken in L~.2 Now notice that if L has the Riesz
Decomposition Property then the Riesz—Kantorovich formulas can be rewritten as
follows:

(i\zfi)(X) =Sup{ifi(yi):(ylyyz,---,ym) 67;"}

<3

(Vi) (x)=wp{__ffi(yi):(yl.yz,...,ym)ew}

foral xeL,.
Regarding the convex sets " and &#," we have the following result —
whose easy proof is omitted.

Lemma 2.5. Assume that 7 is a Hausdorff linear topology on an ordered vector
space L such that for some x e L, the order interval [0,x] is 7-compact. Then:
(1) For each m the convex sets ;" and &," are both compact subsets of
(L,7)™
(2 Iff,...,f,, are r-continuous linear functionals, then the suprema

Sup Zfl(yl)( yla"wym) eg?xm} andSUp{Zﬂ(ZJ( Z11""Zm) e‘*Mxm

i=1 i=1
are both maxima. That is, there exist (y5,...,y%) e #," and (Zf,...,Z}) € "
such that

Y0 = L) ad L2 = Li(2)

hold for all (y,,...,y,,) €Z," and al (z,...,z,) €.

3. The Riesz—K antorovich formula

We begin with our first important result concerning the Riesz—Kantorovich
formula

2t should be observed that v ™, f; and (v ™, f)* arein general different linear functionals. For
an example, consider a linear functional f <0 and notethat f v f=f<0=f",
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Lemma 3.1. Let L be an ordered vector space with an order unit e and assume
that for the order-bounded linear functionals f,,f,,...,f, the supremum
(v, f)* existsin L™ . If there exists some (X§,X3,...,X) € satisfying

m m
LX) = (%)
i=1 i=1
for each (x4, X,,...,X,,) €2", then

(Vi) @-Ero)

Proof. Let g= (Vv ™, f)* and notice first that

a(e) zg(__ﬁxi*) - Yo(x)= Li(x) =20

To finish the proof, we must verify that g(e) < X" , f,(x{) is also true.

If X", f,(x¥) =0, then it should be clear (since e is an order unit) that f, <0
(in fact, we have f, = 0) for al i = 1,...,m. In this case, g = 0 from which we get
g(e)=X" , f.(x¥)=0. So, we can assume that X" , f,(x;) > 0.

Let

Y= {(yl,yz,---,ym) € L“l:__ifi(yi) >__£fi(><?k)}-

Notice that Y LT is non-empty (for instance, 2(x§,x35,...,x%) €Y) and con-
vex. Furthermore, Y isdigoint from " and is therefore disjoint from the convex
set

m
Z={(y1,y2,---,ym) ELm:Zyise},
i—1

which in turn (in view of Lemma 2.1) has an internal point in L™ By the
Separation Theorem (see for instance, Aliprantis and Border, 1999, Theorem 5.46,
p. 188) there exists a non-zero linear functiona (h,h,,...,h) e (L*)™ that
Separates Z and Y. That is,

h(3) = T0(2) forall (VoY ) €Y ad(2,,250..,20) €2
2

Since (x¥,x%,...,x*) € Z, it follows from (2) that

Lhi(y) = 2 hi(xF) foral (y1,¥z,....Ym) €Y. (3)

i=1 i=1
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Furthermore, it follows from (2) that
m m m
Y hi(xF)=IlimY h(axf)> Y h(z)fordl(z,z,...,2,) €Z. (4)
i=1 allizg i=1
Next, we show that h, =h,= --- =h, =h. Suppose, by way of contradic-

tion, that there exists some z& L such that h,(z) > h,(z). Then for some « > 1
we have

(Xt +2) + (X —2) + h(xt) > Thi(axt).

i=3 i=1
But (axf,ax},...,ax¥)eYand (x¥ +z,x5 —z,x3,...,x*) € Z, which contra-
dicts (2). By the symmetry of the situation we see that h; =h,= --- =h_ =h.

