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Summary .  We provide necessary and sufficient conditions for weak (semi)continuity 
of the expected utility. Such condi t ions are also given for the weak compac tness  
of the domain  of the expected utility. O u r  results have useful appl icat ions in 
cooperat ive solution concepts in economies and games with differential information,  
in noncoopera t ive  games  with differential informat ion and in pr incipal-agent  
problems.  

I Introduction 

Recent work  on coopera t ive  solut ion concepts  in economies  and games  with 
differential in format ion  (e.g. Yannelis [25,1, Krasa -Yanne l i s  1-16-1, Allen [2,3,1, 
Kou t souge ra s -Yanne l i s  [17], Page [22])  has necessitated the considerat ion of 
condit ions that  guarantee  the (semi)continuity of an agent 's  expected utility.1 

Specifically, in this paper  (g2, ~ ,  P) is a probabi l i ty  space, representing the states 
of the world and their governing distr ibution,  (V, I1" 11) a separable  Banach space of 
commodities, and X :,(2 ~ 2 v a set-valued function, prescribing for each state ~o of 
the world the set X(~o) of  possible consumptions. We define the set L~a~ of feasible 
state contingent consumption plans to consist of all Bochner  integrable a.e. selections 
of  X, that  is, the set of  all x~&~ such that  

x(~o)~X(og) a.e. in .(2. 

As usual, 5e~, s tands for the (prequotient)  set of all Bochner- integrable  V-valued 
functions on (s ~ ,  P); the ~ 1-seminorm on this space is defined by 

LIx tll:= LIx(,.)LI 

* Work done while visiting the Department of Economics, University of Illinois at Urbana-Champaign. 
This problem also arises naturally in principal-agent problems (see for example Page 1-19, 21]) and 

Kahn [14], as well as in noncooperative games with differential information (see for example, 
Yannelis-Rustichini [27]). 
2 Since all principal results hold modulo sets of measure zero, one could alternatively work with the 
usual equivalence class structure. One consequence of choosing for the prequotient setup is, of course, 
that the L~-norm is traded in for its seminorm analogue. 
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Let U:.Q x V ~ [ - ~ ,  + ~ )  be a given utility function. Then the expected utility 
Iv(x ) of a consumption plan xE~J:  is given by 

Iv(x):= S U(oo, x(co))P(do~), 
g2 

assuming that this integral exists. Clearly, if for each co~.(2 the function U(c9,.) is 
norm-continuous and if U is integrably bounded, then the .W Z.seminorm_continuity 
of Iv would follow directly from Lebesgue's dominated convergence theorem [11]. 
However, the corresponding ~l-compactness of ~'~, on which Iv is defined, is only 
found under quite heavy conditions, even when X has only finite sets as its values: 

Example 1.1. Consider for (~, ~ ,  P) the unit interval cure Lebeseue measure. Let the 
consumption set X (oo) be { - I, + 1} for all co. Then the sequence (xk) of Rademacher 
functions Xk:[O , 1"] ~ { - -  1, "~ 1}, defined by 

Xk(~O):= sgn (sin (21tkog)), 

forms a sequence of consumption plans that does not contain any subsequence which 
converges in s162 obviously, this implies that the set ~L#~ cannot be compact 
for the 5~X-seminorm. Indeed, if such a subsequence did exist, the corresponding limit 
consumption plan would have to a.e. equal to zero (note that SB Xk ~ 0 for every interval 
B:= [a, fl]; start by observing that when a, fit[0, 1] have finite binary expansions this 
is trivial). But since H Xk [11 = I[O,1][Xk((D)[ dO~ = I for all k, the 5fZ-norm of the limit 
consumption plan would have to be equal to 1 at the same time. 

Thus, in such situations the attainment of a maximum of the expected utility is 
not guaranteed. To this end stronger continuity conditions (viz. weak continuity in 
the second variable) must be imposed on U. The corresponding continuity found 
for Iv in this way is weak continuity. At the same time, imposing weak compactness 
upon the values of X yields weak compactness of the set d ~  (Diestel's theorem 
[26]). Hence, in this situation attainment of the maximum of I v is guaranteed. 

The purpose of this paper is to investigate the necessary and sufficient conditions 
for the following properties: 

�9 weak and strong (semi)continuity of I v on ~ ,  
�9 weak and strong closedness and weak compactness of ~J:. 

In view of recent work on cooperative and noncooperative solution concepts in 
economies and games with differential information, as well as in principal-agent 
problem, an answer to the above question is of fundamental importance. For this 
enables us to prove - via the usual forms of analysis - the existence of value and 
core allocations in economies with differential information, as well as the existence 
of a correlated equilibrium in games with differential information. The techniques 
employed in this paper are mostly based on classical developments in the calculus 
of variations and optimal control theory. 

This paper is organized as follows: First, we state our principal results (section 2), 
and their'economic applications (section 3). Our mathematical tools, their proofs, as 
well as all other proofs have been collected in section 4. Some notation to be used 
below is as follows: V* stands for the topological dual space of (V, [[" I[). As usual 
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[1 II* stands for the dual norm on V* [i.e., [I x* II*:= sup {(x,x*):xeV, II xll ~ 1}, 
where (x, x*) :=  x*(x). 

2 M a i n  r e s u l t s  

Let us observe that the probability space (,O, ~ ,  P) can always be decomposed 
into an atomless part ~1 and a countable union ~r of atoms. Let U:/2 • V ~  
[ - ~ ,  + ac) be a given utility function, which we suppose to be o~ • ~(V)- 
measurable; here ~(V) stands for the Borel a-algebra on (V, I[" [I ). The expected utility 
functional I v on cf~ is given by 

Iv(x):-- ~ U(o~, x(o)))P(do~), 

where we use the following convention regarding the integration of any o~- 
measurable function ~b:/2~ [ - o c ,  + ~ ] :  ~ b : = ~ b  + - ~ b - ,  with + ~  - + ~ : =  
- ~ .  Let X : f 2 ~  2 v be a given set-valued function; we imagine the consumption set 
X(o~) to comprise all feasible (e.g., budgetary) consumption plans under the state of 
nature ~o. The graph of X is supposed to be ~ • M(V)-measurable. We define the 
set 5 ~  of all integrable state contingent consumption plans by 

5~ {x+Lf~:x(o~)+X(o~) P-a.e. in g2}. 

