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Summary. We point out several conceptual difficulties of the rational expectations
equilibrium concept. In particular we show that such an equilibrium need not be
incentive compatible and need not be implementable as a perfect Bayesian equi-
librium . A comparison of rational expectations equilibria with the private core is
also provided. We conclude that the private core is a more appropriate concept to
capture the idea of contracts under asymmetric information.
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1 Introduction

A differential information economy (DIE) consists of a finite set of agents each
of which is characterized by a random utility function, a random consumption
set, random initial endowments, a private information set and a prior probability
distribution on a finite set of states of nature. A DIE is an extension of the Arrow-
Debreu-McKenzie economy which enables us to model the idea of trade under
asymmetric information.

The rational expectations equilibrium (REE) concept (see for example Radner,
1979; Allen, 1981; among others), is an extension of the deterministic Walrasian
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equilibrium. Unlike the Walrasian equilibrium, the REE may not exist in well-
behaved economies (for example Kreps, 1977) and, moreover, may not satisfy
certain efficiency criteria (see Glycopantis, Muir, and Yannelis, 2004).

Despite the above non-attractive properties of REE, this concept is widely used
because it is an extension of the classical Walrasian equilibrium idea. Given the
central role of REE in economic theory it is of interest to investigate this concept
further, to find out if it has any other attractive or non-attractive features. Moreover,
if it does have non-attractive features, the question arises whether there is any other
concept which behaves better.

The purpose of this paper is three-fold:
First, we examine the incentive compatibility of the REE. Since the REE is

capturing the idea of contracts under asymmetric information one would like to
know if contracts (trades) are incentive compatible. It turns out that if there is
one good per state of nature then the REE leads to no trade and thus it is always
Bayesian incentive compatible. However this result ceases to be true if there is more
than one good per state of nature. 1 It should be noted that the Bayesian incentive
compatibility criterion used here is coalitional and it implies individual Bayesian
incentive compatibility.

Second, following the ideas of Glycopantis, Muir, and Yannelis (2001), we
investigate whether or not the REE can be implemented as a perfect Bayesian
equilibrium (PBE) of an extensive form game.A PBE consists of optimal behavioral
strategies of the players and the consistent with these decisions, beliefs attaching
a probability distribution to the nodes of each information set. It is a variant of the
Kreps and Wilson (1982) concept of sequential equilibrium.

The attempt to implement the REE as a PBE of an extensive form game is
interesting, because we see the dynamics of the agents’ decisions, i.e. how agents
move sequentially (or simultaneously) to reach a final outcome. We found that the
REE need not be implementable as a PBE. Thus, if one believes that the PBE is a
reasonable rationality criterion that most equilibrium notions must satisfy, then the
REE should also satisfy this, but we show that this is not the case.

Third, in view of the unsatisfactory features of the REE noted above, one would
like to know if there are better alternatives. To this end, we compare the REE with
the private core (Yannelis, 1991). Analyzing Example 3.1, below, we see that, in
general, the REE is not Bayesian incentive compatible and it cannot be implemented
as a PBE. On the other hand, the private core exists under the standard continuity
and concavity assumptions on the utility functions, (Yannelis, 1991; Glycopantis,
Muir, and Yannelis, 2001), and has desirable properties. 2 Moreover, we examine
the example of Kreps (1977), where, although fully revealing or non-revealing REE
do not exist, the private core does exist. Hence the private core provides a more
sensible outcome than the REE.

The paper is organized as follows. Section 2 defines a differential information
exchange economy and the concept of REE. Section 3 explains the idea of incentive

1 A related example can be found in Palfrey and Srivastava (1986) and Hahn and Yannelis (2001).
2 The private core is always Bayesian incentive compatible (Koutsougeras andYannelis, 1993; Hahn

and Yannelis, 2001) and can be implemented as a PBE of an extensive form game (Glycopantis, Muir,
and Yannelis, 2001).
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compatibility and Section 4 discusses the non-implementation of REE as a PBE, in
terms of a particular example. Section 5 comments on the relationship between REE
and the private core and Section 6 concludes the discussion with some remarks.
Appendix I discusses the relation between Nash equilibria and PBE, in terms of the
same particular example.

2 Differential information economy and REE

For simplicity we confine ourselves to the case where the set of states of nature,
Ω, is finite and there is a finite number, �, of goods per state. I = {1, 2, . . . , n} is
a set of agents, or players, and R+ will denote the set of positive real numbers and
R

l
+ its l-fold Cartesian product.

A differential information exchange economy E is a set

{((Ω, F), Xi,Fi, ui, ei, qi) : i = 1, . . . , n}

where
1. F is a σ-algebra generated by the singletons of Ω;
2. Xi : Ω → 2R

l
+ is the set-valued function giving the random consumption set

of Agent (Player) i, who is denoted by Pi;
3. Fi is a partition of Ω generating a sub-σ-algebra of F , denoting the private

information3 of Pi. We assume that4 F =
∨

i∈I Fi;
4. ui : Ω×R

l
+ → R is the random utility function of Pi; for each ω ∈ Ω, ui(ω, .)

is continuous, concave and monotone;
5. ei : Ω → R

l
+ is the random initial endowment of Pi, assumed to be Fi-

measurable, with ei(ω) ∈ Xi(ω) for all ω ∈ Ω;
6. qi is an F-measurable probability function on Ω giving the prior of Pi. It is

assumed that on all elements of Fi the aggregate qi is strictly positive. If a
common prior is assumed on F , it will be denoted by µ.

We refer to a function with domain Ω, constant on elements of Fi, as Fi-
measurable, although, strictly speaking, measurability is with respect to the σ-
algebra generated by the partition. It is assumed that the players’ information par-
titions are common knowledge.

Agents make contracts in the ex ante stage. In the interim stage, i.e. after they
have received a signal as to what is the event containing the realized state of nature,
one considers the incentive compatibility of the contract (allocation).

For any xi : Ω → R
l
+ we define

vi(xi) =
∑
Ω

ui(ω, xi(ω))qi(ω). (1)

Equation (1) gives the ex ante expected utility of Pi.

