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ARTICLES

LEARNING IN BAYESIAN GAMES BY
BOUNDED RATIONAL PLAYERS II:
NONMYOPIA

KONSTANTINOS SERFES AND NICHOLAS C. YANNELIS
University of Illinois at Urbana–Champaign

We generalize results of earlier work on learning in Bayesian games by allowing
players to make decisions in a nonmyopic fashion. In particular, we address the
issue ofnonmyopicBayesian learning with an arbitrary number of bounded rational
players, i.e., players who choose approximate best-response strategies for the entire
horizon (rather than the current period). We show that, by repetition, nonmyopic
bounded rational players can reach a limit full-information nonmyopic Bayesian Nash
equilibrium (NBNE) strategy. The converse is also proved: Given a limit full-information
NBNE strategy, one can find a sequence of nonmyopic bounded rational plays that
converges to that strategy.

Keywords: Bayesian Game, Nash Equilibrium, Nonmyopia, Bayesian Learning,
Bounded Rationality

1. INTRODUCTION

The issue ofmyopicBayesian learning by a finite number of bounded rational
players has been addressed by Koutsougeras and Yannelis (1994). Recently, Kim
and Yannelis (1997b) extended that work by allowing the number of bounded
rational players to be arbitrary, i.e., any finite or infinite set or a continuum. Here,
we drop the myopia assumption and allow the players to benonmyopici.e., to
make decisions by taking into account the future.

In particular, the description of the model is as follows: Let(Ä, F, µ) be a
probability measure space interpreted as the set of states of the world. LetT
denote thetime horizonandA theset of players. A repeated Bayesian game(or a
repeated game with differential information) is a sequence of games{Gt : t ∈ T}
such that for eacht , Gt = {(Ft

α, Xt
α, uα,qα) :α ∈ A}, where

1. Ft
α denotes theprivate informationof agentα in periodt ,

2. Xt
α(ω) is theset of actionsavailable to agentα in periodt when the state isω,

3. uα(ω, ·) : 5α∈AXt
α(ω)→ R is theutility function of agentα,

4. qα is theprior of agentα [qα is a density function, or Radon-Nikodym derivative,
such that,

∫
ω∈Ä qα(ω) dµ(ω) = 1].
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The strategyxα ={xt
α : t ∈ T} of playerα is a sequence{xt

α : t ∈ T} where each
component isFt

α measurable andxt
α(ω)∈ Xt

α(ω), µ-a.e. and for allt ∈ T . Given
Et
α(ω), for each playerα and for each strategy profilext = {xt

α : α ∈ A} in period
t , define theconditional expected utilityvα(ω, xt ) of playerα as

vα(ω, xt ) =
∫
ω′∈Et

α(ω)

uα(ω, xt (ω′))qα
(
ω′
∣∣ Et

α(ω)
)

dµ(ω′),

whereqα(ω′ | Et
α(ω)) denotes the conditional probability ofω′, givenEt

α(ω).
We define playerα’s total discounted expected utility Uα(ω, x) for the strategy

profile x = {xt : t ∈ T} as

Uα(ω, x) =
∑
t∈T

δtvα(ω, xt ),

whereδ ∈ [0, 1) is thediscount factor.
An ε-nonmyopic Bayesian Nash equilibrium[NBNEε(G∗)] is a strategy profile

x = {xt : t ∈ T} such that, for allα ∈ A and forµ-a.e.,

Uα(ω, x) ≥ Uα(ω, x−α, yα)− ε
for all strategiesyα.

The NBNEε captures the idea of a bounded rational player in the sense that each
player chooses approximate orε-best-response strategies by taking into account
the future decisions. We call players who choose NBNEε equilibrium strategies
bounded rational, or we say that the play is bounded rational.

Learning in this model takes place as follows: The private information of player
α in periodt + 1, denoted byFt+1

α , is given by

Ft+1
α = Ft

α ∨ σ(xt ),

wherext is the projection of a NBNE(G∗) on thet th coordinate andFt
α ∨ σ(xt ) de-

notes the join, i.e., the smallestσ -algebra containingFt
α andσ(xt ). Consequently,

for each playerα and periodt , we have

Ft
α ⊆ Ft+1

α ⊆ Ft+2
α ⊆ · · · . (1)

Expression (1) represents a learning process for playerα.
Let

F̄α = ∨t∈T Ft
α, (2)

where F̄α is the pooled information of playerα over the entire horizonT . A
Bayesian game

Ḡ = {(F̄α, Xα, uα,qα) : α ∈ A},
whereXα, uα,qα are defined as above and̄Fα is given by (2), is called alimit
full-information Bayesian game.
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Notice that the above setting is more general than the one of Kim and Yannelis
(1997b). In particular, by letting the discount be equal to zero, we are reduced to
the Kim-Yannelis framework. The questions that we address (and for which we
provide positive answers) are the following:

1. Can nonmyopic bounded rational players by repetition reach a limit full-information
NBNE outcome?

2. Conversely, pick a NBNE strategy for a limit full-information game. Can we construct
a sequence of bounded rational plays that converge to that strategy?

In a different setting and for a less general Bayesian game framework than ours,
question 1 has been addressed by Kalai and Lehrer (1993) and Nyarko (1996).
Question 2 is addressed for the first time in a nonmyopic setting.