We distinguish between strong and weak (semi)continuity of the expected utility 
functional I u on ~ .  The first kind of continuity is with respect to the seminorm 
II'l] 1 (see section 1), and the second kind of continuity is with respect to the weak 
topology a(L,r 5~ restricted to s Here ~v%[V] stands for the set of all 
functions p:f2 ~ V* that are bounded [i.e., supo,~all p(~o)I1"< + oo] and V-scalarly 
measurable [i.e., co~  {x, p(co)) is o~-measurable for every x ~ V]. It is well-known 

a(Lf r, L#v. [V])  ~s that 5~ is the dual of (Lf~, IIl/~) [12, VIi). Recall also that 1 ~ - 
defined as the weakest topology on s  for which all functionals 

x~-. ~ {x(o~),p(o~))P(&o), p~S~, [V] ,  
O 

are continuous. In other words, this is the weakest topology that one could define 
for the consumption plans so that at least all the very simple utility functions of the 
type U,(o~, x):= {x, p(~o)), pes [V], one would have the corresponding expected 
utility functionals lv,(x) depend continuously upon the consumption plan variable 
x, With the same topologies in mind, we can also distinguish between strong and 
weak closedness of the set ~f~ of consumption plans. Similarly, on the commodity 
space V we make a distinction between the weak topology a(V, V*) and the strong 
norm-topology (however, the corresponding a-algebras on V coincide). Thus, we 
shall be considering two weak topologies and two strong topologies, respectively 
on the space ~ (and/or its subsets) and on the space V (and/or its subsets); from 
the context the reader can always deduce which space is intended. 

The following nontriviality hypothesis will be adopted in this entire section: 

there exists at least one )~E2~?~ with - go < lv(~ ). 

Of course, this hypothesis is extremely mild: it only prevents a completely trivial 
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situation. On some occasions we shall require the only slightly more restrictive strict 
nontriviality hypothesis 

there exists at least one s  with - oo < Iv(s ) < + oo, 

but when this reinforcement is needed, it will always be stated explicitly. 
Our first result concerns a necessary and sufficient condition for the weak 

closedness of the set 5~ of integrable consumption plans: 

Theorem 2.1. The following statements are equivalent. 
i. X(CO) is convex and closed a.e. in f21, and weakly closed a.e. in 1-22. 3 

ii. ~ a  x is weakly closed. 

By Mazur's theorem the adjective "closed" for a convex subset of V can be 
interpreted equivalently as weakly closed and as strongly closed; hence "convex and 
closed" above needs no further specification. 

Our second result is similar in nature, but now the strong closedness of the set 
of integrable consumption plans is addressed: 

Theorem 2.2. The following statements are equivalent. 
i. X(co) is strongly closed a.e. in g2, 

ii. ~ 1  is strongly closed. 

In this connection it is useful to recall the following related result which has to 
do with weak compactness of the set ofintegrable consumption plans. The necessity 
part comes from [15, Thm. 3.6]; the sufficiency part in the above result - frequently 
referred to as Diestel's theorem is better known (see for instance [26]). It has been 
refined in [8], using K-convergence, a Cesaro-type of pointwise convergence (for 
arithmetic averages). 

Theorem 2.3 (Klei). Suppose that the set 5('1 of integrable consumption plans is 
relatively weakly compact. Then 

X(co) is relatively weakly compact a.e. in f2. 

The converse implication holds also, provided that X is integrably bounded. 
Recall here that the multifunction X is said to be integrably bounded if for some 

s u p  H x II -<  (co) a.e. in .(2. 
x~X(oO 

Note that this additional condition is essential for the sufficiency part, as is shown 
by the following counterexample. 

Example 2.4. Consider -(2:= (0, 1), equipped with the Borel a-algebra and the Lebesgue 
measure P. Define X(co):= [0, 1/co]. Then the the sequence ( X k ) ~ ,  defined by 
xk(co):= 1/co /f 1/k < co < 1, and Xk(CO):= 0 otherwise, does not have a convergent 
subsequence, since it is not even uniformly integrable. 

3 Such condensed formulations are used throughout: we mean to say that for P-almost every a~EK2 a 

the set X(o) c V is convex and closed, etc. 
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Corollary 2.5. Suppose that the set ~f x of integrable consumption plans is weakly 
compact. Then 

X(u)) is convex and weakly compact a.e. in 01,  

X(oo) is weakly compact a.e. in 02. 

The converse implication holds also, provided that X is integrably bounded. 

Proof. Combine Theorems 2.1 and 2.3. QED 

It is interesting to observe that for the strong topologies the counterpart to the 
above result fails as far as the sufficiency part is concerned I15, p. 316], even if g -- R 
(the necessity part has an analogue [15, Prop. 3.12]). Next, we occupy ourselves 
with necessary conditions for weak upper semicontinuity and weak continuity of 
the expected utility. 

Theorem 2.6. Suppose that the expected utility I v is weakly upper semicontinuous and 
that the set ~q~l x of  all integrable consumption plans is weakly closed. Suppose also 
that for each of the countably many atoms A c ~'~2 there exist constants M A, K A > 0 
such that 

U(t~, ") <_ K A + M A I1"11 on X(~) a.e. in A. 
Then 

i. U(co, .) is concave and upper semicontinuous on the convex closed set X (r a.e. 
in 01 , 

ii. U(o~,') is weakly upper semicontinuous on the weakly closed set X(r a.e. 
in 02  . 

