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We address a question posed by J.-F. Mertens and show that, indeed, R. J. Aumann's
classical existence and equivalence theorems depend on there being ``many more agents
than commodities.'' We show that for an arbitrary atomless measure space of agents
there is a fixed non-separable infinite dimensional commodity space in which one can
construct an economy that satisfies all the standard assumptions but which has no
equilibrium, a core allocation that is not Walrasian, and a Pareto efficient allocation
that is not a valuation equilibrium. We identify the source of the failure as the require-
ment that allocations be strongly measurable. Our main example is set in a
commodity�measure space pair that displays an ``acute scarcity'' of strongly
measurable allocations��where strong measurability necessitates that consumer
choices be closely correlated no matter the prevailing prices. This makes the core
large since there may not be any strongly measurable improvements even though
there are many weakly measurable strict improvements. Moreover, at some prices
the aggregate demand correspondence is empty since disaggregated demand has no
strongly measurable selections, though it does have weakly measurable selections.
We note that our example can be constructed in any vector space whose dimension
is greater than the cardinality of the continuum��that is, whenever there are at least
as many commodities as agents. We also prove a positive core equivalence result for
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1. INTRODUCTION

The Arrow�Debreu�McKenzie model of exchange under perfect com-
petition is formulated in terms of a finite set of agents taking prices as given
and engaging in the sale and purchase of a finite number of commodities
(Arrow and Debreu [3], McKenzie [30], Debreu [11]). This formulation,
though at times technically convenient, raises conceptual difficulties. For
example, a finite number of agents should mean that individuals are able
to exercise some influence and that the assumption of price taking behavior
is nonsensical. Furthermore, a finite number of commodities postulates a
predetermined termination date beyond which all economic activity ceases
and a predetermined finite set of uncertain states of the world. It also
excludes the many important models of general equilibrium that are set in
infinite dimensional commodity spaces.

In his classical papers, Aumann [4, 5] suggested that the appropriate
model for perfectly competitive markets is one with a continuum of traders.
The insignificance of individual traders is thus captured by the idea of a set
with zero measure. Furthermore, summation or aggregation is generalized
by the notion of the Lebesgue integral. Aumann also showed that the set
of core allocations in his model coincide with the set of Walrasian allocations,
which in turn is not empty (see also Hildenbrand's classical book [19]).

Since it is impossible to integrate functions that are not measurable the
class of ``admissible'' allocations in Aumann's model is restricted to that of
measurable functions. Thus, Walrasian allocations, Pareto improvements,
and the improving allocations that can be considered by blocking coalitions
must all be measurable. This restriction, however, seems innocuous when there
is a finite number of commodities and Aumann's measurability assumption on
preferences is satisfied. In the main this paper is concerned with Aumann's
model when there are infinitely many commodities. It shows that when the
commodity space is very large this restriction may be so severe that it renders
Aumann's [4, 5] theorems false. The paper solves an open question which
appears to have first been posed by Mertens who writes:

``If I remember correctly that conversation with Aumann, he was stressing
the importance of going beyond the separable case (strong measurability), to
check really whether equivalence did depend on there being many more agents
than commodities.'' [31, Footnote 2, p. 189]

Though the Lebesgue integral is a finite dimensional integral it has a
straightforward infinite dimensional abstraction termed the Bochner integral
(see Dunford and Schwartz [14], Diestel and Uhl [12], Yannelis [45]).
Indeed, the Bochner integral has been used to generalize Aumann's core equiv-
alence theorem and to prove the existence of equilibrium in various infinite
dimensional gener equilibrium and game theoretic models. Moreover, in sharp
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contrast to other more general integrals,3 the Bochner integral retains a
most elementary property of economic feasibility: net trades associated
with feasible allocations cannot be positive and non-zero for every con-
sumer (see Section 10).

This paper, however, provides a class of counter examples which show
that if aggregation is generalized by the Bochner integral then the core
equivalence result of Aumann [4] and the existence of equilibrium result
of Aumann [5] do not hold in non-separable infinite dimensional com-
modity spaces.4 We show that for an arbitrary atomless measure space of
agents there is a fixed non-separable infinite dimensional commodity space
in which one can construct an economy that satisfies all the desirable
assumptions but which has no equilibrium, a core allocation that is not
Walrasian, and a Pareto efficient allocation that is not a valuation equi-
librium. By desirable assumptions we mean those assumptions which
guarantee that these results hold in the finite dimensional setting as well as
in the separable infinite dimensional setting:

1. The positive cone of the commodity space has a non-empty interior.

2. Initial endowments are strictly positive.

3. Consumption sets are the positive cone of the commodity space.5

4. Preferences are induced by continuous convex strictly monotone
utility functions.

5. Preferences satisfy Aumann's measurability assumption: If x and y
are strongly measurable allocations then the set of agents that prefer x over
y is measurable.

It is well understood that what drives the results of Aumann is the
requirement that the space of agents be atomless. When the number of
commodities is finite this requirement underscores the ``hidden'' assumption
that the economy has ``many more'' agents than commodities. This paper
shows that Aumann's classical existence and equivalence theorems depend
on there being many more agents than commodities.

When the number of commodities is finite Aumann's ``hidden'' assumption
has two important manifestations. First, Lyapunov's convexity theorem,
which guarantees that the integral of set-valued functions is closed and convex.
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3 E.g., the Pettis or Gelfand or Dunford integrals (see Diestel and Uhl [12], Talagrand [43]).
4 The paper also shows that the theorems in Khan and Yannelis [24] and Rustichini and

Yannelis [38, 40], which are set in infinite dimensional separable Banach spaces, do not extend
to non-separable spaces.

5 For non-existence we truncate the economy so that consumption sets coincide with a weakly
compact convex subset of the positive cone. Also, this set contains initial endowments in its norm
interior.



Second, the various measurable selection results that are due to the
``abundance'' of strongly measurable functions from the space of agents into
the commodity space��which ensure that strongly measurable functions are
rich enough abstractions of perfectly competitive allocations. Both of these
manifestations can fail in infinite dimensional settings, albeit for two very
different reasons. Lyapunov's convexity theorem depends on the topolinear
relationship between the commodity space and the space of essentially
bounded measurable functionals.6 It may fail even when the commodity
space is separable, see Diestel and Uhl [12, p. 265] or Yannelis [45, p. 24].
However, the abundance of strongly measurable functions is a topological
property that is inherited by separable metrizable commodity spaces.7 The
main example in this paper is set in commodity-measure space pairs that
display an ``acute scarcity'' of strongly measurable functions.

It is impossible to Bochner integrate a function unless that function is
strongly measurable and can be essentially approximated by a sequence of
step functions. Thus, a purely technical consequence of adopting the Bochner
integral is that feasible allocations must be strongly measurable and that
coalitions can only consider those improvements that are strongly measur-
able. We identify the source of the failure of existence of equilibrium and
the failure of core equivalence as this technical requirement of strong
measurability.8 In large spaces, this restriction makes the core large since
there may not be any strongly measurable improvements even though there
are many weakly measurable strict improvements. It also makes the set of
Walrasian allocations small. In our example, there exists a Pettis integrable
only weakly measurable Walrasian allocation, even though there are no
strongly measurable equilibria.

Technically, the argument goes as follows. Suppose that the set of
consumers is the continuum [0, 1]. We consider the non-separable Hilbert
space l2([0, 1]) (see Section 2 for definition). Here [0, 1] may be inter-
preted as the set of commodities. We define an ordering on l2([0, 1]) and
an economy that satisfies the desired assumptions. In this economy each
consumer t # [0, 1] extremely desires the commodity t. We note, however,
that measurable allocations have the property that almost every consumer
is allocated zero of every commodity in a fixed set of full measure, see
Proposition 8.2. This property, which has no analogue in the separable
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6 Lyapunov's convexity theorem holds if for each coalition the cardinality of the family of
distinct sub-coalitions is larger than the dimension of the commodity space, see Sections 7.

7 We see from the proofs in Rustichini and Yannelis [38] that the Aumann core equiv-
alence result can be proven without regard to whether or not the exact version of Lyapunov's
convexity theorem holds. Thus, Rustichini and Yannelis' generalization of the Aumann core
equivalence theorem to separable infinite dimensional spaces seems to inherit the ``hidden''
assumption of Aumann.

8 See also the discussion in Mertens [31] on the importance of measurability.



spaces l n
2 and l2 , is the source of the failure of both existence of equilibrium

and core equivalence. The property could be interpreted as saying that, in
our non-separable setting, strong measurability makes it seem as though
there are many more commodities than agents��hence violating Aumann's
``hidden'' assumption��and that strong measurability necessitates that
consumer choices be closely correlated no matter the prevailing prices.

To establish that our economy does not have a price equilibrium we
show that if f : [0, 1] � l2([0, 1]) is a strongly measurable Walrasian
allocation, with an equilibrium price p, then there must be some t # [0, 1]
with the following contradictory properties:

1. The value of commodity t under p is zero.

2. Consumer t consumes zero of commodity t.
3. f (t) maximizes consumer t 's utility subject to the budget constraint.

To show core-Walras non-equivalence we identify an allocation and show
that any improvement upon this allocation has the following property:

There is some non-negligible coalition S$ # [0, 1] such that each consumer
t # S$ must be allocated a strictly positive amount of the commodity t.