3 Sometimes Fi will denote the σ-algebra generated by the partition, as will be clear from the context.
4 The “join”

∨
i∈S Fi denotes the smallest σ-algebra containing all Fi, for i ∈ S ⊆ I .
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Let G be a partition of (or σ-algebra on) Ω, belonging to Pi. For ω ∈ Ω denote
by EG

i (ω) the element of G containing ω; in the particular case where G = Fi

denote this just by Ei(ω). Pi’s conditional probability for the state of nature being
ω′, given that it is actually ω, is then

qi

(
ω′|EG

i (ω)
)

=




0 : ω′ /∈ EG
i (ω)

qi(ω′)
qi

(
EG

i (ω)
) : ω′ ∈ EG

i (ω).

The interim expected utility function of Pi, vi(xi|G), is given by

vi(xi|G)(ω) =
∑
ω′

ui(ω′, xi(ω′))qi

(
ω′|EG

i (ω)
)
. (2)

Equation 2 defines a G-measurable random variable.
We denote by L1(qi, R

l) the space of equivalence classes of F-measurable
functions
fi : Ω → R

l; when a common prior µ is assumed L1(qi, R
l) will be replaced

by L1(µ, Rl). LXi is the set of all Fi-measurable selections from the random
consumption set of Agent i, i.e.,

LXi = {xi ∈ L1(qi, R
l) : xi : Ω → R

l

is Fi-measurable and xi(ω) ∈ Xi(ω) qi-a.e.}

and let LX =
∏n

i=1 LXi
.

Also let

L̄Xi = {xi ∈ L1(qi, R
l) : xi(ω) ∈ Xi(ω) qi-a.e.}

and let L̄X =
∏n

i=1 L̄Xi .
An element x = (x1, . . . , xn) ∈ L̄X will be called an allocation. For any subset

of players S, an element (yi)i∈S ∈ ∏
i∈S L̄Xi

will also be called an allocation,
although strictly speaking it is an allocation to S.

We now discuss the notion of REE. We shall need the following. Let σ(p) be the
smallest sub-σ-algebra of F for which a price system p : Ω → R

l
+ is measurable

and let Gi = σ(p)∨Fi denote the smallest σ-algebra containing both σ(p) and Fi.

Definition 2.1. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ L̄X

is an allocation, is a REE if

(i) for all i the consumption function xi(ω) is Gi-measurable;
(ii) for all i and for all ω the consumption function maximizes vi(xi|Gi)(ω) subject

to the budget constraint at state ω,

p(ω)xi(ω) ≤ p(ω)ei(ω);

(iii)
∑n

i=1 xi(ω) =
∑n

i=1 ei(ω) for all ω ∈ Ω.
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REE is an interim concept which allows us to condition also on information
from prices. A REE is said to be fully revealing if Gi = F for all i = 1, 2, . . . , n.

In the next section we shall discuss the general idea of whether allocations
have certain desirable properties from the point of view of incentive compatibility.
Following this, we shall turn our attention to REE allocations and their possible
implementation as PBE in the context of contracts described in terms of a game
tree.

3 On the incentive compatibility of REE

Since we are concerned with multilateral contracts, we think that the appropriate
incentive compatibility concept should be coalitional rather than individual. In
particular, contracts which are individually Bayesian incentive compatible may not
be coalitional Bayesian incentive compatible and therefore not stable, i.e. viable
and self-enforceable (see also the Preface and other relevant papers in Glycopantis
and Yannelis (forthcoming)).

The basic idea is that an allocation is incentive compatible if no coalition can
misreport the realized state of nature and have a distinct possibility of making its
members better off.

Suppose we have a coalition S, with members denoted by i. Their pooled
information

∨
i∈S Fi will be denoted by FS . We have assumed that FI = F . Let

the realized state of nature be ω∗. Each member i ∈ S sees Ei(ω∗). Obviously not
all Ei(ω∗) need be the same, however all Agents i know that the actual state of
nature could be ω∗.

Consider a state ω′ such that for all j ∈ I \ S we have ω′ ∈ Ej(ω∗) and for
at least one i ∈ S we have ω′ /∈ Ei(ω∗). Now the coalition S decides that each
member i will announce that she has seen her own set Ei(ω′) which, of course,
contains a lie. On the other hand we have that ω′ ∈ ⋂

j /∈S Ej(ω∗).
The idea is that if all members of I \S believe the statements of the members of

S then each i ∈ S expects to gain. For coalitional Bayesian incentive compatibility
(CBIC) of an allocation we require that this is not possible. This is the incentive
compatibility condition used in Glycopantis, Muir, and Yannelis (2001).5

CBIC coincides in the case of a two-agent economy with the concept of Indi-
vidually Bayesian Incentive Compatibility (IBIC), which refers to the case when S
is a singleton.

We consider here a strengthening of the concept of Coalitionally Bayesian
Incentive Compatibility (CBIC)which allows for transfers between the members
of a coalition.

Definition 3.1. An allocation x = (x1, . . . , xn) ∈ L̄X , with or without free dis-
posal, is said to be Transfer Coalitionally Bayesian Incentive Compatible (TCBIC)
if it is not true that there exists a coalition S, states ω∗ and ω′, with ω∗ different from
ω′ and ω′ ∈ ⋂

j /∈S Ej(ω∗) and a random, net-trade vector, among the members
of S: z = (zi)i∈S , such that

∑
i∈S zi = 0, such that for all i ∈ S there exists

5 See Krasa and Yannelis (1994) and Hahn and Yannelis (1997) for related concepts.
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Ēi(ω∗) ⊆ Zi(ω∗) = Ei(ω∗) ∩ (
⋂

j /∈S Ej(ω∗)), for which

∑
ω∈Ēi(ω∗)

ui(ω, ei(ω) + xi(ω′) − ei(ω′) + zi)qi

(
ω|Ēi(ω∗)

)

>
∑

ω∈Ēi(ω∗)

ui(ω, xi(ω))qi

(
ω|Ēi(ω∗)

)
. (3)

The definition in (3) implies that no coalition can hope that by misreporting a
state, every member could become better off if they are believed by the members
of the complementary set.

We condition the interim expected utility on Ēi(ω∗) which implies that we re-
quire consistency between the declaration of the members of S and the observations
of the agents in the complementary set.

Returning to Definition 3.1, one can define CBIC to correspond to z = 0 and
then IBIC to the case when S is a singleton. It follows that TCBIC ⇒ CBIC ⇒
IBIC.

In terms of game trees, an allocation will be IBIC if there is a profile of optimal
behavioral strategies and equilibrium paths along which no player misreports the
state of nature he has observed. Players might lie from information sets which are
not visited by an optimal play.

