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We offer a new Caratheodory-type selection theorem. This result arose naturally 
from the authors’ study of equilibria in abstract economies (generalized games) 
with a measure space of agents. ‘47 1988 Academic Press, Inc. 

1. INTRODUCTION 

In the present paper we obtain a Caratheodory-type selection theorem. 
This result is used in [9] to extend the theory of Nash equilibria, 
developed in [12, 4, 2, 7, 8, 10, and 13-171, to the setting of an arbitrary 
measure space of agents and an infinite dimensional strategy space. 

More specifically, we consider the following problem. Let T be a measure 
space, Z be a complete separable metric space, and Y be a separable 
Banach space. Let 4: T x Z + 2’ be a convex valued (possibly empty) 
correspondence. Let U = { (t, x) E T x Z: &I, x) # a}. Under appropriate 
assumptions, does there exist a CarathPodory-type selection for 4, i.e., a 
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function f: U -+ Y such that f(t, x) E #(t, x) for all (t, x) E U and f( ., x) is 
measurable for each x and f(t, .) is continuous for each t. We provide a 
positive answer in our main theorem, stated in Section 2. 

Although Fryszkowski [ 51 proved a Caratheodory-type selection 
theorem, he considers only the case when U = T x Z and his techniques do 
not readily extend to the general case. 

The paper is organized in the following way. Section 2 contains 
definitions and notation. The main result is stated in Section 3. Section 4 
contains several lemmata needed for the proof of the main result. Finally, 
the proof of the main theorem is given in Section 5. 

2. NOTATION AND DEFINITIONS 

2.1. Notation 

2A denotes the set of all subsets of the set A. 
B(x, A) denotes the open ball centered at x of radius A. 
\ denotes the set theoretic subtraction. 

If 4: X -+ 2’ is a correspondence then 4 ( U : U -+ 2 ’ denotes the restriction 
of I# to u, 

diam denotes diameter 
dist denotes distance 
proj denotes projection, 

2.2. Definitions 

Let X and Y be sets. The graph G, of a correspondence 4: X --)r 2’ is the 
set G, = {(x, y) E Xx Y: y E 4(x)}. If X is a topological space, 4 is said to 
have open lower sections if for each y E Y the set d-‘(y) = {x E X: y E d(x)} 
is open in X. If (X, a) and ( Y, Y) are measurable spaces, 4: X + 2’ is said 
to have a measurable graph if G, belongs to the product a-algebra GE 09. 

A selection for a correspondence 4 as above is a mapping f from S= 
(XE X d(x) # @} into Y such that f(x) E d(x) for every XE S. In the 
topological setting, a continuous selection is a selection f which is con- 
tinuous on S. If 4 is a correspondence between measurable spaces (X, a) 
and ( Y, 9’), and SE ol, then a measurable selection is a selection f which is 
measurable on S, i.e., with respect to the a-algebra a n P(S). It is easy to 
extend this last concept to the general S, i.e., not in O& but we shall not do 
so at this point. 

Recall that an open cover U of a topological space X is locally finite if 
every x E X has a neighborhood intersecting only finitely many sets in U. 
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3. THE MAIN THEOREM 

Measurable and continuous selections have been extensively used and 
studied-see, for instance, Castaing and Valadier [3] or Michael [ 111. 
There is also a growing literature on Carathtodory-type selections; see 
Fryszkowski [S]. Below we state our Carathlodory-type selection theorem. 

MAIN THEOREM. Let (T, t, p) be a complete finite measure space, Y be a 
separable Banach space and Z be a complete separable metric space. Let 
X: T + 2 ’ be a correspondence with a measurable graph, i.e., G, E o 0 .%9( Y), 
and 4: T x Z + 2’ be a conuex valued correspondence (possibly empty) with 
a measurable graph, i.e., G, E t 0 &I(Z) 0 9?( Y), where S?( Y) and S!?(Z) are 
the Bore1 a-algebras of Y and Z, respectively, and furthermore suppose that 
the conditions (i), (ii), and (iii) below hold 

(i) for each tET, &t,x)cX(t)for allxEZ. 

(ii) for each t, &t, .) has open lower sections in Z, i.e., for each t E T, 
andeachyEY,d-‘(t,y)={xEZ:yEq5(t,x)} isopen in Z. 

(iii) for each (t, x) E T x Z, zfq5(t, x) # 0, then 4(t, x) has a nonempty 
interior in X(t). 

.Let U={(t,x)~TxZ:&t,x)#@J and for each XEZ, U,=(~ET: 
(t, X) E U} and for each t E T, U’ = (X E Z: (t, x) E U}. Then for each x E Z, 
U, is a measurable set in T and there exists a Caratheodory-type selection 
from #Iv, i.e., there exists a functionf: U -+ Y such that f(t, X)E &t, X) for 
all (t, x) E U and for each x E Z, I( -, X) is measurable on U, and for each 
t E T, f (t, .) is continuous on U’. Moreover, f( ., .) is jointly measurable. 