Such improvements cannot be essentially separably valued and thus cannot
be strongly measurable. Therefore, this allocation cannot be improved
upon by any coalition and is in the core. This is the case even though the
allocation is not a Walrasian equilibrium and there would have been many
improvements had we considered the more general Pettis integral.

The negative results in this paper points to the insight that Aumann's
measurability assumption is far less restrictive in the non-separable setting
than it is in the separable setting. Indeed, because of the ``scarcity'' of
strongly measurable allocations it is almost superfluously satisfied in our
example. We emphasize this insight by first showing that one cannot hope to
prove core equivalence without some measurability assumption on preferences,
even in the finite dimensional setting. We then strengthen Aumann's
measurability assumption and prove a positive equivalence result for
Bochner economies in non-separable commodity spaces.

The lack of atomic coalitions is crucial for Aumann's proof of core
equivalence. However, every non-atomic measure space admits a non-
measurable atom: A non-measurable set that does not contain non-negligible
measurable subsets (see Section 4). In separable commodity spaces, the role of
Aumann's measurability assumption in the proof of core equivalence is to
negate the effects of such non-measurable atoms. We strengthen that role
and assume the following technical assumption:

Suppose that the commodity space has a base with cardinality m. There is
a family of coalitions I with the property that the union of m null sets in I
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is a null set. Moreover, if x~ is a core allocation, t [ et is the endowments
mapping, and z is an arbitrary commodity bundle then the set of agents that
prefer t [ et+z over x~ is not only measurable but is also in I.

This strengthened measurability assumption is adequately onerous in large
spaces;9 it is also implied by Aumann's measurability assumption when the
commodity space is separable. Consequently our positive theorem implies
Aumann's classical equivalence result as well as the related infinite dimen-
sional theorem of Rustichini and Yannelis [38].

It should be noted that existence of an equilibrium and core equivalence
results with a continuum of agents in non-separable Banach commodity
spaces are already available in the literature. For example, for the commodity
space L�

10 (see Bewley [8, 9], Mertens [31], Noguchi [32], Podczeck [35])
and the commodity space M(0)11 (see for example Mas-Colell [29]).
However, the space L� in these results is endowed with the Mackey-
(L� , L1) topology which is metrizable and separable. Moreover, the weak-
(M(0), C(0)) topology of the the closed unit ball of M(0) is metrizable
and separable. Therefore these positive results preserve Aumann's ``hidden''
assumption. In particular, the usual measurable selection theorems hold in
such settings.

Our counter examples indicate that once this ``hidden'' assumption is
violated existence of an equilibrium and core-equivalence fail. Indeed, a
corollary of our main result states that for any choice of atomless measure
space of agents and any non-separable Hilbert commodity space there is an
economy that satisfies all the desirable assumptions but which has no equi-
librium, a core allocation that is not Walrasian, and a Pareto efficient
allocation that is not a valuation equilibrium. Non-separable Hilbert com-
modity spaces arise in models of asset trade under uncertainty (e.g., Khan
and Sun [22]). When the sample space of uncertain states is not separable,
the space of all asset returns with finite variance is a non-separable Hilbert
space. These spaces are covered by our negative results.

Moreover, since the mid-1980's many of the important theorems from
the finite dimensional literature have been extended to exceptionally
general infinite dimensional spaces, but for economies with a finite number
of traders. This paper shows that it may not be possible to emulate that
literature without adopting a different notion of aggregation than the
Bochner integral and possibly sacrificing economic content.
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counter example, see Corollary 10.2.1 in Section 10.

10 The space of essentially bounded measurable functionals on a measure space.
11 The space of finite measures on the compact metric space 0.



The next section contains the notation, basic definitions, and some intro-
ductory results. Section 3 defines the notion of a Bochner economy and the
notion of a Pettis economy.

Our counter examples are set-out as theorems in Sections 4 and 5, where
we establish a more general result than the one we have already advertised.
We show that existence of equilibrium, Core-equivalence, and the second
theorem of welfare economics fail whenever the following holds.

There is a non-negligible coalition that is the union of a family of null sets
smaller than dimension of the commodity space.

One implication of this result is that if the space of agents is atomless, then
our counter example can be constructed in any vector space whose dimen-
sion is greater than or equal to c��we define a vector ordering on the
commodity space whose order topology is non-separable and Banachable;
we then define an economy in this Banach space. That is, our example can
be constructed whenever there are at least as many commodities as agents.

We note that our counter example is constructed using an arbitrary
atomless measure space of agents, and thus includes Loeb measure spaces.
It therefore may be possible to use ``lifting'' arguments to infer from our
negative theorems a negative result for large but finite economies (see Loeb
[28], Anderson [1]).12

In Section 6 we explore ways of getting around the negative results of the
previous section. We establish a close converse of the main result of Section
5. We list a theorem on the equivalence of the core and Walrasian alloca-
tions for Bochner as well as Pettis economies. We do this, however, by
non-trivially strengthening Aumann's measurability assumption. The proof
is in Section 9.

In Section 7 we discuss the relationship between Lyapunov's convexity
theorem and the statements of the main theorems in Sections 5 and 6.
Sections 10 and 11 contain concluding remarks and open questions.

2. PRELIMINARIES

We begin with some notation and definitions. We also list some known
results, which we shall refer to later in the paper.

The set of all subsets of a set X, including the empty set, will be denoted
2X. The cardinal number of a set X will be denoted card(X). The cardinal
number assigned to the set of natural numbers is +0 . The cardinal number
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12 See also the work of Lewis [26] who uses non-standard analysis and the non-standard
analog of the Lyapunov theorem of Loeb [27] to model the idea of ``many more'' agents than
commodities. See also the work of Gretsky�Ostroy [17] who introduced the idea of thick and
thin markets.



assigned to the set of all real numbers is denoted by c. The product mn of
cardinal numbers m and n is the cardinality of the set X_Y, where
card(X)=m and card(Y)=n. For every cardinal number m, the number
2m is defined as the cardinality of the family of all subsets of a set X satisfy-
ing card(X)=m. We define nm as the cardinality of the set of all functions
from X to Y, where card(X)=m and card(Y)=n. We know that (nm1 )m2=
nm1m2. We assume the Generalized Continuum Hypothesis and use the fact
that if +: is a regular cardinal, then

++;
: ={+:

+;+1

if +;<+: ,
if +:�+; ;

see Takeuti and Zaring [42, Theorem 11.28, p. 100].
We shall restrict our attention to vector spaces whose dimension is a

regular cardinal number. Note that +n , n=0, 1, 2, ..., are regular cardinals.
Moreover, every successor cardinal +:+1 is a regular cardinal, see Takeuti
and Zaring [42, Theorem 11.13, p. 92].

Let X be a topological space. The set of all cardinal numbers of the form
card(B), where B is some base for the topology of X, is well ordered. This
set has a smallest element, which is called the weight of the topological
space, see Engelking [15, p. 12]. A second-countable space has weight �+0 .

Proposition 2.1. If X is a topological space with weight �m, then X has
a dense subset of cardinality �m.

Proof. Let B be a base for the topology of X with card(B)�m.
Choose one point from each B # B. If Y is the collection of these points,
then X=Y� . K

Let E be a topological vector space. Denote by E$ the topological dual
of E and by E" the strong dual of E$. We use the notation ( p, x) to denote
the value of p # E$ at x # E. Denote by dim(E) the dimension of the vector
space E.

An ordered vector space is a vector space E that is ordered by an order-
ing � which in addition to being reflexive, transitive, and anti-symmetric
satisfies the following condition: for arbitrary z # E and real r>0,

x� y O rx+rz�ry+rz.

The set [x # E : 0�x] is a convex cone with vertex 0, which is called the
positive cone of E; and is denoted E+ . A proper cone is a convex cone C
with vertex 0 having the property C & &C=[0]. Each proper cone C�E
defines, by virtue of ``x� y'' if and only if ``y&x # C '', an ordering � on
E under which E is an ordered vector space with positive cone E+=C. The
space E is an ordered Banach space if it is a Banach space, an ordered
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vector space, and E+ is norm closed. E is an ordered Hilbert space if it is
a Hilbert space, an ordered vector space, and E+ is norm closed.

Let E be an ordered vector space, we define the order topology T0 of E
to be the finest locally convex topology on E for which every order interval
is bounded, (see Schaefer [41, p. 230]). We shall use the notation [ } , } ] to
denote order intervals.

Proposition 2.2. Let (E, T) be an ordered Banach space. If the positive
cone E+ has a T-interior point e and [&e, e] is T-bounded, then T0=T.

Proof. The set [&e, e] is radial in E and absorbs order intervals. Thus,
order intervals are T-bounded and T0 is finer than T; since [&e, e] is a
T-neighborhood of 0 and absorbs T-bounded sets, it follows that T0=T.

K

We shall only consider measure spaces that are complete finite positive and
non-trivial (i.e., if (T, {, +) is a measure space, then +(T )>0.) For the
measure space (T, {, +), let S be an arbitrary subset of T and define the real
number +*(S), called the outer measure of S, as follows

+*(S)= inf
F # {, F#S

+(F).