Corollary 2.7. Suppose that the expected utility I v is weakly continuous and that the 
set c~1 x of all inteyrable consumption plans is weakly closed. Suppose also that for each 
of  the countably many atoms A ~ .02 there exists contains M A, K A > 0 such that 

[ U(~o, .)[ <_ K A + M A I['[I on X(t~) a.e. in A. 

Then, under the strict nontriviality hypothesis, 
i. U(~, ") is qffine and continuous on the convex closed set X(co) a.e. in 01,  

ii. U(co,-) is weakly continuous on the weakly closed set X(o~) a.e. in 02.  

The corresponding sufficient conditions for weak upper semicontinuity and 
weak continuity of the expected utility are as follows: 

Theorem 2.8. Suppose that a.e. in 01 

X (to) is convex and closed, 
U(co, .) is concave and upper semicontinuous on X(e~), 

and 
U(to, ') < ~b(og) + M ll'll 

for some M > 0 and ~Lz'~t.  Suppose further that a.e. in 02  

X (co) is weakly closed, 

U(og, .) is weakly upper semicontinuous on X(o~). 

Then It/is weakly upper semicontinuous on the weakly closed set L/'~. 
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Corollary 2.9. Suppose that a.e. in -01 

and 
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X(cn) is convex and closed, 

U(a~, .) is affine and continuous on X(co), 

I U(~,')I ~ ~(~o) + M I1"11 

for some M > 0 and ~EYe~. Suppose further that a.e. in .(2 2 

Xgo)  is weakly closed, 

U((o, .) is weakly continuous on X((o). 

Then Its is weakly continuous on the weakly closed set Y'~x. 

For strong continuity of the expected utility we have the following characterization: 

Theorem 2.10. Suppose that there exists a constant M > 0 and ~ b E ~  such that 

U(~, ") < if(g0) + M I1" It on X(r a.e. in -0. 

Then the following statements are equivalent: 
i. U(~o,') is strongly upper semicontinuous on the strongly closed set X(~o) a.e. 

in s 
ii. -qC~x is strongly closed and It: is strongly upper semicontinuous on s162 

Corollary 2.11. Suppose that there exist a constant M > 0 and t~YY~  such that 

t U(cn, ")[ < ~J(cn) + M [I'll on X(oJ) a.e. in 12. 

Then, under the strict nontriviality hypothesis, the following statements are equivalent: 
i. U(r ") is strongly continuous on the strongly closed set X(r a.e. in -0, 

ii. ~ x  is strongly closed and Its is strongly continuous on 5P~x . 

3 Applications 

3.1 Market  games with differential information 

Consider an exchange economy with differential information ~ = { (X  i, Ui, ~ i, el, P):i~I }, 
I:= {1 . . . . .  n}, where 

i. Xi:-0 ~ 2 V is a multifunction prescribing agent i's potential consumption sets 
[i.e., Xi(~o ) is i's potential consumption set in state ~oE12], 

ii. Ui:12 x V ~ R  is the state dependent utility function of agent i, 
iii. ~ i  ls a sub a-algebra of (-0, ~ ) )  denoting the private information of agent i 

about the state of nature, 
iv. ei :-0~ V is the initial endowment of agent i, where el is ~i-measurable and 

ei(~o)eXi(og) P-a.e., 
v. P is a probability measure on -0 representing the common probability beliefs 

of the players concerning states of nature. 
Suppose that for the economy ~ the following assumptions hold for each i~l: 

X~(o~) is convex, nonempty and weakly compact a.e. in -0, (3.1) 
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X i is integrably bounded, (3.2) 

Ui(~o, ") is concave and upper sere,continuous on Xi(og) a.e. in ~,  (3.3) 

U, is integrably bounded from above. (3.4) 

Note that if the commodity space Vis assumed to be a Banach lattice with an order 
continuous norm (which implies that the order intervals are weakly compact [1]), 
then it is reasonable to assume that the state contingent consumption set X,(r of 
each agent i is contained in the order interval [0, e(og)], where e(@: = ~.i~i e,(~o). 

In this case we may replace (3.1)-(3.2) with simple integrable boundedness of ez 
for each agent i. 

We will now indicate how our results can be used to prove the existence of a 
Shapley value allocation for an exchange economy with differential information (see 
for example [16]). For  this one associates with the economy g the following game 
with side-payments: for each collection 2:= {2x,. . . ,2,} of nonnegative weights 
2i, ~7= 1 2i = 1, define the side payment game (1, V~) according to the following rule: 
for each coalition St21, let 

Vz(S):= sup ~ 2, ~ U,(o), xi(@)P(do)), 
x i~S  ..Q 

where the supremum is taken over all x :=  (x,)i~ s, x,tSe~x,, subject to 

xi(@ = ~ ei(~o) a.e. in 12. 
i~S i~S 

Here Z,e I stands for the collection of all Xito.~( .Q,~i ,P ) such that x i is Xi 
~',-measurable and xi(oo)tXi(og) a.e. in Y2. 

First, let us verify that the supremum above is actually attained, by the 
Weierstrass theorem. By Theorem 2.3 each of 1 is weakly compact, itS; hence, so Xi 
is their product. Since x ~ ~ s  xi is obviously weakly continuous, we conclude that 
the above supremum is taken over a weakly compact set. Since each U, satisfies the 
conditions in Theorem 2.8, each Iv, is weakly upper semicontinuous, itS; hence, so 
is their sum. This proves the attainment of the supremum in the definition of the 
Shapley value of the game (I, Vx). The above existence problem arises naturally if 
one wants either to prove the existence ofa  Shapley value allocation in an exchange 
economy with differential information or to show that a TU market game in 
characteristic function form is well-defined for such an economy (see for instance 
[25] or [2,3]). 