Now we show that h> 0. Let xe L, and note that (e — ax,0,..., 0) € Z for
al a> 0. Therefore, from (4) we get X ,h(x*) > h(e) — ah(x) or

h(e) - L h(xt)
h( x) > =1 :

o

for each o> 0. Letting o — o yields h(x) > 0. That is, h>0andso he L"~.
Furthermore, since h = 0 it must be the case that h(e) > 0 and since (e,0,...,0)
eZ (4) impliesthat X ;h(x) > 0. So, we can let

T h(x)
3=| 1

h(x)

> 0.

g

i=1

We claim that 6h>f, for i=12,...,m To see this, fix i and let xeL,. If
f,(x) < 0, then §h(x) > 0 > f,(x) istrivialy true. Assume, therefore, that f,(x) > 0
and let
m
2 fi(xF)
i=1
v = %) > 0.

It is clear that the vector (0,...,ayX,0,...,0), where ayx occupies the i-th
position, satisfies (0...,ayx,0,...,00 €Y
for any o > 1, and from (3) we see that

dyh(x) = Sli?lh(ayx) > ngh( Xi) =£‘,fi(x§k) = yfi(x),

or 6h(x) = f,(x) for each x> 0. Thus, sh>f; for i=12,...,m.
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Consequently, g < &h. In particular, from (4) it follows that
m m
g(e) <8h(e) <) h(x) = L fi(x"),
i=1 i=1

and the proof isfinished.
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Corollary 3.2. Let L be an ordered vector space with an order unit e and assume
that for the order-bounded linear functionals f,,f,,...,f, the supremum v ™ f,

existsin L™ . If there exists some (x¥, x5, ...,x¥) e &7, satisfying
m m
L) = (%)
i=1 i=1

for each (x4, X,, ..., X)) € FJ", then

NOCEIE)

Proof. Let g= Vv ", f, and start by observing that g —f, =[Vv ™ ,(f, — f))]* and

'722( fi=f)(x") =l721fi( x) —fi(e)

Z'E‘;fi(xi) +h e_'gxi) —fi(e)
Y (- (%),

i=2

for any (x,,...,X,) € 1. Therefore, by Lemma 3.1, we have
m
(g—f)(e) = L (fi—f)(x).
i=2

In particular,

a(e) =f1(e— Y|+ Th() = Th(x),
i=2 i=2 i=1

which is the desired formula

From now on we shall assume that L is equipped with a Hausdorff linear
topology 7 for which the order intervals are compact — in which case the
topological dual L' of (L,7) is a vector subspace of the order dua L™, i.g

LcL™.
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We are now ready to state and prove our main theorem.

Theorem 3.3. Assume that L is an ordered vector space with order units and that
it is equipped with a Hausdorff linear topology for which the order intervals of L
are compact. If for some continuous linear functionalsf,,f,,...,f, the supremum
g= Vv, f existsin L™, then g satisfies the Riesz—Kantorovich formula, i.e., for
each xe L, we have

(i\_n}lfi)(x) =Sup{__£fi(yi):( Yi:YoreeYm) EF

Proof. Assume that 7 is a Hausdorff linear topology on L for which the intervals
are 7-compact and notice that for each x € L, the set #,™ is compact in (L,7)™.
Now fix an arbitrary x € L, and then select an order unit e such that x<e.
ForeachO<a<1let e, = ax+(1— a)e Clearly, each e, isan order unit
and 0 < e, < e holds for each 0 < a < 1. We consider the index set (0,1) directed
by the increasing order relation >, i.e, o= B in (0,1) if and only if a> .
Clearly, x, — x. By Lemma 3.1, we know that g satisfies the Riesz—Kantorovich
formula for each order unit. Therefore, for each 0 < a < 1 there exists some

(z8,z5,...,22) e LT suchthat X", z* = x, and

ag(x)+(l—a)g(e)=g(xa)=.£fi(zia). (5)

