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Set-Valued Functions of Two
Variables in Economic Theory

Nicholas C. Yannelis

Abstract. Several properties of set-valued functions of two variables are stud-
ied. Specifically, we study the existence of (i) Carathéodory-type selections,
(i) random fixed points and (iii) random maximal elements. An application
to the problem of the existence of a random price equilibrium is also given.

1. Introduction

Research in economic theory [see for example the classical treatise of
Debreu (1959)] has necessitated the use of set-valued functions. The basic
properties of set-valued functions which have been useful in economics
are: the existence of fixed points, the existence of continuous selections
and the existence of measurable selections. Before we discuss the main
purpose of this paper, it may be instructive to outline a basic argument
to describe the above properties.

Let X be a paracompact space, ¥ be a linear topological space and
$: X — 2Y (where 2X denotes the set of all nonempty subsets of X) be
a set-valued function such that for all z € X, ¢(z) is convex, nonempty
and for each y € Y the set ¢~ 1(y) = {z € X : y € #(z)} is open in X.
We will show that there exists a continuous function f : X — Y such
that f(z) € ¢(z) for all z € X, i.e., ¢(-) admits a continuous selection.

Since for each y € Y, ¢~!(y) is open and ¢(z) is nonempty for all
z € X, the collection F = {¢~(y) : y € Y} is an open cover of X. Since
X is paracompact there is an open locally finite refinement F' = {V, ¢
a € A} of F. We can use a standard result [see for instance Dugundji
(1966)] on the existence of a partition of unity subordinated to the above
covering, i.e., we can find a set of continuous functions {g, : a € A} such
that g, : X — [0,1],9,(z) = O for z € V, and ), 4 9,(z) = 1 for all
z € X. Since F' is a refinement of F, for each a € A we may choose
y, € Y such that V, C ¢~'(y,). Define the function f : X — Y by
f(2) = ¥ ca94(2)y,. Given the fact that F' is locally finite and #(-) is
convex valued, one can easily verify that f : X — Y in continuous and
f(z) € ¢(z) for all z € X, i.e., ¢(-) admits a continuous selection.

36



Nicholas C. Yannelis 37

Note now that if X is a compact, convex, nonempty subset of a
locally convex linear topological space and ¢ : X — 2% is a set-valued
function such that for all z € X, ¢(z) is convex, nonempty and for each
y € X, ¢~ 1(y) is open in X, then ¢(-) has a fized point, i.e., there exists
an z* € X such that z* € ¢(z*). The proof follows directly by combining
the above result together with the Tychonoff fixed point theorem [see for
instance Dugundji (1966, Theorem 2.2, p. 414)].

Finally, if (X, a) is 2 measurable space, Y is a complete separable
metric space and ¢ : X — 2Y is a set-valued function such that for each
closed subset V of ¥ the set {z € X : ¢(z) NV # B} belongs to a, and
&(-) is nonempty closed valued, then there exists a measurable function
f: X — Y such that f(z) € ¢(z) for all z € X, i.e., ¢(-) admits a
measurable selection.

To see this let {y;,¥,,...} be a countable dense subset in Y. For
each i ( = 1,2,...), and for each n (n = 1,2,...), let B, (i) = {z €
Y : dist(z,y;) < 1}, (where dist = distance). For each z € X set
#o(z) = ¢(z) and define inductively ¢,., : X — 2¥ by ¢,,,(2) =
¢,(z) N B, ,,(M,(z)), where M, (z) = min{i : ¢,(z) N B,;,(3) # 0}
Then {¢, : » = 1,2,...} is a decreasing sequence of nonempty closed
subsets in X and the diameter of ¢, goes to zero. Define f : X — Y
by f(z) = Npey ¢n(z). Then f is a selection from ¢, and it is easily
verified that f is measurable. In fact, it is easy to check that for each
n(n = 1,2,...), and for each closed subset V of Y the set {z € X :
$.(z) NV # B} belongs to a. Since

o0
AV)={zeX: f(z)eV}= [|{z € X : $,(z)NV # 0}
n=0
we can conclude that f~1(V) is an element of a, i.e., f is measurable.
Recent work in economics and game theory [see for instance Yan-
nelis (1987), Kim-Prikry-Yannelis (1989), Balder-Yannelis (1990) and
Yannelis-Rustichini (1991)] has necessitated the use of set-valued func-
tions defined either on the product space T X X (where T' is a measure
space and X is a topological space), or in an arbitrary subset U of T'x X.
In particular, if ¢ : Tx X — 2 (whereY is a linear topological space), isa
set-valued function such that for each fixed t € T, ¢(t,-) is lower semicon-

tinuous, ¢(-,-) is nonempty, convex, closed valued and lower measurable,
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one would like to know whether there exists a Carathéodory-type selec-
tion from ¢, i.e., a function f : T x X — Y such that f(¢,z) € ¢(t,2)
for all (z,z) € T x X and for each fixed t € T, f(¢,-) is continuous
and for each fixed z € X, f(-,z) is measurable. Thus, the concept of a
Carathéodory-type selection combines the notion of a continuous selection
and measurable selection, via the setting of a product space.

It turns out that under appropriate conditions one can obtain several
Carathéodory-type selection results adopting a similar argument with the
one outlined to prove the existence of a continuous selection. Specifically,
one can carry out a parametrized version of the above argument [which in
turn is based on an idea of Michael (1956)] where the parameter ¢ ranges
over the measure space T'.

Our main concern in this paper is to study several properties of set-
valued maps of two variables. In particular, we will prove the existence
of Carathéodory selections, the existence of random fixed points and the
existence of random maximal elements. Finally, we will use the above
results to prove the existence of a random price equilibrium.

2. Preliminaries

2.1 Notation.

24 denotes the set of all nonempty subsets of the set A.

con A denotes the convex hull of the set A.

/ denotes the set of theoretic subtraction.

If $ : X — 2Y is a correspondence (2 correspondence is a set-valued
function for which all image sets are nonempty), then ¢l : U — 2V
denotes the restriction of ¢ to U.

R* denotes the £-fold Cartesian product of the set of real numbers R.

B(z,¢) denotes the open ball centered at z of radius ¢.

int A denotes the interior of A4.

cl A denotes the closure of A.

dist denotes distance.

diam denotes diameter.

proj denotes projection.

{ denotes the empty set.
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If X is a linear topological space, its dual is the space X* of all
continuous linear functionals on X. If ¢ € X* and y € X the value of ¢
at y is denoted by ¢ - y.

2.2 Definitions. Let X and Y be sets. The graph Gy of a
correspondence ¢ : X — 2% is the set G, = {(z,9) € X XY : y € ¢(z)}.
If X and Y are topological spaces, ¢ : X — 2V is said to be lower-
semicontinuous (1.s.c.) if the set {2 € X : ¢(z) NV # 0} is open in X for
every open subset V of Y; ¢ : X — 2Y is said to be upper-semicontinuous
(u.s.c.) if the set {z € X : ¢(z) C V} is open in X for every open subset
V of Y; if Y is a linear topological space, ¢ : X — 2Y is said to be upper-
demicontinuous (u.d.c.) if the set {zx € X : ¢(z) C V} is open in X for
every open half space V of Y. Obviously, u.d.c. is a weaker requirement
than u.s.c.

If (X,a) and (Y,[3) are measurable spaces and ¢ : X — 2¥ is a
correspondence, ¢ is said to have a measurable graph if G, belongs to the
product o-algebra o ® . We are often interested in the situation where
(X, a) is a measurable space, Y is a topological space and 8 = B(Y) is
the Borel o-algebra of Y. For a correspondence ¢ from a measurable
space into a topological space, if we say that ¢ has a measurable graph,
it is understood that the topological space is endowed with its Borel o-
algebra (unless specified otherwise). In the same setting as above, i.e.,
(X, a) a measurable space and Y a topological space, ¢ is said to be
lower measurable if {z € X : H(z) NV # @} € a for every V open in Y.
Furthermore, ¢ is said to be measurableif {z € X : ¢(z)N B # 0} € a
for every closed B in Y.

We now define the concept of a Carathéodory selection which com-
bines the notion a of continuous selection and a measurable selection.

Let (X, o) be a measurable space and ¥ and Z be topological spaces.
Let ¢ : X x Z — 2Y be a (possibly empty-valued) correspondence. Let
U={(z,2) e X X Z : §(z,2) # 0}. A Carathéodory-type selection from
¢ is a function f : U = Y such that f(z,2) € ¢(z,z); for each z € X,
f(z,-) is continuous on U, = {2 € Z : (z,z) € U}, and for each z € Z,
f(+,z) is measurable on U, = {z € X : (z,2) € U}.

If (X,a),(Y,B)and (Z,F) are measurable spaces, U C X X Z and f:
U—Y,wecall f jointly measurableif for every Be 8, f"1(B)=UnNA
for some A € a®F. It is a standard result that if Z is a separable metric
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space, Y is metric and f: X X Z — Y is such that for each fixed z € X,
f(z,+) is continuous and for each fixed z € Z, f(-,z) is measurable, then
f is jointly measurable [where 8§ = B(Y), F = (Z)]. It turns out, that
in several instances U is a proper subset of X X Z, and this situation is
more delicate. However, in this more delicate situation it can be shown
(see Proposition 3.1 below) that f is still jointly measurable.