The definition of CBIC and its variants is about situations where a lie might
be beneficial. On the other hand the extensive form forces us to consider earlier
decisions by other players to lie or tell the truth and what payoffs will occur when-
ever a lie is detected, through observations or incompatibility of declarations. Only
in this fuller description can players make a decision whether to risk a lie. Such
considerations probably open the way to an incentive compatibility definition based
on expected gains from lying.

Theorem 3.1 (no trade theorem). In a differential information economy with one
good per state and monotonic utility functions any REE leads to no trade and thus
it is TCBIC.

Proof. With one good per state, the measurability of the allocations implies that
the only REE, fully revealing or not, is the initial allocation which is incentive
compatible.

In order to see that the REE and initial allocation coincide we argue briefly as
follows. A price function, p(ω), known to all agents, is defined on Ω. Each agent
apart from his own private Ei ⊆ Fi, receives also a price signal. Combining the
two types of signals he deduces the event Gi ∈ Gi that he is observing. If the price
function is fully revealing then Gi will consist of just one state. On the other hand
if prices provide no extra information to the agent then Gi = Ei.

Then he acts under the constraint of the measurability condition on his con-
sumption with respect to his new, possibly more refined information. This means,
given also the measurability of his initial allocation, that he chooses a constant
quantity which maximizes his interim expected utility subject to the budget set at
state ω in the event he has observed.
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More formally Agent i maximizes vi(xi|Gi)(ω) subject to the budget constraint
at state ω, i.e. p(ω)xi(ω) ≤ p(ω)ei(ω), and given that there is only one good and
the utility function is monotone he chooses xi(ω) = ei(ω). Hence the REE implies
no trade.

The following example shows that for more than one good REE is not neces-
sarily CBIC.

Example 3.1. I = {1, 2} with two commodities, i.e. Xi = R
2
+ for each agent i,

and three states of nature Ω = {a, b, c}.

We assume that the endowments, per state a, b, and c respectively, and infor-
mation partitions of the agents are given by

e1 = ((7, 1), (7, 1), (4, 1)), F1 = {{a, b}, {c}};
e2 = ((1, 10), (1, 7), (1, 7)), F2 = {{a}, {b, c}}.

We shall denote A1 = {a, b}, c1 = {c}, a2 = {a}, A2 = {b, c}.

It is also assumed that ui(ω, xi1, xi2) = x
1
2
i1x

1
2
i2, where the second index refers

to the good, which is a strictly quasi-concave and monotone function in xij , and
that every player expects that each state of nature occurs with the same probability,

i.e. µ({ω}) =
1
3

, for ω ∈ Ω. Some calculations are

u1(7, 1) = 2.65, u1(4, 1) = 2, u2(1, 10) = 3.16, u2(1, 7) = 2.65.
The expected utilities, multiplied by 3, are given by U1 = 7.3 and U2 = 8.46.

Straightforward calculations show that there is only one, fully revealing REE.
The prices, the allocations and the corresponding utilities are:

In state a, (p1, p2) = (1, 8
11 ); x∗

11 = 85
22 , x∗

12 = 85
16 , x∗

21 = 91
22 , x∗

22 =
91
16 ; u∗

1 = 4.53, u∗
2 = 4.85.

In state b, (p1, p2) = (1, 1); x∗
11 = 4, x∗

12 = 4, x∗
21 = 4, x∗

22 = 4; u∗
1 = 4, u∗

2 = 4.

In state c, (p1, p2) = (1, 5
8 ); x∗

11 = 37
16 , x∗

12 = 37
10 , x∗

21 = 43
16 , x∗

22 = 43
10 ; u∗

1 =
2.93, u∗

2 = 3.40.

The normalized expected utilities of the REE are U1 = 11.46, U2 = 12.25.
The quantities obtained are different in each state of nature and therefore

the REE does not belong to the private core because this concept requires Fi-
measurability of the allocations. On the other hand a REE is in the WFC under
certain conditions which are satisfied here. However this relation is not stable. We
explain this below.

In order to show that the REE redistribution is not CBIC we argue as follows.
Suppose that the realized state of nature is {a} so that P1 sees {a, b}, and P2 sees {a}
but misreports {b, c}. If P1 believes the lie then state b is believed. So P1 agrees
to get the allocation (4, 4). P2 receives the allocation e2(a) + x2(b) − e2(b) =
(1, 10) + (4, 4) − (1, 7) = (4, 7) with u2(4, 7) = 5.29 > u2( 91

22 , 91
16 ) = 4.85.

Hence P2 has a possibility of gaining by misreporting and therefore the REE is not
CBIC (IBIC).

We can also explain the allocation that P2 receives by arguing in an alternative
manner. P1 agrees to get (4, 4), and P2 receives the rest of the total initial endow-
ments in state a, i.e. e1(a) + e2(a) − x1(b) = (7, 1) + (1, 10) − (4, 4) = (4, 7) as
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above. The expression on the left-hand-side matches up with e2(a)+x2(b)−e2(b)
by taking into account that by measurability of allocations we have e1(a) = e1(b)
and by feasibility e1(b) + e2(b) = x1(b) + x2(b).

On the other hand if P2 sees {b, c} and P1 sees {c}, the latter cannot misreport
{a, b} and hope to gain if P2 believes it is b because the calculations now give
e1(c) + x1(b) − e1(b) = (4, 1) + (4, 4) − (7, 1) = (1, 4) with u1(1, 4) = 2 <
u1( 37

16 , 37
10 ) = 2.93.

4 Non-implementation of REE allocations as a PBE.

In this section we use Example 3.1 to demonstrate that a fully revealing REE,
which is not incentive compatible, is also not implementable as a PBE.6 Therefore,
in general, REE allocations are not implementable as a PBE.

First we look at the REE and show that it is not CBIC, by considering which
agent, and under which circumstances, can misreport what he has observed. Then
we consider sequential and also simultaneous play to show that REE is not imple-
mentable. Initially, we assume that P1 acts first and that when P2 is to act he has
heard the declaration of P1. Then we reverse the roles of the two agents. Finally
we consider a version with simultaneous declarations.

4.1 Sequential decisions

Next we show using the sequential decisions approach that the REE is not imple-
mentable as a PBE. Comparisons will be made with U1 and U2 of initial endowments
and of REE. Throughout, payoffs are given in terms of utility.

We begin by considering the non-simultaneous, sequential decisions case with
P1 acting first. We specify the rules for calculating payoffs, i.e. the terms of the
contract:

(i) If the declarations of the two players are incompatible, that is (c1, a2), then this
implies that no trade takes place.

