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Abstract

This note illustrates that the saturation property of a probability space can be used to routinely generalize results on the integration
of Banach valued correspondences over a Loeb measure space to those over an arbitrary saturated probability space. On the other
hand, the saturation property is also necessary for the validity of those results when the target space is infinite dimensional.
© 2007 Elsevier B.V. All rights reserved.

JEL Classification: C60; C65

Keywords: Saturation; Integration; Correspondences; Banach space; Convexity; Compactness; Upper semicontinuity

1. Introduction

In order to study large economies (games) with an infinite dimensional commodity (action) spaces, one needs
to work with integration of Banach valued correspondences; see, for example, Rustichini and Yannelis (1991);
Sun (1997); Yannelis (1991), and their references. However, it is well known that desirable results such as con-
vexity, compactness and preservation of upper semicontinuity may fail if the underlying measure space is the
Lebesgue measure space and the correspondences take values in an infinite dimensional Banach space. To rem-
edy this difficulty, Sun (1997) worked with general correspondences over the Loeb measure spaces as developed
in Loeb (1975) while the earlier paper Rustichini and Yannelis (1991) proposed to work with measure spaces
whose associated L∞ spaces over any non-null measurable set have strictly larger cardinality than that of the
continuum.

The purpose of this note is to illustrate that the saturation property for a probability space as developed in Hoover
and Keisler (1984) can be used to routinely generalize results on the integration of Banach valued correspondences
over a Loeb measure space to those over an arbitrary saturated probability space. As noted in Keisler and Sun (2002),
the saturation property is necessary for those results that are true on a Loeb measure space but fail on a Lebesgue
measure space. In our context, it means that in order to obtain the desirable results such as convexity, compactness and
preservation of upper semicontinuity for the integration of infinite dimensional Banach valued correspondences, it is
necessary to work with saturated probability spaces.
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Corollary 4.5 of Hoover and Keisler (1984) shows that the saturation property of a probability space is equivalent
to the ℵ1-atomless property. It is also easy to show that a probability space is saturated if and only if its Maharam
spectrum is a set of uncountable cardinals; see Fajardo and Keisler (2002) (Theorem 3B.7, p. 47). This latter property
of uncountable Maharam spectrum is also called super-atomless in the recent paper Podczeck (2008). The results in
Theorems 1, 3, 7 and 8 in Sun (1997) on Loeb spaces are generalized to the setting of a super-atomless measure space1,
respectively, in Theorems 1–4 in Podczeck (2008). The measurable correspondences in Rustichini and Yannelis (1991)
take values within a fixed weakly compact set of a separable Banach space. Podczeck (2008) pushed some ideas used
in the proof of the main theorem of Rustichini and Yannelis (1991) in a powerful way so that he could generalize
Theorems 1, 2, 7 and 8 in Sun (1996) on convexity, and weak or weak∗ compactness of (Bochner or Gelfand) integrals
of general correspondences over Loeb measure spaces to the setting of a super-atomless measure space. Note that the
results in six other parts of Proposition 1 below are not considered in Podczeck (2008).

As noted in Keisler and Sun (2002) and Remark 1 below, one can restate a counterexample on the unit Lebesgue
interval to a counterexample on a non-saturated probability space. Thus, the classical Lyapunov example can be used
to show that when the target space is the Hilbert space l2, each part of Proposition 1 may not hold on a non-saturated
probability space. Podczeck (2008) provided stronger counterexamples to show that when the target space is any
infinite dimensional Banach space, the convexity and (weak or weak∗) compactness of (Bochner or Gelfand) integrals
of general correspondences may not hold on a non-saturated probability space.

The rest of the note is organized as follows. Section 2 states the results. We illustrate in Section 3 how the saturation
property can be used to routinely generalize results on the integration of Banach valued correspondences over a Loeb
measure space to those over an arbitrary saturated probability space.