Since z* €[0,e] for each a (0,1) and each i = 1,2,...,m and the order interval
[0,€] is T-compact, there exists a subnet of {(z,z5,...,z%)} (which without loss
of generality we also denote it by {(z{,z5,...,z%)} such that z* — z €[0,¢€], for
i=12,...,m From x,—z*<[0,e] for each « and the closedness of [0,e], we
seethat O<x—z <e S00<z<x and X",z =x. Findly, letting « = 1 in
Eqg. (5), it follows from the continuity of each f; that

00 = L1(2) = 0] L6 (aver---9) €57} = 0().

and the proof isfinished. ]

It should be noticed that the hypotheses of Theorem 3.3 do not imply that the
partially ordered vector space L satisfies the Decomposition Property. For in-
stance, R*® with the ‘ice cream’’ cone of Example 2.3 satisfies all the assumptions
of Theorem 3.3 but it does not have the Riesz Decomposition Property.

The next result characterizes the Riesz Decomposition Property in terms of a
lattice property of the topological dual.
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Corollary 3.4. Assumethat L is an ordered vector space with order units and that
it is equipped with a Hausdorff locally convex topology for which the order
intervals of L are weakly compact. Then the following statements are equivalent.
1. For every pair f,ge L the supremum f Vv g existsin L~ .

2. L has the Riesz Decomposition Property.

Moreover, if thisis the case, then L™ is a Riesz space whose lattice operations are
given by the Riesz—Kantorovich formulas.

Proof. If (2) is true, then the validity of (1) follows from Theorem 2.4. So, assume
that (1) istrue and fix x,yeL,. Clearly, [0,x] + [0,y] <[0,x + y].

Now suppose, by way of contradiction, that there exists some z<[0,x + Y]
such that z= [0, x] + [0, y]. Since [0, x] + [0,y] is a weakly compact convex set, it
follows from the Separation Theorem (see for instance, Aliprantis and Border,
1999, Corollary 5.59, p. 194) that there exist some non-zero f € L' and some &> 0
such that

f(z) >e+f(u)+f(v)
for al ue[0,x] and al » €[0,y]. Now a glance at Theorem 3.3 shows that
sp (W) =" (x+y) =F(x) +17(y)

o<w<x+y
= sup f(u) + sup f(v)
O<u<x O<v=<y
<f(z)-¢
< f(z2),
which is a contradiction. Hence, [0, x] + [0, y] = [0, x + y] holds true, and so L has
the Decomposition Property. ]

Recall that L~ separates points in L if xeL and f(x)=0 for al felL™~
implies x= 0. In this case, the weak topology o(L,L™) is a Hausdorff locally
convex topology on L. We, therefore, obtain the following simple conseguence of
Corollary 3.4.

Corollary 3.5. Assumethat L is an ordered vector space with order units and that
L~ separates points in L. If the order intervals of L are o (L,L™)-compact, then
the following statements are equivalent.

1. L™ islattice ordered, i.e., L™ is a Riesz space.

2. L has the Riesz Decomposition Property.

Let us now move to the case where L is an ordered vector space without an
order unit. For any x € L, denoted by L,, the linear subspace U7,_,n[—x,x] and
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note that L, under its canonical ordering is an ordered vector space with order unit
X. The linear subspace L, = U5 _,n[—x,x] is referred to as the ideal generated
by x. As usual, the restriction of the positive cone L, to L, is denoted by L},
i.e, Ly=L,NL,. Notice that for any yeL, the L-order interval [0,y] is
contained in L}, i.e [0,y]cL].

The next lemma characterizes the Riesz—Kantorovich problem for continuous
linear functionals on certain ordered vector spaces (with or without order units).
We highlight this technical observation since perhaps it may lead to a more
general solution of the Riesz—Kantorovich problem than the one presented in this

paper.

