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Abstract This note refers to the recent work on ambiguous implementation by de
Castro–Liu–Yannelis (Econ Theory 63:233–261, 2017). The authors discuss, under
condition of ambiguity, the implementation as maximin equilibria of maximin indi-
vidually rational and ex ante maximin efficient allocations. An explicit example is
used to support their analysis. We analyse further the example used by de Castro–Liu–
Yannelis (2017). We show that in the formulated game tree the proposed allocation is
implementable through a backward induction argument. Also it is shown that a perfect
Bayesian equilibrium (PBE) exists, leading to different allocations. Comparisons are
drawn between the maximin and the PBE implementations. We consider also briefly
the meaning of the incentive compatibility (IC) of proposed allocations.

Keywords Ambiguity · Maximin preferences · Maximin efficient allocations ·
Maximin equilibrium · Implementation · Mechanism design · Perfect Bayesian
equilibrium · Nash equilibrium

JEL Classification D51 · D61 · D81 · D82

1 Introduction

In their paper de Castro et al. (2017) examine the possible implementation of allo-
cations as maximin equilibria, in a partition model of an asymmetric information
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exchange economy. The research is in the area of implementation of allocations under
condition of ambiguity and maximin preferences (Wald 1950). For each agent, proba-
bilities are attached only to the information sets of his partition of the states of nature.
This work generalizes the results of de Castro et al. (2015).

A main result of the paper is that each maximin individually rational and ex ante
maximin efficient allocation of a single good economy is implementable as a maximin
equilibrium. The area of investigation undertaken is of wide significance.

This new framework allows the authors to consider further differential information
economies studied in the literature now under ambiguity. See, for example, de Castro
et al. (2011) and Yannelis (1991).

Maximin core, value and Walrasian expectations equilibrium allocations are indi-
vidually rational and ex ante maximin efficient (see de Castro and Yannelis 2009;
Angelopoulos and Koutsougeras 2015; He and Yannelis 2015) and hence imple-
mentable.

Any efficient allocation is incentive compatible (IC) with respect to the maximin
preferences. Relevant issues are discussed in de Castro and Yannelis (2009, 2013) and
Liu (2014). On the other hand as shown by Holmström and Myerson (1983), an effi-
cient allocation may not be IC with respect to the Bayesian preferences. Furthermore,
Palfrey and Srivastava (1987) showed that under the Bayesian preferences, neither
efficient allocations nor core allocations define an implementable social choice cor-
respondence, when agents are incompletely informed. Thus under ambiguity results
which are impossible with Bayesian preferences become possible.

In this notewe analyse further the example used by deCastro et al. (2017). Examples
are employed to consolidate the understanding of the theory.

Here backward induction is used to obtain the maximin efficient allocation. It is
also shown that a PBE, i.e. a Nash equilibrium (NE), exists leading to a different
redistribution of the endowments. Comparisons between the actual solutions are not
meaningful.

This note is organized as follows. Section 2 defines ambiguous asymmetric infor-
mation economies. Section 3 describes the example, explains the criterion formaximin
preferences and gives the definitions of the maximin individually rational and max-
imin efficient allocation. Sections 4 and 5 explain the calculation of the payoffs at the
end of the tree and then the maximin equilibrium through the revelation mechanism.
Section 6 applies to the same example with ambiguity the alternative idea of the per-
fect Bayesian equilibrium (PBE) and Sect. 7 compares the two equilibria concepts.
Section 8 concludes. The Appendix shows that the proposed allocation is individually
rational, ex ante maximin efficient but not unique.

2 Ambiguous asymmetric information economies

The economy consists of a finite set of states of nature and a finite set of agents with
differential information. Each agent is characterized by an information partition, a
multi-prior set, random initial endowments and an ex post utility function. Ambiguity
is expressed by the fact that each agent attaches probabilities to his information sets
rather than to individual states, unless of course the latter are isolated. Furthermore,
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The maximin equilibrium and the PBE under ambiguity 185

the agents have maximin type preferences (Wald 1950) rather than the more often
assumed expected utility formulation. Each player takes into account his information,
the actions of the other players, and then maximizes the minimum of his payoff.

An ambiguous asymmetric information exchange economy is a set E =
{�; (Fi , Pi , ei , ui ) : i ∈ I }. The interpretation of the notation is as follows.

� is a finite set of states of nature and ω ∈ � a particular state. Fi is Agent i’s
partition of � and EFi ∈ Fi denotes an event and ω ∈ EFi a state in the event. An
event is also denoted by ÊFi . A partition means that, as the game unfolds and state ω

occurs, only Agent i knows that the event EFi has occurred.
IRl+ will denote the non-negative orthant of IRl where l is the finite number of goods

per state. Agent i’s random initial endowment is ei : � −→ IRl+. I = {1, . . . , N } is
a set of N players. Each agent receives his endowment in the interim. That is, ei
is Fi -measurable, meaning that ei (.) is constant on each element of Fi . In general,
measurability means that we are dealing with nice functions.

A strategy of Player i is a function si : Fi −→ Fi . One strategy for each player is
summarized as a strategy profile.