(ii) If the declarations of the two players are (A1, A2) then this implies that state b is
really declared. The player who believes it (because he has no reason to disbelieve
it) gets his REE allocation (4, 4) and the other player gets the rest. So aA1A2 means
that P2 has lied but P1 believes it is state b and gets (4, 4). P2 gets the rest under
state a, that is (4, 7); bA1A2 means that both believe that it is the (actual) state b
and each gets (4, 4); cA1A2 means that P2 believes it is state b and gets (4, 4) and
P1 gains nothing from his lie as he gets (1, 4).

(iii) aA1a2, bA1A2, cc1A2 imply that everybody tells the truth and the contract
implements the REE allocation under state a, b, and c respectively. (bA1A2 in (ii)
and (iii) give, of course, an identical result).

6 A related example with three agents has been given in Hahn andYannelis (2001). The extensive form
analysis of the section goes beyond the discussion in Hahn and Yannelis. See also Dubey, Geanakoplos,
and Shubik (1987) for related ideas.
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(iv) ac1A2 implies that both lie but their declarations are not incompatible. Each
gets his REE under c and there is free disposal of (3, 3) which is the difference
between the total endowments under state a and the allocation the agents receive.

(v) cA1a2 means that both lie and stay with their initial endowments as they cannot
get the REE allocations under state a which is the intersection of A1 and a2.

(vi) bA1a2 implies that P2 misreports and P1 believes and gets his REE under a;
P2 gets the rest under b, that is ( 91

22 , 43
16 ). Then u2 = 3.33 < 4 and u1 = 4.53 > 4

and the lie of P2 really benefits P1.

(vii) bc1A2 means that P1 lies and P2 believes that it is state c. P2 gets his REE
allocation under c and P1 gets the rest under b, that is the allocation ( 85

16 , 37
10 ). Then

u1 = 4.43 > 4 and u2 = 3.4 < 4 and P1 benefits from lying.

The analysis is in Figures 1, 2 and the complete optimal paths are shown in
Figure 3. Probabilities next to the nodes of the information sets denote the players’
beliefs. We assume that each player chooses optimally from his information set.
Optimal decisions and equilibrium paths are shown through heavy lines.

In Figure 1 we show the optimal decisions of P2. It is clear that from all infor-
mation sets he will choose to play A2 as it means for him a better payoff than a2.
Hence the tree in Figure 1 folds back to the one in Figure 2, in which the optimal
decisions of P1 are shown. Given the prior probabilities on nature’s choices, P1
expects to find himself with probability 1

2 on each node of the information set I1
1

and therefore he chooses A1 from this set. From the singleton he chooses c1 as it
dominates A1.

In Figure 3 we show through heavy lines, plays of the game corresponding
to choices by nature and optimal behavior strategies of the players. Their beliefs
have been obtained through Bayesian updating. Strategies and beliefs satisfy the
condition of a PBE.

The probabilities are calculated as follows.We label the nodes of the information
sets: From left to right, in I1

1 we denote them by j1 and j2, in I1
2 by n1 and n2, and

in I2
2 by n3 and n4. The probabilities of the nodes in I1

1 follow from the fact that
the states of nature are equally probable. The rest of the conditional probabilities
are calculated given the choices of nature and the strategies of the players by using
the Bayesian formula for updating beliefs.

Pr(n1/A1) =
Pr(A1/n1) × Pr(n1)

Pr(A1/n1) × Pr(n1) + Pr(A1/n2) × Pr(n2)

=
1 × 1

3

1 × 1
3 + 1 × 0

= 1 (4)

and

Pr(n3/c1) =
Pr(c1/n3) × Pr(n3)

Pr(c1/n3) × Pr(n3) + Pr(c1/n4) × Pr(n4)

=
1 × 0

1 × 0 + 1 × 1
3

= 0. (5)
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Figure 3

It follows from (4)and (5) that Pr(n2/A1) = 0 and Pr(n4/c1) = 1
Our analysis shows that there is a unique PBE. The corresponding normalized

expected payoffs of the players are U1 = 10.93 and U2 = 12.69.
The equilibrium paths imply that REE is not implementable. This matches up

with the fact that it is not CBIC. However comparing the normalized expected utility
of the PBE with those corresponding to the initial allocation we conclude that the
proposed contract will be signed. This follows from the fact that both agents gain
from this proposed contract. On the other hand P2, because it is advantageous to
him to do so, stops P1 from realizing his normalized REE utility. P1 ends up with
U1 = 10.93 rather than U1 = 11.46.

We now consider the case when P2 plays first and when P1 is to act he has heard
the declaration of P2. The terms of the contract are the same as in the previous case.
They are repeated here, adjusted for the order of play. Explicitly, the rules are now:

(i) If the declarations of the two players are incompatible, that is (a2, c1), then this
implies that no trade takes place.

(ii) If the declarations of the two players are (A2, A1) then this implies that state b
is believed. The player who believes it gets his REE allocation (4, 4) and the other
player gets the rest. So aA2A1 means P2 has lied but P1 believes it is state b and
gets (4, 4). P2 gets the rest under state a, that is (4, 7); bA2A1 means that both
believe that it is the (actual) state b and each gets (4, 4); cA2A1 means that P2
believes it is state b and gets (4, 4) and P1 gains nothing from his lie as he gets (1,
4).
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(iii) aa2A1, bA2A1, cA2c1 imply that everybody tells the truth and the contract
implements the REE allocation under state a, b, and c respectively. (bA2A1 gives
an identical result in both (ii) and (iii)).

(iv) aA2c1 implies that both lie but their declarations are not incompatible. Each
gets his REE under c and there is free disposal.

(v) ca2A1 means that both lie and stay with their ei’s.

(vi) ba2A1 implies that P2 misreports and P1 believes and gets his REE under a;
P2 gets the rest under b.

(vii) bA2c1 means that P1 lies and P2 believes that it is state c. P2 gets his REE
allocation c and P1 the rest under b.

We can see now that the PBE depend on the sequence of play, i.e. they vary
with a change in the player who moves first. First it is straightforward to show that
one of them is the same as in the previous case, i.e. we obtain U1 = 10.93 and
U2 = 12.69. We only show in Figure 4 the optimal paths. The implied decisions
along these paths coincide with those in the previous case already considered.