2.3 Basic Theorems. We close this section by recalling some in-
teresting results, [whose proofs can be found in Castaing-Valadier (1977)]
which will be of fundamental importance in this paper:

Projection Theorem. Let(T,7,u) be a complete finite measure space
and Y be a complete, separable metric space. If H belongs to 7 ® B(Y),
its projection projp(H ) belongs to 7.

Aumann Measurable Selection Theorem. Let(T,7,u) be a com-
plete finite measure space, Y be a complete, separable metric space and
¢ : T — 2Y be a nonempty valued correspondence with a measurable
graph, i.e., G4 € T®B(Y). Then there is a measurable function f : T — Y
such that f(t) € ¢(t) p-a.e.

Kuratowski and Ryll-Nardzewskil Measurable Selection
Theorem. Let (T,7) be a measurable space, Y be a separable metric
space and ¢ : T — 2Y be a lower measurable, closed, nonempty valued
correspondence. Then there ezists a measurable function f : T — Y such

that f(t) € ¢(t) forallt € T.

Castaing Representation Theorem. Let (T,7) be a measurable
space, Y be a separable metric space and ¢ : T — 2Y be a closed,
nonemply valued correspondence. Consider the following statements:

(i) ¢ is lower measurable, and

(ii) there exist measurable functions f, : T — Y (n=1,2,...) such that
d{f,():n=1,2,...} =¢(t) forallt € T.

Then (i) is equivalent to (ii).

3. Elementary Measure Theoretic Facts

This Section contains several elementary results of measure theoretic

character, which are going to be useful in the sequel.
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Proposition 3.1. Let (T,7) be a measurable space, Z be a separable
metric space, Y be a melric space and U C T X Z be such that:

(i) for eachi € T the set U = {z € Z : (t,z) € U} is open in Z and
(ii) for each z € Z the set U, = {t € T : (t,z) € U} belongs to 7.
Moreover, let f : U — Y be such that for eacht € T, f(2,-) is continuous
on U* and for eachz € Z, f(- ,z) is measurable on U,_. Then f is relatively
jointly measurable with respect to the o-algebra v @ B(Z), i.e., for every
V openinY,

{t,z)eU:f(t,z)eV}=UnA

for some A € T ® B(Z).

Proof. Letz, (n=0,1,2,...) be dense in Z. For p > 1 set fp(t,z) =
f(t,z,), for (t,z) € U, if n is the smallest integer such that z € B(z,,, %)
and (f,z,) € U. It is easy to see that f (t,z) = f(t,2,) if (t,z) belongs

to the set
. % (B (xn,i-)/ | B (:cm,;?))l nuU.

m<n

Observe that by assumption (ii), U, € 7. Note that f, is defined every-
where on U. To see this, let (t,z) € U. By (i), U® is open. Thus, let
¢ > 0 be such that B(z,¢) C U'. Since z_, (n = 0,1,2,...) are dense
in Z, there is some n such that z, € B(z,min(e, 3)). Thus, z, € U™
Consequently, z € B(z,,, %;) and (¢,z,) € U, and we can conclude that
f(,z) is defined.

We will now show that f, is relatively jointly measurable. To this
end let V be open in Y and set

S.={teU,, :fit,z,) eV}

Since U, € 7 and f(-,%,) is measurable on U, , it follows that 5, € 7.
It can be easily checked that

1) = CJ [Sn X (B (xn,%) /mgnB (‘”m%))

n=0

nu.

Thus, f, is relatively jointly measurable.
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Since for each t € T, f(t,-) is continuous on U?, we conclude that
f,(2, %) converges to f(t,z) as p goes to infinity. Thus f(¢,z) is relatively
jointly measurable. The fact that a limit of relatively jointly measur-
able functions is relatively jointly measurable is clear, since relative joint
measurability is just the ordinary measurability with respect to an ap-
propriate o-algebra; in our case, with respect to the og-algebra of subsets
of U which are of the form U N A where A € 7 ® 3(Z).

Lemma 3.1. Let (T, 1) be a measurable space, X be a separable metric

space and ¢ : T — 2% be a set-valued function. Consider the following

statements:

(a) ¢(-) is lower measurable,

(b) for each z € X, the function t — dist(z,¢(z)) is measurable in t,
and

(c) the set-valued function ¢ : T — 2% defined by ¥(t) = cl¢(t) has a
measurable graph.

Thena <= b <= c.

Proof. (a <= b). Note that ¢(-) is lower measurable if for each
open ball B(z,6) in X the set ¢~1(B(z,8)) = {t € T : ¢(t) N B(z, ) # 0}
belongs to 7. Also note that for each z € X, the function t — dist(z, ¢(1))
is measurable in ¢ if the set {t € T : dist(z, $(2)) < &} belongs to 7 for each
6> 0. Since {f €T : #(t) N B(z,8) # 0} = {t € T : dist(z, ¢(2)) < 6}, we
can conclude that a <= b.

(b <= c) : Define the function f : T x X — [0,00] by f(t,z) =
dist(z, ¢(t)). By Proposition 3.1, f(-,-) is jointly measurable. Hence, we
can conclude that:

F7H0) = {(t,2) : dist(z, 4(2)) = 0} = {(t,2) : z € I §(2)}
= Guir ETR® ﬁ(X),

and this completes the proof of the Lemma.

Lemma 3.2. Let (T, 7,u) be a complete finite measure space, and Y
be a complete separable metric space. Let X : T — 2Y be a set-valued
function with a measurable graph. Then there ezist {f, : k = 1,2,...}
such that:

(i) for all k, f is a measurable function from proj;(Gy) inte Y, and
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(i1) for almost allt € proj (G x),{fi(t) : k=1,2,...} is a dense subset
of X(t).

Proof. Foreachn = 1,2,...,1et {EP : i = 1,2,...} be an open
cover of Y such that diam(E?) < 2—1,,— For each n, 1 = 1,2,..., define
TP ={teT:X({)NEP #0}. Since T® = projp{(t,y) ETxY :y €
X(t)N E?} and X(-) N B} has a measurable graph in T x Y, T € = by
virtue of the projection theorem. It can be easily checked that | J;2, T =
projr(Gx) = S.

For each m, i = 1,2,..., define the set-valued function X : T — 2Y
by

= { X@nEp, fteTy
X(), it g

Since the graph of X! is {(t,y) e T" xY : y € X({) N Er} U {(t,y) €
T/T? xY :y € X(1)}, the correspondence X has a measurable graph.
Also, for each t € T, X(t) # @ if and only if X(t) # 0, hence the graphs
of X! and X have the same projection onto I". By the Aumann measur-
able selection theorem, for each n,7 = 1,2,..., there exists a measurable
function f' : 5 — Y such that f*(t) € X(t) for almost all t € T, Fix ¢
in T. Let y € X(t). Since for each n,{E:7=1,2,...} is an open cover
of Y, for each n, there is some ¢ such that y € X(¢) N EP. Therefore,
{fi(t) :n,i=1,2,...} is dense in X(t). Hence, the sequence fI*, after
a suitable reindexing, gives the desired sequence f,. This completes the
proof of the lemma.

Lemma 3.3. Let(S5;,a;) for i = 1,2 be measurable spaces, h : §; — S,

1? i
be a measurable function and A € a; @ a,. Then

projs (G, N A) € 0.

Proof. (a)If A = A; x 4;, where 4; € a;,i=1,2,... then projg (G, N

A)= A Nh71(A4,) € oy.

(b) If projs (G, N A) € e, then projs (G, N A°) € o, where A° =
51 X Sy /A. For, projs (G, N A%) = S,/ projg (G, N A).

(c) If projs, (G, N A,) € a; for all n = 1,2,..., then projg (G, N
(U2 A,)) € y. For, projis, (G, (Uy An)) = U2, projay (G
A,).

Therefore, projg, (G, N A) € @, for all A € o; ® a,.
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Lemma 3.4. Let (T;,1;) for i = 1,2,3 be measurable spaces, y : T, —
T, be a measurable function and ¢ : Ty XTy — 2Ts be g set-valued function
with @ measurable graph, i.e., Gy € T, @7, @ 73. Let W : T; — 2T be
defined by

W(t) = {z € T, : y(t) € ¢(t,z)}.
Then W has a measurable graph, i.e., Gy € Ty @ 7.

Proof. Defineh: Ty xT, — T3 by h(t,z) = y(t). Let §; = Ty xTy, 4 =
707,85 = T30, =713,2nd A=G,. Then h: S, — S, is a measurable
function and A € @, ® a,. Hence, by Lemma 3.3,

Gw = {(t,2): (t,z,h(t,z)) E A} €y =T B Ty

Lemma 3.5. Let (T, ) be a measurable space, Z be an arbitrary topo-
logical space and W, n = 1,2,... be correspondences from T into Z with
measurable graphs. Then the correspondences |J, W,(-), M, W,(-), and
Z[W,(-) have measurable graphs.

Proof. Obvious.

Lemma 3.6. Let (T,7,u) be a complete finite measure space, Z be a
complete separable metric space, and W : T — 22 be a correspondence
having @ measurable graph. Then for every z € Z, dist(z, W(-)) is a
measurable function, where dist(z,d) = co.

Proof. First observe that § = {t € T : W(t) # 0} belongs to 7 by
virtue of the projection theorem. Now let A be a positive real number
and note that {s € S : dist(z, W(s)) < A} = {s € S : W(s)N B(z, ) #
B} = projr[Gw N (T x B(z,A))]. Another application of the projection
theorem concludes the proof.