μi is the probability measure on σ(Fi ), the algebra generated by the partition
of Agent i , that is μi : σ(Fi ) −→ [0, 1]. It is assumed that for each agent all
information sets have positive probabilities. That is for each i and for each event
EFi ∈ Fi , μi (EFi ) > 0.

Each μi is a well-defined probability, but it is not defined on every state of nature.
Indeed, if EFi = {ω,ω′} with ω �= ω′, then the probability of the event EFi is well
defined, but not the probability of the states of nature ω or ω′.

The set of all probability measures over 2� (the power set P(�)) that agree with
μi is given by

�i = {probability measure πi : 2� −→ [0, 1] | πi (A) = μi (A),∀A ∈ σ(Fi )}.

Let Pi , a non-empty, closed and convex subset of �i , be the multi-prior set of Agent
i .

Let L denote the set of all functions from � to IRl+. Agent i’s allocation specifies
his consumption bundle at each state of nature, i.e. xi ∈ L . Let x = (x1, . . . , xN )

denote an allocation of the above economy E . An allocation x is said to be feasible,
if for each ω ∈ �, �i∈I xi (ω) = �i∈I ei (ω). We are seeking such an allocation of the
total endowments.

Agent i’s ex post utility function is ui : IRl+ × � → IR = ui (ci ;ω). It is assumed
to be strictly monotone in ci , the agent’s consumption vector, and Fi -measurable for
fixed ci .

Given any ci ∈ IRl+, and any two statesω,ω′ ∈ �, withω �= ω′ wehave ui (ci ;ω) =
ui (ci ;ω′), whenever ω ∈ EFi (ω

′). In effect the Fi -measurability of the ex post utility
functions characterizes the agent’s “type”.

Let Di (x−e, (EF1 , . . . , EFN )) denote the actual redistribution allocated to Player
i . It depends on the planned redistribution x − e and the players’ reports.

We denote by gi the outcome function of Player i . It depends on the planned
redistribution, the reports of the players and the realized state of nature. Explicitly,
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gi = gi
(
x − e,

(
EF1 , . . . , EFN

)
, ω

)
= ei (ω) + Di

(
x − e,

(
EF1 , . . . , EFN

))
,

where ei (ω) + Di (x − e, (EF1 , . . . , EFN )) is the bundle that Player i ends up con-
suming.

Finally, we define for each Player i the final utility payoff function vi = vi (x −
e, (EF1 , . . . , EFN );ω) = ui (ei (ω) + Di (x − e, (EF1 , . . . , EFN ));ω).

Instead of vi (x − e, (EF1 , . . . , EFN );ω) we can write, for convenience,
vi ((EF1, . . . , EFN );ω) or vi

(
EFi , EF−i ;ω

)
, where EF−i sums up the reports of

all other players, different from i .
All assumptions in Sect. 2 of de Castro et al. are satisfied in the example we

discuss. For example, it is evident that if all agents truthfully report their information,
i.e. nobody lies, the actually realized state will occur. Further concepts and variables,
such as the ideas of a maximin preference and of a direct revelation mechanism, etc.,
are introduced below.

3 The example with ambiguity

We look at Example 1, Section 5.2 of the de Castro et al. (2017) paper. We show that
the allocation discussed is indeed individually rational and maximin efficient. We also
show that there are other such allocations as well. The numbering of the example and
definitions are the same as in their paper.

Example 1 There are two agents, I = {1, 2}, one commodity, and three possible states
of nature� = {a, b, c}. The ex post utility function of eachAgent i is ui (ci ;ω) = √

ci .
The agents’ random initial endowments, information partitions and multi-prior sets
are

(e1(a), e1(b), e1(c)) = (5, 5, 1);F1 = {{a, b}, c}
(e2(a), e2(b), e2(c)) = (5, 1, 5);F2 = {{a, c}, b}
P1 = {probability measure π1 : 2� −→ [0, 1] |π1({a, b}) = 2/3 and π1(c) = 1/3}
P2 = {probability measure π2 : 2� −→ [0, 1] |π2({a, c}) = 2/3 and π2(b) = 1/3}.

The priors are completed by attaching to P1 probabilities, p1 and p2 with p1+ p2 =
2/3, and to P2 probabilities, q1 and q2 with q1 + q3 = 2/3, where subscripts 1, 2, 3,
refer to states {a, b, c}, respectively.

Here, we want to give an explanation that the proposed allocation

x =
(
x1(a) x1(b) x1(c)
x2(a) x2(b) x2(c)

)
=

(
5 4.8 1.2
5 1.2 4.8

)

ismaximin individually rational and ex antemaximin efficient andwhether it is unique.
We also look into the reason why this allocation was proposed in the first instance.
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The maximin equilibrium and the PBE under ambiguity 187

Definition 1 Take twoallocations fi and hi .Agent i prefers fi to hi under themaximin
preferences (written as fi �MP

i hi ) if

min
π∈Pi

∑
ω∈�

ui ( fi (ω);ω)πi (ω) ≥ min
π∈Pi

∑
ω∈�

ui (hi (ω);ω)πi (ω). (1)

Furthermore Agent i strictly prefers fi to hi , that is fi 
MP
i hi , if he prefers fi to hi

but not the reverse, i.e. fi �MP
i hi but hi �MP

i fi .
With respect to the notation, fi (ω) signifies that an allocation specifies the con-

sumption bundle at each state of nature ω. The separate reference to ω determines a
specific state.