Lemma 3.6. If L is an ordered vector space that is equipped with a Hausdorff

linear topology for which the order intervals of L are compact, then the following

two statements are equivalent.

1. Thereisa pair of continuous linear functionals f and g such that f v g existsin
L~ but does not satisfy the Riesz—Kantorovich formula for all xe L.

2. Thereis a pair of continuous functionals f and g and a point x € L, such that
fVv gexistsinL™ but therestriction (f Vv g)|_ is not the supremumof f|_ and
glL, inthe order dual L} of L,.

Proof. Assume first that L is an ordered vector space that is equipped with a
Hausdorff linear topology for which the order intervals of L are compact.

Assume that (1) holds and let f,ge L’ be a pair of continuous functionals for
which fVv g existsin L™ but does not satisfy the Riesz—Kantorovich formula
That is there is some x € L, such that

fvg(x)> sup [f(y) +a(x—y)]. (6)

O<y<x

Consider the space L, for which x is an order unit. Assume, by way of
contradiction, that

(fva)l,=fl., val,, (7)

where the supremum on the right-hand side of the equation is in the order dual of
L,. By Lemma 3.1, (6) and (7), we have

(fle, vVal,)(x) = s [flL(y) +alL(x—y)]

<y<x

= sup [f(y+g(x—y)]

O<y<x
=fvg(x)
= (”LXV 9|LX)(X),
which is a contradiction. Therefore, (2) holds and (1) = (2).
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For the converse, assume that (2) istrue. Let f,g< L' be a pair of continuous
functionals for which f Vv g existsin L™ and let x € L, be a positive vector such
that the restriction (f Vv g)|., is not the supremum of f[_ and g[__in the order
dual of L,. We claim that fV g does not satisfy the Riesz—Kantorovich formula

To see this, assume, by way of contradiction, that fV g satisfies the Riesz—
Kantorovich formula at every ze L, that is, for each ze L, we have

fva(z) = sup [f(y) +9(z-y)]. (8
O<y<z
Let h be alinear functional in the order dual of L, suchthat h>f and h> g. We
see from Eq. (8) that for any ze L] we have

h(z) = sup [flL(y) +al(z=y)] = (TVa)l(2),
O<y<z
which implies h> (fVv @)l . In particular, we get that (fv @)l =fl, Vgl
holds in L}, which contradicts our assumption. Therefore, (1) holds true and
2=Q. [

4. Commaodity decomposition

In Aliprantis et a. (1998), a theory of value with non-linear prices was
developed. The formula for this price is a generalization of the Riesz—Kantorovich
formula. The authors also provided concrete economic meaning to the Riesz—
Kantorovich formula and the Riesz Decomposition Property in terms of the
revenue function of a discriminatory price auction and the perfect decomposability
of commaodity bundles, respectively. With this in mind, we show the implications
of the results of Section 3 to the theory of value with non-linear prices.

Following Aliprantis et a. (1998), let (L,7) be an ordered Hausdorff locally
convex space whose order intervals are mbounded. Consider an exchange econ-
omy with m consumers and designate the arbitrary consumer by the index i. The
bundle w; € L isthe i-th consumer’s initial endowment. Asusud, w = X" ; w; is
the total endowment. The consumption set of consumer i is X;. Throughout this
section, for each consumer i, we assume that:

- the consumption set X; is a convex r-closed subcone of L, and
- O<w €X.

We call an arbitrary linear functional p=(p;,p,,...,p,) on L™ a list of price
bids. Now, each list of price bids defines a value functional that generalizes the
revenue function of the single commodity US Treasury Bill Auction. In a short
while, we shall call this value functional an auction price, which can be non-linear.
The domain C of this value functional will be the convex cone generated in L by
UM X, ie, C=X +X,+ -+ +X.
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Clearly, C is a convex subcone of L, and o € C. The vector space generated
by C isdenoted by M, i.e, M=C—-C.