Lemma 3.7. Let (T,7,u) be a complete finite measure space, Z be a
compleie separable metric space, and W : T — 2% be a correspondence
having a measurable graph. Then the correspondence V :T — 2% defined
by

V(t) = {z € Z : dist(z, W(t)) > A},

(where A any real number) has a measurable graph, i.e., Gy €7 ® B(Z).



Nicholas C. Yannelis 45

Proof. Define the function g : TxZ — [0, c0] by ¢(t,z) = dist(z, W(t)).
By Lemma 3.6, g(-,z) is measurable for each z, and obviously g(t,-) is
continuous for each {. By Proposition 3.1 we have that g is jointly mea-
surable, i.e., measurable with respect to the product o-algebra 7 ® 5(2).
Hence, Gy = g7 1([A, 00]) € 7 ® B(Z), i.e., V(-) has a measurable graph.

Lemma 3.8. Let (S, a) be a measurable space, X be a separable metric

space and W : § — 2% be a lower measurable correspondence. Then the
set-valued function V : § — 2% defined by

V(s) = {z € X : dist{z, W(s)) < A},
(where X is any real number) has a measurable graph, i.e., Gy, belongs to

a® B(X).

Proof. Define the function g: §xX — [0, 00] by g(s,z) = dist(z, W(s)).
Since W(:) is lower measurable, it follows that g(-,z) is measurable for
every fixed z, for

{s€ §:dist(z,W(s)) < A} = {s € §: W(s)Nn B(z, ) # 0}

and the latter set belongs to @ by the assumption of lower measurability.
Obviously, for each fixed s € 5, g(s, +)is continuous. Hence by Proposition
3.1, g is measurable with respect to the product o-algebra o @ S(X).
Therefore,

Gy ={(s,z):z € V(s)} = g7 ((—00, })) € a ® B(X),

i.e., V(-) has a measurable graph.

Fact 3.1. Let (T, 1) be a measurable space, S C T,S € 7 and Y be a
complete, separable metric space. Let ¢ : T — 2¥ be a lower measurable
correspondence and f : § — Y be a measurable function. Then the sei-

valued function ¢ : T — 2¥ defined by
¥(t) = ¢(1) N (f(?) + B(0,¢))

is lower measurable. (Here we understand that f(t)+B(0,e) = D ift ¢ S).
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Proof. We must show that {t € T : (1) N U # 0} € 7 for every open
subset I/ of Y. For each t € T, let 6() = (¢(1) N U) 4+ B(0,¢). Observe
that

{teT:yp)NT£0={teT:(#)NU)N(f{) + B(0,¢)) # 0}
={te S: f(t) € 8(t)} = projr(G; N Gy).
Since U is open, ¢(t) N U is lower measurable, and since §(t) = {y €
Y : dist(y, (1) N U) < €},0(-) has a measurable graph by Lemma 3.8.

Therefore by Lemma 3.3, projr(G; N G,) € 7. Therefore {t € T : (1) N
U # 0} € , and this completes the proof of the Fact.

Lemma 3.9. Let (5,a) be a measurable space Y, be a separable meiric
space and ¥ : § — 2Y be a lower measurable correspondence. Then the
correspondence 8 : § — 2¥ defined by

8(s) = {y € Y : dist(y,¥(s)) = 0},
has a measurable graph, i.e., G4 € o ® B(Y).

Proof. Consider the function g : § X Y — [0, 00] defined by g(s,y) =
dist(y, ¥(s)). Since ¥(-) is lower measurable it follows that for each fixed
y € Y,g(-,y) is measurable, for

{s€ 8 :dist(y,¥(s)) <e} = {s € S:9(s)N B(y,e) # 9}

and the latter set belongs to a by the assumption of lower measurability.
Obviously for each fixed s € S, g{s, -) is continuous. Therefore, by Propo-
sition 3.1, g(:,-) is jointly measurable, i.e., g is measurable with respect
to the product o-algebra a ® B(Y'). It can be easily seen that:

Gy={(s,9) €SxY :y€b(s)} ={(s,9) € §xY : g(s,9) = 0}
=g7'(0) € 2 ® B(Y).
Consequently, 8(:) has a measurable graph as was to be shown.

Lemma 3.10. Let (S, o) be a measurable space, Y be a separable met-
ric space and ¢ : § — 2Y be a nonempty compact valued and lower
measurable correspondence. Let X be a nonempty subset of Y. Define
the correspondence 8 : § — 2% by

0(s)={g€ X :q-¢(s) > 0}.
Then G, € a® B(X), i.e., 6(-) has a measurable graph.
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Proof. Since ¢(-) is lower measurable and closed valued, there exist
measurable functions (Castaing representation) u; : § — Y,i € I (where
I is a countable set) such that

c{u,(s):i €I} = s) for all s € S.

We then have that foralls € §

0(s) = |J ga(),

where

g.[8) = {le: foralli € I,q-u/s) > %}

We now show that G, € a ® 8(X). To this end, for each i € I define
h;:8 x X — [0,00] by k;(s,q) = g-u,(s). It is easily seen that for each
s € S, h;(s,-)is continuous and for each ¢ € X, h,(-, ¢) is measurable, and
therefore by Proposition 3.1 h,(-,-) is jointly measurable. Consequently,
ki ((%,00)) belongs to a®B(X) and so does ;A7 ((£,00)). It can
be easily checked that G, = ;¢ ki ((L,00)). Therefore, g,(-) has a
measurable graph, i.e.,, G, € a ® f(X). It follows from Lemma 3.5 that
Unz1 G, € @® B(X). Since G,y = U,~, G, , we conclude that 6(-) has
a measurable graph. This completes the proof of the Lemma.

Lemma 3.11. Lei (S, o) be a measurable space and ¢ : § — 2% be a
nonempty compact convez valued and lower measurable correspondence.
Let B be a compact, conver, nonempty subset of R¢. Define §: § — 2B
by

0(s)={q€ B:q-¢(s) > 0}.

Then 0(-) is lower measurable.

Proof. By virtue of Theorem 4.4 in Himmelberg (1975, p. 59), it suffices
to show that the correspondence A : § — 2% defined by A(s) = B/6(s) =
{g € B :q-¢(s) <0} is measurable. Since ¢(-) is lower measurable and
compact valued, it is also measurable [Himmelberg (1975, Theorem 3.1,
p. 55)]. Hence, it follows from the Castaing representation theorem that
there exist measurable functions u; : § — Rf ¢ € I, (where I is a

countable set) such that for all s € S5, cl{u;(s) : ¢ € I} = ¢(s). We
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then have that h(s) = {g € B: forall i € I,¢-u,(s) £ 0}. It can be
easily checked that A(-) is measurable, and so is B/h(-). Since B/h(s) =
6(s) = {q € B: q-¢(s) > 0} we conclude that 6(-) is measurable. Since
measurability of 6(-) implies lower measurability of 6(-), [Proposition 2.1
in Himmelberg (1975, p. 55)] the proof of the Lemma is now complete.

HE (g=1%:::) is a sequence of nonempty subsets of a metric
space X, we will denote by LsF, and LiF, the set of its limit superior
and limit inferior points respectively, i.e.,

LsF, ={z € X »m =k1.i.§oz”*’z“k EF, . k=12,...}, and
LiF, ={zeX:z= lim z,,2, & Fymn=1,2... 7,

Lemma 3.12. Let (T,7,u) be a complele finite measure space and X
be a separable meiric space. Let {F, : n = 1,2,...} be a sequence of
nonemply valued and lower measurable correspondences. Then LiF,(-)
has a measurable graph, i.e., Gp;p € T® B(X).

Proof. First notice that LiF, () is closed valued [recall from Kura-
towski (1966, pp. 336-337), that if A, is a sequence of sets, LiA, and
LsA_ are both closed sets]. By definition [see Kuratowski (1966, p. 335)],
LiF, (1) = {f € X : lim,_,,, dist(f, F,(t)) = 0}. Since by assumption
the sequence of set-valued functions F,(-) have a measurable graph and
(T,7,p) is a complete measure space, F, (-} are lower measurable. It
follows from Lemma 3.1 that dist(f, F,,(¢)) is continuous in f and mea-
surable in ¢, i.e., dist(-, -) is jointly measurable with respect to the product
o-algebra 7 ® S(X). Hence, lim,_,  dist(f, F,,(t)) is jointly measurable
with respect to the product o-algebra 7 ® (X ). Notice that

Grip, ={(t,/) e Tx X: lim dist(f, F,(2)) = 0}.

Since lim,,_, ., dist(f, F,,(1)) is jointly measurable, the set G, belongs
to T ® B(X), i.e., LiF, has a measurable graph. This completes the proof
of the Lemma.

Remark 3.1. Under the assumptions of Lemma 3.12, LsF,(-) has
a measurable graph as well. Simply notice that [see Kuratowski (1966,
p. 337)] LsF,(t) = {f € X : Lidist(f, F,(t)) = 0}.
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Bibliographical Notes. Lemma 3.1 is due to Debreu (1967). Propo-
sition 3.1 generalizes an earlier result of Kuratowski (1966). The argu-
ment is in essence that of Kuratowski, [see also Castaing-Valadier (1977)
and Himmelberg (1975) for similar arguments]. Lemmata 3.2-3.8 are
taken from Kim-Prikry-Yannelis (1987, 1988) and Lemmata 3.8-3.11 are
new. Lemma 3.12 is taken from Yannelis (1990).

4. Carathéodory-Type Selection
Theorems

Below we state three Carathéodory-type selection theorems. The
reader can easily see that neither theorem implies the other.