Definition 1 requires knowledge of the probabilities of all states of nature. Given
allocation fi one has to look at all the priors on the left-hand side and choose the one
that minimizes the expected utility. Then one does the same thing on the right-hand
side for allocation hi . The prior that minimizes the right-hand side is not necessarily
the same as the one for the left-hand side of the weak inequality. In effect the definition
refers to the maximum among minima (maximin).

Definition 2 A feasible allocation x = (xi )i∈I is said to be (maximin) individually
rational, if for each i , xi �MP

i ei .

Definition 3 A feasible allocation x = (xi )i∈I is said to be ex ante maximin efficient,
if there does not exist another feasible allocation y = (yi )i∈I , such that yi �MP

i xi
and yi 
MP

i xi for at least one i .
We are givenμi the probabilitymeasure on the σ(Fi ). Since this is not the complete

multi-prior set, P1 above must include p1 + p2 = 2/3 and P2 must include q1 + q3 =
2/3. This is because Definition 1 requires the probability of all states ω.

In the Appendix we show that the proposed allocation is individually rational, ex
ante maximin efficient. We also show that it is not unique.

4 The tree and the payoffs

First we look at the construction of the game tree shown here in Fig. 1(i), which
is basically Fig. 2 in de Castro et al. (2017). It shows the players’ information sets
A1 = {a, b}, c1 = {c}, A2 = {a, c}, and b2 = {b} with their probabilities and
the payoffs in quantities which makes clear the implied redistribution of the initial
endowments. The translation into utilities is straightforward. The heavy black lines
will be explained below.

The payoffs are calculated as follows (de Castro et al. 2015). We are given the
initial endowments and we use a particular specific allocation. Together they imply
a planned redistribution of the endowments. Then employing certain rules referring
to strategies used by the players, i.e. reports made, we calculate the payoffs. Finally
a choice mechanism is invoked to select the equilibrium strategies and, hence, the
payoffs.
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From the initial endowments, e, and the proposed, above, reallocation among the
players, x , it follows that the planned redistribution is

x − e =
(
x1(a) − e1(a) x1(b) − e1(b) x1(c) − e1(c)
x2(a) − e2(a) x2(b) − e2(b) x2(c) − e2(c)

)
=

(
0 −0.2 0.2
0 0.2 −0.2

)
.

We show below that the strategy profile of telling the truth, s1(A1) = A1, s1(c1) =
c1; s2(A2) = A2, s2(b2) = b2, is an equilibrium of the game tree under the maximin
choice rule. It implements the allocation x .

On the tree we distinguish between A and A′, b and b′, c and c′, simply to indicate
that they are played from different information sets. Of course as strategies, they are
in each particular case the same.

First we look at the rules for calculating payoffs. When the reports EF1 , . . . , EFN

of the players are compatible, they end up with ei (ω) + xi (ω̃) − ei (ω̃), where ω̃ is
the agreed state, and xi (ω̃) − ei (ω̃) is the planned redistribution specified for the state
ω̃. Clearly, if all the players tell the truth, then ω̃ = ω and the players get what they
planned to get, ei (ω) + xi (ω) − ei (ω) = xi (ω). However, since a player may lie, the
players may not end up with the planned allocation.

When the reports are not compatible at the realized state ω, in the end lies are
detected. There are many ways to resolve the players’ payoffs.

Furthermore, another approach would be that each player keeps his initial endow-
ments as was done in Glycopantis et al. (2001, 2003), in another context. In Fig. 1 we
indicate with an arrow the corresponding change in payoffs when reports are incom-
patible. We do not pursue this point.

5 The direct revelation mechanism and the maximin equilibrium

After the formulation of the game, there are rules that the players will follow in
choosing their strategies. These are based on the consistent applications of their utility
functions. The person who imposes the game to be played is called the mechanism
designer and he applies a direct revelation mechanism to implement the allocation x .

More formally, a direct revelation mechanism concerning a planned alloca-
tion x for the underlying ambiguous asymmetric information economy E =
{�; (Fi , Pi , ei , ui ) : i ∈ I } is a set � = 〈

I, S, x − e, {gi }i∈I , {vi }i∈I
〉
which defines a

non-cooperative game.
The players haveWald (1950) type preferences and adopt the maximin equilibrium

of de Castro et al. (2015). Each player maximizes the minimum of his payoff taking
into account the information he has received and the worst actions of all other players.

Let ME(�) denote the set of maximin equilibria of the mechanism. We say an
allocation x is implementable, if it can be realized as a maximin equilibrium of the
direct revelation mechanism.