Let E be a Banach space. Following Diestel and Uhl [12], a function
f : T � E is simple if there are x1 , x2 , ..., xn in E and S1 , S2 , ..., Sn in { such
that

f = :
m

i=1

xi/si
,

where /si
(t)=1 if t # S i and /si

(t)=0 if t � S i .
A function f : T � E is strongly +-measurable if there is a sequence of

simple functions fn : T � E such that

lim
n

& fn(t)& f (t)&=0,

for +-almost all t # T. A function f : T � E is weakly or scalar +-measurable
if the functional t [ ( p, f (t)) is measurable for every p # E$.

We know from Pettis' measurability theorem, see Diestel and Uhl [12,
Theorem II.1.2, p. 42], that f : T � E is strongly +-measurable if and only
if it is weakly +-measurable and it is +-essentially separably valued, i.e.,
there is M # { with +(M)=0 such that [ f (t): t # T"M] is a norm separable
subset of E. We shall also use the fact if f : T � E is strongly +-measurable
then f &1(G) # { for each open set G�E, see Dunford and Schwartz [14,
Theorem III.6.10, p. 148].
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A strongly +-measurable function f : T � E is Bochner integrable if there
is a sequence of simple functions fn : T � E such that

lim
n |

t # T
& fn(t)& f (t)&=0.

In this case, for each S # { we denote by �S f (t) d+(t) the limit

lim
n |

S
fn(t) d+(t),

where �S fn(t) d+(t) is defined in the obvious way.
The relationship between two functions f and g on T into E, which is

expressed by the statement f &g=0 +-a.e., is an equivalence relation. We let
[ f ] be the class of functions equivalent to f and let L1(+, E) (or Bochner-
L1(+, E)) denote the space of all equivalence classes of Bochner integrable
functions on T into E. We shall occasionally speak of elements of L1(+, E)
as if they were functions.

We use the fact that if p # E$ and f is integrable, then ( p, f (t)) is
integrable and

�p, |
S

f (t) d+(t)�=|
S

(p, f (t)) d+(t),

for any S # {, see Dunford and Schwartz [14, Theorem III.2.19, p. 113].
Bochner integration requires that integrable functions be strongly measurable.

We turn to the more general Pettis integral, which allows us to integrate
functions that may be only weakly measurable.

If f : T � E is weakly +-measurable and t [ ( p, f (t)) is in L1(+, R) for
all p # E$, then f is called Dunford integrable. The Dunford integral of f over
S # { is that element xS # E", which exists by Diestel and Uhl [12, Lemma
II.3.1, p. 52], such that

( p, xS)=|
S

( p, f (t)) d+(t),

for each p # E$. In the case that xS # E for all S # {, the function f is called
Pettis integrable and we write

Pettis-|
S

f (t) d+(t)=xS

to denote the Pettis integral of f over S # {.
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Similarly, if f : T � E$ is a function such that t [ ( f (t), p) is in L1(+, R)
for all p # E, then for each set S # { there is xS # E$ such that

(xS , p) =|
S

( f (t), p) d+(t),

for each p # E. The element xS is called the Gelfand integral of f over S.
Note that in reflexive spaces the Gelfand and Pettis integrals coincide.

Finally, we introduce the idea of the ``weight'' of a measure space.

Definition 2.3. Let (T, {, +) be a measure space, S�T, and F�{. Let
O be the set of all cardinal numbers of the form card(K), where K is some
collection [Sk : k # K] of sets such that

1. \k # K, Sk # F;

2. \k # K, +*(Sk)=0;

3. S��k # K Sk .

If the set O is empty, then let w(S, F, p)=0. If the set O is not empty, then
it is well ordered��for the usual partial ordering of cardinal numbers��and
has a smallest element, which we denote w(S, F, +).

The cardinal number w(S, F, +) depends on the collection of +-null sets
in F. If w(S, F, +)=0, then S cannot be covered by any family of +-null
sets in F. If w(S, F, +)=m>0, then S can be covered by a family of (no
less than) m +-null sets in F. Also, if w(S, F, +)>0 and +(S)>0, then
w(S, F, +)>+0 .

Proposition 2.3. Let (T, {, +) be a measure space. If S�T, F�{, and
w(S, F, +)=m>0, then S is the union of m disjoint non-empty +-null sets.

Proof. There is a collection [Sk : k # K] of +-null sets in F such that
card(K)=m and S��k # K Sk . Let < well order K, and denote by 0 the
smallest element of K. Define a collection of sets inductively:

V0=S0 , Vk=Sk> .
k$<k

Vk$ .

Evidently, [Vk : k # K] is a disjointed collection of +-null sets. Also,
S��k # K Vk .

Notice that

S= .
k # K : Vk & S{<

(Vk & S)� .
k # K : Vk & S{<

Sk .
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Therefore,

m=w(S, F, +)�card(k # K : Vk �S{0)�card(K)=m,

and [Vk & S : k # K, Vk & S{0] is the required collection of sets. K

3. THE BOCHNER AND THE PETTIS ECONOMIES

An economy (or a Bochner economy) E is a quintuple [E, (T, {, +), X,
o, e], where E is the commodity space, which is an ordered Banach space,
(T, {, +) is the measure space of agents, X : T � 2E is the consumption corre-
spondence, t [ o (t)�X(t)_X(t) is the preference correspondence, and
e: T � E is the initial endowments function, which is a Bochner integrable
function satisfying e(t) # X(t) for all t # T.

For notational convenience, we shall denote any function x: T � E by
t [ xt . In particular et will denote e(t). Also, Xt and ot will denote X(t)
and o(t), respectively.

An allocation is a strongly +-measurable function t [ xt # Xt . An alloca-
tion t [ xt is feasible if �T xt d+(t)=�T et d+(t).

A coalition S is a measurable set S such that +(S)>0. A coalition S can
improve upon an allocation t [ xt if there is an allocation t [ yt such that
yt ot xt for every t # S, and �S yt d+(t)=�S et d+(t). The set of all feasible
allocations for the economy E that no coalition can improve upon is called
the core of the economy. The set of all equivalence classes of functions in
the core of E is denoted Boc-C(E).

A pair (t [ xt , ?), where t [ xt is a feasible allocation and ? # E$+ , is an
equilibrium if for each t # T, (?, xt) �(?, et) , and (?, y) >(?, et) if
yot xt ; +-a.e. The set of all equivalence classes of allocations t [ xt such
that (t [ xt , ?) is an equilibrium for some ? is denoted Boc-W(E).

A Pettis economy E is a quintuple [E, (T, {, +), X, o, e], defined in
exactly the same way as a Bochner economy except that the initial endow-
ments function e: T � E is a Pettis integrable function.

A Pettis allocation is a weakly +-measurable function t [ xt # Xt .
A Pettis allocation t [ xt is a Pettis feasible allocation if

Pettis-|
T

xt d+(t)=Pettis-|
T

et d+(t).

A coalition S can Pettis improve upon a Pettis allocation t [ xt if there
is a Pettis allocation t [ yt such that ytot x t for every t # S, and

Pettis-|
S

yt d+(t)=Pettis-|
S

et d+(t).
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The set of all Pettis feasible allocations for the economy E that no coalition
can Pettis improve upon is called the Pettis core of the economy. The set
of all equivalence classes of functions in the Pettis core of E is denoted
Pet-C(E).

A pair (t [ xt , ?), where t [ xt is a Pettis feasible allocation and ? # E$+ ,
is a Pettis equilibrium if for each t # T, (?, xt)�(?, et), and (?, y) >
(?, et) if yot xt ; +-a.e. The set of all equivalence classes of Pettis alloca-
tions t [ xt such that (t [ xt , ?) is a Pettis equilibrium for some ? is
denoted Pet-W(E).

Theorem 5.3, below, shows that Boc-C(E) is not always a subset of
Pet-C(E), even when E is a Bochner economy. However, if E is a Bochner
economy then the following statements hold:

1. E is a Pettis economy.

2. [Bochner-L1(+, E) & Pet-C(E)]�Boc-C(E).

3. [Bochner-L1(+, E) & Pet-W(E)]=Boc-W(E).

4. If Boc-C(E)�Boc-W(E), then Boc-C(E)�Pet-C(E).13

We list the assumptions that are used in the statements of our negative
results. The binary relation ot is called strictly monotone if x, y # Xt , y>x
O yot x. It is continuous if [x # Xt : xot y] and [x # Xt : yot x] are
open in Xt . The collection [ ot : t # T] is Aumann measurable if the set
[t # T : xt ot yt] is measurable for any pair of allocations t [ xt and t [ yt .

A1.

1. \t # T, the initial endowment et is an interior point of E+ ;

2. \t # T, the consumption set Xt=E+ ;

3. \t # T, ot is induced from a norm-continuous, convex, strictly
monotone, utility function.

A2. [ ot : t # T] is Aumann measurable.

4. NECESSITY OF AUMANN MEASURABILITY

We show that it is not possible to drop Aumann's measurability assump-
tion and still hope to obtain Aumann's core�Walras equivalence result
(even in finite dimensional separable commodity spaces).

Theorem 4.1. Let E be an ordered Banach space that has at least
two linearly independent strictly positive linear functionals, and whose
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positive cone has a non-empty interior. Each of statements 1 and 2 implies
statement 3.