We now examine an application to the core of an exchange economy with 
differential information. Following Yannelis [25], the private core of ~ is defined as 
follows. The vector xt]-I~= 1 ~qol is said to be a private core allocation for ~ if X i  

i. ZT=lx  =Z7=1 e,, 
ii. there does not exist S c I and (y,)~stI-I,~s ~ such that ~,~s Y, = ~ s  e, and 

Iv~(Yi) > lv,(Xi) for all i tS. 

Following Shapley-Shubik [24], we may convert the economy 8 to a market game 
(V,I) as follows: Define V:2~--*R ~ by 

V(S)= {ztR'S':zi < Iu,(xi),xitoL,~ i tS,  i~s~ Xi= i~s~ ei} ; 
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here IS[ stands for the number of elements in S. For SeI, clearly the set V(S) is convex, 
nonempty and bounded from above. In view of Theorem 2.8 the function Iv, is 
weakly upper semicontinuous; hence, V(S) must be closed. Hence, the market game 
(V,I) is balanced, and has therefore a nonempty core (Scarf's theorem [23]). 
Standard arguments can now be applied to show that nonemptiness of the core of 
the game (V,I) implies nonemptiness of the core of the economy ~. Related 
arguments have been employed by Allen [3] to show nonemptiness of the private 
core of an economy with a finite-dimensional commodity space. Using the 
K-compactness of the 5r I (as introduced in [8, Corollary 4.2]) and the sequential Xi 
weak upper semicontinuity of expected utilities It:, Page [22] has shown that the 
market game (V,I) corresponding to an exchange economy with an infinite 
dimensional commodity space is well-defined and balanced, and hence has a 
nonempty core. 

3.2 Principal-agent contracting games with adverse selection 

Consider a principal-agent contracting game fq = { T, X, U~, U2, P, Q}, where 
i. (T, J-) is a measurable space of agent types, 

ii. X:-Q ~ 2 v prescribes the potential payoffs in each state of nature (i.e., X(~o) is the 
set of potential contract payoffs in state cocO), 

iii. Ux:T • .(2 • V ~ R is the principal's utility function, type and state dependent, 
iv. U z: T x .(2 x V ~ R is the agent's utility function, again type and state dependent, 
v. P is a probability measure on I2, representing the principal's and the agent's 

common beliefs concerning states of nature, 
vi. Q is a probability measure on T, representing the principal's probability beliefs 

concerning agent types. 

Suppose that for the game ff the following assumptions hold: 

the a-algebra ~ is countably generated, 

X(co) is convex, nonempty and weakly compact a.e. in 12, 

X is lower measurable and integrably bounded. 

(3.5) 

(3.6) 

(3.7) 

As a consequence, ~ forms the set of all (measurable) state contingent contracts. 
Also, we require: 

for each t~ T, Ul(t, co, .) is concave and upper semicontinuous on X(~o) a.e. in .(2, 

(3.8) 

for each teT, Uz(t,~o,') is affine and continuous on X(~o) a.e. in ,(2, (3.9) 

U1 is product measurable and integrably bounded from above with respect to P • Q. 
(3.10) 

Uz is product measurable and integrably bounded with respect to P • Q. (3.11) 

Note that (3.10) (3.11) must be understood as follows: there exist P • Q-integrable 
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functions ~q,72:T x . Q ~ R  with 

sup Ul(t,e),x) <_ 7(t, co) 
x e V  

and 

in T x ~ 2  

suplU2(t, oJ, x)[ < y(t, oJ) in T x 12. 
x~V 

If the agent is of type t e T and the principal and agent enter into the contract x e ~ 1 ,  
then 

lv,(t, x):= ~ Ul(t , ~ ,  x((.o))P(dco) 

is the principal's expected utility, while the type t agent's expected utility is given by 

Ivy(t, x):= ~ U2(t, co, x(m))P(dm). 

By Corollary 2.9, Iv2(t,. ) is weakly continuous on ~ for each teT, and by 
assumption (3.8) above, Ivy(t,. ) is also affine on ~,r for each teT. Finally, Iv~ is 
~- x ~w-measurable on T • ~ ~, where ~w denotes the Borel a-algebra for the 
weak topology on ~ .  

A contract mechanism is a mapping ~:T-~ ~ from agent types into the set of 
contracts. Let Edenote  the set of all (~-, ~w)-measurable contract mechanisms. The 
principal's contracting problem, with adverse selection, is now given by 

sup J(~):= ~ Ith(t, ~(t))Q(dt) (3.12) 
~e- ~ T 

subject to 

Ivy(t, ~(t)) ~_ Iv2(t, ~(t')) for all t, t' in T, (3.13) 

Iv2(t, ~(t)) ~_ 0 for all t in T. (3.14) 

Verbally, this contracting problem can be described as follows: The principal 
chooses a mechanism ~eS.  Given the mechanism ~ chosen by the principal, the 
agent responds by making a report to the principal concerning his/her type. If a 
type t agent reports his/her type as t' (i.e., the agent lies about his/her type), then 
the principal and agent enter into contract ~(t')~ ~ x .  Constraints (3.13) are incentive 
compatibility constraints; they guarantee that the mechanism chosen by the 
principal induces truthful reporting by the agent, and constraints (3.14), the 
individual rationality constraints, guarantee that the mechanism chosen by the 
principal is such that, given truthful reporting by the agent, it is rational for the 
agent - no matter what his/her type - to enter into a contract with the principal. 
Let ~o denote the set of all ~ e ~ satisfying (3.13)-(3.14); it is trivial to verify that •o 
is convex. 