Definition 10 In a direct revelation mechanism � = 〈I, S, x − e, {gi }i∈I , {vi }i∈I 〉,
a strategy profile s∗ = (s∗

1 , . . . , s
∗
N ) constitutes a maximin equilibrium (ME), if for

each Player i , his strategy si maximizes his interim payoff lower bound, that is, the
function si : Fi −→ Fi satisfies, for each EFi ∈ Fi ,
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————————–P2

Nature

P1
P1

—————————————–

P2 P2

(5, 5)

P1

(5, 1) (4.8, 1.2) (4.8, 0.8)

(1, 5)

(5.2, 0.8)

(0.8, 5.2)

A1 A1 c1

A2 A2 A2 A2b2 b2 b2

c1

b2

A1 c1

A2
b2 A2 b2

(4.8, 4.8) (0.8, 4.8)(1.2, 4.8)

1

—————————————–

Nature

A1

A1

c1

c1
A1

c1

P1
P1

I1

1

(4.8, 1.2) (4.8, 0.8)

(5, 5) (5.2, 4.8) (1, 5) (1.2, 4.8)

I1

(ii)

to play conservatively, choose A1 and get 1.
He will get payoff 1,2 with certainty and he has no reason

The implementation of the ex ante maximin efficient allocation

In the reduced tree P1 makes from I1 his best choice.

(i)

The tree
(1, 5)

(5, 1)
Arrows indicate possible change of payoff vectors for incompatibe reports.

a b c

P2————————————————————————————————————–

(5, 5)

1/3

a b c

1/3

(I1, 2/3)

(I2, 2/3) (I2, 2/3) (I2, 2/3) (I2, 2/3)

(I2, 1/3)

(I1, 2/3)

P2

(5, 1)

(4.8, 5.2)(5.2, 4.8)

Following a backward induction

Fig. 1 The maximin equilibrium

123



190 D. Glycopantis, N. C. Yannelis

min
EF−i ∈F−i ;
ω′∈EFi

vi

(
s∗(EFi ), EF−i ;ω′) ≥ min

EF−i ∈F−i ;
ω′∈EFi

i

vi

(
ÊFi , EF−i ;ω′)

for all ÊF i ∈ Fi , where EF−i denotes the reports from all the other players, so
EF−i ∈ F−i = × j �=iF j .

This has the flavour of a NE but the interdependence of the agents is different. The
strategies of the players, given the reports of everybody else, maximize their lowest
payoff.

Definition 11 Let x be a maximin IR and PO, (individually rational, Pareto optimal)
allocation of an ambiguous asymmetric information economy E , and ME(�) the set
of maximin equilibria of the mechanism � = 〈I, S, x − e, {gi }i∈I , {vi }i∈I 〉. The
allocation x is implementable as a maximin equilibrium of the mechanism � if, ∃s∗ ∈
ME(�), such that gi (x − e, s∗(ω), ω) = xi (ω), for all ω and i .

Implementation of the proposed IR and PO allocation

x =
(
x1(a) x1(b) x1(c)
x2(a) x2(b) x2(c)

)
=

(
5 4.8 1.2
5 1.2 4.8

)

is achieved by the agents doing their calculations independently and simultaneously.
Their reports determine the net transfers. Although the authors cast the game in tree
form, the idea is more like a normal form game. The detailed calculations of the agents
are explained.

Thedevelopment of thefigures in deCastro et al. is easy to follow.For the calculation
of the payoffs at the terminal nodes, the rules explained above for compatible and
incompatible reports of the agents are followed. The authors discuss how one arrives
at the strategy profile which implements the ex ante maximin efficient allocation.

For each agent and for every information set, a separate sub-graph is extracted
which extends to terminal nodes. In the spirit of the maximin preferences, precise
calculations are made, to find the lower bound of his payoffs and this leads to the
decision to tell the truth as to what information he has received. That is, when an agent
observes an event, his chosen strategy will be to declare the event he has seen; that
is he has no incentive to lie. As an example, when he observes the event A2, Agent
2 will play the strategy s2(A2) = A2 and this is part of the equilibrium. Through a
truthful strategy profile, we obtain the maximin equilibrium, and hence the required
net transfers. The calculations imply that the identified by the authors ex ante maximin
efficient allocation is implemented through the constructed game with its rules, i.e.
the particular direct revelation mechanism.

We vary the approach but of course in the end the same maximin idea is applied.
We shall do the calculations through the application of the familiar, straightforward
idea of backward induction. We start with our Fig. 1(i). We assume with the authors
(page 247, footnote 12) that “a player lies only if he can benefit from doing so”. As
said above, we ignore the indicated replacements that will be made if the punishment
is removed.
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The maximin equilibrium and the PBE under ambiguity 191

Information sets I2 and I ′
2 belong to Agent 2, denoted by P2. The revelation mech-

anism employed, i.e. the structure of the constructed game, implies that from both
information sets Agent 2 will choose the strategies to tell the truth. They will secure
the lower bound of his payoffs. Hence he has no incentive to lie with respect to the
information he has observed. This is indicated by the heavy black lines.