Theorem 4.1. Let (T,7,u) be a complete finite measure space, ¥ be
a separable Banach space and Z be a complele separable meiric space.
Let X : T — 2¥ be a nonempiy-valued correspondence having a mea-
surable graph, ie., Gx € TR B(Y), and ¢ : T x Z — 2Y be a convez
valued correspondence (possibly empty-valued) with a measureble graph,
ie., Gy € 7Q B(Z)® B(Y), satisfying the following conditions:
(i) for eacht € T, ¢(t,z) C X(t) for all z € Z.
(ii) for each t, ¢(1,-) has open lower sections in Z, i.e., for eacht € T,
and eachy €Y, o714, y)={z € Z:y € ¢(i,2)} is open in Z.
(iii) for each (t,z) € T X Z, if ¢(t,z) # B, then ¢(t,z) has a nonempty
interior in X (1).
LetU={(t,z)e T x Z:¢(t,z) # 0} and foreachz € Z,U,={t € T:
(t,z) € U} and for eacht € T,U' = {z € Z : (t,z) € U}. Then there
ezists a Carathéodory-type selection from ¢, i.e., there ezisis a function
f:U — Y such that f(t,z) € ¢(t,z) for all (t,z) € U and for each
z € Z, f(-,z) is measurable on U, and for eacht € T, f(t,-) is continuous
on Ut. Moreover, f(-,-) is joinily measurable.

Proof. Let ¢.(t) = ¢(t,z) for all z € Z. Notice that for each z €
Z,¢,(-) has a measurable graph in T X Y. Observe that

U,={teT:¢,(t) # 0} = projr(G,).
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It follows from the projection theorem that U, € =. By Lemma 3.2
there exist measurable functions {y,(:) : » = 1,2...} such that for each
t,{v,(1)} is a countable dense subset of X (). Foreacht € T, let W, (t) =
{zx e Z:y,(t) € ¢(t,z)}. By assumption (ii) W, (¢) is open in Z. Since
by (iii) for each (t,z) € U, #(t,z) has nonempty interior in X(£) and
{y,(t):n=1,2...}is densein X (2), it follows that {W_ () : n = 1,2...}
is an open cover of the set U!. By Lemma 3.5, W, (-) has a measurable
graph. For each m = 1,2,..., define the operator ( ),, by

(W), = {w €W : dist(w, Z/W) > Qim}

For each n = 1,2,... and ¢ in T let V, (t) = W, (t)/ Urs1(Wi(t)),.-
Obviously, V,(t) is open in Z. It can be easily checked that {V, () :n =
1,2,...} is a locally finite open cover of the set U*. Since for each =,
W, (-) has a measurable graph, so does V (-) by Lemmata 3.5 and 3.4.
Let {g,.(t,-) : n = 1,2,...} be a partition of unity subordinated to the
open cover {V, (1) :n = 1,2,...}; for instance, for each n = 1,2,..., let

_ dist(=, Z/V, (1))
9n(t,2) = 3o, dist(z, Z/ V(1))

Then {g,(t,") : » = 1,2,... is a family of continuous functions g,(2,-) :
Ut — [0,1] such that g_(¢,z) =0forz ¢ V, (t) and 3., g,(t,z) = 1 for
all (¢,z) € U. Define f: U — Y by f(t,z) = 3.7, g.(t,2)y,(2)- Since
{V.(t) : n = 1,2,...} is locally finite, each z has a neighborhood N,
which intersects only finitely many V,(t). Hence, for each t € T, f(2,-) is
a finite sum of continuous functions on N, and it is therefore continuous
on N_. Consequently, f(¢,-) is continuous. Furthermore, for any n such
that g_(¢,2) > 0,z € V(1) C W,(1) = {z € Z : y,(1) € ¢(t,2)}, i.e,
vy, (1) € ¢(t,2). So f(t,z) is a convex combination of elements y,(¢) from
the convex set ¢(t,z). Consequently, f(t,z) € @(¢,z) for all (t,z) €
U. Since V,(-) has a measurable graph, dist(z, Z/V,(-)) is a measurable
function by Lemmata 3.5 and 3.6. Hence, for each n and z, g,(-,z) is a
measurable function. Since for each n,y,(+) is a measurable function, it
follows that f(-,z)is measurable for each z, i.e., f(¢,z)is a Carathéodory-
type selection from ¢|;. Finally, it follows from Proposition 3.1 that
f(-,-) is jointly measurable. This completes the proof of the theorem.
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Theorem 4.2. Let (T, ,u) be a complete finite measure space, Y be a
separable Banach space and Z be a complete, separable metric space. Let
¢ : T x Z — 2V be a convez, closed (possibly empty-) valued correspon-
dence such that:

(i) ¢(-,-) is lower measurable with respect to the o-algebra r ® 3(Z) and
(ii) for eacht € T, #(1,-) is L.s.c.

Then there ezists a jointly measurable Carathéodory-type selection from ¢.

Proof. We begin by proving the existence of an approximate Cara-
théodory-type selection. To this end, let U = {(¢,2) € T x Z : ¢(t,z) #
@}. Foreachz € X,let U, ={t €T :(t,2) € U} and for each t € T, let
Ut={z € Z:(t,z) € U}. We will show that there exists an approximate
or ¢-Carathéodory-type selection from ¢, i.e., given ¢ > 0, there exists
a function f¢ : U — Y such that f<(t,z) € &(t,z) + B(0,¢), and for
each z € Z, f°(+,z) is measurable on U, and for each t € T, f*(2,-) is
continuous on U?. Since Y is separable we may choose {y,, : n =1,2,...}
to be a countable dense subset of Y. For each { € T and € > 0, let
Wi(t) = {z € Z : y, € [¢(t,2) + B(0,¢)]}. It follows from (ii) that
for eacht € T and n = 1,2,...,W£(2) is open in Z. Since for each
(t,z) € U,¢(t,z) # 0, the set {W=2(t) : n =1,2,...} is an open cover of
Ut. Note that ¢(t,z) + B(0,¢) = {y € Y : dist(y, $(,2)) < €}. Setting
§=TxZ,X=Y,a=7®(Z) and W(s) = ¢(t,z) for s = (t,z) € S in
Lemma 3.8 we conclude that ¢(-, )+ B(0,¢) has a measurable graph. By
Lemma 3.4, WZ(:) has a measurable graph. As in the previous theorem
for each m = 1,2,..., define the operator ( ),, on subsets of Z by

(W)= {w € W : dist(w, Z/W) > 51;} .
For n = 1,2,..., let V(1) = WE(t)/ URZ] (WE(2)),- It can be easily
checked that {V(¢) : n = 1,2,...} is a locally finite open cover of the
set Ut. Since for each n, WZ(-) has a measurable graph, by Lemmata 3.5
and 3.7, VZ(-) has a measurable graph. Let {g5(¢,z):n=1,2,...} be a
partition of unity subordinated to the open cover {V(1):n=1,2,...},
for instance, for each n = 1,2,..., let

_ _ dist(z, Z/VE(L))
ge(t,z) = Y peq dist(z, Z/VE(R))
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Then {g;(,-) : n =1,2,...} is a family of continuous functions g5(¢,-) :
U* — [0,1] such that g&(t,z) = 0 for z & V5(t) and 322, g5(t,2) = 1 for
all (t,z) € U. Define f*: U — Y by fe(t,z) = 320, g5(t,2)y,. Since
{Vi(t) : » = 1,2,...} is locally finite, each = has a neighborhood N_
which intersects only finitely many V5(#). Hence, f(1,-) is a finite sum
of continuous functions on IV, and it is therefore continuous on N_. Con-
sequently, f°(£,-) is a continuous function on U*. Moreover, for any n such
that g5(2,2) > 0,z e VE() C WE(t) = {2 € Z : y, € [¢(t,2) + B(0,¢)]},
ie., y, € ¢(t,z)+ B(0,¢). So f(t,z) is a convex combination of elements
from the convex set ¢(t,z)+ B(0,¢). Therefore, f*(¢,z) € ¢(t,z)+B(0,¢)
for all (,z) € U. Since VZ(-) has a measurable graph, by Lemmata 3.5
and 3.6, dist(z, Z/V:(-)) is a measurable function for every z € Z. Hence,
for each n,z,g5(:, ) is a measurable function. Consequently, f5(-,z) is
measurable for each z. Therefore f¢ is an approximate or e-Carathéodory-
type selection from @|;. Now we can construct inductively, functions
fi:U-=Y,1=1,2,..., such that

(a) fi(t,-) is continuous on U* and f)(-,z) is measurable on U,
(b) fi(t,2z) € $(t,2)+ B(0,%),1=1,2,...,
(c) fi(t,z) € fi,(t,z)+2B (0, 52+), 1 =2,3,....