In order to guarantee that there exists at least one mechanism in ~o, the 
following nontriviality hypothesis is sufficient: 

there exists an ~ such that Iv2(t,2 ) ~_ 0 for all t~T. 
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Indeed, then the corresponding constant mechanism belongs to ~o. Using the 
general existence result of [,9], to which the above properties precisely apply, one 
can then conclude the existence of an optimal contract mechanism for the principal 
(the proof in [-9] still depends heavily on the K-convergence results of I-8], and thus 
follows essentially the same line of proofs as [,21, 20], but uses the equivalence result 
in [10, III.2] for compact-valued multifunctions to obtain a slightly better result). 

4 Mathematical  preliminaries and proofs of the main results 

In this section we develop the tools to be used in deriving the main results of this 
paper. Let f : O  x V ~ [ , - ~ ,  + ~ ]  be a given function, which we suppose to be 

x M(V)-measurable. We define the integral functional ly: Ae~ ~ [ - - ~ ,  + ~ ]  by 

I1(v):= ~ /(co, v(co) )P(d~o), 
s 

using the opposite of the integration convention introduced in section 2: for any 
~-measurable function 05:~ ~ [-- ~ ,  + ~ ]  we still set ~ 05:= ~ 05 + - ~ 05-, but this 
time with + ~ - + ~ := + ~ .  Sometimes we shall wish to restrict considerations 
to a particular integration domain B = g2. We then define If:  ~a~,(B) ~ [ -  ~ ,  + ~ ]  
by obvious restriction: 

If(v):= ~ f(co, v(og))P(dco). 
B 

Throughout this section the following truly minimal nontriviality hypothesis will be 
in force: 

there exists at least one ~e5r with II(0 ) < + ~ .  

We start out by giving necessary conditions for weak lower semicontinuity of 
I s in the presence of atomlessness. Of course, any necessary condition for strong 
lower semicontinuity automatically qualifies as a necessary condition for weak 
lower semicontinuity (but not conversely). The following result, as well as its proof, 
can be found in [,,18] (as shown here, the fact that V is finite-dimensional in [,18], 
does not affect the validity of the result in our present context). 

Lemma 4.1. Assume that (12, ~ , P )  is atomless 4 Suppose that If is strongly lower 
semicontinuous on ~ 1 .  Then there exist a constant M > 0 and a function ~ k ~  such 
that 

�9 f(co, .) > r - M II "l[ on v a . e .  in s (4.1) 

Proof. Suppose that (4.1) does not hold. Then for arbitrary n~N the function 
~,:s ~ [ , - ~ ,  + oo], defined by 

~p,(~o): = inf If(co, x) + n H x [I ], 
x~V 

4 I.e., assume that the purely atomic part g2 2 is a null set. 
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and measurable by [ 1 0 ,  I I I . 3 9 ] ,  satisfies 

t~,dP = - ~ .  
g2 

Note here that ~9,(o~)_< f+(o ,~?(o)+  n ]1 v(o)ll, and by virtue of the nontriviality 
hypothesis the right side forms a P-integrable function. By the fact that (-(2, ~-, P) is 
atomless, we can find a measurable partition of g?, all whose n components have 
P-measure P(g2)/n. Now for at least one such component, which we denote by 
A . G ~ ,  it must be true that ~ tp.dP = - o% by the above. Hence also ~ (~k. + 1)dP = 

An An 

- o% and this implies in turn that ~ (0. + 1)-dP = + o% where B. is defined as the 
Bn 

set of those ~oEA. for which 0.  < - 1. By definition of the latterintegral, there exists 
and integrable function s . : B . ~ R ,  0 <_ s. <_ (~,. + 1)- on B. (e.g., a step function), 
such that i. := ~ s. dP >_ 1. Setting q~. := - i~-: s. now gives 

Bn 

P(B.) < P(A.)  -- P(g2)/n, I dp.dP = - l, 
B. 

O>_c~.>_ - i ~ ( t p . §  1)- _> -(~h. § 1)- - -~ , . §  1 o n B . .  

The last inequality guarantees that for every o s B .  the set 

{xe  V: f ( o ,  x) + n 11 x 11 _< q~,(co) } 

is nonempty. So by the Von Neumann-Aumann measurable selection theorem 
[ 10, III.22] there exists a ~--measurable function v,: B, ~ V such that for a.e. o in B, 

f (~o, Vn(W) ) + n II v.(@ II -< ~b.(o). 

Now either (i) ~ II v. II dP < n-  1 or (ii) ~ II v. I[ dP > n-  1. In case (i) we set C. := B., 
Bn Bn 

and in case (ii) atomlessness guarantees the existence of a measurable subset C. of 
B. with ~ II v. II dP = n-  :. Outside C, we set v.:= g. In this way we end up with 

Cn 

I Iv . -  ~11: -< ~ (llv.ll + Iloll)dP <1+ ~ II~lldP. 
Cn n B.  

In view of P(C,) <_ P(B,,) <_ n-  1, this shows that the sequence (v,) converges in I]'[I 1 
to 15. But by the above 

I f (v , )<  ~ f ( ' , g ( ' ) )dP  + ~ ( ~ . - n l l v .  ll)dP. 
~ \ C .  C. 

By (i)-(ii) above it is easy to see that, either way, the second integral on the right is 
at most - 1. This means lira inf, If(v,) _< Ii(O ) - 1, so that a contradiction with the 
lower semicontinuity hypothesis has been reached. QED 

Thus, we see that for atomless (.(2, ~ ,  P) the most obvious condition for the 
integral functional I I to be nowhere - o% is, at the same time, a necessary condition 
for its strong semicontinuity. In Example 4.4 below we show that atomlessness is 
essential for this finding. 
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We shall now discuss some results which specifically address weak lower 
semicontinuity. Let us denote the duality between &a~ and its dual 5r ] (cf. 
section 2) by 

-< v, p ~- := S <v(og), p(~o) } P(dog). 
s 

The following result is well-known; for generalizations, see [13, 18, 7]. i t  shows that 
weak lower semicontinuity of I f  forces the integrand not only to be lower 
semicotinuous in the second variable, but convex as well. Here atomlessness is again 
an essential ingredient, as borne out by Example 4.4 below. 