We go to the folded up tree which is in Fig. 1(ii). With respect to I1 there is no
problem. Now with respect to the singleton I ′

1 we note that the maximin and the
maximum utility approaches come together. The player chooses with certainty the
strategy which brings the best outcome.

Putting all the information together, we have obtained the result that the truth-
telling, maximin solution allocation is x1(a) = 5, x1(b) = 4.8, x1(c) = 1.2 and
x2(a) = 5, x2(b) = 1.2, x2(c) = 4.8.

Indeed this allocation is IR and PO and it has been shown that it is implementable
as a unique maximin equilibrium.1

6 The perfect Bayesian equilibrium and its calculation

The construction of the game tree is based on the initial endowments, a particular
allocation on which we anchor and certain rules for calculating payoffs. Therefore we
could look for the PBE solution and then compare it with the maximin solution.

We shall now turn our attention to the application of the game-theoretic equilibrium
concept of PBE. It is appropriate for analyzing the equilibrium and its implementation
through extensive form game trees. All PBE are of course NE. The idea is significant
because it employs the Bayesian updating of beliefs of the agents. It utilizes extensive
form, dynamic game trees.

More formally, a PBE consists of a set of players’ optimal behavioural strategies,
and consistent with these, a set of beliefs which attach a probability distribution to
the nodes of each information set. Consistency requires that the decision from an
information set is optimal given the particular player’s beliefs about the nodes of this
set and the strategies from all other sets, and that beliefs are formed from updating,
using the available information. If the optimal play of the game enters an information
set, then updating of beliefs must be Bayesian. Otherwise appropriate beliefs are
assigned arbitrarily to its nodes.

In the context of differential information economies, we are interested in the imple-
mentation or non-implementation properties, in terms of PBE, of various equilibrium
notions.

The static concept of the coalitional Bayesian incentive compatibility (CBIC)
implies that no agent has an incentive to lie with respect to the state(s) he has observed
and the PBE satisfies basic rationality criteria in a game where the agents are asym-
metrically informed.

The issue is whether cooperative and non-cooperative static solutions can be sup-
ported through a non-cooperative solution concept. It has been shown that CBIC

1 See also de Castro et al. (2017) for more details.
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allocations can be supported by a PBE. Such considerations can help us to decide how
to choose from the available equilibrium concepts the most appropriate one.

The ambiguity model is different in structure from the ones in Glycopantis et al.
(2001, 2003). In de Castro et al. (2017) decisions are taken simultaneously, and when
player P2 is to act he does not knowwhat P1 has chosen. Furthermore it is characteristic
that the agents attach probabilities to the information sets.

For the PBE we assume that Nature chooses states a, b, c, each with probability
1/3 and the agents no longer attach probabilities to their information sets. On the other
hand, we retain the assumption that when P2 is to act he does not know what P1 has
chosen. The PBE, i.e. a NE with consistent beliefs, will be calculated on this basis.
The relevant graph is Fig. 2. The payoffs at the terminal nodes are as in Fig. 1, so that
comparisons with the maximin solution can be made.

This section answers the following question:
Can the maximin Efficient and IR (individually rational) allocation of the previous

example be implemented as a PBE? The previous section proved that it can be imple-
mented as a unique maximin equilibrium. It would be of interest to know if it can be
implemented as a PBE.

This section will provide a negative answer. We will show that the maximin IR and
maximin efficient allocation x = (x1, x2) = ((5, 4.8, 1.2), (5, 1.2, 4.8)) cannot be
implemented as a PBE contrary to Sect. 5, which showed that it can be implemented
as a maximin equilibrium.

The probabilities 1/2 in the nodes of information set I1 reflect the fact that states a
and b are equally likely. That is when player P1 finds himself in information set I1 he
believes rationally that he is at each of its nodes with probability 1/2.

Next, we call the nodes of information set I2, from left to right, η1, η2, η3, η4 and
the optimal choices, calculated through backward induction are shown through heavy
lines, which go through η2 and η3. Bayesian updating is now different from the one
in Glycopantis et al. (2001, 2003). Consider node η2. In the present context we have

Prob(η2/I2) = Prob(I2/η2)Prob(η2)/(Prob(I2/η2)Prob(η2)

+Prob(I2/η3)Prob(η3))

= 1 × 1/3/(1 × 1/3 + 1 × 1/3) = 1/2.

This is the belief of P2 that he is at node η2. An explanation of the terms in the formula
is as follows: Prob(I2/ηi ) = 1, i = 1, 2, 3, 4, because if you find yourself in any of
these ηi ’s you know that you are in I2. On the other hand, Prob(ηi ) is the probability
of reaching node ηi through the optimal path. This is the product of the probability of
a state and the probability of choice by the player. We have Prob(η2),Prob(η3) = 1/3
and Prob(η1),Prob(η4) = 0.