The existence of f satisfying (a) and (b) for [ = 1, is guaranteed by the
above argument. Suppose that we have f,,..., f; satisfying (a), (b), and
(c)forl=1,2,...,k. Wemust find f,, : U — Y which satisfies (a), (b),
and (c) for ! = k+1. Now define ¢, (1, 2) = #(t, z)N(f(t,2)+ B(0, &)).
Then ¢,,,(¢,x) is nonempty, by the induction hypothesis, and it can
be easily checked that for each t € T, ¢, ,,(¢,-) is Ls.c. It follows from
Fact 3.1 that ¢*+1(-,.) is lower measurable. By the above argument (the
existence of an approximate Carathéodory-type selection) there exists
frg1 1 U = Y such that f,,,(¢,7) € ¢541(t,z) + B(0, 775¢)). But then
feaa(t:2) € (fult,2) + B, %)) + B0, 587) C (fult,2) + 2B(0, &)
which is (¢) and f;,,(¢,2) € 6(t,2) + B(0, 555+) which is (b). By (c),
{fi:1=1,2,...} is uniformly Cauchy, and therefore converges uniformly
to f: U — Y. Since ¢ is closed valued f(t,z) € ¢(t,z) for all (t,z) € U.
Furthermore, for each ¢t € T, f(¢,) is continuous in U* and for each z €
Z, f(-,z) is measurable on U, and therefore, by Proposition 3.1, f(-,-)is
jointly measurable. This completes the proof of the theorem.
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Theorem 4.2. Let (T, ,u) be a complete finite measure space, Y be a
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continuous on U?. Since Y is separable we may choose {y,, : n =1,2,...}
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for each m = 1,2,..., define the operator ( ),, on subsets of Z by

(W)= {w € W : dist(w, Z/W) > 51;} .
For n = 1,2,..., let V(1) = WE(t)/ URZ] (WE(2)),- It can be easily
checked that {V(¢) : n = 1,2,...} is a locally finite open cover of the
set Ut. Since for each n, WZ(-) has a measurable graph, by Lemmata 3.5
and 3.7, VZ(-) has a measurable graph. Let {g5(¢,z):n=1,2,...} be a
partition of unity subordinated to the open cover {V(1):n=1,2,...},
for instance, for each n = 1,2,..., let

_ _ dist(z, Z/VE(L))
ge(t,z) = Y peq dist(z, Z/VE(R))
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Fact 4.1. If any convez subset K of Y is either closed or has an interior
point or is finite dimensional, then I(clK) C K.

Fact 4.2. Let K be a nonempty, closed, convez separable subset of a
Banach space Y, and {y, = 1,2,...} be a dense subset of K. If

(v — 1) . R
=Y+ : for all i and z = =1 z,
max(1,||y; — w11 ¢ Z 9

=1
then z € I(K).

We are now ready to complete the proof of Theorem 4.3:

Define ¢ : T x Z — 2Y by 9¥(t,2) = cl¢(¢,z). Since for each t €
T,é(t, ) is l.s.c. so is (t,-). Moreover, 1 is lower measurable. By

the above claim there exist Carathéodory-type selections {g,(¢,z) : k =
1,2,...} dense in %(t,z) for all (¢,z) € U. Foreach k = 1,2,..., let

9x(t,z) — ,(%, )
ma‘x(ls ”gk(tax) - gl(tam)“)

f(t?z) = Z %fk(t,:l:).
k=1

fk(t!w) = gl(ts :1:) o

?

By Fact 4.2, f(t,z) € I(#(t,z)) for all (¢,z) € U. Since the series
defining f converge uniformly, it follows that for each t € T, f(t,-) is
continuous and for each z € X, f(-,z) is measurable. By Fact 4.1,
f(t,z) € I(y¥(t,2)) C ¢(t,z) if either (i) or (ii) of Theorem 4.3 are satis-
fied. This completes the proof of the theorem.

Bibliographical Notes. Theorem 4.1-4.3 and their proofs are due to
Kim-Prikry-Yannelis (1987, 1988). Less general versions of Theorem 4.2
are given by Castaing (1975), Fryszkowski (1977) and Rybinski (1985).
Applications of these theorems in economics and game theory can be
found in Yannelis (1987), Kim-Prikry-Yannelis (1989), Yannelis-Rustichini
(1991), Balder-Yanzelis (1990) and Yannelis (1990a).

5. Random Fixed Point Theorems

Let (T',7) be a measurable space, X be a metric space and ¢ : T X
X — 2% be a correspondence. If there exists a measurable function
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f:T — X such that f(t) € ¢(¢, f(t)) for all ¢ € T, then we say that ¢
has a random fized point.

We begin by proving a random version of the Kakutani-Fan-Glicks-
berg fixed point theorem.

Theorem 5.1. Let (T,r,1) be a complete finite measure space and X
be a compact, conver, nonempty subset of a locally convez, separable,
metrizable linear topological space. Let ¢ : T X X — 2% be a nonempty,
convez, closed valued correspondence such that:

(i) ¢(-,-) is lower measurable, i.e., for every open subset V of X the set
{(t,2) e T X X : (t,z) NV # 0} belongs to T @ H(X),
(ii) for each fizedt € T, $(1,-) is u.s.c.

Then ¢ has a random fized point.
Proof. Define the correspondence F : T — 2% by

F(t) = {z € X : dist(z, ¢(t,z)) = 0}.

Setting § =T x X, X =Y, a = 7® (X)) and ¥(s) = ¢(t,z) for
s = (t,z) in Lemma 3.9, we conclude that F(-) has a measurable graph,
i.e., Gp € T ® B(X). It can be easily checked that for each fixed ¢t € T',
the correspondence ¢(1,-) : X — 2% satisfies all the conditions of the
Fan-Glicksberg fixed point theorem [see for instance Glicksberg (1952)].
Hence, for all t € T', F(t) # 0. Consequently, the correspondence F :
T — 2% satisfies all the conditions of the Aumann measurable selection
theorem and therefore there exists a measurable function Z : T — X
such that Z(t) € F(t) for almost all ¢t € T, i.e., dist(Z(2), ¢(1,Z(2))) = 0
for almost all £ € T. Since ¢(:,-) is closed valued we conclude that
Z(t) € ¢(t,%(1)) for almost all ¢ € T, i.e., ¢(-,-) has a random fixed point.
This completes the proof of the Theorem.

The result below is a random version of Fan’s Coincidence Theorem,
[Fan (1969))].

Theorem 5.2. Let X be a compact convez nonempty subset of a locally
conver separable and metrizable linear topological space Y and let (T, T,v)
be a complete finite measure space. Lety: Tx X — 2¥ andp: Tx X —
2Y be two nonempty, convez, closed and ai least one of them compact
valued correspondences such thai:
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(i) u(-,-) and 7(-,-) are lower measurable,
(1i) for each fized t € T, the correspondences p(t,) : X — 2Y and
(t,-): X — 2Y are u.s.c.
(iii) for everyt € T and every z € X, there exist three points y € X,
u € y(t,2),2 € u(t,z) and a real number A > 0 such that y — z =
Alu - z).
Then there exists a measurable function z* : T — X such that y(t, z*(1))N
u(t,z*(t)) # 0 for almost allt € T.

Proof. Define the correspondence W : T' x X — 2¥ by W(t,z) =
(t,z) N p(t, z). Since y(-,-) and p(-,-) are closed valued and lower mea-
surable and at least one of them is compact valued, it follows from The-
orem 4.1 in Himmelberg (1975) that W{-,-) is lower measurable. Define
the correspondence ¢ : T — 2% by

#(2) = {z € X : W(t,2) # 0}.
Observe that

Gy={(t,z)eTx X :z € 4(t)}
={(t,2) e T x X : W(t,z) # 0}
={(t,z)eTx X :W(t,2)NY # 0},

and the latter set belongs to 7 ® S(X) since W(-, ) is lower measurable.
Therefore, G4 € 7 ® B(X). It follows from Fan’s Coincidence Theorem,
that for each t € T,¢(t) # 0. Thus, the correspondence ¢ : T — 2%
satisfies all the conditions of the Aumann Measurable Selection Theorem
and consequently, there exists a measurable function z* : T — X such
that 2*(t) € #(t) for almost all ¢ in T, i.e., y(¢,2*(2)) N u(t, z*(2)) # O for
almost all ¢ in T'. This completes the proof of the Theorem.

An immediate corollary of the above result is Theorem 5.1.

Corollary 5.1. Let X be a compact, convez, nonempty subset of a
locally convez, separable and melrizable linear topological space Y and let
(T, 7,v) be a complete finite measure space. Let v : Tx X — 2%X be a
nonemply, convez, closed valued correspondence such that for each fized
teT, v(t,) is u.s.c. and ¥(-,-) is lower measurable. Then ¥(-,-) has a
random fized point.
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Proof. Define the correspondence u : T X X — 2% by p(t,z) = {z}.
Clearly for each fixed ¢t € T, u(t,) is u.s.c. and u(-,-) is convex, lower
measurable, nonempty, compact valued. Let z € X and t € T. By
choosing v € 7(¢,z),2 = € p(t,z) and A € (0,1) assumption (iii) of
Theorem 5.2 is satisfied (simply notice that since X is convex y = z +
Mu—z) = Au4{1-X)z € X). Hence, by the previous theorem there exists
a measurable function z* : T — X such that y(¢,2*(¢)) N p(t,z*()) # 0
for almost all ¢t € 7', i.e., 2*(2) € v(¢,2*(¢)) for almost all ¢ € 7.

Remark 5.1. Theorem 5.2 and Corollary 5.1 remain true if we replace
the assumption that (7, 7,v) is a complete finite (or o-finite) measure
space, by the fact that (T, 7) is simply a measurable space. In this case one
only needs to observe that in the proof of Theorem 5.2 for each fixed ¢t €
T,W(t,-)is u.s.c. (as it is the intersection of two u.s.c. correspondences)
and therefore, the correspondence ¢ : T — 2% is closed valued. Since ¢(-)
is closed valued and it has a measurable graph by Lemma 3.1, ¢(-) is lower
measurable. One can now appeal to the Kuratowski and Ryll-Nardzewski
measurable selection theorem to complete the proof of Theorem 5.2.