Now for each commodity bundle xe L, we let &/, denote the set of al
consumable alocations when the total endowment is X, i.e,

m m
A= (Y1, Y25 Ym) e_]_[lxi:Zyisx .
i= i=1

Clearly, each &/, is anon-empty, convex and closed subset of (L,7)™. Notice also
that for each x,ye€ L, and all a > 0, we have

S+ A, C oty and A, = ad

X+y X

We move to the definition of our value functional.

Definition 4.1. The auction price of alist of price bids p=(p;,p,,.-.,p,) isthe
function ,:C — [0,e°] defined by

Pp(X) = su [P(z) +PA2) + - +Pu(Zm)]-

SK74%

One can think of these non-linear functions as the auctioneer’ s revenue function
in a discriminatory price auction. Consumers participate in a discriminatory price
auction for commodity bundles. Their bids comprise a consumption set and a
personalized price, which is a linear functional on L. The auctioneer divides
commodity bundles into consumable alocations that maximize revenue. Each
consumer pays the price she bids. Clearly, if pe(L™)™ (in particular, if pe
()™, then ¢, is a real-valued function. The value ,(x) represents the maxi-
mum revenue that can be obtained for the commodity bundle x by the auctioneer
when p isthe list of personalized price bids by the m players.

We are interested in the conditions under which an auction price is additive and
can be extended to a linear functional on all of L, in which case the notions of an
auction price and a Walrasian price coincide. Before addressing this question, we
list the basic properties of the auction prices. This result can be found in Aliprantis
et al. (1998).

Lemmad4.2. If p=(py,pP,,-.-,P,) €(L7)Misalist of order-bounded price bids,

then its auction price ¢,:C — [0,%) is a non-negative real-valued function such

that:

1. 4, is monotone, i.e., x,y € C with x <y implies ¢,(x) < y,(y),

2. ¢, is super-additive, i.e., y,(X) + ¥,(y) < ¢ (x+y) for all xy € C,

3. ¢, is positively homogeneous, i.e., §,(ax) = ay,(x) for all >0 andx € C,

4. ifp=p,= - =p,=0q=0, then ¢(x) =q(x) for al xeC, i.e, §,=q,
and

5. if xe X;, then p(x) < ¢,(x).
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It should be noticed immediately that properties (2) and (3) of Lemma 4.2
guarantee that the auction prices (which are, in general, non-linear) are always
concave functions.

We now introduce the decomposability property of the consumption sets. This
notion captures the idea of the perfect decomposability of commodity bundles into
consumable allocations.

Definition 4.3 (Consumption Decomposability). The economy has the Consump-
tion Decomposability Property if for each x,y € C we have &, + &/, =2/, ,.

Regarding the Consumption Decomposability Property and extension of auction
prices, we have the following result which is taken from Aliprantis et al. (1998).

Lemma 4.4. For a vector subspace & of L~ the following statements are

equivalent.

1. For each non-zero p=(py,p,,...,Py) EL™ the auction price ¢,:C — [0,)
is additive — and hence it has a unique linear extensionto M = C — C.

2. For each xyeC we have ,,, C +., where the bar denotes

X+y =
o (L™, #™)-closure.

Proof. (1) = (2) Suppose, by way of contradiction, that there exist x,y € C and
some z=(2,,2,,...,2,) €%, such that z& .o/, +./,. Since o(L™&™) is a
locally convex topology, there exists some non-zero p=(p;,p,,-..,pPy) €EL™
which strongly separates z and A+, That is, there exists some &> 0

satisfying
Ta(z)2 e+ La(u)
for aIIIEul,uz, . ,um)elm. This easily implies
BN 2 D) 2 0 () (5) > () + (),

which contradicts the additivity of ,.