4. LEMMATA 

LEMMA 4.1 (Aumann). If (T, T, p) is a complete finite measure space, Y 
is a complete, separable metric space, and F: T --* 2 ’ is a correspondence with 
a measurable graph, i.e., Gr E ‘5 @ W( Y), then there is a measurable function 
f: projr(G,) --+ Y such that f(t) E F(t) for almost all t E proj.(G,). 

Proof: See Aumann [ 1 ] or Castaing and Valadier [3] 

LEMMA 4.2 (Projection theorem). Let (T, z, n) be a complete finite 
measure space and Y be a complete, separable metric space. If G belongs to 
t @ 9?( Y), its projection proj T(G) belongs to t. 

Proof See Theorem III.23 in Castaing and Valadier [3]. 
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LEMMA 4.3. Let (T, T, u) be a complete finite measure space, and Y be a 
complete separable metric space. Let X: T + 2’ be a correspondence with a 
measurable graph. Then there exist ( fk: k = 1, 2, . ..} such that: 

(i) for all k, fk is a measurable function from proj.(G,) into Y and 

(ii) for each t l proj~(G~), {fk(t): k = 1,2, . ..} is a dense subset of 
X(t). 

Proof. For each n = 1,2, . . . . let (E;: I= 1,2, . ..} be an open cover of Y 
such that diam(E;) < l/2”. For each n, l= 1, 2, . . . . define Tl = {t E T: X(t) n 
E;#@}. Since T;=proj.{(t, y)~Tx Y:y~X(t)nEy} and X(.)nEE; has 
a measurable graph in T x Y, T; E r by Lemma 4.2. It can be easily checked 
that U/“=, T;=proj.(G,)=S. 

For each n, I= 1,2, . . . . define the correspondence X;: T--t 2’ by 

x;(t) = 
X(t)nEE; if tET; 

X(t) if t # T;. 

Since the graph of X; is ((t,y)ET;xY: yEX(t)nE;}u((t,y)E 
T\ T; x Y: y E X(t)}, the correspondence X; has a measurable graph. Also, 
X;(t) # a, iff X(t) # 0, hence the graphs of X; and X have the same pro- 
jection onto T. By Lemma 4.1, for each n, I= 1, 2, . . . . there exists a 
measurable function f ;: S + Y such that f ;( t) E X;(t) for all t E T. Fix t in T. 
Let y E X(t). Since for each n, {E;: I= 1, 2, . . . > is an open cover of Y, for 
each n, there is some 1 such that y E X(t) n E;. Therefore (f y(t): n, 1= 
1, 2, . ..} is dense in X(t). Thus the sequence f 7, after a suitable reindexing, 
gives the desired sequence fk. This completes the proof of the lemma. 

LEMMA 4.4. Let (S,, 05,) for i = 1, 2 be measurable spaces, h: S, + S, be 
a measurable function and A E d, @ a,. Then 

Proj,,(G,nA)Ea,. 

Proof (a) If A= A, x A,, where A,E&Z~, i= 1, 2, then Proj,,(G,n A) 
=A,nh-‘(A,)Ea,. 

(b) If Proj,,(G,nA)Eol,, then Proj,,(G,nA’)En,, where A’= 
S, x &\A. For, ProjS,(Ghn A”) = S,\Projsl(G,n A). 

(c) If Proj.,(GhnA,,)Ea, for all n= 1, 2, . . . . then ProjS,(Ghn 
(U,“= 1 A,)) E aI. For, ProL,(G, n (U,“= I A,)) = U,“=, PwL,(G, n A,,). 
Therefore, Proj,,(G,nA)Eol, for all AE~Z,@~,. 

LEMMA 4.5. Let (T,, ri) for i = 1, 2, 3 be measurable spaces, y: T, --) T, 
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be a measurable function and 4: T1 x T2 -+ 2=’ be a correspondence with a 
measurable graph, i.e., G, E T 1 Q t2 @ r3. Let W: T, + 2 T2 be defined by 

W(t)= {XE T,: y(t)E&t, x)}. 

Then W has a measurable graph, i.e., G,E z, @ r2. 

Proof Define h: T, x T, -+ TX by h( t, x) = y(t) for all t E T, and x E T,. 
Let S,=T,xT,, ~,=z,@z~, S2=T3, a2=r3, and A=G,. Then 
h: S, -+ S, is a measurable function and A E a, @a*. So, by Lemma 4.4, 

LEMMA 4.6. Let (T, T) be a measurable space, Z be an arbitrary 
topological space and W,, n = 1,2, . . . be correspondences from T into Z with 
measurable graphs. Then the correspondences u, W,( .), n, W,,( . ), and 
Z\ W,,( . ) have measurable graphs. 

The proof is obvious. 