1. If E=[E, (T, {, +), } , } , } ], is a Bochner economy satisfying A1,
then Boc-C(E)�Boc-W(E).

2. If E=[E, (T, {, +), } , } , } ] is a Pettis economy satisfying A1, then
Pet-C(E)�Pet-W(E).

3. Every subset of T is +-measurable.

The non-existence of an atomless measure space (T, {, +) such that every
subset of T is measurable is consistent with the usual assumptions of set
theory��including the axiom of choice��see Federer [16, p. 59] and Oxtoby
[34, p. 26]. Indeed, we know that [0, 1] contains a set that is not Lebesgue
measurable, e.g., Oxtoby [34, Chapter 5]. Endowing Rn with its canonical
ordering, we obtain the following corollary.

Corollary 4.1.1. For every n�2, there is an economy E=[Rn, [0, 1],
X, o, e] that satisfies A1 but Boc-C(E)�3 Boc-W(E).

Before proving Theorem 4.1 we need the following well known proposi-
tion, which states that the existence of a non-measurable set implies the
existence of a non-measurable atom, cf. Bartle [7, p. 169].

Proposition 4.2. If V�T is not measurable, then there exists a non-
measurable set V*�V that does not contain a non-null measurable subset.

Proof. Let

:= sup
S # {, S�V

+(S).

If :=0 then let V*=V. If :>0 then choose a sequence :n A : such that
:n<: for all n. For each n there is Sn # {, Sn �V such that +(Sn)>:n . The
set V$=�n Sn �V is measurable and for every n, +(V$)>:n. Thus, +(V$)�:,
which implies +(V$)=:.

The set V*=V"V$ is not measurable and is the required set. Else, if there
is S # {, S�V* with +(S)>0 then V$ _ S # {, V$ _ S�V, and +(V$ _ S)>:.

K

Proof (Proof of Theorem 4.1). Suppose by way of contradiction that
1 O% 3 or that 2 O% 3. Then there is by Proposition 4.2 a non-measurable set
V that does not contain any non-null measurable subsets.

Let g be an interior point of E+ and let p and q be linearly independent
strictly positive linear functionals on E such that ( p, g)=(q, g) =1.
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We define a Bochner economy E=[E, (T, {, +), E+ , o, e] that satisfies
A1. Initial endowments are t [ et= g, and utility functions are given as
follows:

Ut(x)={( p, x)
(q, x)

if t # T"V;
if t # V.

Since p{q and g is an interior point of E+ , then t [ et � Boc-W(E) and
t [ g � Pet-W(E).

We show that t [ et # Pet-C(E) and thus t [ et # Boc-C(E). Suppose the
contrary and that some coalition S # { (with +(S)>0) can Pettis improve
upon t [ et with a Pettis allocation f : T � E+ such that

Pettis-|
S

ft d+(t)=|
S

et d+(t). (1)

The set [t # S : ( p, ft)�1]�V is a null set, because it is a measurable
subset of V. Therefore,

�p, Pettis-|
S

ft d+(t)�=|
S

( p, ft) d+(t)

>|
S

( p, et) d+(t)=�p, |
S

et d+(t)� ,

which contradicts Eq. (1). K

5. FAILURE IN LARGE COMMODITY SPACES

In this section, E will denote an arbitrary infinite dimensional vector space
whose dimension is a regular cardinal number. We shall list a main proposi-
tion and several important consequences, the most important of which is
Theorem 5.3. Proofs are given in Section 8.

The next proposition says that the existence of a coalition that is covered
by �dim(E) negligible sets implies the existence of an unpleasant Bochner
economy that satisfies the very pleasant assumptions in A1 as well as
Aumann's measurability assumption A2.

Proposition 5.1. If (T, {, +) satisfies

_S # {, +(S)>0, 0<w(S, {, +)�dim(E), (2)
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then there is an ordering on E, whose order topology T0 is normable (with
norm & }&) and complete, and an economy E=[(E, & }&), (T, {, +), X, o, e]
satisfying A1 and A2 but

1. Boc-C(E)�3 Boc-W(E).

2. _ f # Boc-C(E) that can be Pettis improved upon by the coalition S.

3. _ f # Boc-C(E) that is not an equilibrium allocation for E*=
[(E, & }&), (T, {, +), X, o, f ].

4. Boc-W(E)=< and there is a truncation E� =[(E, & }&), (T, {, +), X� ,
o, e] of E satisfying14

(i) \t, Xt=X� , which is a weakly compact and convex subset of E+ ;

(ii) \t, et is a T0 -interior point of X� ;
but Boc-W(E� )=<.

5. Pet-W(E){< and Pet-W(E� ){<.

The next proposition tells us that every atomless measure space can be
covered by c non-empty null sets.

Proposition 5.2. If (T, {, +) is an atomless measure space, then

w(T, {, +)=c.

That is, T is the union of a disjointed family [Sk : k # K] of non-empty +-null
sets with card(K)=c.

Proof. Let [S0 , S1] be a partition of T into two disjoint sets of equal
measure. Inductively, if r is a finite string of 0s and 1s let [Sr0 , Sr1], be a
partition of Sr into two sets of equal measure.

Let K be the family of all countable sequences of 0's and 1s. For any
natural number n>0 let kn be the first n elements of k # K. Let Sk=
��

n=1 Skn
.

For any k # K, Sk is a +-null set. Also, [Sk : k # K] is a disjointed family
of sets whose union is T; thus w(T, {, +)>0. The union of the family
[Sk : k # K, Sk {<] is still T. Since +(T)>0,

+0<w(T, {, +)�card([k # K : Sk {<])�card(K)�c,

which implies��by the continuum hypothesis��that w(T, {, +)=c. K

Proposition 5.1 and Proposition 5.2 easily yield the following devastating
theorem.
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Theorem 5.3 (Main Theorem). Assume that dim(E)�c. If (T, {, +) satisfies

_S # {, +(S)>0, (S, {, +) is atomless,

then there is an ordering on E, whose order topology T0 is normable (with
norm & }&) and complete, and an economy E=[(E, & }&), (T, {, +), X, o, e]
satisfying A1 and A2 but

1. Boc-C(E)�3 Boc-W(E).

2. _ f # Boc-C(E) that can be Pettis improved upon by the coalition S.

3. _ f # Boc-C(E) that is not an equilibrium allocation for E*=
[(E, & }&), (T, {, +), X, o, f ].

4. Boc-W(E)=< and there is a truncation E� =[(E, & }&), (T, {, +),
X� , o, e] of E satisfying15

(i) \t, Xt=X� , which is a weakly compact and convex subset of E+ ;

(ii) \t, et is a T0 -interior point of X� ;

but Boc-W(E� )=<.

5. Pet-W(E){< and Pet-W(E� ){<.

In Aumann [4, 5] the space of agents is the continuum [0, 1] with its
Lebesgue measure, the proof of Proposition 5.1 betrays a stronger result
for Hilbert commodity spaces.

Corollary 5.3.1. Let (T, {, +) be atomless. If H is a non-separable
Hilbert space, then there is an ordering on H, which makes H an ordered
Hilbert space, and an economy E=[H, (T, {, +), X, o, e] satisfying A1 and
A2 but items 1, 3�5 of Theorem 5.3 hold.

6. CORE-WALRAS EQUIVALENCE

In this section we present some interesting positive results. We begin
with a list of the assumptions that are used in the statements of these
results.

B1.

1. (T, {, +) is an atomless measure space.

2. Pettis-�T et d+(t) is an interior point of E+ ;
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3. \t # T, the consumption set Xt=E+ ;

4. \t # T, ot is norm continuous, irreflexive, transitive, and strictly
monotone.

Let f be a function on T with values ft # Xt . For each z # E define the set

A f
z=[t # T : z+et ot ft].

We turn to the measurability assumption used in Hildenbrand [20].

B2. For any allocation t [ ft and any z # E, the set A f
z is measurable.

We list a theorem and a corollary. The proof is given in Section 9.

Theorem 6.1. Let E be an ordered Banach space with weight m. Assume
that E=[E, (T, {, +), X, o, e] satisfies B1. If [ f ] # Boc-C(E) and there
exits F�{ such that

_3 S�T, +*(S)>0, 0<w(S, F, +)�m; and (3)

\z # E, A f
z # F, (4)

then [ f ] # Boc-W(E). If E is a Pettis economy and [ f ] # Pet-C(E), then
[ f ] # Pet-W(E).

Equation (3) says that there is no non-negligible set of agents that can
be covered by �m null sets in F.

Every separable Banach space has weight +0 . Also, every atomless measure
space (T, {, +) satisfies Eq. (3) for m=+0 and F={. Thus, Theorem 6.1
implies Aumann's [4] result for the commodity space Rn and the Rustichini
and Yannelis [38, 40] results for separable ordered Banach spaces whose
positive cones have interior points.

Corollary 6.1.1. Let E be a separable ordered Banach space. If E=
[E, (T, {, +), X, o, e] satisfies B1 and B2, then Boc-C(E)=Boc-W(E).

7. LYAPUNOV'S CONVEXITY THEOREM

In this section we prove results on the relationship between Eqs. (2) and
(3), of Proposition 5.1 and Theorem 6.1, respectively, and Lyapunov's
convexity theorem in the weak topology.