Theorem 5.3. Let (T, 1,u) be a complete finite measure space, and X
be a nonempty, compact, convez subset of a separable Banach space Y.
Let ¢ : T x X — 2% be a nonempty, convez, closed valued correspondence
such that:

(1) &(:,-) is lower measurable and
(ii) for eacht € T,¢(1,-) is l.s.c. Then ¢ has a random fized point.

Proof. It follows from Theorem 4.2 that there exists a function f :
T x X — X such that f(f,z) € ¢(t,z) for all ({,z) € T x X, and for
each z € X, f(-,z) is measurable and for each t € T, f(%,-) is continuous.
Moreover, f(-,-) is jointly measurable.

Define the set-valued function F : T — 2% by F(1) = {z € X :
g(t,z) = 0}. where g(¢,z) = f(t,z) — z. It follows from the Tychonoff
fixed point theorem that for each fixed ¢t € T, the function f(t,-): X —
X has a fixed point. Therefore, for each t € T, F(t) # 0. Since g is
jointly measurable, F' has a measurable graph. Hence by the Aumann
measurable selection theorem there exists a measurable function z* : T —
X such that for almost all ¢ in T, 2*(2) € F(2), i.e., 2*(t) = f(t,z*(t)) €
d(t,z"(t)). This completes the proof of the theorem.
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Remark 5.2. The statement of Theorem 5.3 remains true without the
closed valuedness of ¢ : T x X — 2% if either

(i) Y is finite dimensional or

(ii) #(,z) has a nonempty interior for all (¢,z) € T x X.
The argument is similar to that adopted in the proof of Theorem 5.3
except that one must use now Theorem 4.3 instead of Theorem 4.2.

Remark 5.3. The statement of Theorem 5.3 remains true if we re-
place (i) and (ii) by:

(i) for each fixed ¢ € T, ¢(¢,-) has an open graph in X x X, and

(ii) ¢ has a measurable graph, i.e., G, € 7 ® B(X) ® B(X).

The argument is the same with that adopted for the proof of Theorem 5.3
except that one must now appeal to Theorem 4.1.

We conclude this Section by proving a random fixed point theorem
for weakly u.s.c. (w-u.s.c.) set-valued functions, which has found useful
applications in economic theory. However, before we state our result we
will need some notation.

Let (T, ,p) be a finite measure space, X be a separable Banach
space and let L;(u, X') denote the space of equivalence classes of X-valued
Bochner integrable function on (T, 7, u). We denote by Sk the set of all
Bochner integrable selections from the set-valued function F : T — 2%,
ie., Sp={z € L,(p,X): 2(t) € F(t) p-ae}.

Theorem 5.4. Let ¢ : T X X — 2% be a nonempty, convez, weakly
compact valued correspondence such that:
(i) ¢(-,-) is lower measurable,

(i) for eacht € T, ¢(t,-) has a weakly closed graph, that is, w-Ls ¢(t,z.)
C ¢(,z), (where w-Ls denotes weak limit superior) whenever the
sequence {z, :n=1,2,...} converges to z,

(iti) $(t,z) C F(t) p-a.e., where F : T — 2% is a lower measurable,
integrably bounded, weakly compact, conver and nonempty valued
correspondence.

Then ¢(-,-) has a random fized point.

Proof. Define the set-valued operator ¢ : SL — 25F by Pz) =
5;(_}_,,:(.)). In view of assumption(iii) it follows from Diestel’s theorem
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[see for instance Yannelis (1990a), Theorem 3.1] that S} is a weakly
compact subset of L,(u,X). Obviously S} is convex and by virtue of
the Kuratowski and Ryll-Nardzewski measurable selection theorem we
can conclude that S}. is nonempty. We now show that v is w-u.s.c., i.e.,
the set {z € Sk : ¢(z) C V} is open in Sk for any weakly open subset
V of Sk. Since S}, is weakly compact and 9(-) is weakly closed valued,
it suffices to show that ¥(-) has a weakly closed graph. To this end let
{z,(-) : n = 1,2,...} be a sequence in S} converging in the L,{u,X)
norm to z(-) € S}, we must show that

w-Ls 54(. 2. () = W-Ls¥(2,) C Sg. a0y = ¥(2)- (5.1)

(By passing to a subsequence if necessary if may assume that z,()
converges to z(t) p-a.e.) Let z € w-Lsty(z,), i.e., there exists {z,, :
k = 1,2,...} in S} such that z, converges weakly to z € S and
z,, € Y(z,) = Sé(wfu('))’ ie., z, (t) € ¢(t,z,, (1))u-ae. We must
show that z € ¥(z). It follows from Theorem 4.1 in Yannelis (1990b)
that 2(t) € conw — Ls{z,, (t)} u-a.e. and therefore

2(t) € conw-Ls §(t, z,,(1)) p-a.e. (5.2)

Since by assumption (ii) for each t € T, ¢(%,) has a weakly closed graph
we have that:

w-Ls §(t,2,(1)) C $(t,2(1)) p-a.e. (5.3)

Combining now (5.2) and (5.3) and taking into account that ¢ is convex
valued we conclude that () € ¢(t,z(t)) pu-a.e. Since ¢ is weakly compact
valued we have that z € §3,. _y, = ¥(z), and this proves (5.1). Hence,

Pp:S5L— 25F satisfies all the conditions of the Fan-Glicksberg fixed point
theorem and consequently there exists z* € S} such that z* € ¢(z*), i.e,,
z*(1) € ¢(t,z*(t)) p-a.e. This completes the proof of the theorem.

Bibliographical Notes. Theorems 5.1 and 5.4 are new. Theo-
rem 5.2 is taken from Yannelis-Rustichini (1991). Theorem 5.3 is a ran-
dom version of a result in Yannelis-Prabhakar (1983) and it is taken from
Kim-Prikry-Yannelis (1987). The literature on random fixed points is
growing rapidly, and perhaps one of the basic references is Itoh (1979).
Applications of random fixed points in game theory can be found in

Yannelis-Rustichini (1991).
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6. Random Maximal Elements
and Random Equilibria

6.1 Random Maximal Elements. Let X be a nonempty
subset of a linear topological space. Let P : X — 2% be a preference
correspondence. We read y € P(z) as “y is strictly preferred to x.” For
instance if > is a binary relation on X one may define P : X — 2% by
P(z) = {y € X : y > z}. The correspondence P : X — 2% is said
to have a mazimal element if there exists £ € X such that P(z) = 0.
Several results on the existence of maximal elements with applications
to equilibrium theory have been given in the literature [see for instance
Sonnenschein (1971) and Yannelis-Prabhakar (1983) among others.] No-
tice that the above preference correspondences need not be representable
by utility functions. We will now allow our preference correspondence to
depend on the states of nature, i.e., we allow for random preferences.

Let (T, 7,) be a complete finite measure space. We interpret T as
the states of nature of the world, and suppose that T is large enough to
include all the events that we consider to be interesting. 7 will denote the
o-algebra of events. A random preference correspondence P is a mapping
from T X X into X. We read y € P(¢,z) as “y is strictly preferred
to = at the state of nature ¢”. We now can introduce the concept of a
random maximal element which is the natural analogue of the ordinary
(deterministic) notion of a maximal element. The correspondence P :
T x X — 2% is said to have a rendom mazimal element if there exists a
measurable function Z : T — X such that P(¢,Z(t)) = 0 for almost all ¢
in T.

The following two theorems on the existence of random maximal ele-
ments below generalize the ordinary (deterministic) maximal elements
results given in Sonnenschein (1971), and Yannelis-Prabhakar (1983).
These theorems will also play a key role in proving random price equilib-
rium theorem in Section 6.2.

Theorem 6.1. Let (T, r,p) be a complete finite measure space and X
be @ compact, convez, nonempty subset of R:. Let P: T x X — 2% be a
correspondence (possibly empty-valued) such that:
(i) for every open subset V of X, {(t,z) € T : con P(t,z) NV # 0}
belongs to T ® B(X).
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(ii) for eacht € T, P(t,-) is Ls.c.
(iii) for every measurable function z : T — X, z(t) & con P(t,z(t)) for
almost allt € T.
Then there exists a measurable function Z : T — X such that P(1,z(t)) =
@ for almost allt in T.

Proof. Define the correspondence ¢ : T'x X — 2% by ¢(t,z) =
con P(t,z). By Proposition 2.6 in Michael (1956) for all t € T, 1(t,-) is
l.s.c. and by assumption (i) ¥(-,-) is lower measurable. Let U = {(¢,z) €
Tx X : ¢¥(,z) # 0}. By Theorem 4.3 there exists a Carathéodory-
type selection from 4, i.e., there exists a function f : U — X such
that f(t,z) € ¢(t,z) for all (¢,2) € U and for each t € T, f(t,-) is
continuous on U? = {z € X : ({,z) € U} and for each z € X, f(-,z)is
measurable on U, = {t € T : (t,z) € U}. Notice that for eacht € T,
Ut={z e X:¢9@t,z)# 08} ={z € X :9(,z)N X # 0} is open in the
relative topology of X, since for each t € T, 9(%, ) is L.s.c. Furthermore,
it follows at once from the lower measurability of (-, that the set
U={(t,z2) e TxX :¢(t,z)NX # 0} belongs to 7 ® F(X). By virtue of

the projection theorem we have that

projr(U N (T x {z})) = projp({(t,2) € T x X:94(¢,z) # 0} N (T x {z}))
={teT:y(,z)# 0}
s B, B

Hence, by Proposition 3.1, f(-,-) is jointly measurable. Define the corre-
spondence #: T x X — 2X by

{f(t,2)} if(t,2)eU

HE) = { X if (t,2) ¢ U.