Proposition 4.2. Assume that (1-2, ~ ,  P) is atomless. Suppose that I f  is weakly lower 
semicontinuous on ~ .  Then 

i. I f  is convex on 5~ 1. 
ii. f(o3, .) is convex and lower semicontinuous on V a.e. in 12. 

Proof. i. Consider the epigraph E o f l f  [5, p. 11], defined by 

E:= {(v, ~)eSe I x R:~ _> I f  (v)}. 

Clearly, E is a closed set for the product of the weak topology (on ~ )  and the 
ordinary topology (on R), as a consequence of the hypothesis. We must prove that 
E is a convex set. To do so, we first establish the following convexity criterion: E is 
convex if and only if for every finite subset {Pl . . . . .  PN}, N~N, of the dual space 
5fv%[V] one has that 

C:= {( -< v, Pl ~" . . . . .  ~ v, PN ~ ,  ~):(v, c0EE } (4.2) 

is a convex subset of RN+t Indeed, for arbitrary 0 < 2 < 1, (v, c0, (v',~')eE, we have 
to check that (w, 7):= 2(v, ~) + (1 - 2)(v', ~') belongs to E, viz., that I i (w ) < 7. If this 
were not true, then, by closedness of E, there would be a weakly open subset W of 
~ ,  containing w, and a 6 > 0 such that (v, ~)6E whenever v~ W and 7 - 6 < ~ < 7 + 3. 
By definition of the basis of the weak topology, there exists a finite collection 
{P~,... ,PN} c 5~v%[V ] for some N~N, such that for every v e ~  

[ -< v - w, Pi >" J < 1, i = 1, . . . ,  N, implies v~ W. 

Let C be the convex set of (4.2). Evidently, by convexity, the N + 1-vector with 
coordinates < w, pi ~ ,  i = 1 . . . . .  N, and last coordinate 7, belongs to C. By definition 
of C, this means that there exists (,7,07)~E such that "<0,Pi>" = - < w , p ~ , i =  
1 . . . . .  N and 07 = 7. But then the above implies 0~ W and (~, 07)6E. This contradiction 
proves the validity of the convexity criterion. Next, it is easy to establish that all 
sets C of the form (4.2) are indeed convex: Let 0 < 2 < 1 and (v, 7),(v', ~')EE be 
arbitrary. Then for (w, 7):= 2(v, ~) + (1 - 2)(v', ~') to belong to C it is enough to verify 
the existence of some Oes with -< ~,p~> = < w ,  pi~-, i =  1 . . . . .  N and If(fi)< 7. 
By Liapunov's theorem (which we may invoke because (.(2, ~ ,  P) is assumed to be 
atomless) there exists a measurable subset B of,(2 such that 

( (v, Pl } . . . . .  (v, PN>, f ( ' ,  v(.)), <v', Pl } . . . . .  (v', PN}, f ( ' ,  v '( .))dP 
B 

= 2 ( < v ,  pa ~- . . . . .  -<v, p u ~ - , l f ( v  ), -<v',p~ >- . . . . .  < v ' , p N ~ , I f ( v ' ) ) .  
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(Note that I I(v ), Ii(v')~R by Lemma 4.1 and by l i(v ) <_ ct, I i(v' ) < ct'.) Then setting 
g:= v on B and ~: = v' on the complement of B gives the desired integrable function. 
This establishes the convexity of E, which immediately implies convexity of I s. 

ii. By i, I I is a convex semicontinuous function on ~ v .  Moreover, we find 
11 > - o o  (by Lemma 4.1) and Iy(g)< + m (by nontriviality). By a well-known 
result from convex analysis this implies 

I~* (v) = l s(v ) 

where it should be recalled that 

with 

for all ves176 

I~*(v):= sup [-< v,p>- - l~(p)] 
P~  v*tVl 

I~(p):= sup [~ , v ,p>- - I y ( v ) ]  
wA" ~. 

define two successive instances of Fenchel conjugation. Now as a consequence of 
decomposability [10, p. 197] of s and 5fv%[V ] - a formalization of the fact that 
these spaces are both rich in measurable func t ions -and  the Von Neumann-  
Aumann measurable selection theorem one has the following integral functional 
representation [10, VII.7]: 

I~*(v) = l i,,(v):= ~ f**(co, v(co))e(dco). 
I2 

Here 

with 

f**(co, x):= sup [ ( x , x * ) -  f*(co, x*)] 
x*~V* 

f*(co, x*):= sup [(x, x* ) --f(co, x)] 
xEV 

denote two successive Fenchel-conjugations with respect to the second argument. 
It should be kept in mind that for every coe[2 

f**(co, ") is the convex lower semicontinuous hull off(co, .). 

It follows therefore that Ii(v) = ly**(v) for all veAa 1. By decomposability of ~q'~, the 
nontriviality hypothesis and Lemma 4.1 we may apply [6, Thm. B.2]. This implies 
that 

f(co, ")= f**(co, ") a.e. in I2. 

This finishes the proofs. QED 
We shall now obtain a characterization of strong lower semicontinuity of I I,  

which will play an essential role in our study of the necessary conditions for weak 
lower semicontinuity on atoms; this result is valid for a general finite measure space. 

Proposition 4.3. Suppose that there exist a constant M > 0 and ~ O ~  such that 

f(co,-) >_ ~(co) - M ]]'[[ on V a.e. in ~.  
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Then the followin9 statements are equivalent: 
i. f(co, .) is strongly lower semieontinuous on V a.e. in .(2, 

ii. I ;  is strongly lower semicontinuous on ~q~. 