Definition 7.1. Let E be a Banach space and let (T, {, +) be a measure
space. Let G: { � E be a countably additive vector measure satisfying
G(S & F )=0 for all F # { if and only if +(S)=0. Lyapunov's convexity
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theorem holds for the triplet ((T, {, +), E, G) whenever [G(F & S) : F # {] is
a weakly compact and convex set in E, for each S # {.

Let E, (T, {, +), and G be as in Definition 7.1. We know from Diestel and
Uhl [12, Theorem IX.1.4, p. 263] that Lyapunov's convexity theorem
holds for ((T, {, +), E, G) if and only if the following is satisfied:

If S # { and +(S)>0, then the operator f [ �S f (x) dG(x) on the subspace
of functions in L�(+) vanishing off S is not one to one.

Denote by A2B the symmetric difference (A"B) _ (B"A). Let (T, {, +) be
a measure space. Let N be the equivalence relation on { defined by SNS$
if +(S2S$)=0. For S # { let S(+)=[S$ # { : S$�S] and denote by S(+) | N
the corresponding quotient space and by [S] the equivalence class of S.

The next theorem says that Lyapunov's convexity theorem holds whenever
each coalition contains more distinguished sub-coalitions than com-
modities.

Theorem 7.1 (Rustichini and Yannelis [39]). Let E, (T, {, +), and G be
as in Definition 7.1. Assume that E is infinite dimensional. If (T, {, +) satisfies

_3 S # {, +(S)>0, card(S(+) | N)�dim(E), (5)

then Lyapunov's convexity theorem holds for the triplet ((T, {, +), E, G).

Proof. For any S # { let LS
�(+) be the subspace of functions in L�(+)

vanishing off S. Let [S], [S$] # S(+) | N and [S]{[S$]. The functions /S

and /S$ , correspond to two distinct elements of LS
�(+). This and Eq. (5) tell

us that if S # { with +(S)>0 then

card(LS
�(+))�card(S(+) | N)>dim(E). (6)

Suppose that Lyapunov's convexity theorem does not hold for the triplet
((T, {, +), E, G). There is some S # { with +(S)>0 and a one to one linear
function from LS

�(+) into E. So dim(E)�dim(LS
�(+)). However, dim(LS

�(+))
=card(LS

�(+)), since card(LS
�(+))>dim(E)�c. This contradicts Eq. (6). K

If E is an infinite dimensional separable Banach space, then dim(E)=c.
We obtain the following corollary.

Corollary 7.1.1. Let E, (T, {, +), and G be as in Definition 7.1. Assume
that E is separable and infinite dimensional. If (T, {, +) satisfies

_3 S # {, +(S)>0, card(S(+) | N)�c,

then Lyapunov's convexity theorem holds for the triplet ((T, {, +), E, G).
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The next result is an easy but interesting consequence of Proposition 2.3
and Theorem 7.1.

Corollary 7.1.2. Let E, (T, {, +), and G be as in Definition 7.1. Assume
that E is infinite dimensional. If F�{ and (T, {, +) satisfies

_3 S # {, +(S)>0, card(S(+) | N)<card(S); and
(7)

_3 S # {, +(S)>0, 0<w(S, F, +)�dim(E),

then Lyapunov's convexity theorem holds for ((T, {, +), E, G).

Proof. Fix some S # { with +(S)>0. From Proposition 2.3 and Eq. (7),
card(S)>dim(E). Thus,

card(S(+) | N)�card(S)>dim(E),

which implies Eq. (5) of Theorem 7.1. K

8. PROOFS OF PROPOSITION 5.1

Let A be a non-empty set. Consider the set of all real-valued functions
x defined on A such that card([a # A : x(a){0])�+0 and �a # A x(a)2

<�. These functions form a real vector space under pointwise addition and
scalar multiplication. If we define an inner product (x, y)=�a # A x(a) y(a)
this space becomes the Hilbert space l2(A). If two vectors x, y are orthogonal
then we write x=y. We write X= to denote the set of all orthogonal vectors
to X.

Proposition 8.1. If card(A)=m>+0 is a regular cardinal number, then
dim(l2(A))=m.

Proof. We know that l2(A) has weight m, see Engelking [15, 4.4.K,
p. 288]. Hence, there is a dense subset D of l2(A) such that card(D)=m.
Since l2(A) is metrizable, each x # l2(A) is the limit of some sequence in D.
So m�dim(l2(A))�card(l2(A))�m+0. Since m is a regular cardinal
number, m=m+0 ; hence dim(l2(A))=m. K

Now we highlight the role of strong measurability in the proof of our
main result.

Proposition 8.2. If t [ ft is a strongly +-measurable function with
values in l2(A), then there is M # {, +(M)=0, such that

card([a # A : _t # T"M, ft(a){0])�+0 .
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Proof. Since t [ ft is a strongly +-measurable function, it is essentially
separably valued. Therefore, there is M # {, +(M)=0, such that [ ft : t # T"M]
is a norm separable subset of l2(A). Let H be a countable dense subset of
this set.

From the definition of l2(A) we see that if h # H, then card([a # A :
h(a){0])�+0 . Therefore,

card([a # A : _h # H, h(a){0])�+0 , (8)

since the union of countably many sets of cardinality �+0 is a countable
set.

Let a$ # [a # A : _t # T"M, ft(a){0] be arbitrarily chosen. Consider the
point x # l2(A) such that x(a$)=1 and x(a)=0 for a{a$. The point ft$ is
contained in the open set [ y # l2(A) : (x, y){0]. Hence, there is h # H

that is also contained in this open set and h(a$){0. That is

[a # A : _t # T"M, ft(a){0]�[a # A : _h # H, h(a){0],

which in view of Eq. (8) implies

card([a # A : _t # T"M, ft(a){0])�+0 .

This proves the proposition. K

8.1. The Commodity Space

Let S* be the set from Eq. (2) of Proposition 5.l. That is,

+(S*)>0, 0<w(S*, {, +)�dim(E).

Since +(S*)>0 it must be the case that w(S*, {, +)>+0��only null sets
are covered by countably many null sets. Since we assume the continuum
hypothesis, it must be the case that w(S*, {, +)�c. Therefore, letting
m=dim(E) we see that m�c.

Let A be a set such that card(A)=m. We see from Proposition 8.1 that
the space l2(A) has dimension m=dim(E). Thus, E is identical (up to
algebraic isomorphism) to l2(A). Without loss of generality, identify the
space E with l2(A).

We wish to construct an ordering on E whose order topology is the same
as the canonical norm topology of l2(A).

By Proposition 2.3 the set S* is the union of a disjointed collection
[Sk*: k # K] of non-empty +-null sets with 0<card(K)<m. The index set
K can be taken as though it were a proper subset of A��since A is not
finite. Fix % # A"K.
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Let g% # l2(A) satisfy g% (%)=1 and g% (a)=0 for a # A"[%]. Let B denote
the closed unit ball in l2(A). Let E+ be the convex cone with vertex 0
generated by 3g%+B. That is

E+= .
:�0

:(3g%+B).

It is easy to verify that E+ is a norm closed convex proper cone. Also,
g% is a norm interior point of E+ and [&g% , g%] is norm bounded. Thus,
E+ induces a vector ordering on l2(A) making it an ordered Banach space.
By Proposition 2.2 the order topology T0 of this ordering is the same as
norm topology of l2(A). Endow E with the canonical norm of l2(A).

8.2. The Economy

For each t # T let the consumption set be E+ ; i.e., Xt=E+ . For each
t # T let the individual endowment be g% ; i.e., et= g% . A1.1.-2. are satisfied.

Consider the set [gk # l2(A) : k # K] where

gk(a)={1 if a=k;
0 otherwise.

For t # Sk* let the utility function Ut : E+ � R be defined as Ut( f )=
( g%+ gk , f ) = f (%)+ f (k). Intuitively, each agent in Sk* extremely desires
commodity % and the k-th commodity. For t # T"S* let Ut( f )=
( g% , f ) = f (%).

Evidently, Ut is norm-continuous and convex for all t # T. We show that
Ut is strictly monotone with respect to the ordering induced by E+ . For
some k # K, take a fixed t # Sk* and let f =(3g%+h) with &h&�1. We get
Ut( f )=3+h(%)+h(k)>0, since h(%), h(k) # [&1, 1]. Also, for t # T"S*,
Ut( f )=3+h(%)>0. Since the functionals Ut are linear then Ut(E+"[0])
>0 and Ut are strictly monotone with respect to the ordering induced
by E+ . A1.3. is satisfied.