LEMMA 4.7. Let (T, q u) be a complete finite measure space, Z be a 
complete separable metric space, and W: T -+ 22 be a correspondence with 
measurable graph. Then for every x E Z, dist(x, W(. )) is a measurable 
function, where dist(x, a) = +co. 

Proof We first observe that S = (t E T: W(t) # @} belongs to r by 
Lemma 4.2. Now {s E S: dist(x, W(s)) < ;I} = (s E S: W(s) n B(x, 2) # /zl> = 
proj r [ G w n (T x B(x, A))]. Another application of Lemma 4.2 concludes 
the proof. 

LEMMA 4.8. Let (T, 5, p) be a complete finite measure space, Z be a 
complete separable metric space, and WI T-t 2z be a correspondence with 
measurable graph. Then the correspondence V: T + 2= defined by 

V(t)= {x~Z:dist(x, W(t))>A} (where 1 is any real number) 

has a measurable graph. 

Proof Consider the function g: TX Z--f [0, + co] given by g(t, x) = 
dist(x, W(t)). By Lemma 4.7, g( ., x) is measurable for each x, and 
obviously g(t, .) is continuous for each t. It is well known that g is 
therefore jointly measurable, i.e., measurable with respect to the product 
o-algebra r@99(Z). For this result see, e.g., Lemma 111.14, [3]. Finally, 
G,=g-‘([A, +a~]), hence G.E~@%~(Z). 
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5. PROOF OF THE MAIN THEOREM 

To begin with, we can assume without loss of generality that X(t) # /21 
for all t E T. For otherwise we can replace the original measure space by the 
space (S, t ni’P(S), ~17 nP(S)), where S= proj.(G,). Note that SET by 
Lemma 4.2, since G, E t @ 98( Y). 

Let d,(t) E #(t, x) for all x E Z. Notice that for each x E Z, $,( .) has a 
measurable graph in T x Y. Observe that 

By Lemma 4.2, U, E T. By Lemma 4.3 there exist measurable functions 
{y,(.):n=l,2,...} such that for each t, {y,(t)} is a countable dense subset 
of X(t). For each t E T, let W,(t) = ( x E Z: y,(t) E 4(t, x)}. By assumption 
(ii) W,(t) is open in Z. Since by (iii) for each (t, x) E U, #(t, x) has non- 
empty interior in X(t) and {y,(t): n = 1, 2, . ..} is dense in X(t), it follows 
that { W,(t): n = 1, 2, . ..} is a cover of the set U’. By Lemma 4.5, W,( .) has 
a measurable graph. For each m = 1,2, . . . define the operator ( ), by 

( W), = (w E W: dist(w, Z\ W) 2 l/2” ). 

For n = 1, 2, . . . and t in T let V,(t) = W,,(t)\ U;E :( W,(t)),,. Obviously, 
V,,(t) is open in Z. It can be easily checked that { P’,(t): n = 1, 2, . ..} is a 
locally finite open cover of the set U’. Since W,( . ) has a measurable graph, 
V,( .) has a measurable graph by Lemmas 4.6 and 4.8. Let (g,( 1, ): 
n = 1,2, . ..} be a partition of unity subordinated to the open cover { I’,,(t): 
n = 1, 2, . ..}. for instance, for each n = 1, 2, . . . . let 

g,(t, xl = 
dist(x, Z\ V,(t)) 

Ck”= 1 dist(x, Z\ Vdf))’ 

Then { g,(r, .): n = 1,2, . . . ) is a family of continuous functions g,(t, .): 
U’ -+ [IO, 1 ] such that g,J t, x) = 0 for x $ V,(t) and C,“= , g,( t, x) = 1 for all 
(t, x) E U. Define f: U -+ Y by f(t, x) = C,“= r g,(t, x) y,(t). Since { V,,(t): 
n = 1, 2, . . . } is locally finite, each x has a neighborhood N, which intersects 
only finitely many V,(t). Hence, f( f, .) is a finite sum of continuous 
functions on N, and it is therefore continuous on N,. Consequently, f(t, .) 
is continuous. Furthermore, for any n such that g,(t, x) > 0, x E V,,(t) c 
W,(t)= {ZEZ: Y,(f)E$(4Z))Y i.e., y,(t) E d(t, x). So f(t, x) is a convex 
combination of elements y,(t) from the convex set d(t, x). Consequently, 
f(t, x) E &t, x) for all (1, x) E U. Since I’,,( .) has a measurable graph, 
dist(x, Z\ V,( .)) is a measurable function by Lemmas 4.6 and 4.7. 
Therefore for each n and x, g,( ., x) is a measurable function. Since for each 
n, y,( .) is a measurable function, it follows that f( ., x) is measurable for 
each x, i.e., f(t, x) is a Caratheodory-type selection from 4 ( “. 

409113512-20 
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The joint measurability off follows essentially the same way as the joint 
measurability of g in Lemma 4.8. However, the situation is somewhat more 
delicate since the domain off is not the entire product space TX 2. We 
shall take this issue up in more detail in a subsequent paper. 
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