Similarly we obtain the belief 1/2 for node η3, and 0 beliefs for nodes η1, η4.
Next, we call the nodes of information set I ′

2, from left to right, η5, η6 and the
optimal paths go through η6. I ′

2 belongs to P2.
Consider now node η6 of information set I ′

2. We have

Prob(η6/I3) = Prob(I3/η6)Prob(η6)/(Prob(I3/η5)Prob(η5)
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1/2

(i)

The tree

Optimal paths : 

The corresponding beliefs are shown next to the nodes,

1/2

————————–

Nature

P1
P1

—————————————–

P2 P2

I1

I2 I2

P1

(5, 1) (4.8, 1.2) (4.8, 0.8)(5.2, 0.8)

a, 1/3 b, 1/3

1/2

A1 c1

A2 A2 A2 A2b2 b2 b2

c1

b2

A1 c1

A2
b2 A2 b2

I2

(4.8, 4.8)(5.2, 4.8) (0.8, 4.8)

1/2

1

b, 1/3

c, 1/3

c, 1/3
a, 1/3

—————————————–

A1

A1 c1
A1 c1

A1 c1

P1
P1P1

Nature

(4.8, 1.2) (4.8, 0.8)

(4.8, 5.2) (4.8, 4.8) (0.8, 5.2) (0.8, 4.8)

I1

a, b2, with Prob 1/3
b2, with Prob 1/3
b2, with Prob 1/3

0 0

0 1

Following a backward induction
(ii)

(5, 5) (1, 5) (0.8, 5.2) (1.2, 4.8)
P2 P2

I1

I1

(4.8, 5.2)

c1,
c1,

b,
c, A1,

————————————————————————————————————–P21/2 I2 P2 1/2

Fig. 2 The perfect Bayesian equilibrium
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+Prob(I3/η6)Prob(η6))

= 1 × (1/3)/(1 × 0 + 1 × 1/3) = 1.

That is P2 believes that he is definitely at node η6.
So we have obtained a PBE, i.e. optimal strategies and consistent with these, beliefs

obtained through Bayesian updating. The optimal expected utility payoffs of the play-
ers are E1 = 1

3 (u1(4.8)+u1(4.8)+u1(0.8)) and E2 = 1
3 (u2(4.8)+u2(0.8)+u2(5.2)).

The PBE shown above is not unique.2 For example in Fig. 2(ii) player P1 can decide
to play A1 instead of c1. This would imply a corresponding change in beliefs, and the
alternative PBE allocation

x =
(
x1(a) x1(b) x1(c)
x2(a) x2(b) x2(c)

)
=

(
4.8 4.8 0.8
5.2 1.2 5.2

)

which is discussed below.

7 Comparison of the maximin equilibrium and the PBE

We pursue the de Castro et al. (2017) example further. It sets probabilities on the
states of nature, and applies the idea of a PBE in implementing an allocation. The
PBE implementation is not unique while the maximin equilibrium is.

The maximin approach implements the IR and PO allocation x which is used itself
in the first instance to calculate the payoffs of the tree. On the other hand, one can take
the constructed game tree as given, add probabilities on the states of nature and apply
the alternative, expected utility idea of a PBE for implementation of allocations. We
note that the structure of the information sets is now different from earlier work on
asymmetric differential information economies.

In comparing the two ideas, we make the following observations: (i) First the note
shows that a PBE is again available and the calculations of beliefs can be done through
Bayesian updating. (ii) Second the PBE is not unique. Hence comparisons of the two
solutions do not really help. For example, consider Fig. 2(ii) here. If from I1 player P1
decides to play A1 rather than c1, then under P2 he will get y1(a) = 5.2, y1(b) = 1.2,
y1(c) = 5.2, more than under the maximin solution. The issue is simply that the PBE
approach is valid. (iii) The maximin solution is not a NE. We can see this as follows.
Consider Fig. 1(i). Suppose that P2 finds himself in information set I2. Then he would
be better off to play b2 rather than A2.

An explanation on (ii) follows: The maximin solution allocation is x1(a) =
5, x1(b) = 4.8, x1(c) = 1.2 and x2(a) = 5, x2(b) = 1.2, x2(c) = 4.8. We have
also found that a PBE allocation is y1(a) = 4.8, y1(b) = 4.8, y1(c) = 0.8 and
y2(a) = 4.8, y2(b) = 0.8, y2(c) = 5.2. Observation (ii) points out that we cannot
conclude now that the ex post maximin solution performs better.

On theonehand, direct comparisonbetween the quantities of themaximin allocation
x and this particular PBE allocation y, above, shows that the maximin allocation

2 This is contrary to maximin equilibrium which is unique.
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performs better. However, as pointed out, if from I1 player P1 chose A1 rather than c1,
thenwe obtain another PBE allocation inwhich P2 gets quantities {5.2, 1.2, 5.2}, more
than he gets under the maximin solution. Therefore comparisons between maximin
and PBE solutions are not meaningful.

Now, the allocation y can be implemented as a PBE if the agents’ beliefs on the
nodes of the tree are q*. The question is whether the mechanism designer can change
the agents’ original ambiguous beliefs to q*. Thismight require amechanism in stages,
up to the point when the game tree has been allocated beliefs q* to its nodes.