2. The results

Let X and Y be complete separable metric spaces and M(X) the space of all Borel probability measures on X with
the Prohorov metric ρ. We recall that M(X) is again a complete separable metric space. For each τ ∈M(X× Y ),
let margX(τ) = τX be the marginal of τ in M(X); thus margX : M(X× Y ) → M(X) is a continuous surjection. Let
(Ω,F, P) be a countably additive complete probability space, L0(Ω,X) the space of all random variables (measurable
functions) f : Ω → X with the metric of convergence in probability.

For f ∈L0(Ω,X), the law (or distribution) of f is defined by law(f )(B) = P(f−1(B)) for each Borel set B in X
(law(f ) is usually denoted by Pf−1 in the literature). The law function law : L0(Ω,X) → M(X) is continuous, and
is surjective if (Ω,F, P) is atomless.

Definition 1. A probability space (Ω,A, λ) is saturated or rich if (Ω,A, λ) is atomless, and for any complete
separable metric spaces X and Y, any τ ∈M(X× Y ), any f ∈L0(Ω,X) with law(f ) = τX, there exists g∈L0(Ω,Y )
such that law(f, g) = τ.

The following proposition generalizes the results in Theorems 1–10 of Sun (1997) on Loeb probability spaces to
the case of saturated probability spaces.2

Proposition 1. Let (Ω,F, P) be a saturated probability space. In parts 1–3 (and parts 4–6) below, X is a (separable)
Banach space while the integral is the Bochner integral in the first six parts. In parts 7–10, X is the dual of a separable
Banach space and the integral is the Gelfand integral.

1. For any correspondence F from (Ω,F, P) to X, the Bochner integral
∫
Ω
F dP is convex, where

∫
Ω
F dP is the set

of Bochner integrals
∫
Ω
f dP for all Bochner integrable selections f of F.

2. Let F be a norm compact valued correspondence from (Ω,F, P) to X. If F is integrably bounded by a non-negative
real-valued integrable function φ on (Ω,F, P) in the sense that for P-almost all ω∈Ω, supx∈F (ω)‖x‖ ≤ φ(ω),
then

∫
Ω
F dP is norm compact.

1 These generalized results are stated, respectively, in parts 1, 3, 7 and 8 in Proposition 1 below.
2 We refer to Sun (1997); Yannelis (1991) for various other definitions.



Y. Sun, N.C. Yannelis / Journal of Mathematical Economics 44 (2008) 861–865 863

3. For any integrably bounded, weakly compact valued correspondence F from (Ω,F, P) to X,
∫
Ω
F dP is weakly

compact.
4. For any measurable, integrably bounded, weakly compact valued correspondence F from (Ω,F, P) to X,

∫
Ω

coF dP =
∫
Ω

F dP,

where coF is the correspondence such that for each ω∈Ω, coF (ω) is the norm closure of the convex hull of F (ω).
5. Let Y be a metric space and F a norm compact valued correspondence fromΩ× Y to X. Assume that for each fixed
y∈Y, F (·, y) is a measurable correspondence from Ω to X, and there is an integrably bounded, norm compact
valued correspondence G such that for every y∈Y , F (ω, y) ⊆ G(ω) for P-almost all ω∈Ω. If F (ω, y) is norm
upper semicontinuous on Y for each fixed ω, then

∫
Ω
F (ω, y) dP(ω) is norm upper semicontinuous on Y.

6. Let Y be a metric space and F a weakly compact valued correspondence from Ω× Y to X. Assume that for each
fixed y∈Y, F (·, y) is a measurable correspondence from Ω to X, and there is an integrably bounded, weakly
compact valued correspondence G such that for every y∈Y, F (ω, y) ⊆ G(ω) for P-almost all ω∈Ω. If F (ω, y) is
weakly upper semicontinuous on Y for each fixed ω, then

∫
Ω
F (ω, y) dP(ω) is weakly upper semicontinuous on Y.

7. For any correspondence F from (Ω,F, P) to X, the Gelfand integral
∫
Ω
F dP is convex, where

∫
Ω
F dP is the set

of the Gelfand integrals
∫
Ω
f dP for all Gelfand integrable selections f of F.