A brief argument to justify this conclusion is as follows. From I1
1 player P1 will

always play A1, and P2 will always play A2 from I1
2 . The only issue is what P2

will play from the singleton. This will determine also what P1 does from I2
1 . The

optimal paths shown above have P2 play A2 from the singleton and P1 play A1
from I2

1 . Strategies and beliefs form a PBE. Information set I1
1 is not visited and

therefore the probability, p, determining the beliefs attached to its nodes by P1, is
arbitrary.
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However in this case of sequential decisions there exist other PBEs as well.
A further PBE is shown in detail in Figures 5, 6 and 7. When P1 is to act from
I2
1 he believes now that he is at the right-hand-side node and chooses c1. For

consistency P2 must have played a2 from the singleton and this is shown in Figure 6.
Optimal decisions following choices by nature, and the new PBE, including beliefs
consistent with strategies, are shown on Figure 7. The normalized expected utilities
are U1 = 11.89 and U2 = 11.65.

The equilibrium paths imply that REE is not implementable but comparing
the normalized expected utility of the PBE with those corresponding to the initial
allocation we conclude again that the proposed contract will be signed. On the other
hand P1, because it is advantageous to him, stops P2 from realizing his normalized
REE utility. He ends up with U2 = 11.65 rather than U2 = 12.69.

It is possible but more involved to show that there is one more PBE which
contains completely stochastic behavioral strategies. P1 plays A1 from I1

1 ; from
I2
1 he plays c1 with probability 0.233; from the first singleton he has an arbitrary

choice; and from the second singleton he plays c1. P2 plays from the singleton
A2 with probability 0.402 and from I1

2 he plays A2. Beliefs consistent with these
behavioral strategies are ( 1

2 , 1
2 ) for the nodes of I1

2 , from left to right, (1, 0) for I1
1

and (0.287, 0.713) for I2
1 . The normalized expected utilities are U1 = 11.25 and

U2 = 12.10.
The three PBEs just described are the only ones and there is a presumption that

P2 might be able to force the one with U1 = 10.93 and U2 = 12.69 because he is
playing first. Finally mixing the behavioral strategies of the PBEs obtained above
will not achieve another potential equilibrium. This follows from the well known
Kuhn’s theorem, (Kuhn, 1953), for games with perfect recall which implies that
there will be equivalent behavioral strategies, and all these have been considered.

4.2 Simultaneous decisions

Next we consider the simultaneous decisions case. We look at it in terms of trees
with enlarged information sets of the players. We produce two different sets of three
tree graphs, each corresponding to one of the two cases as to who is placed first on
the graph. Then we shall construct normal form type games.

The rules for calculating payoffs are the same as in the corresponding earlier
cases when the player to act second hears the choice made by the player acting
before him. The third graph in each case, i.e. Figures 10 and 13 describe the unique
PBE, identical to each other. From the analysis of the graphs we obtain that P1
plays A1 from {a, b} and c1 from {c}. On the other hand P2 plays A2 from both
{b, c} and a.

Consider the analysis of their decisions through Figure 8. P2 plays A2 from
both I1

2 and I2
2 because it dominates a2. Then Figure 9 shows that P1 plays A1

from I1
1 and c1 from the singleton.

Next consider the analysis starting with Figure 11. P1 plays A1 from I1
1 and c1

from I2
1 . The choice c1 from I2

1 is obvious. In order to justify the choice A1 from
I1
1 we argue as follows:
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A1 will imply 4.53π1 + 4π2 + 4.53π3 + 4π4,
c1 will imply 2.65π1 + 2.93π2 + 2.65π3 + 4.43π4,

where π1, π2, π3, π4 are his beliefs attached to the nodes, from left to right, with
π1 +π2 = 1

2 and π3 +π4 = 1
2 . Now the most favourable probabilities for choosing

c1 are p2, p4 = 1
2 . However A1 does better even under these conditions. As we

move away from this vector of probabilities A1 does even better. Turning next to
the optimal choices of P2, Figure 12 shows that he will always play A2.

It follows that with respect to their optimal decisions, it does not matter whom
we place first in the tree form representation of the simultaneous game. In effect,
in one case we do backward induction and in the other case we cut through the tree
from above. The outcome is different from the one in the sequential Section 4.2 in
which case the sequence in which the players act matters.
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4.3 Normal form games interpretations

Next we cast the problem in Example 3.1 for the case with the simultaneous de-
cisions in a normal form type game. The purpose of this section is to provide the
opportunity to compare the explicit, sequential decisions, game tree formulation
with the static normal form approach.

In general we get a much clearer picture from a game tree of how an equilibrium
is reached, and hence why a particular contract is accepted or rejected. This is
especially so when backward induction is possible.

This section shows that in a normal formulation, of which we offer two types,
the construction is really based on having the extensive form game in mind and
the interpretation is more complicated. These features are even more pronounced
in the discussion in Section 5.3 in which the model is partly based on the analysis
of Example 3.1, under the assumption that P1 plays first.

In summary, a normal game does not allow us to capture fully the dynamics
of a sequence of decisions, while the extensive form approach does. In terms of
outcome the normal form here leads to the same outcome as in the case in the
previous section when decisions were simultaneous.

The interpretation of the decisions (strategies) is as follows. A1{a, b} means
that P1 has seen {a, b} and declares A1; similarly a2{b, c} means that P2 has seen
{b, c} and declares a2, etc. In all cases the sign X means that, given their information
partition, it is impossible, i.e. not compatible, for P1 to see {c} and for P2 to see {a}.

Table 1. Observations, strategies and payoffs

P2: a2{a} a2{b, c} A2{a} A2{b, c}

P1:
A1{a, b} (4.53, 4.85) (4.53, 3.33) (4, 5.29) (4, 4)
A1{c} X (2, 2.65) X (2, 4)

c1{a, b} (2.65, 3.16) (2.65, 2.65) (2.93, 3.4) (4.43, 3.4)
c1{c} X (2, 2.65) X (2.93, 3.40)

Basically, each player is interested in what his opponent might declare. He is
not interested, as in any case it is not possible to confirm it precisely, in what his
opponent has seen. On the other hand he is interested in what he has seen, himself.
In order to establish the Nash equilibria of this game we argue as follows. The first
and second columns of payoffs are eliminated because they are dominated, from
the point of view of P2, by the third and fourth column respectively. Then in the
reduced table the second row is eliminated because it is overtaken, from the point
of view of P1 by the fourth row.