On a different issue, one could consider Nature as a third, fictitious player or an
intermediary. It facilitates trade and drops out at the end, like theWalrasian auctioneer.
Its endowments, utility functions and payoffs will be zero and the probability per state
1/3. Although the zero utility function is not strictly concave, Definitions 1, 2 and 3
are satisfied. We could talk now about expected payoffs and the tree would be slightly
easier to comprehend. The two players act independently of each other but they get
some information from Nature.

Next, we want to discuss the IC property of the allocations in the example. First we
make general remarks.

Taking as the basis the example of an economy with asymmetric information dis-
cussed here, we consider in some detail the ex ante idea of IC allocations. These exhibit
stability in that no agent has an incentive to lie about the information he has received.
Of course when the state of nature has been revealed ex post, then everybody knows
everything and there is no scope in lying.

The situation that the idea of IC attempts to capture is when one is neither in an ex
post revelation of the state nor in the limited knowledge of the initial structure of the
model.

Now, before the actual state is revealed, Agent 1 ‘strongly believes’ that Agent 2
will accept the statement that it is state c and act accordingly. Therefore Agent 1 can
lie and say that it is state c. This will imply that state b can be excluded as a possibility
because if the state was b then Agent 2 would see it and he would not accept the lie.
Therefore Agent 1 can work on the basis that it is state a and he lies, saying that it is
state c.

Analogously, Agent 2 ‘strongly believes’ that Agent 1 will accept the statement
that it is state b and act accordingly.

In order to declare that an allocation is not incentive compatible it must be possible
that an agent can lie about a state of nature and end up with higher utility than what
he has been allocated.

We discuss two cases.
Case 1. Consider the PBE allocation

x =
(
x1(a) x1(b) x1(c)
x2(a) x2(b) x2(c)

)
=

(
4.8 4.8 0.8
5.2 1.2 5.2

)
.

Wewish to check its incentive compatibility.We askwhether it is possible that an agent
can lie about a state and end up with higher utility than what he has been allocated
under the PBE.
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If A1 lies that he has seen c, he will end up with u1(5 + 0.8 − 1) = u1(4.8). The
same as the utility u1(x1(a)) of the PBE. If A2 lies that he has seen b, he will end
up with u2(5 + 1.2 − 1) = u2(5.2). The same as the utility u2(x2(a)) of the PBE.
Therefore nobody can lie and benefit.

The incentive compatibility of the allocationmatches up with the fact that it can be
supported as a PBE of a game tree analysis.
Case 2. Next we consider the maximin allocation.

Agent 1 is in the set {a, b} and expects utilities u1(5.2), from lying that he has seen
state c, and u1(4.8) from state b. Applying the maximin utility criterion, he will expect
the utility u1(4.8) which is the same as the maximin utility of the proposed allocation
for the set {a, b}.

Similarly, Agent 2 is in the set {a, c} and expects utilities u2(5.2), from lying that
he has seen state b, and u2(4.8) from state c. Applying themaximin utility criterion, he
will expect the utility u2(4.8)which is the same as the maximin utility of the proposed
allocation for the set {a, c}.

Therefore when Agent i lies he takes the min(ui (5.2), ui (4.8)) = ui (4.8). Telling
the truth yields min(ui (5), ui (4.8)) = ui (4.8). Hence there is no incentive to lie. The
above implies that the maximin proposed allocation is incentive compatible.

8 Concluding remarks

In the context of non-cooperative behaviour under ambiguity, de Castro et al. (2017)
introduce conditions underwhich amaximin individually rational and ex antemaximin
efficient allocation, x , is implementable. It is implemented through the mechanism
� = 〈I, S, x − e, {gi }i∈I , {vi }i∈I 〉 as its unique maximin equilibrium outcome.

In general, theory and examples explain and support each other. The theory explains
how a result can be justified and an example can open new theoretical possibilities.
First we confirm that the proposed allocation by the authors in their example is indeed
individually rational and ex ante maximin efficient. We explain that it is not unique.

We also show how implementation of the proposed allocation, x , can be achieved
through backward induction, although the agents cannot finally calculate the expected
utilities.

The payoffs in the de Castro et al. game tree are based on rules which anchor on x ,
and the implementation through maximin preferences chooses x again. On the other
hand, one can set probabilities on the states of nature and implement an outcome, y, as
a PBE. In relation to the game trees in Glycopantis et al. (2001, 2003), the messages
that the agents receive now have a different structure. Even so it is straightforward
to calculate the conditional expectations which express the beliefs used to obtain the
agents’ optimal strategies. This settles the issue of the existence of a PBE.

It is pointed out that comparisons of the maximin and the expected utility PBE solu-
tions are not meaningful. Nevertheless the maximin solution provides higher expected
utility than one of the PBE allocations. Finally it is shown that the maximin allocation
is IC while a PBE is not. This is due to their diametrically different utility choice
formulations.
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Appendix

In order to check the individual rationality of the proposed allocation, we consider
Agent 1. We want to solve the following:

Problem 1

Minimize p1
√
5 + p2

√
4.8 subject to p1 + p2 = 2/3.