By Lemma 6.1 in Yannelis-Prabhakar (1983) we have that for each
teT,6(,): X — 2% is us.c.. Clearly,  is convex and nonempty
valued and it can be easily seen that 8(.,-) is lower measurable. Hence
by Corollary 5.1, 8 : T x X — 2% has a random fixed point, i.e., there
exists a measurable function Z : T — X such that Z(z) € (¢, Z(2)) for
almost all ¢ in T. Suppose that for a non-null subset S of T, (¢,%(2)) € U.
Then by the definition of 8, 2(1) = f(t,%(2)) € ¥(¢,Z{t)) = con P(t,Z(1))
for all t € S, a contradiction to assumption (iii). Hence, for almost all ¢
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in T, (¢,%(t)) € U and consequently 4(t,%(t)) = @ for almost all ¢ in T
which implies that P(#,Z(t)) = @ for almost all ¢ in T'. This completes
the proof of the Theorem.

Theorem 6.1 can be extended to separable Banach spaces by strength-
ening the continuity assumption (ii). More formally we can state the
following extension of Theorem 6.1.

Theorem 6.2. Let (T,r, i) be a complete finite measure space and X
be a compact, convez, nonempty subset of a separable Banach space. Let
P:T x X — 2% be a correspondence (possibly empty-valued) such that

() {(t,7,y) €T X X x X :y € con P(t,z)} € 7 @ B(X) ® B(X).
(ii) for eacht € T and each y € X the set P~ (t,y)={z € X 1y €
P(t,z)} is open in the relative norm topology of X,
(ii) for each (t,2) € T x X, if P(t,z) # 0 then P(t,z) has a nonempty
interior in the relative norm topology of X,
(iv) for every measurable function z : T — X,z(t) € con P(t,z(t)) for
almost allt € T.

Then there ezists a measurable function z : T — X, such that P(t,%(t)) =
@ for almost all t € T. 7

Proof. The proof is almost identical with the proof of Theorem 8.1.
Define ¢ : T'x X — 2X by ¥(t,z) = con P(t,z). By virtue of Lemma
5.1 in Yannelis-Prabhakar (1983) for each ¢ € T and each y € X the set
Y~ (t,y) = {z € X : y € ¥(t,2)} is open in the relative norm topology
of X. By Theorem 4.1 there exists a Carathéodory-type selection from
%. One can now proceed as in the proof of Theorem 6.1 to complete the
proof.

Below we indicate how versions of Theorems 6.1 and 6.2 can be easily
proved by combining the deterministic maximal elements results given in
Yannelis-Prabhakar (1983) with the Aumann measurable selection theo-
rem.

Theorem 6.1'. Theorem 6.1 remains true if one replaces assumption (i)
by

(7) P(-,-) is lower measurable.
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Proof. Define the correspondence M : T — 2% by M(t) = {z ¢
X : P(t,z) = B}. It can be easily checked that for each fixed ¢ in T,
the correspondence P(t,) : X — 2% satisfies all the assumptions of
Theorem 5.2 in Yannelis-Prabhakar (1983, p. 239) and so for each fixed
¢ in T, the correspondence P(t,-) : X — 2% has a maximal element, i.e.,
there exists Z, € X such that P(¢,Z,) = @ for all ¢ in T'. Therefore, for
each t € T, M(t) # 8. Since by assumption P(:,-) is lower measurable,
the set

A=flheleTx X : Plla)£ B
={(t,z) eTx X : P(t,z) N X # 0},

belongs to 7 ® f(X), and so does the complement of the set A which is
denoted by A¢. Observe now that

Gy={tz)eTxX:ze M(t)}
={@x) ET XX : P{t,=)}=10}
= {(t,z) € T x X : P(t,z) # 0}°
:Ac,

and the latter set belongs to 7 ® B(X) as it was noted above. Thus, M(-)
has a measurable graph. We can not appeal to the Aumann measurable
selection theorem to ensure the existence of a measurable function Z :
T — X such that Z(¢) € M(t) for almost all t in T', i.e., P(¢,Z(t)) = 0 for
almost all ¢ in 7. This completes the proof of the Theorem.

Theorem 6.2. Theorem 6.2 remains true if assumption (iii) is dropped
and assumption (i) is replaced by

(?) P(-,-) is lower measurable.

Proof. The proof is similar with that of Theorem 6.1'. Define M :
T — 2X by M(t) = {z € X : P(t,z) = 0}. Using Theorem 5.1 in
Yannelis-Prabhakar (1983, p. 239) we can conclude that M(t) # 0 for all
t in T. Adopting the argument of the previous Theorem one can show
that G, € 7 ® B(X). Appeal now to the Aumann measurable selection
theorem to complete the proof.
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Remark 6.1. Theorems 6.1’ and 6.2’ remain true if we replace the
assumption that (T, 7,u) is a complete finite measure space by the fact
that (7,7) is a measurable space. The proofs remain the same pro-
vided that one observes that the correspondence M : T' — 2% defined
by M(t) = {X € X : P(t,z) = 0} is closed valued since for each t € T,
P(t,-)is Ls.c. (this is also true if for each ¢ € T and each y € X, P~1(t,7)
is open in X). Since M(-) is closed valued and it has a measurable graph,
it is also lower measurable (recall Lemma 3.1). By virtue of the Kura-
towski and Ryll-Nardzewski measurable selection theorem, one can assure
the existence of 2 measurable function z* : T — X such that z*(t) € M(t)
forallteT,ie., P(t,z*(t)) =0 forallt e T.

6.2 Random Equilibria. E = {(X,,P,¢,):i=1,2,...,N)},
an ezchange economy, is a family of ordered triples (X, P, e;) where,

(i) X; C R*is the consumption set of agent i ,

(i) P;: X; — 2% is the preference correspondence of agent i, and

iii) e; is the initial endowment of agent ¢, where e; € X, for all 3.
] g H] 1 H

The pair (e;, P;) constitutes the characteristics of agent 7, i.e., his/her
initial endowment and preference correspondence. The interpretation of
the preference correspondence P, is as in Section 6.1, i.e., we read Y; €
P;(z;) as “agent i strictly prefers the consumption vector y; to z,.”

Let A ={geQ: E:-=1 g; = 1} (where Q denotes the positive cone
of RY. Forpe A, Bi(p) = {c € X;:p-2< p- e;} denotes the budget
set of agent i, and D;(p) = {z; € B(p): P;(z;) N B;(p) = §} denotes the
demand set of agent 7.

Define the aggregate excess demand ¢ : A — 2% for the economy E
by €(p) = i1 Dilp) = Tily e

As in Debreu (1959) a free disposal price equilibriumis a vector € A
such that {(p) N (-Q) # 0. A price equilibrium is a vector p € A such
that 0 € ((p). conditions which guarantee the existence of either a free
disposal price equilibrium or price equilibrium are by now well-known
in the literature, see for instance Debreu (1959) and his references. We
now amend the deterministic economy described above by introducing
randomness.

Let (T, 7, ) be a complete finite measure space.

A random ezchange economy E = {(X;, P;,e;):1=1,2,...,N}isa
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family of ordered triples (X}, P;,e;), where

(i) X; Cc R?is the consumption set of agent i,
(ii) P, : T x X; — 2% is the random preference correspondence of
agent 2,
(iii) e; : T — Rf is the random initial endowment of agent i, where
e(t)eX;forallteT.

Notice that now each agent’s characteristics, i.e., preferences and en-
dowments depend on the state of nature. Hence, randomness is explicitly
introduced into agents’ characteristics. In this framework, y; € P(t,z;)
means that “agent ¢ strictly prefers y; to z; at the state of nature t.”

For p € A and t € T define the random budget set of agent 7 by
B(t,p) = {z € X; : p-z < p-e(t)} and the random demand set of
agent i by D.(t,p) = {z; € B;(t,p) : P;(t,z;) N By(t,p) = 0}. Define the
aggregate random ezcess demand ( : T X A — 9% for the economy E by
C(t,p) =N, Dit,p)- 2?‘;1 e;(t). We now define the natural analogues
of the ordinary concepts of price equilibrium.

A free disposal random price equilibrium is a measurable function
#:T — A such that

(A, p())N(-N)#0  for almost all ¢ in T.

A random price equilibrium is a measurable function p: T — A such
that
0 € ¢(t,p(1)) for almost all £ in 7.

Notice that now the equilibrium price (or the market clearing price)
depends on the states of nature. Hence, in this framework the market
clearing price will change from one state of the environment to another.

The concept of random price equilibria which is obviously a gen-
eralization of the ordinary (deterministic) notion of price equilibrium is
not new. It can be traced to Bhattacharya-Majumdar (1973 Section IV,
p. 45), Hildenbrand (1971, p. 427) and more recently to Weller (1982,
e 79 )

Below we provide conditions which guarantee the existence of either
a free disposal random price equilibria or a random price equilibria.

Theorem 6.3. Let ( : T X A — 2% be a random aggregate excess
demand correspondence, satisfying the following assumptions:
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(i) For eacht € T,((t,) is u.d.c.,
(1) ((-,-) is lower measurable, i.e., for every open subset V of RY, {(t,p)
ETXA:((t,p)NV #0} e T®B(A),
(ii) for all (t,p) € T x A,{(t,p) is convez, compact and nonempty,
(iv) for all measurable p : T — A there erists z € ((t,p(t)) such that
p(t) -2 <0 for almost allt € T.