8. For any integrably bounded, weak∗ compact valued correspondence F from (Ω,F, P) to X, the Gelfand integral∫
Ω
F dP is weak∗ compact.

9. For any measurable, integrably bounded, weak∗ compact valued correspondence F from (Ω,F, P) to X,

∫
Ω

w∗ − coF dP =
∫
Ω

F dP,

wherew∗ − coF is the correspondence such that for each ω∈Ω,w∗ − coF (ω) is the weak∗ closure of the convex
hull of F (ω).

10. Let Y be a metric space and F a weak∗ compact valued correspondence from Ω× Y to X. Assume that for each
fixed y∈Y , F (·, y) is a weak∗ measurable correspondence from Ω to X, and there is a real valued integrable
function g on (Ω,F, P) such that for P-almost all ω∈Ω, sup{‖x‖ : x∈F (ω, y)forsomey∈Y} ≤ g(ω). If F (ω, y)
is weak∗ upper semicontinuous on Y for each fixed ω, then

∫
Ω
F (ω, y) dP(ω) is weak∗ upper semicontinuous on

Y.3

Remark 1.

(1) The classical example of Lyapunov or its variations can be used to show that all the results in Proposition 1 may fail
if X is infinite dimensional and the underlying probability space is the unit Lebesgue interval4; see, for example,
Sun (1997); Yannelis (1991).

(2) As noted in Fajardo and Keisler (2002); Hoover and Keisler (1984); Keisler and Sun (2002), if (Ω,F, P) is an
atomless non-saturated probability space, then there is a setA∈F such thatP(A) > 0 such thatFA = {B∈F : B ⊆
A} is countably generated. Let PA be the probability measure on (A,FA) rescaled from P. There is a measurable
mapping h from A to [0, 1] such that h induces an isomorphism between the corresponding measure algebras of
(A,FA, PA) and the Lebesgue interval ([0, 1],B, μ).5 Thus, one can restate a counterexample on the unit Lebesgue
interval to a counterexample on a non-saturated probability space through h. To illustrate the point, we consider the
Lyapunov example and follow the notation in Example 1 of Sun (1997). Let f be the Bochner integrable function

3 When Y is taken to be the set {0, 1, 1/2, . . . , 1/n, . . . }, the type of results on upper semicontinuity in parts 5, 6, 10 are also called Fatou’s Lemma
in the literature for a sequence of correspondences or functions; see, for example, Sun (1997); Yannelis (1991) and their references.

4 Similar counterexamples in an arbitrarily given infinite dimensional Banach space are constructed in Podczeck (2008).
5 As noted in Keisler and Sun (2002), this follows from Theorem 4.12, p. 937 of Fremlin (1989).
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from the unit Lebesgue interval ([0, 1],L([0, 1]), λ) to the Hilbert space l2. Then, there does not exist a Lebesgue
measurable subset E of [0,1] such that

∫
E
f dλ = 1/2

∫
[0,1] f dλ. Let g be an F-measurable mapping from Ω

to l2 by letting g(ω) = f (h(ω)) for ω∈A and g(ω) = 0 for ω /∈ A. Suppose that there is an F-measurable set
B such that

∫
B
g dP = 1/2

∫
Ω
g dP . Without loss of generality, assume B ⊆ A, and let C be the measurable set

h(B). Then,
∫
B
f (h) dP = 1/2

∫
A
f (h) dP . Then,

∫
C
f dλ = 1/2

∫
[0,1] f dλ, which is a contradiction. Hence, the

Bochner (Gelfand) integral of the correspondenceG(ω) = {0, g(ω)} is not convex. It is easy to see that the Bochner
(Gelfand) integral of the integrably bounded, norm compact valued correspondence G is neither norm closed, nor
weakly closed, nor weak∗ closed. Note that upper semicontinuity also implies closedness. Therefore, each part of
Proposition 1 may not hold on the non-saturated probability space (Ω,F, P).

(3) Thus, for a general infinite dimensional Banach space that is separable itself or is the dual of a separable Banach
space, the saturation property is also necessary for any result of the 10 parts in Proposition 1 to hold on an underlying
atomless probability space.