Proof. ii =~ i: From the given inequality for f it follows that 

I ;  (v) > ~ ~,dP - m [[ v [[1 for all v ~ .  
a 

Hence, it follows by lower semicontinuity of I s that for every v~s w l  

I;(v ) = sup inf ]-n [[ v - w I[i + Is(w)]. 
hen wE~o 1 

This follows by [4, p. 391]. In view of the nontriviality hypothesis and the 
decomposability of 5r (already used in the proof of Proposition 4.2) it follows by 
I-6, Thm. B.1] (or by mimicking the proof of rl0, Theorem VII.7]) that 

Is(v ) = sup S inf [n [I v(co) - y j[ + f ( ~ ,  y)]P(&o). 
n~N -Q yeV 

Note that, by our given inequality for f, the monotone convergence theorem can be 
invoked, giving 

I;(v ) = ~ f(co, v(cn))P(&o), (4.3) 
~2 

where we define 

f(co, x): = sup inf [n II x - y l[ + f(co, y)]. 
n~N yeV 

By the given inequality for f and easy ad hoe inspection (el. [4, p. 391]) it follows 
from this definition that for a.e. co 

.f(co, .) is the strongly lower semicontinuous hull of f(co, .). 

By the nontriviality hypothesis and (4.3) it follows from [6, Thin. B.2] that 

f(~o, .) = f(~o, .) a.e. in f2, 

giving i. 
i~ i i :  Let (Vk) be an arbitrary sequence in ~ such that [Ivk-VoJ[1-o0. 

Let 7:=liminfkli(vk). Then for some subsequence (Vk,) we shall actually have 
= limi I;(vkl). By [4, 2.5.3] there exists a further subsequence of (Vk), say (%), such 

that for a.e. ~o 

lim [[ Vkj(CO) -- Vo(O~) I[ = O. 
j~oo 

Therefore, Fatou's lemma gives 

7 + M [[ v o [[1 = lim S If(co, Vkj(CO)) + M f[ Vkj(~O)t[ ]P(d~o) >_ Is(Vo) + M [[ Vo IF1 

(the integrand in the middle expression is minorized by the integrable function 
r This shows the validity of ii. QED 



On the continuity of expected utility 639 

Note the similarity of our proofs of Proposition 4.2 and of the necessity part 
of the above result. A much more complicated, hybrid version of both results was 
given in [-6], in connection with certain classicaI notions in the calculus of variations. 

Even though Proposition 4.3 captures the semicontinuity aspect of its 
counterpart Proposition 4.2, there can be no question of emulating the convexity 
aspect of Proposition 4.2 or the boundedness feature of Lemma 4.1 if atomlessness 
is no longer satisfied: 

Example 4.4. Let (D, J~, P) be the purely atomic measure space consisting of the 
singleton (~} with P((e5})= 1. Consider as V the separable Banach space formed 
by all continuous real-valued functions on the unit interval [0, 1]; the norm on V is 
the usual supremum norm. Define f (&, x):= - [x(0)]2; this is evidently a nonconvex 
function. However, if vz-*v o weakly, then (equivalently) v~(&)-+Vo(~5 ) weakly in V. 
Now V* is known to be identifiable with the set of all bounded signed Borel measures 
on [0, 1]; in particular, V* contains the point probability concentrated at O. This 
immediately implies the convergence of Iy(vz)=f(eS, v~(oS)) to If(vo)=f(r Vo(&)). 
Thus, I f  is weakly continuous, but f(co, .) is neither convex - let alone affine - nor 
does it obey the lower bound in Lemma 4.1. 

Necessary conditions for weak lower semicontinuity of I f  take on a particularly 
easy form on atoms. We shall see how Proposition 4.3 plays an auxiliary role in 
connection with the following lemma: 

Lemma 4.5. Let A be an atom of ( D , ~ , P ) .  Then every function v :D- ,  V which is 
measurable with respect to ~ and ~(V) is constant a.e. on A. More generally, every 
multifunction l':D--*2 v which has strongly closed values and for which gph F : =  
{(co, x)~.Q x V:x~/'(r is ~ x ~(  V)-measur ab le, is equal to a constant set a.e. on A. 

Proof. Let (x j) be a sequence in V which is strongly dense. For arbitrary j e N ,  the 
function 

c/~/coF--*dist(xj, F(co)):= inf [[x-xsl[  
xE F ( to )  

is measurable by [ 10, III.30]. By an elementary property of measurable, real-valued 
functions on atoms, ~b; must be a.e. constant on A for everyj. It remains to observe 
that when two strongly closed subsets C, D of V satisfy dist (x~, C) = dist(x s, D) for 
all j, then C = D. QED 

Proposition 4.6. Let A be an atom of (D, ~ ,  P). Suppose that I~ is weakly lower 
semicontinuous on ~qP~(A) and that there exist constants M, K > 0 such that 

f(co,') > g - M I1"11 on v a.e. in A. 

Then 

f(co,.) is weakly lower semicontinuous on V a.e. in A. 

Proof. Afortiori, 11 is strongly lower semicontinuous on =~~ so by Proposition 
4.3. 

f(co, ") is strongly lower semicontinuous on V a.e. in A. (4.4) 
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Therefore, the multifunction F : f / - - ,  2 v • R, defined by 

F(co):= {(x, 2)e V x R:2 > f(e),x)}, 

satisfies all conditions of Lemma 4.5. It follows that there exist a null set N and 
a closed set C c V x R such that F(co) = C for all coeA\N. It thus follows that 
there exists a strongly lower semicontinuous function g: V-~ ( -  oo, + oo] such that 

f(co, .) -- g for all coeA\N. (4.5) 

It remains to show that g is also weakly lower semicontinuous. To this end, let 
(x,) be a generalized sequence weakly converging to x o in V. Define, correspondingly, 
v,e~lv(A) by v,(co):= x,; then (v,) converges weakly in 5~ to re, so we get 

P(A )g(Xo) = ~ f (oa, Vo(Co) )P(do) <_ lim infj  f (o ,  v,(o) )P(do) = P(A) lim infg(x~), 
A l A t 

thanks to lower semicontinuity of I~. QED 

The pattern emerging from the aforegoing results is as follows: (a) in the presence 
of atomlessness, weak lower semicontinuity of the integral functional is associated 
with lower semicontinuity and convexity of the integrand (in the second variable); 
(b) on atoms this is associated with weak lower semicontinuity of the integrand 
(without convexity). This impression is confirmed by the following result. 