Thus we are left with a reduced table with six entries:
However, this is not an ordinary normal form game. The table separates accord-

ing to what the players have seen. The first and second row correspond to P1 seeing
{a, b} and being unable to distinguish between them. Given the prior probability
distribution on the choices of nature, P1 attaches probability 1

2 to each of a and b
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Table 2. Remaining observations, strategies and payoffs

P2: A2{a} A2{b, c}

P1:
A1{a, b} (4, 5.29) (4, 4)
c1{a, b} (2.93, 3.4) (4.43, 3.4)
c1{c} X (2.93, 3.40)

and this implies that the second row is dominated by the first one. This means that
we get the same answer as from the graphs.

We are in effect crossing the product of the players’ strategies, S1 = {A1, c1}
and S2 = {a2, A2}, with their observations O1 = {{a, b}, {c}} and O2 =
{{a}, {b, c}}, and obtained {S1 × O1} × {S2 × O2}, where the observations of
each player are taken with a probability distribution on their elements. In this way
the idea of PBE, which is defined in terms of game trees, is approached.

Next we cast the problem with the simultaneous decisions in a normal form
game of the usual type. We do this employing Figure 10. For simplicity we have
labeled the terminal nodes from 1 to 12, left to right.

In describing the strategies of a player the first letter refers to his decision from
the first information set, from left to right, and the letter which follows to the one
from his second information set. Given a pair of strategies by the two players the
game reaches three terminal nodes and we calculate the normalized utility payoffs
by adding the appropriate payoff vectors.

Table 3. Strategies and payoffs

P2: a2a2 a2A2 A2a2 A2A2

P1:
A1A1 (11.06, 10.83) (10.53, 12.85) (10.53, 9.14) (10.53, 13.29)

(Nodes) (1+5+9) (1+6+10) (2+5+9) (2+6+10)

A1c1 (11.06, 10.83) (11.46, 12.25) (10.53, 11.27) (10.93,12.69) (N)
(Nodes) (1+5+11) (1+6+12) (2+5+11) (2+6+12)

c1A1 (7.3, 8.46) (9.08, 10.56) (7.58, 8.7) (9.36, 10.8)
(Nodes) (3+7+9) (3+8+10) (4+7+9) (4+8+10)

c1c1 (7.3, 8.46) (10.01, 9.96) (7.58, 8.7) (10.29, 10.2)
(Nodes) (3+7+11) (3+8+12) (4+7+11) (4+8+12)

We are now looking for a Nash equilibrium and it is possible to argue in terms
of dominant strategies. From the point of view of P1, the row A1c1 dominates all
other available strategies. Then P2 will play A2A2 and we have obtained a Nash
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equilibrium, indicated also on the table. We could have also argued that A2A2
dominates all other strategies of P2.

Notice that the same table of payoffs can also be obtained by combining the
strategies of the players as they appear in Figure 8. Obviously, although the payoffs
in the entries of the table would be identical, the numbering of the terminal nodes
from which they are obtained would be different.

The Nash equilibrium, or PBE, obtained in the simultaneous decisions case
coincides with the one obtained in Figures 1 to 3. It is only in the case of Figures 4
to 7 that more equilibria appear. On the other hand this implies that this type of
sequential decision, in which P2 plays first and his declaration is heard, offers more
information than the simultaneous decisions problem.

5 REE versus the private core

We comment in this, and the following two subsections, on the relation between the
REE and the private core. First we define the notion of the private core (Yannelis,
1991).

Definition 5.1. An allocation x ∈ LX is said to be a private core allocation if

(i)
∑n

i=1 xi =
∑n

i=1 ei and
(ii) there do not exist coalition S and allocation (yi)i∈S ∈ ∏

i∈S LXi
such that∑

i∈S yi =
∑

i∈S ei and vi(yi) > vi(xi) for all i ∈ S.

The private core is an ex ante concept and under mild conditions it is not empty.
It has been shown in Yannelis (1991) and in Glycopantis, Muir, and Yannelis

(2001) that the private core exists under the standard concavity and continuity
assumptions on the utility functions. Moreover, the private core is always TCBIC
as shown in Koutsougeras and Yannelis (1993) and Hahn and Yannelis (2001).

We make our first point by using Example 3.1 above. We have seen that the
normalized expected utilities corresponding to the REE allocations are U1 =
11.46 and U2 = 12.25. On the other hand the following allocation x1 =
((5.5, 5.5), (5.5, 5.5), (2.5, 5.5)) and x2 = ((2.5, 5.5), (2.5, 2.5), (2.5, 2.5))
is in the private core yielding normalized expected utilities U1 = 14.70 and
U2 = 8.10. This example shows that one agent’s utility function is improved by
going from REE to this private core allocation. Therefore there is no reason why
this agent should agree to the REE distributive scheme. Most importantly the REE
allocation is not, in general, incentive compatible, (contrary to the private core
which is), and therefore the contracts may not viable.

Further, it should noted that Glycopantis, Muir, andYannelis (2001, 2003) show
that the private core can be implemented as a PBE, and as a sequential equilibrium
of an extensive form game, contrary to the REE. Therefore it appears the private
core is more acceptable than the REE. Below we show that the private core exists
in situations in which the REE does not. To this end we present the Kreps (1977)
example.
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5.1 The Kreps example

Kreps (1977), in a general example of a differential information economy, showed
the non-existence of a REE, revealing or not. Here we present a specific example
which satisfies all his assumptions. On the other hand the private core exists which
again suggests that the latter concept has an advantage over that of REE.

Example 5.1.1. There are two agents I = {1, 2}, two commodities, i.e. Xi = R
2
+

for each agent, i, and two states of nature Ω = {ω1, ω2}, considered by the agents
as equally probable. In xij the first index will refer to Agent i and the second to
Good j. If it is necessary we shall also write xij(ω1) and xij(ω2).

We assume that the endowments, per state ω1 = 1 and ω2 = 2 respectively,
and information partitions of the agents are given by

e1 = ((1.5, 1.5), (1.5, 1.5), F1 = {{ω1}, {ω2}};
e2 = ((1.5, 1.5), (1.5, 1.5), F2 = {{ω1, ω2}}.

The utility functions, of Agents 1 and 2 respectively, are for ω1 given by u1 =
log x11 + x12 and u2 = 2 log x21 + x22 and for state ω2 by u1 = 2 log x11 + x12
and u2 = log x21 + x22.

We consider first the possibility of REE.

Case 1. Fully revealing REE.