3. The proofs

We prove a simple lemma first.

Lemma 1. Let (Ω,F, P) and (T, T, λ) be saturated probability spaces. Then, for any norm compact valued, integrably
bounded, measurable correspondence F from (Ω,F, P) to a separable Banach space X, there is a norm compact valued,
integrably bounded, measurable correspondence G from (T, T, λ) to X such that

∫
Ω
F dP = ∫

T
G dλ.

Proof. We work with the norm topology first. Let F be any norm compact valued, measurable correspondence from
(Ω,F, P) to a separable Banach space X, which is also integrably bounded by a non-negative real-valued integrable
function φ on (Ω,F, P). Let CX be the space of norm compact subsets of X endowed with the Hausdorff metric,
which is also a complete separable metric space. As noted, for example, in Sun (1996), the correspondence F induces
a measurable point-valued mapping from (Ω,F, P) to CX. Let H = {(B, x) ∈ CX ×X : x∈B}, which is closed in the
product topology. Then, for a measurable mapping f from (Ω,F, P) to X, f is a selection of F if and only if law(F, f )
has measure one for the set H.

By the atomlessness property of (T, T, λ), there are measurable mappings G and ψ from (T, T, λ) to CX and R+,
respectively, such that law(F, φ) = law(G,ψ). It follows that G is a norm compact valued, measurable correspondence
from (Ω,F, P) to X that is integrably bounded by the integrable function ψ.

If f is a Bochner integrable selection of F, then the saturation property of (T, T, λ) implies that there is a measurable
mapping g from (T, T, λ) to X such that law(F, f ) = law(G, g). Thus, law(G, g)(H) = law(F, f )(H) = 1, which means
that g is a measurable selection of G. Since law(f ) = law(g), we know that g is also Bochner integrable with

∫
Ω
f dP =∫

T
g dλ. This shows that

∫
Ω
F dP ⊆ ∫

T
G dλ. The other side is also clear. Hence

∫
Ω
F dP = ∫

T
G dλ. �

Proof of Proposition 1. Let (T, T, λ) be an atomless Loeb probability space, which is saturated by Fajardo and Keisler
(2002); Hoover and Keisler (1984); Keisler (1997). Let F and G be the correspondences in the proof of Lemma 1. By
Theorems 1 and 2 of Sun (1997),

∫
T
G dλ is convex and norm compact. Since

∫
Ω
F dP = ∫

T
G dλ by Lemma 1, the

convexity and norm compactness of
∫
Ω
F dP follows from those of

∫
T
G dλ.

By the proof of Theorems 1 of Sun (1997), the convexity of the Bochner integral of an arbitrary correspondence
taking values in a general Banach space follows from the convexity of the Bochner integral of a correspondence
consisted of two Bochner integrable functions, which takes values in a separable Banach space and is integrably
bounded, norm compact valued and measurable. Hence part 1 follows.

Similarly, the norm compactness of the Bochner integral of a norm compact valued correspondence taking values
in a general Banach space follows from the norm compactness of the Bochner integral of an integrably bounded, norm
compact valued correspondence that is the closure of a sequence of Bochner integrable functions, which takes values
in a separable Banach space and is also measurable. Hence part 2 follows.

Finally, we observe that the proofs of Theorems 1–10 in Sun (1997) only rely on three special results on the
distributional properties of correspondences on Loeb spaces developed in Sun (1996), namely, convexity, compactness
and a version of preservation of upper semicontinuity, which are stated as Propositions 3.1–3.3 in Sun (1997). However,
as noted in Keisler and Sun (2002), all the results on the distributional properties of correspondences on Loeb spaces
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in Sun (1996) can be generalized to results on the distributional properties of correspondences on saturated probability
spaces by the saturation property. In particular, Propositions 3.1–3.3 in Sun (1997) are still valid if the underlying
probability space is a general saturated probability space. Therefore, exactly the same proof in Sun (1997) can still be
used to prove parts 1 and 2 as well as parts 3–10 of Proposition 1.6 �
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