Finally, we show that preferences satisfy Aumann's measurability assump-
tion: S=[t # T : Ut(xt)>Ut( yt)] is measurable for any pair of allocations
t [ xt , t [ yt . By Proposition 8.2 there is a +-null set M such that the set

K$=[k # K : _t # T"M, xt(k){ yt(k)]

is countable. Consider the measurable sets F=[t: xt(%)> yt(%)] and
G=[t: xt(%)� yt(%)]. Evidently, F"S�(�k # K$ Sk* _ M) and S & G�
(�k # K$ Sk* _ M). That is, S=(F"N) _ O for some +-null sets N and O,
which means that S is measurable. A2 is satisfied.
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8.3. Items (1)�(3)

We show that the feasible allocation t [ g% is in the core. Suppose other-
wise. Then there is some allocation t [ ft , which is strongly measurable,
and a measurable set S such that +(S)>0,

|
S

ft d+(t)=|
S

et d+(t)=+(S) g% , (9)

and Ut( ft)>Ut(g%)=1 for all t # S. Evidently, +(S & S*)>0 since the
converse implies

�g% , |
S

ft d+(t)�=|
S

( g% , ft) d+(t)

=|
S

Ut( ft) d+(t)>+(S)=( g% , +(S) g%) ,

which contradicts Eq. (9). Clearly, if t # S"S* then ft(%)>1. Thus the set
S$=[t # (S & S*) : ft(%)�1] is measurable and +(S$)>0. Otherwise,

�g% , |
S

ft d+(t)�=|
S

( g% , ft) d+(t)=|
S

ft(%) d+(t)>+(S)=( g% , +(S) g%) ,

which contradicts Eq. (9).
Since Ut( ft)>1 and ft(%)�1 for all t # S$�S* then ft(k)>0 if

t # Sk* & S$. Recall that the collection [Sk*: k # K] is disjointed, +(S$)>0,
+(Sk*)=0 for all k # K, and S$��k # K Sk*. Therefore for any +-null set M

card([a # A : _t # T"M, ft(a){0])

�card([k # K : Sk* & (S$"M){<])>+0 ,

which contradicts Proposition 8.2.
Now that we have shown that the allocation t [ g% is in Boc-C(E), we

show that it is not in Boc-W(E) and that it can be Pettis improved upon
by the coalition S*. Consider the function t [ ft ,

ft={:g%+(1&:)(gk+1�2g%)
0

if t # Sk*;
if t � S*.

This function has values in E+ for all 1>:�1&2�(3 - 5). Fix such an :
and note

\t # S*, Ut( ft)= ft(%)+ ft(k)=3�2&:�2>1=Ut(g%). (10)
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Take an arbitrary p # l2(A). Then ( p, gk) =0 for all except countably
many k # K. The first consequence of this is that if ( p, g%) >0 then

( p, ft)=( p, (1�2+:�2) g%))<( p, g%)=( p, et), +-a.e. t # S*.

(11)

From Eqs. (10) and (11) and monotonicity, we see that the allocation
t [ g% is not in Boc-W(E). The second consequence is that t [ ft is weakly
+-measurable and

Pettis-|
S*

ft d+(t)=+(S*)(1�2+:�2) g%<+(S*) g%=|
S*

et d+(t). (12)

From Eqs. (10) and (12) and monotonicity, the coalition S* can Pettis
improve upon t [ g% .

8.4. Item (4)

Truncate the consumption sets E+ to X� =co([3g%+B] _ [0]). This set
is closed and bounded. Thus, it is weakly compact. We also see that
et # int X� for each t # T. Thus, (i)�(ii) of item (4) are satisfied.

Suppose that (t [ ft , p) is an equilibrium for this truncated economy.
Let N be the +-null such that ft is a utility maximizer for each t # T"N.

For t # T"(S* _ N) we have ft(%)�1, for otherwise Ut(et)�Ut( ft).
Let S$=[t # S* : ft(%)�1]. Then as before +(S$)>0, since otherwise

�g% , |
T

ft d+(t)�=|
T

( g% , ft) d+(t)

=|
T

ft(%) d+(t)>+(T )=� g% , |
T

et d+(t)� ,

which contradicts feasibility.
The allocation t [ ft is strongly +-measurable. Thus, by Proposition 8.2

there is a +-null set M such that

card([k # K : _t # Sk*"M, ft(k){0])

�card([a # A : _t # T"M, ft(a){0])�+0 . (13)

Also, ( p, gk) =0 for all but countably many k # K, and +(S$)>0. Thus,
we can summarize

card([k # K : ( p, gk) {0])�+0 ; (14)

card([k # K : (S$"(M _ N)) & Sk*{<])>+0 . (15)
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Thus, there is k # K that is an element of the set in Eq. (15) but that is not
an element of the sets in Eqs. (13) and (14). Pick t # (S$"(M _ N)) & Sk*. Then,
ft(%)�1, ft maximizes utility on agent t's budget set, ft(k)=0, and ( p, gk)
=0. It is easy to see that ft(%)=1, since the contrary implies Ut(et)>Ut( ft).

Consider the point z=1�2ft+1�2et , which is in int X� . Then ( p, z) �
( p, et) and for some 1>:>0, :z+(1&:) 2gk is also in int X� . Since
( p, gk)=0 and p>0 we get

( p, :z+(1&:) 2gk) =( p, :z) �( p, z)�( p, et). (16)

Also, Ut (z)=Ut( ft), since ft(k)=0 and ft(%)=1. Thus,

Ut(:z+(1&:) 2gk)=Ut(:ft+(1&:) 2gk)=2+:( ft(%)&2)>1=Ut( ft).

(17)

Equations (16) and (17) contradict the fact that ft maximizes utility on the
budget set. So Boc-W(E� )=<��it is also easy to see that Boc-W(E)=<.

8.5. Item (5)

Consider the allocation t [ ft , which is defined as

ft={et

et+1�(2 - 2) gk

if t # T"S*;
if t # Sk*.

It is easy to check that ft # X� for all t. Since for each p # E$ we have
( p, gk)=0 for all but countably many k then t [ ft is a Pettis feasible
allocation.

It is also easy to check that Ut(x)>Ut( ft) for some x # E+ implies
x(%)> ft(%). This is obviously the case for t # T"S*. For t # Sk* (for some
k) note that et+:gk � E+ if :>1�(2 - 2). Thus, (t [ ft , g%) is a Pettis
equilibrium for E and E� .

9. PROOF OF THEOREM 6.1

We adapt the classical argument used by Aumann [4], see also Hildenbrand
[20]. The proof for the Pettis economy follows with obvious changes that
are identified in the footnotes.

Suppose that t [ ft is a feasible allocation in Boc-C(E).16

For each z # E let A f
z=[t # T : z+et ot ft], which is in F and thus

measurable.
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Let

C=co[z # E : +(A f
z )>0].

We claim that C{< and prove the claim later.
We show that C & &E+=<. Assume the contrary. Then we can write

some x # &E+ in the form �r
i=1 : i zi , where :i>0, �r

i=1 :i=1 and
+(A f

zi
)>0 for each i. Since the measure space (T, {, +) is atomless, there is

a small enough real *>0 and disjoint measurable sets Si �A f
zi

such that
+(Si)=*:i , for every i. But �r

i=1 *:i zi=*x # &E+ and from the mono-
tonicity and transitivity of preferences the coalition S=�r

i=1 Si can
improve upon t [ ft by using the redistribution gt=zi&(1�(: ir)) x+et for
t # Si . This is a contradiction, which implies that C & &E+=<.

Since &E+ has an interior point, there is a non-zero positive continuous
linear functional ? such that (?, z)�0 for every z # C.

Suppose that for some S�T that is not +-null set there is a function
t [ gt such that gt+et # int E+ , gt+et ot ft , and (?, gt)<0, for all t # S.
By Proposition 2.1 the set [gt : t # S] has a dense subset H with cardinal
number �m. For each h # H, +(A f

h )=0 since (?, h)<0. From the con-
tinuity of preferences and since gt+et # int E+ , for each t # S there is some
h # H such that h+et ot ft . Thus, S��h # H A f

h . Since +(A f
h )=0 and

A f
h # F for all h, then by Eq. (3) +*(S)=0, which contradicts the supposi-

tion that S is not a +-null set.
Let 1t=[z # E : z+et ot ft]. We see from the previous argument that

(?, int 1t) �0, +-a.e. We show that 1t �int 1t . Let z+et ot ft and let
v+et # int E+ . The open line segment (z, v) is in the interior of E+&et .
From the continuity of preferences there is x # (z, v) such that the open line
segment (z, x) is in int 1t . Thus, 1t �int 1t and (?, 1t)�0, +-a.e.

We outline standard arguments that show that t [ ft is Walrasian. Since
preferences are strictly monotonic then ?>0 and (?, ft)>(?, et) , +-a.e.
Since t [ ft is feasible then (?, ft)=(?, et) , +-a.e.17

Now � et d+(t) is an interior point of E+ . So for some t # T, (?, ft) =
(?, et)>0 and (?, 1t)�0. This together with the continuity and strict
monotonicity of preferences implies that (?, E+ "[0])>0. Hence, for
+-almost every t # T, (?, 1t)>0, which implies that t [ ft is in Boc-W(E).18

Finally, we establish the claim that C{<. Take the integrable function
t [ gt= ft+v&et , where v # int E+ .19 Note that gt+et # int E+ and
gt+etot ft . Let H be a dense subset of [gt : t # T] with cardinal number
�m. Once again �h # H (A f

h )=T. Thus, for some h # H, +(A f
h )>0 and

h # C.
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10. REMARKS

Remark 10.1. One can see from the proof of Proposition 5.1 that two
important results on the Bochner integral of set valued functions fail in
non-separable spaces: Aumann's measurable selection theorem and its con-
sequence due to Hiai and Umegaki [18, Theorem 2.2]. A related counter
example of the Hiai and Umegaki theorem can be found in Khan and
Rustichini [21, Proposition 5.5, p. 184]. These results are crucial to the
proof of equivalence in Rustichini and Yannelis [38]. Similarly, it can be
seen that the demand correspondence for the truncated economy E� has no
strongly +-measurable selections at some prices. For example, at price go
the demand correspondence has no strongly measurable selections but has
a weakly measurable selection, which is the Pettis equilibrium allocation.