Suppose that there exist, after normalization, prices (p1(1), p2(1)) �=
(p1(2), p2(2)), where pi(j) denotes the price of good i in state j. In this case
every agent would know the state of nature. We now check whether this is possible.
The problems of two agents would be as follows.

State ω1:
Agent: 1
Maximize u1 = log x11 + x12
Subject to

p1(1)x11 + p2(1)x12 = 1.5(p1(1) + p2(1))

and

Agent 2:
Maximize u2 = 2 log x21 + x22
Subject to

p1(1)x21 + p2(1)x22 = 1.5(p1(1) + p2(1)).

The agents solve analogous problems in state ω2. However it is not possible to
find, after normalization, (p1(1), p2(1)) �= (p1(2), p2(2)). The reason is that in the
two problems the demands of the agents are interchanged so that the total demand
stays the same while the total supply is fixed. It is also straightforward to check
that there is no multiplicity of equilibria per state.

Case 2. Non-revealing REE.
Now we consider the possibility of having prices p1(1) = p1(2) = p1 and

p2(1) = p2(2) = p2. The two agents would act as follows.
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Agent 1:
He can tell the states of nature and obtains the demand functions for ω1, x11 = p2

p1

and x12 = 1.5p1
p2

+ 0.5 and for ω2, x11 = 2p2
p1

and x12 = 1.5p1
p2

− 0.5 for 3p1 ≥ p2.
It is clear that the demands differ per state of nature.

Agent 2:
He sets x21(ω1) = x21(ω2) = x21 and x22(ω1) = x22(ω2) = x22 and solves the
problem
Maximize u2 = 1

2 (2 log x21 + x22) + 1
2 ( log x21 + x22) = 1.5 log x21 + x22

Subject to
p1x21 + p2x22 = 1.5(p1 + p2).

So the highest indifference curve touches the budget constraint only once. On the
other hand the demands of Agent 1 differ per ω. It follows that the markets cannot
be cleared with common prices in both states of nature. It follows that there is no
REE, revealing or non-revealing, in this model.

Next we consider the existence of private core allocations. These are obtained
as solutions of the problem:
Maximize E2 = 1.5 log x21 + x22
Subject to

1
2 ( log x11(ω1)+x12(ω1))+ 1

2 ( log x11(ω2)+x12(ω2)) ≥ E1 (fixed),
x1j(ω1), x1j(ω2) ≥ 0, E1, E2 ≥ 1.5 log 1.5 + 1.5
x21 + x11(ω1) ≤ 3, x21 + x11(ω2) ≤ 3,
x22 + x12(ω1) ≤ 3, x22 + x12(ω2) ≤ 3.

This problem always has a solution because of the continuity of the objective
function and the compactness of the feasible set. If we set the quantity constraints
equal to 3 and 1.5 log 1.5 + 1.5 = E1 then the initial allocation is in the private
core.

Also this analysis indicates that the REE may not be an appropriate concept to
capture trades under asymmetric information. The agents here receive no instruc-
tions as to what they should be doing.

5.2 REE and informational asymmetries

We consider the following three agents economy.

Example 5.2.1. We assume that there are two agents I = {1, 2}, one commodity,
i.e. Xi = R+ for each i ∈ I , and three states of nature Ω = {a, b, c}, considered
by the agents as equally probable.

We further assume that the endowments, per state a, b, and c respectively, and
information partitions of the agents are given by

e1 = ((8), (8), (0)), F1 = {{a, b}, {c}};
e2 = ((8), (0), (8)), F2 = {{a}, {b, c}};
e3 = ((0), (0), (0)), F3 = {{a}, {b}, {c}}.

The utility functions of the agents are ui(ω, xi) = x
1
2
i .
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A private core allocation in this economy is given by the feasible and Fi-
measurable allocation x1 = ( 32

5 , 32
5 , 18

5 ), x2 = ( 32
5 , 18

5 , 32
5 ) and x3 =

( 16
5 , 0, 0). For all three agents, this allocation gives higher expected utility than

the initial endowment.
Although Agent 3 has zero initial endowment in each state, she brings about a

Pareto improvement to the whole economy and she is rewarded for this. In effect
by revealing her superior information she makes trade possible between the other
two agents in states b and c and she receives a positive quantity under state a. Of
course the outcome depends on the third agent having more information than the
other traders. If the private information set of Agent 3 were to change to the trivial
one F3 = {a, b, c} then she would get zero quantities in each state.

On the other hand the REE cannot capture this phenomenon. It will give zero
quantities to an agent who has zero initial allocation in all states, irrespective of
his private information, i.e. whether it is the full information partition or the trivial
one.

6 Concluding remarks

It has been shown here that the REE can result in allocations (contracts) that are
not incentive compatible and cannot be supported or implemented as a PBE or a
sequential equilibrium. The latter is quite striking because it means that the REE
does not fulfil a widely accepted Bayesian rationality criterion. This casts doubts
on the sustainability of the REE as an appropriate solution concept which can be
used to examine contracts in a differential information economy.

In order to present alternatives to the REE we looked at the example used to
show that the REE is not incentive compatible and cannot be supported as a PBE.
In the same example a private core allocations exists, it is coalitionally Bayesian
incentive compatible, (thus the contract is stable), and can also be supported as
a PBE. Moreover we reconsidered the well known example of Kreps (1977) of a
non-existent REE and showed that in the same example the private core exists.

Finally, we looked at examples where the private core provides to agents su-
perior outcomes in terms of expected utility than the REE. Another advantage of
the private core is that it is sensitive to the private information of the agents, i.e. a
change in the private information of an agent changes the equilibrium outcome.

Appendix I: On Nash equilibria and PBEs

In this Appendix we are concerned with the relation between Nash equilibria and
PBE’s in the model of the Example 3.1. The purpose of this analysis is to compare
the PBE with the Nash equilibria. A PBE is one of the Nash equilibria, satisfying
further conditions. It is now possible that a pair of players might choose to play
simply a Nash equilibrium. This could be explained on the basis of a bounded
rationality argument, i.e. that the calculation of a PBE is much more involved.

An efficient way of identifying all the Nash equilibria is by the use of the players’
reaction functions. We shall cast the analysis in terms of reaction functions for the
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first case, shown in Figures 1 to 3, and also for the second and more difficult one
of Figures 4 to 7.