It is straightforward that we obtain the corner solution p1 = 0 and p2 = 2/3. This
justifies the formula used by de Castro et al.:

2

3
min{√5,

√
5} + 1

3

√
1 = 1.824 <

2

3
min{√5,

√
4.8} + 1

3

√
1.2 = 1.826.

Similarly we obtain the identical relation for Agent 2. Hence the proposed feasible
allocation is individually rational and Definition 2 is satisfied. Each agent loses 0.2
and gains 0.2 units of different goods but from distinct starting quantities and the agent
becomes strictly better off.

Nextwewant to show that the proposed allocation above is ex antemaximin efficient.
First, we want to give a justification of the choice of the proposed allocation. One can
trace the steps through a social welfare function. Alternatively we can start the analysis
from Problem 3.

However it is of some interest to see that the proposed allocation emerges also as
the one that maximizes a social welfare function, W , in which the two agents have
equal weights. We are looking for the solution of:

Problem 2

Maximize W = 2
√
x1(a) + 2

√
x1(b) + √

x1(c) + 2
√
x2(a) + √

x2(b) + 2
√
x2(c)

Subject to x1(a) + x2(a) = 10, x1(b) + x2(b) = 6, x1(c) + x2(c) = 6,

where the coefficients 2 and 1 are suggested by 2
3 and

1
3 of the de Castro et al. formula

above.
The problem is separable into the sub-problems per individual constraint, as there

is no transferability of endowments between periods. We have the unique solutions
x1(a) = x2(a) = 5, x1(b) = 4.8, x2(b) = 1.2 and x1(c) = 1.2, x2(c) = 4.8. There
does not exist another feasible allocation which both agents prefer and at least one of
them prefers strictly. It follows that we also have the unique solution of:

Problem 3

Maximize W ′′ = 2
√
x1(b) + √

x1(c) + √
x2(b) + 2

√
x2(c)

Subject to x1(b) + x2(b) = 6, x1(c) + x2(c) = 6.
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The solution is X1 = (x1(b), x1(c)) = (4.8, 1.2) and X2 = (x2(b), x2(c)) =
(1.2, 4.8); and u1 = 1.826 and u1 = 1.826.

But of course for Definition 3we have to go to themaximin criterion of Definition 1.

We must take into account that we have priors implying, as shown in Problem 1,
multiplication of a minimum by 2/3. We know that for ProblemW ′′ we have obtained
unique solutions X1 and X2. Suppose we attach to these the quantities y1 = y2 = 5.
Thenweget the solution of Problem2which is alsowhatwas called above the proposed
allocation.

We shall show that this resulting allocation is ex ante maximin efficient. We argue
as follows. Suppose one increases y1 and reduces y2, only. The utility of Agent 1
cannot increase because min(y1, 4.8) stays at 4.8 and the utility of Agent 2 can only
be reduced if for examplemin(y2, 4.8) = y2 which will now itself carry the coefficient
2/3.

Analogously, looking at it from the point of view of Agent 2, if we only decrease
y1 and increase y2, we do not obtain a superior allocation according to the maximin
criterion.

Next, suppose that we only change the vectors X1 and X2. The uniqueness of the
solution of Problem 3 implies that the utility value of at least one of the Xi s has been
reduced. Without loss of generality, let this be that of X1.

In all circumstances, there will be, according to the maximin criterion, a reduction
in the utility for Agent 1. Therefore changes in X1 and X2 alone cannot lead to a
strictly preferred allocation.

Suppose now we consider a combination of all changes at the same time. Suppose,
without loss of generality, that the utility value of X1 has been reduced. No matter
what the change in y1 is, the utility of Agent 1 according to the maximin criterion will
be reduced. Hence the proposed allocation is ex ante maximin efficient.

Now we turn our attention to the question of whether the proposed allocation is the
unique one which has this property. Consider the allocation

x =
(
x1(a) x1(b) x1(c)
x2(a) x2(b) x2(c)

)
=

(
5 − ε 4.8 1.2
5 + ε 1.2 4.8

)
,

where ε is very small. Notice that ε and −ε are chosen to preserve feasibility because
we do not assume free disposal. Also ε is chosen small enough so that we still have
min(5 − ε, 4.8) = 4.8, i.e. −0.2 < ε < 0.2.

The new allocation is individually rational and this is easy to see. Analogously to
the previous proof above we obtain, for Agent 1 and Agent 2, respectively,

2

3
min{√5,

√
5} + 1

3

√
1 <

2

3
min{√5 − ε,

√
4.8} + 1

3

√
1.2, and

2

3
min{√5,

√
5} + 1

3

√
1 <

2

3
min{√5 + ε,

√
4.8} + 1

3

√
1.2.

Next, we have to show that, in spite of the new (y′
1, y

′
2) = (x1(a), x2(a)), any such

allocation is ex ante maximin efficient. We repeat the previous argument.
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Suppose now considering simultaneous changes of the allocation vectors, that X1
has been reduced. No matter what the change in y′

1 is, the utility of Agent 1 according
to the maximin criterion will be reduced. Hence the proposed allocation is ex ante
maximin efficient.
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