Remark 10.2. The Bochner integral has been used to generalize Aumann's
core equivalence theorem (e.g., Cheng [10], Glazyrina [17], Rustichini and
Yannelis [38, 40]) and to prove the existence of equilibrium in various infinite
dimensional models (e.g., Yannelis [44], Balder and Yannelis [6], Rustichini
and Yannelis [39], Khan and Yannelis [24], Noguchi [33], Kim and
Yannelis [25]). If f is Bochner integrable then �S f (t) d+(t)=0 for all S # {
if and only if f vanishes +-a.e. So net trades associated with feasible alloca-
tions cannot be positive and non-zero for every consumer.

Proposition 10.1. Let (T, {, +) be a positive non-trivial finite measure
space and let E be an ordered Banach space. If �T f (t) d+(t)=0, then
+([t # T : f (t)>0])<+(T ).

Proof. Suppose that +([t # T : f (t)>0])<+(T). Since E is locally
convex and E+ is closed and convex, then �S f (t) d+(t)�0 for all S # {.
Since �T f (t) d+(t)=0, E+=E++E+ , and E+ & (&E+)=[0] then
�S f (t) d+(t)=0 for all S # {. Thus, f vanishes +-a.e. and +([t # T : f (t)>0])=0.

K

This is not the case for the more general notions of integration. Hence,
there could be an interpretive problem with using the Pettis or Gelfand or
Dunford integrals. Indeed, there is a Pettis integrable function f which is
everywhere non-zero but for which Pettis-�S f (s) d+(t)=0 for every S # {
(cf. Khan and Sun [23]). Consider an orthonormal basis [et : t # [0, 1]]
for the non-separable Hilbert space l2([0, 1]). Define f : [0, 1] � l2([0, 1])
by f (t)=et . For any p # l2([0, 1]) we have ( p, f (t))=0 for all but
countably many t. Thus, for any measurable set S�[0, 1] we have

\P # l2([0, 1]), |
S

( p, f (t)) d+(t)=0 and Pettis-|
S

f (t) d+(t)=0.
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A similar interpretive problem arises with the allocation identified as the
Pettis equilibrium in Proposition 5.1, where each individual in a non-negligible
coalition consumes a positive amount of some commodity not initially
available in the economy.20

Note, however, that the problem elucidated above disappears when the
commodity space admits strictly positive prices.

Proposition 10.2. Let (T, {, +) be a measure space. Let E be an ordered
Banach space such that there exists p # E$, p>>0. If Pettis-�T f (t) d+(t)=0
then +([t # T : f (t)>0])<+(T ).

Remark 10.3. Several corollaries of Theorem 6.1 can be proved.
We define the notion of the equal treatment core. For each t$ # T let

D(t$)=[t # T : ot= ot$ , Xt=Xt$ , et=et$],

which is the class of all agents identical to agent t$. Let Boc-C� (E)�
Boc-C(E) have the property [ f ] # Boc-C� (E) if f (t)= f (t$) for any t # T,
t$ # D(t), +-a.e. Define in the obvious analogous way the set Pet-C� (E)�
Pet-C(E).

Suppose that +*(D(t))>0, +-a.e., and that [ f ] # Boc-C� (E) or [ f ] #
Pet-C� (E). Then there is a +-null set M such that +(A f

h )=0 implies A f
z=<

or A f
z �M. Letting

F=[S # { : +(S){0 or S�M],

we see that Eq. (3) is satisfied:

_3 S�T, +*(S)>0, w(S, F, +)>0.

Corollary 10.2.1. Let E be an ordered Banach space. If E=[E, (T, {, +),
X, o, e] is an economy that satisfies B1, B2, and +*(D(t))>0 +-a.e., then
Boc-C� (E)�Boc-W(E).

If E is a Pettis economy, B1 is satisfied, and for any Pettis allocation
t [ ft and any z # E, the set A f

z is measurable, then Pet-C� (E)�Pet-W(E).

By an Ulam number, or a cardinal of measure zero, we mean a cardinal
m with the following property (see Federer [16], Oxtoby [34]):

If + is a finite measure defined on 2X, card(X)�m, and +([x])=0 for all
x # X, then +(X )=0.
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A measure + on the class of Borel sets of a topological space X is called
a Borel measure. We shall use the following result, see Oxtoby [34, Theorems
16.3-4, p. 63].

Proposition 10.3. Let + be a Borel measure on a metric space X.

1. If S is the union of a family of m open sets of measure zero and if
m is an Ulam number, then +(s)=0.

2. If X has weight m which is an Ulam number, then the union of any
family of open sets of measure zero has measure zero.

Suppose that T is a topological space with the property that the union
of n�m open +-null sets is a +-null set. Let M be the class of all open
+-null subsets of T. Letting

F=[S # { : +(S){0 or _M # M, S�M],

we see that Eq. (3) is satisfied. The following two corollaries are consequences
of 1 and 2 of Proposition 10.3, respectively.

Corollary 10.3.1. Let E be an ordered Banach space with weight m,
which is an Ulam number, and let T be a metric space. Let + be a Borel
measure on T and let E=[E, (T, {, +), X, o, e] be an economy that satisfies
B1 and B2. If [ f ] # Boc-C(E) satisfies

\z # E; +(A f
z )=0 O _M # M, A f

z �M, (18)

then [ f ] # Boc-W(E).
If E is a Pettis economy, [ f ] # Pet-C(E), and for any Pettis allocation

t [ ft and any z # E, the set A f
z is measurable, then [ f ] # Pet-W(E).

Corollary 10.3.2. Let E be an ordered Banach space and let T be a
metric space with weight m, which is an Ulam number. Let + be a Borel
measure on T and let E=[E, (T, {, +), X, o, e] be an economy that satisfies
B1 and B2. If [ f ] # Boc-C(E) satisfy

\z # E; if +(A f
z)=0 O _M # M, A f

z �M, (19)

then [ f ] # Boc-W(E).
If E is a Pettis economy, [ f ] # Pet-C(E), and for any Pettis allocation

t [ ft and any z # E, the set A f
z is measurable, then [ f ] # Pet-W(E).

Several variants of the ideas in Corollaries 10.3.1 and 10.3.2 can be
proved. All that is needed is to identify a family of +-null sets with the
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property that the union of every sub-family of +-null sets with cardinality
�m is a +-null set. For example, the conditions in Corollaries 10.3.1 and
10.3.2 requiring that E or T have weight that is an Ulam number can be
weakened if we restrict our attention to Radon or Loeb measures, see
Ross [37].

Remark 10.4. We can see from the proof of Proposition 5.1 that there
is no free-disposal equilibrium for the truncated economy E� , with or
without positive prices. Furthermore, the positive results in Section 6 can
be proved in the useful setting of a Banach lattice without order unit but
with uniformly proper preferences, cf. Rustichini and Yannelis [38].

Remark 10.5. In addition to the notion of a Pettis economy we can
define a Gelfand-economy and a Dunford-economy by appropriately changing
the method of integration. For the Dunford-economy we say a weakly
measurable allocation f is feasible if f &e is Pettis integrable and

Pettis-|
T

f (t)&e(t) d+(t)=0.

Note that f and e need not be Pettis integrable and hence their Dunford-
integral, if it exists, need not be in E.

Remark 10.6. We do not investigate whether core allocations can be
approximately decentralized by prices. That is, whether core allocations of
economies with sufficiently large (but finite) numbers of agents are approxi-
mately competitive. It appears that the finite dimensional results on
approximate decentralizability of core allocations fail even in separable
commodity spaces (see for instance [2]). This indicates an entirely different
syndrome to the failure of Core-Walras equivalence in non-separable
spaces highlighted in the present paper. As noted in the introduction,
however, our counter example is constructed using an arbitrary atomless
measure space of agents, and thus includes Loeb measure spaces. It there-
fore may be possible to use ``lifting'' arguments to infer from our negative
theorems a negative result for large but finite economies.

11. OPEN QUESTIONS

Remark 11.1. The counter examples in Proposition 5.1 are constructed
using a non-separable ordered Hilbert commodity space with order unit.
Can we view the construction in Proposition 5.1 as a concrete version of
the proof of a more general result. One that characterizes a class of Banach
spaces as those spaces in which Bochner existence and Bochner Core-Walras
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equivalence hold.21 This important question remains open. Curiously,
Proposition 5.1, and the examples in Khan and Rustichini [21], appear to
crucially require the existence of a Pettis integrable function f which is
everywhere non-zero but for which Pettis-�S f (s) d+(t)=0 for every S # {, see
also Remark 10.

Remark 11.2. Since the commodity space in the proof of Proposition 5.1
is reflexive, the Pettis integral in the statement of Proposition 5.1 can be
changed to the Gelfand or Dunford integral. An important question left
open by Proposition 5.1 and Theorem 6.1 is whether we can obtain results
in non-separable spaces for the Pettis or Gelfand or Dunford integrals that
are as general as the known results for the Bochner economies in separable
spaces.

REFERENCES

1. R. M. Anderson, Star-finite representations of measure spaces, Trans. Amer. Math. Soc.
271 (1982), 667�687.

2. R. M. Anderson and W. R. Zame, Edgeworth's conjecture with infinitely many com-
modities: commodity differentiation, Econ. Theory 11 (1998), 331�377.