Proposition 4.7. Assume that (I2, ~ ,  P) is atomless. Suppose that a.e. in 12 

f(og, ") is convex and lower semicontinuous on V, 
and 

f(og, .) > ~9(o) - M II'lt on V 

for some constant M > 0 and ~9 e 5 ~ .  Then I f  is weakly lower semicontinuous on 5e ~. 

Proof. The integral functional I f  is strongly semicontinuous (by Proposition 4.3) 
and convex (obvious). Therefore, it must also be weakly lower semicontinuous 
(Mazur's theorem [5, 1.3.5]). QED 

Remark 4.8. Combining Lemma 4.1 and Proposition 4.2.ii, we observe that the 
converse of the implication in Proposition 4.7 is also valid. 

On atoms, on the other hand, the situation is even simpler: 

Proposition 4.9. Let A be an atom of (g2, ~ ,  P). Suppose that 

f(o9, .) is weakly lower semicontinuous on V a.e. in A. 

Then the integral functional F) is weakly lower semicontinuous on 5e~(A). 

Proof. Note first that a fortiori 

f ( o , ' )  is strongly lower semicontinuous on V a.e. in A. 

So we can repeat the part of the proof of Proposition 4.6 leading from (4.4) to 
(4.5). Using the notation introduced there, we get for every v E ~ , ( A )  

l~(v) = ~ f ( ~ ,  v(o))P(do) = P(A)g(x), 
A 
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where x stands for the a.e. constant value taken by v on the atom A (Lemma 4.5), 
and where g is weakly lower semicontinuous. The proof is now easily finished. 

QE D 

Proof of Theorem 2.1. i i~ i :  Define the o~ x N(V)-measurable function f x:~ x V --* 
{ 0 , + o  e} by setting fx(e~,x):=O if 
Clearly, the integral functional 1:= 1;,, is 
if not (note in particular that I(~) < + oo 
weak closedness of ~ is equivalent to 
~ .  Because of the obvious identity 

x~X(~o) and fx(og, x):= + ~  if not. 
as follows: I(v) = 0 i f v ~ a ~  and I(v) = + 
by the nontriviality hypothesis). Therefore, 
I being weakly lower semicontinuous on 

I(v) = ~ fx(o),v(~o))P(do)) + ~ fx(oJ, v(o~))P(&o) = :Ii(v) + I2(v), 
Eft ,02 

we see that this is equivalent to having 11 weakly lower semicontinuous on ~ ( f 2 1 )  
and 12 on ~ ( - Q : )  separately. By Proposition 4.2 (note that fx>_O) the 
semicontinuity of 11 implies 

fx(c,, ") is convex and lower semicontinuous for a.e. c , ~  1, 

which in turn is precisely equivalent to the first part of i. Also, semicontinuity of 
12 on ~(g'22) implies that on everya tom/ t  which is part o f ~  2 (note that fx  >- O) 

fx(c,, .) is weakly lower semicontinuous on A, 

by virtue of Proposition 4.6. Since ~2 is the countable union of such atoms, this 
finishes the proof of i. 

i~ i i :  fx  now clearly satisfies the conditions of Proposition 4.7 on f21 and 
Proposition 4.9 on f22. Therefore, I is weakly lower semicontinuous; in view of 
what was said about I:--If,~ above, this implies ii. QED 

Proof of Theorem 2.2. Define fx  and I:= Ifx as in the proof of the previous 
theorem. Then the result follows directly from Proposition 4.3. QED 

Proof of Theorem 2.6. By Theorem 2.1 we already know the stated facts about 
the values X(co). Define the ~ x ~(V)-measurable function f :g2 x V ~  [ -  ~ ,  + ~ ]  
as follows: set f(og, x):= - U(oo, x) if x~X(oo) and f(co, x):= + ~ if not. Then I f  

1 1 equals - I v  on 5e~ (by the integration conventions) and + ~ on ~ v \ ~ x  [note 
how the switch in sign precisely explains the difference in integration conventions 
and nontriviality hypotheses between sections 2 and the present one!]. It follows 
directly from the hypotheses that I f  is weakly lower semicontinuous on ~ ,  so 
by splitting I f  over the atomless part 12 x and its complement ~2,  as done in the 
proof of Theorem 2.1, and successively applying Propositions 4.2 and 4.6, we find 
that for a.e. ~oeOl 

f(~o, .) is convex and lower semicontinuous on V, (4.6) 

and for a.e. 09~122 

f(co, .) is weakly lower semicontinuous on V. 

In view of the already established properties of X(co), the former is equivalent to 

U(co,-) is convex and lower semicontinuous on X(co), 
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and the latter to 

U(co,.) is weakly lower semicontinuous on X(co). QED 

Proof of Theorem 2.8. Define f as in the previous proof. Then our conditions 
guarantee that Propositions 4.7 and 4.9 may be applied. In view of the already 
established weak closedness of 5a~c (Theorem 2.1), the desired weak continuity of 
- Iv follows from the nature of I I, established in the previous proof. QED 

Proof of Theorem 2.10. The proof essentially consists of an application of 
Proposition 4.3 to the function f used in the previous two proofs. Details are left 
to the reader. QED 

Acknowledgement. We wish to express our sincere gratitude to Frank Page and the referee for kindly 
providing material for the subsection 3.2, and for suggesting several improvements in the presentation 
of our results. 
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