(2= (D Let p=(p;,py,...,Py) EL™ Then the auction price i,:C — [0,°],
defined by

Pp( X) = sup [ Pi(2y) +Pa(Z) + -+ + Pl Zm)]'
ze W,

is real-valued, positively homogeneous and super-additive. To see that ¢, is
additive, let x,y € C, and fix z=(z,2,,...,2,) €%,,,C % +.,. Then there
exist two nets {(uf, ...,up)} €., and {(vf, ..., v5)} €, such that

o (L™2™
(uf +of, .. ug+ o) ——— z.
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In particular, we have lim X", p(u®+ ) =X, p(z). Now taking into
account that

f,lpi(uiaJr vi) =.§1pi(uia) +_£1pi(uia) < ¢p(X) + ¢, (),

we see that L, p(z) < ¢,(X) + ¢,(y). Since z=(2z,2,,...,2,) €, is
arbitrary, we conclude that #,(x +y) < #,(x) + ,(y). Consequently, ¢,(Xx+y)
= ,(X) + ¢,(y), so that ¢, is additive on C.

Now, we leave it to the reader to verify that if for each xe M we write
x=a—b with a,b € C, then the formula

lpp( X) = lpp( a) - lpp( b)

is independent of the representation of x as a difference of two vectors of C and
defines a (unique) linear extension of ¢, to al of M. (Notice aso that 4, isa
positive linear functional on M with respect to the generating cone C.) ]

We are now ready to present two connections between the preceding results and
the results in Section 3.

Theorem 4.5. Assume that L has order units and that the order intervals of L are

weakly compact. Assume further that X;=L, for each i and let p=

(pyPys---, Py €(L)™ be a list of continuous price bids. The following state-

ments are equivalent:

1. The auction price ¢,,:C — [0,) is additive — and hence it has a unique linear
extensontoL=L_ —L,.

2. The supremum linear functional (Vv ™, p)* existsin L~ (and is given by the
Riesz—Kantorovich formula).

Proof. Theorem 3.3 says that (2) = (1). Assume that (1) holds and let q >0 be
the linear extension of ¢, to al of L. Noticethat q isin L~ . Now suppose that a
positive linear functional f satisfies f>p, for each i=1,...,m. Then it is clear
that f(x) > q(x) for al xeL,. Therefore, f>gandso gq=(v ™, p)* holds
in L~ . Thus, (1) = (2). [ |

Theorem 4.6. Assume that L has order units and that the order intervals of L are

weakly compact. If X; =L, for each i, then the following statements are equiva-

lent.

1. For every list of price bids p=(p,, p,, ..., p,) € (L)™ the auction price ¢, is
additive — and hence it has a unique linear extensontoL =L, —L,.

2. The economy has the Consumption Decomposability Property.

3. The commodity space has the Riesz Decomposition Property.

4. For every list of price bids (p;,p,,...,p,) €(L)™ the linear functional
(Vv p)* existsinL™.
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Proof. We show that (1) = (2). Consider Lemma 4.4 and let .22 = L'. Denote by
o™ the topology o (L™(L)™) on L™ Since order intervals are weakly compact,
we see that for each x,y €L, the convex sets &/ and &/, are o "-compact.
Therefore, <7, + &/, = &/, + &/, where the bar denotes o ™-closure. Notice there-
fore that this economy has the Consumption Decomposability Property if and only
if o+, c, +., for each x,y€L,. Therefore, by Lemma 4.4 statements
(1) and (2) are equivalent.

Now, we show that (2) = (3). So assume that the economy has the Consump-
tion Decomposability Property and let three vectors x,y,z€ L, satisfy 0 <z<x
+y. Then u=(z00,...,0€%,, = +v. So, thee exist v =
(01,09, ... 0) E, and W= (W, W,,...,W,) €, saisfying u=v+w. The
latter implies v; =w, = 0 for i = 2,3,...,m, and so the vectors v,,w, € L, satisfy
O0<v,<x,0<w, <yand v, +w, =z Thisshows that L has the Riesz Decom-
position Property.

Findly, it is well-known that (3) = (4). Furthermore, we know from Theorem
4.5 that (4) = (1), which proves the theorem. [ |
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