3. K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy,
Econometrica 22 (1954), 265�290.

4. R. J. Aumann, Markets with a continuum of traders, Econometrica 32 (1964), 39�50.
5. R. J. Aumann, Existence of competitive equilibria in markets with a continuum of traders,

Econometrica 34 (1966), 1�17.
6. E. Balder and N. C. Yannelis, Equilibria with a random and Bayesian games with a

continuum of players, in ``Equilibrium Theory in Infinite Dimensional Spaces'' (M. A.
Khan and N. C. Yannelis, Eds.), Studies in Economic Theory, Vol. 1, pp. 333�349,
Springer-Verlag, New York, 1991.

7. R. G. Bartle, ``The Elements of Integration and Lebesgue Measure,'' Wiley Classics
Library, Wiley, New York, 1995.

8. T. F. Bewley, The equality of the core and the set of equilibria in economies with infinitely
many commodities and a continuum of agents, Int. Econ. Review 14 (1973), 383�393.

9. T. F. Bewley, A very weak theorem on the existence of equilibria in atomless economies
with infinitely many commodities, in ``Equilibrium Theory in Infinite Dimensional Spaces''
(M. A. Khan and N. C. Yannelis, Eds.), Studies in Economic Theory, Vol. 1, pp. 224�232,
Springer-Verlag, New York, 1991.

10. H. C. Cheng, The principle of equivalence, in ``Equilibrium Theory in Infinite Dimensional
Spaces'' (M. A. Khan and N. C. Yannelis, Eds.), Studies in Economic Theory, Vol. 1,
pp. 197�223, Springer-Verlag, New York, 1991.

11. G. Debreu, ``Theory of Value: An Axiomatic Analysis of Economic Equilibrium,'' Wiley,
New York, 1959.

12. J. Diestel and J. J. Uhl, ``Vector Measures,'' Mathematical Surveys, Vol. 15, Amer. Math.
Soc., Providence, RI, 1977.

219MARKETS WITH MANY COMMODITIES

21 This question was recently taken up by Podczeck [36], who provides some results in this
direction.



13. S. J. Dilworth and M. Girardi, Bochner vs. Pettis norm: examples and results, in ``Banach
Spaces,'' Contemporary Mathematics, Vol. 144, pp. 69�80, Amer. Math. Soc., Providence,
RI, 1993.

14. N. Dunford and J. T. Schwartz, ``Linear Operators, Part I: General Theory,'' Pure and
Applied Mathematics, Interscience, New York, 1958.

15. R. Engelking, ``General Topology,'' Sigma Series in Pure Mathematics, Vol. 6, Helderman,
Berlin, 1989.

16. H. Federer, ``Geometric Measure Theory,'' Classics in Mathematics, Springer-Verlag,
Berlin�Heidelberg�New York, 1996.

17. N. E. Gretsky and J. M. Ostroy, Thick and thin market nonatomic exchange economies,
in ``Advances in Equilibrium Theory'' (C. D. Aliprantis, Ed.), pp. 107�129, Springer-
Verlag, 1985.

18. F. Hiai and H. Umegaki, Integrals conditional expectations and martingales of multi-
valued functions, J. Multivar. Anal. 7 (1977), 149�182.

19. W. Hildenbrand, ``Core and Equilibria of a Large Economy,'' Princeton University Press,
Princeton, 1974. [With an appendix to Chapter 2 by K. Hildenbrand, Princeton Studies
in Mathematical Economics, No. 5.]

20. W. Hildenbrand, Core of an economy, in ``Handbook of Mathematical Economics''
(K. Arrow and M. Intriligator, Eds.), Vol. II, Chap. 18, pp. 831�877, North-Holland,
Amsterdam�New York�Oxford, 1982.

21. M. A. Khan and A. Rustichini, Some unpleasant objects in a non-separable hilbert space,
in ``Positive Operators, Riesz Spaces, and Economics: Proceedings'' (C. D. Aliprantis,
K. C. Border, and Luxemburg, Eds.), Studies in Economic Theory, Vol. 2, pp. 179�187,
Springer-Verlag, New York, 1991.

22. M. A. Khan and Y. Sun, The capital-asset-pricing model and arbitrage priceing theory:
A unification, Proc. Natl. Acad. Sci. USA (Econ. Sci.) 94 (1997), 4229�4232.

23. M. A. Khan and Y. Sun, Weak measurability and characterization of risk, Econ. Theory
13 (1999), 509�539.

24. M. A. Khan and N. C. Yannelis, Equilibrium in markets with a continuum of agents and
commodities, in ``Equilibrium Theory in Infinite Dimensional Spaces'' (M. A. Khan and
N. C. Yannelis, Eds.), Studies in Economic Theory, Vol. 1, pp. 243�248, Springer-Verlag,
New York, 1991.

25. T. Kim and N. C. Yannelis, Existence of equilibrium in bayesian games with infinitely
many player, J. Econ. Theory 77 (1977), 330�353.

26. L. Lewis, Ph.D. thesis, Yale University, 1977.
27. P. A. Loeb, A combinatorial analog of Lyapunov's theorem for infinitesimally generated

atomic vector measures, Proc. Amer. Math. Soc. 39 (1973), 585�586.
28. P. A. Loeb, Conversion from nonstandard to standard measure spaces and applications

in probability theory, Trans. Amer. Math. Soc. 211 (1975), 113�122.
29. A. Mas-Colell, A model of equilibrium with differentiated commodities, J. Math. Econ. 2

(1975), 263�296.
30. L. W. McKenzie, On equilibrium in Graham's model of world trade and other competitive

systems, Econometrica 22 (1954), 147�161.
31. J.-F. Mertens, An equivalence theorem for the core of an economy with the commodity

space l�&{(l� , l1), in ``Equilibrium Theory in Infinite Dimensional Spaces'' (M. A. Khan
and N. C. Yannelis, Eds.), Studies in Economic Theory, Vol. 1, pp. 189�196, Springer-
Verlag, New York, 1991.

32. M. Noguchi, Economies with a continuum of agents with the commodity price pairing
(l� , l1), J. Math. Econ. 28 (1997), 265�288.

33. M. Noguchi, Economies with a continuum of consumers, a continuum of suppliers, and
an infinite dimensional commodity space, J. Math. Econ. 27 (1997), 1�22.

220 TOURKY AND YANNELIS



34. J. C. Oxtoby, ``Measure and Category: A Survey of the Analogies Between Topological
and Measure Spaces,'' 2nd ed., Springer-Verlag, Berlin�Heidelberg�New York, 1980.

35. K. Podczeck, Markets with infinitely many commodities and a continuum of agents with
non-convex preferences, Econ. Theory 9 (1997), 385.

36. K. Podczeck, ``A Note on Equilibrium Analysis in Non-separable Spaces,'' Technical
report, Institut fu� r Wirtschaftswissenschaften, Universita� t Wien, 2000.

37. D. A. Ross, Unions of Loeb nullsets, Proc. Amer. Math. Soc. 124 (1996), 1883�1888.
38. A. Rustichini and N. C. Yannelis, Edgeworth's conjecture in economies with a continuum

of agents and commodities, J. Math. Econ. 20 (1991), 307�326.
39. A. Rustichini and N. C. Yannelis, What is perfect competition? in ``Equilibrium Theory

in Infinite Dimensional Spaces'' (M. A. Khan and N. C. Yannelis, Eds.), Studies in
Economic Theory, Vol. 1, pp. 249�265, Springer-Verlag, New York, 1991.

40. A. Rustichini and N. C. Yannelis, Commodity pair desirability and the core equivalence
theorem, in ``General Equilibrium and Trade II: The Legacy of Lionel Mackenzie,''
Economic Theory Econometrics and Mathematical Economics, Chap. 6, pp. 150�167,
Academic Press, New York, 1993.

41. H. H. Schaefer, ``Topological Vector Spaces,'' Springer-Verlag, New York, 1971.
42. G. Takeuti and W. M. Zaring, ``Introduction to Axiomatic Set Theory,'' 2nd ed., Springer-

Verlag, New York, 1982.
43. M. Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984).
44. N. C. Yannelis, Equilibria in noncooperative models of competition, J. Econ. Theory 41

(1987), 96�111.
45. N. C. Yannelis, Integration of Banach valued correspondences, in ``Equilibrium Theory

in Infinite Dimensional Spaces'' (M. A. Khan and N. C. Yannelis, Eds.), Studies in
Economic Theory, Vol. 1, pp. 1�35, Springer-Verlag, New York, 1991.

221MARKETS WITH MANY COMMODITIES


	1. INTRODUCTION 
	2. PRELIMINARIES 
	3. THE BOCHNER AND THE PETTIS ECONOMIES 
	4. NECESSITY OF AUMANN MEASURABILITY 
	5. FAILURE IN LARGE COMMODITY SPACES 
	6. CORE-WALRAS EQUIVALENCE 
	7. LYAPUNOV'S CONVEXITY THEOREM 
	8. PROOFS OF PROPOSITION 5.1 
	9. PROOF OF THEOREM 6.1 
	10. REMARKS 
	11. OPEN QUESTIONS 
	REFERENCES 