P1 plays first.
P1 plays from I1

1 , his pure strategies, from left to right, with probabilities 1−x and
x respectively and from the singleton with 1− y and y. P2 plays his pure strategies
as follows. From the singleton at the end of aA1 he plays with probabilities 1 − z
and z, and from the one at the end of ac1 with probabilities 1 − w and w. From
the information set I1

2 he plays with probabilities 1 − k and k and from I2
2 with

probabilities 1 − � and �.
The normalized expected utilities from which the reaction functions will be

obtained can be seen, through routine calculations, to be E1 = 4.53(1 − x)(1 −
z) + 4(1 − x)z + 2.65x(1 − w) + 2.93xw + 4.53(1 − x)(1 − k) + 4(1 − x)k +
2.65x(1 − �) + 4.43x� + 2(1 − y)(1 − k) + 2(1 − y)k + 2y(1 − �) + 2.93y� and
E2 = 4.85(1 − x)(1 − z) + 5.29(1 − x)z + 3.16x(1 − w) + 3.40xw + 3.33(1 −
x)(1 − k) + 4(1 − x)k + 2.65x(1 − �) + 3.40x� + 2.65(1 − y)(1 − k) + 4(1 −
y)k + 2.65y(1 − �) + 3.40y�.

We need to consider the structure of the reaction functions. In E1 we need
only consider terms which depend on x, y and in E2 only those which depend on
z, w, k, �.

In E1 the coefficient of x is 0.53z + 0.28w + 0.53k + 1.78� − 3.76 < 0 which
implies x = 0. On the other hand the coefficient of y is 0.93�, which implies y = 1
if � > 0 and y =arb (arbitrary) if � = 0.

Next we substitute x = 0 into E2 and obtain the reaction of P2 in this case.
The coefficient of z is 0.44 so z = 1. The coefficient of w is zero and therefore w
is arbitrary; of k is 0.67 + 1.35(1 − y) so k = 1; of � is 0.75y so � = 1 if y > 0
and � =arb if y = 0.

The relations connecting y, � admit two solutions which correspond to Nash
equilibria.

Case 1. y = 0, � = 0

Case 2. y = 1, � = 1

Turning to PBE conditions we see immediately that the arbitrariness of w is un-
tenable. That is w = 1 if the strategy of P2 is to be optimal from the corresponding
singleton.

For Case 1 the beliefs in I1
2 are 1

2 for each node and are arbitrary in I2
2 . In effect

any beliefs in I1
2 are compatible with P2’s strategy from there, because P2 is always

going to play to the right from all his information sets, but the beliefs ( 1
2 , 1

2 ) are
obtained from P1’s strategy. However � = 0 is not optimal from I2

2 and therefore
Case 1 is not a PBE.

This leaves Case 2 with (x, y, z, w, k, �) = (0, 1, 1, 1, 1, 1) as the only PBE.

P2 plays first.
We now use the following notation. P2 plays from the singleton, his pure strategies,
left and right, with probabilities 1−x2 and x2 respectively and from I1

2 with 1−y2
and y2. P1 plays his pure strategies as follows. From I1

1 he plays with probabilities
1 − z1 and z1, from I2

1 with probabilities 1 − w1 and w1, from the singleton at the
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end of ca2 with probabilities 1−k1 and k1 and from the one at the end of cA2 with
probabilities 1 − �1 and �1.

Routine calculations imply now E1 = −1.88(2 − x2 − y2)z1 + (0.43y2 −
1.07x2)w1 + 0.93y2�1+terms independent of z1, w1, k1, �1. E2 = (0.44 +
1.69z1 − 1.89w1)x2 +(2.02+0.68z1 − 0.60w1 − 0.60�1)y2 + terms independent
of x2, y2.

Of course k1 is arbitrary throughout because it is not present in E1. Immediately
from E2 we get y2 = 1 and inserting this into E1 we obtain �1 = 1.

The reaction function for P1 then depends only on x2. We have

Case 1 If x2 < 0.402 then z1 = 0, w1 = 1

Case 2 If x2 = 0.402 then z1 = 0, w1 =arb

Case 3 If 0.402 < x2 < 1 then z1 = w1 = 0

Case 4 If x2 = 1 then z1 =arb, w1 = 0.

Substituting each of the above in turn into E2 we obtain that

Case 1 implies x2 = 0 < 0.402 which gives (z1, w1, �1, x2, y2) = (0, 1, 1, 0, 1)

Case 2 implies x2 = 0 or 1 which gives a contradiction unless w1 = 0.233 which
implies (z1, w1, �1, x2, y2) = (0, 0.233, 1, 0.402, 1)

Case 3 implies x2 = 1 which gives a contradiction. It drops out, exactly in the
same way as when P1 plays first.

Case 4 implies x2 = 1 which gives (z1, w1, �1, x2, y2) =(arb,0,1,1,1).

The above Cases 1, 2 and 4 describe the Nash equilibria.
Next we consider the PBEs. Case 1 above is already a PBE since all non-singular

information sets are visited with non-zero probabilities, so no beliefs are arbitrary.
For I1

2 we always have ( 1
2 , 1

2 ), for I1
1 we have (1, 0) and for I2

1 the beliefs are (0,
1). Starting from these with the given beliefs the strategies are optimal.

In Case 4 the beliefs are ( 1
2 , 1

2 ) for I1
2 , for I1

1 they are arbitrary (1-p, p) and
for I2

1 we have ( 1
2 , 1

2 ). Starting from I2
1 the criterion to be optimal with the given

beliefs is −0.32w1 which implies w1 = 0. So the strategy is optimal from I2
1 . From

I1
1 only z1 = 0 is optimal giving (z1, w1, �1, x2, y2) = (0, 0, 1, 1, 1). Thus for a

PBE the arbitrariness of z1 seen above is removed.
Case 2 gives another possibility in which the beliefs are ( 1

2 , 1
2 ) for I1

2 , for I1
1 they

are (1, 0) and for I2
1 we have (0.287, 0.713). This is consistent with the non-extreme

value for w1 because its coefficient, starting from I2
1 , is zero.

It is interesting that in Case 4 if we look at the strategies of the two players even
though P1 is playing 2nd he will tell the truth whatever he hears P2 say; but P2,
although he plays first, lies when he sees state a and that is essentially the same
thing as what happens when P1 plays first. This confirms that these strategies are
feasible no matter who plays first and we obtain the same payoffs. On the other
hand, Case 1 and the one with completely stochastic behavioral strategies are new.

Cases 1, 2 and 4 do not implement REE. We can see this by calculating normal-
ized expectations. Also conceptually REE assumes that people tell the truth while
each of the above cases requires a player to lie.
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