Then there erists a free disposal random equilibrium, i.e., there ezists a
measurable function p: T — A such that ((t,5(t)) N (—Q) # 0 for almost
allt inT.

Remark 6.2. Observe that Theorem 6.3 gives as a Corollary the or-
dinary (deterministic) Gale-Nikaido-Debreu (G-N-D) excess demand the-
orem [see for instance Debreu (1959, p. 82)] simply by fixing ¢ € T and
considering the correspondence ((t,-) : A — 2%, Also it is important
to note that the argument which is adopted to prove Theorem 6.3 does
not use the G-N-D theorem. The proof we give is direct (starts from
“scratch”) and provides an alternative way to prove the ordinary G-N-D
result.

Proof of Theorem 6.3. Define the correspondence F : T x A — 28
by F(t,p) ={g€ A:q-z> 0forall z € ((t,p)}. We will show that the
correspondence F' : T' X A — 22 satisfies all the properties of Theorem
6.1 and therefore it has a random maximal element. By construction the
random maximal element, will turn out to be a random price equilibria.

() The correspondence F : T x A — 2% is convez valued and for all
measurable p : T — A, p(t) € F(2,p(t)), for almost all t in T.

It can be easily checked that for all (¢,p) € T x A, F(t,p) is con-
vex. Moreover, it follows directly from assumption (iv) that p(t) ¢
con F(t,p(1})) = F(t,p(t)) for all measurable p : T — A and all ¢ in
T,

(ii) For each fizedi € T, F(t,-) is Ls.c.

By virtue of Proposition 4.1 in Yannelis-Prabhakar (1983) it suffices
to show that for each ¢ € T and each ¢ € A the set F~1(t,q) = {p €
A : g€ F(t,p)} is open in A. To this end, let V, = {z : ¢- 2z > 0}
be an open half space in R%. Since for each t in T,((¢,-) is u.d.c., the
set W ={peA:({(tpcC V,} is open in A. It can be easily checked
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that W = F~1(t,q). Therefore, for each ¢ € T and each ¢ € A the set
F~1(t,q) is open in the relative topology of A.

(iii) The correspondence F : T' X A — 22 is lower measurable.
Setting S =T X A, = 7 ® B(A), ¢(s) = {(t,p) and 8(s) = F(t,p)
for s = (t,p) in Lemma 3.10, we conclude that F(-, ) is lower measurable.

Therefore, the correspondence, F : T X A — 22 satisfies all the

assumptions of Theorem 6.1 and consequently, there exists a measurable
function p: T — A such that F(¢,p(t)) =@ forallitin T, i.e.,

(6.1) for all ¢ € A there exists 2 € ((t, p(t)) such that ¢-z < 0 for almost
all tin T.

We now show that (6.1) implies that
{(2,8(t)) N (—9) # 0 for almost all ¢ in T. (6.2)

Suppose otherwise, then for all ¢ € A, where A is a non-null subset of
7., )N (-2 = 0. Since (: T XA — 2%’ is convex and compact
valued and —Q is a closed convex cone, the sets {(¢,p(¢)) and —Q can be
strictly separated, i.e., there exist r € R%, r # 0 and b € R such that

sup r-y<b< inf r-.z 6.3

T - L 0) R3]
Notice that b > 0 and r > 0. Without loss of generality we may assume
that r € A. It follows from (6.3) that r-z > 0 for all z € ¢(¢,p(t)) and for
all t € A, a contradiction to (6.1). Hence, (6.2) holds and this completes
the proof of the Theorem.

Notice that the dimensionality of the commodity spaces in Theo-
rem 6.3 is finite. We now provide an extension of Theorem 6.3 to infinite
dimensional commodity space and in particular to a separable Banach
space whose positive cone has a nonempty norm interior. The Theorem
below may be seen as a generalization of the deterministic equilibrium re-
sults of Florenzano (1983) and Yannelis (1985), but only if the underlying
commodity space is separable.

Theorem 6.4. LetY be a separable Banach space, C the closed convez
cone of Y, having an interior point u,C* = {p € Y* : p-z < 0 for all
z € C} # {0} the dual cone of C and A = {p€ C*: p-u = —1} be the
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price space. Let { : T X A — 2Y be an aggregate random ezcess demand
correspondence satisfying the following conditions:

(i) For each i € T,((t,) : A — 2Y is u.d.c., in the weak* topology,
(i.e., {(t,2) : (A, w*) — 2Y is u.d.c.),

(i) {(-,-) is lower measurable, i.c., for every open subset V of Y, {(t,p)
eTXA:(t,p)NV # 0} € TQF,.(A), where B,.(A) is the Borel
o-algebra for the weak® topology on A,

(ii1) ((t,p) is convez, compact and nonempty for all (t,p) € T x A,

(iv) for all measurable p : T — A, there exists x € ((t,p(t)) such that
p(t) - 2<0, forallteT.

Then there exists a measurable function p: T — A such that ((,5(t)) N
C #0 for almost allt inT.

Proof. We begin by proving an elementary fact.

Fact 6.1. Let X be a Hausdorff linear topological space, C a closed
convez cone of X having an interior pointu and C* = {p€ X* :p-2 <0
for allz € C} # {0} be the dual cone of C. Thenr-u < 0 for anyr € C*.

Proof. Suppose by way of contradiction that for some r € C*,r-u = 0.
Pick a symmetric neighborhood V of zero with u +V C C. If z € X,
then for some A > 0 we have that £Az € V and consequently +Ar .z =
r(utAz) £ 0. Hence, 7.z = 0 for each z € X,i.e.,r = 0, a contradiction.
Therefore, 7 - u < 0 for any r € C”, and thic completes the proof of
the Fact.

We now proceed with the proof of Theorem 6.4, whose idea is es-
sentially the same with that of Theorem 6.3. Define the correspondence
F:TxA-2%by

F(t,p)={geA:q-z>0forall z ¢ ((t,p)}-

First notice that by Alaoglu’s theorem A is weak* compact [Jameson
(1970, Theorem 3.8, p. 123)]. Moreover, since Y is a separable Banach
space, A is a compact metric space. Adopting the arguments used in the
proof of Theorem 6.3 one can easily see that F : T' x A — 22 satisfies
all the properties of Theorem 6.2 (of course, one now has to use Lemma
3.9 to show that Gr € 7 ® B,.(A) ® B,.(A)). Hence, there exists a
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measurable function 7 : T — A such that F(t,5(t)) = 0 for almost all ¢

i e _

(6.4) for all ¢ € A there exists z € {(t,p(t)) such that g-z < 0 for almost
alltin T.

We show that (6.4) implies that
¢(t,p(1))NC # @ for almost all ¢ in 7. (6.5)

Suppose otherwise, then for all £ in a non-null subset A of T', {(¢,p(t)) N
C = 0. By the separating hyperplane theorem there exist r € ¥Y*/{0}
and b € R such that

o E e me(}(l};(m i (6:6)
Notice that b > 0 and 7 € C*. Without loss of generality we may assume
that 7 € A. In fact, if r ¢ A then u € int C implies (recall Fact 6.1 ) that
r-u < 0 and we can replace r by —%—. It follows from (6.6) that r-z > 0
for all z € ((¢,5(t)) for all t € A, a contradiction to (6.4) Hence, (6.5)
holds and this completes the proof of Theorem 6.4.

Remark 6.3. As we noted earlier Theorem 6.4 may be seen as a gen-
eralization of the deterministic equilibrium results of Florenzano (1983)
and Yannelis (1985). Moreover, our arguments adopted for the proof of
Theorem 6.4 provide an alternative way to prove the above deterministic
equilibrium results of the above authors. We do wish however to indi-
cate that a version of Theorem 6.4 can be easily obtained by combining
the deterministic result in Yannelis (1985) with the Aumann measurable
selection theorem as follows:

Theorem 6.4'. Replace assumption (i) in Theorem 6.4 by

(i¢) C(-,-) is measurable, i.e., for every closed subset V of Y, the set
{(t,p) e T x A : {(p,t)NV # 0} belongs to T @ B,.(A).

Suppose that conditions (i), (iti) and (iv) of Theorem 6.4 are satisfied.

Then the conclusion of Theorem 6.4 holds.

Proof. Define the correspondence W : T' — 23 by

W(t)={peA:((tp)nC # 0}.
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By Theorem 3.1 in Yannelis (1985, p. 597) for each fixed t € T there
exists §, € A such that {(¢,5,) N C # @. Therefore, W(t) # ¥ for all
t € T. Observe that

Gw = {(t,p) €T x A:p e W(1)}
={(t,p) e T x A : ((t,p)NC #0}.

It follows, at once from the measurability of {(-,-), [assumption (ii')] that
Gw € 7 ® B,-(A), i.e., W(-) has a measurable graph. Appeal now to
the Aumann measurable selection theorem to ensure the existence of a
measurable function p: T' — A such that p(t) € W(t) for almost all £ in
T,ie., {(t,p(t))NC # 0 for almost all ¢ in T.

Bibliographical Notes. All the results in this section are new.
They generalize the deterministic results on the existence of maximal
elements of Sonnenschein (1971), and Yannelis-Prabhakar (1983) as well
as the excess demand equilibrium existence theorems of Debreu (1959),
Aliprantis-Brown (1983}, Florenzano (1983) and Yannelis (1985), among
others.
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