The rest of the paper is organized as follows: Section 2 contains notation and
definitions. Section 3 describes the Bayesian game with differential information
with finitely many players. Section 4 proves the existence of a NBNE(G∗). In
Section 5, we describe how learning takes place. In Section 6, we prove that
nonmyopic bounded rational players will reach a limit full-information NBNE
outcome and, conversely, given a limit full-information NBNE outcome, we can
construct a sequence of bounded rational nonmyopic play that converges to the
limit NBNE outcome. Section 7 addresses the same questions as those in Section 5
but in a Bayesian game with a continuum of nonmyopic players.

2. NOTATION AND DEFINITIONS

If X and Y are sets, thegraph of the set-valued function (or correspondence),
φ : X→ 2Y, is denoted by

Gφ = {(x, y) ∈ X × Y : y ∈ φ(x)}.

Let (Ä, F, µ) be a complete, finite measure space, and letX be a separable Banach
space. The set-valued functionφ : Ä → 2X is said to have ameasurable graph
if Gφ ⊗ β(X), whereβ(X) denotes the Borelσ -algebra onX and⊗ denotes
the productσ -algebra. The set-valued functionφ : Ä → 2X is said to belower
measurableor justmeasurableif for every open subsetV of X, the set

{ω ∈ Ä : φ(ω) ∩ V 6= ∅}

is an element ofF .
Let (Ä, F, µ) be a finite measure space and letX be a Banach space. Following

Diestel and Uhl (1977), the functionf : Ä → X is calledsimpleif there exist
x1, x2, . . . , xn in X andα1, α2, . . . , αn in F such that

∑n
i=1 xiχαi whereχαi (ω) = 1

if ω ∈ αi and χαi (ω) = 0 if ω /∈ αi . A function f :Ä → X is said to be
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µ-measurableif there exists a sequence of simple functionsfn : Ä → X such
that limn→∞ ‖ fn(ω)− f (ω)‖ = 0 for almost allω ∈ Ä. A µ-measurable function
f : Ä→ X is said to beBochner integrableif there exists a sequence of simple
functions{ fn : n = 1, 2, . . .} such that

lim
n→∞

∫
Ä

‖ fn(ω)− f (ω)‖ dµ(ω) = 0.

In this case, for eachE ∈ F , we define the integral to be∫
E

f (ω) dµ(ω) = lim
n→∞

∫
E

fn(ω) dµ(ω).

It can be shown [see Diestel and Uhl (1977), Theorem 2, p. 45] that, if
f :Ä→ X is aµ-measurable function, thenf is Bochner integrable if and only
if
∫
Ä
‖ f (ω)‖ dµ(ω) <∞.

For 1≤ p < ∞, we denote byL p(µ, X) the space of equivalence classes of
X-valued Bochner integrable functionsx : Ä→ X normed by

‖x‖p =
(∫

Ä

‖x(ω)‖p dµ(ω)

) 1
p

.

It is a standard result that normed by the functional‖·‖p above,L p(µ, X) becomes
a Banach space [see Diestel and Uhl (1977, p. 50)].

Let X : Ä → 2Y be a correspondence, whereY is a Banach space. Also, let
u : Ä×Y→ R be a real-valued function.Ä can be decomposed into an atomless
partÄ1 and a countable union of atomsÄ2. The following result from Balder
and Yannelis (1993, Theorem 2.8) states: Suppose that a.e. inÄ1, X(ω) is convex
and closed,u(ω, ·) is concave and upper semicontinuous onX(ω) andu(ω, ·) is
integrably bounded. Suppose further that for allω ∈ Ä2, X(ω) is weakly closed
andu(ω, ·) is weakly upper semicontinuous onX(ω). Then,

U (x) =
∫
Ä

u(ω, x(ω)) dµ(ω)

is weakly upper semicontinuous on the weakly closed setL X = {y ∈ L1(µ,Y) :
y(ω) ∈ X(ω) andy is F-measurable}.

A corollary of the above result says that ifÄ is countable andX(ω) is weakly
closed andu(ω, ·) is weakly continuous, thenU is weakly continuous as well.

A Banach space has theRadon-Nikodym property(RNP) with respect to the
measure space(T, T , ν) if for eachν-continuous vector measureG : T → Y of
bounded variation, there exists someg ∈ L1(ν,Y) such that, for allE ∈ T ,

G(E) =
∫

E
g(t) dν(t).
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It is a standard result [see Diestel and Uhl (1977)] that ifY∗ (the norm dual ofY)
has the RNP with respect to(T, T , ν), then

(L1(ν,Y))
∗ = L∞(ν,Y∗).

We close this section by defining the notion of a martingale and stating the
martingale convergence theorem. LetI be a directed set and let{Fi : i ∈ I } be a
monotone increasing net of sub-σ -fields of F (i.e., Fi1 ⊆ Fi2 for i1 ≤ i2, i1, i2 in
I ). A net{xi : i ∈ I } in L1(µ, X) is a martingale if

E
(
xi

∣∣ Fi1

) = xi1, ∀i ≥ i1.

We denote the above martingale by{xi , Fi }i∈I . The proof of the followingmar-
tingale convergence theoremcan be found in Diestel and Uhl (1977, p. 126). A
martingale{xi , Fi }i∈I in L1(µ, X) converges in theL1(µ, X)-norm if and only if
there existsx in L1(µ, X) such thatE(x | Fi ) = xi for all i ∈ I . Finally, recall [see,
e.g., Diestel and Uhl (1977, p. 129)] that if the martingale{xi , Fi }i∈I converges
in theL1(µ, X)-norm tox ∈ L1(µ, X), it also converges almost everywhere, i.e.,
lim i→∞ xi = x almost everywhere.

3. THE GAME WITH DIFFERENTIAL INFORMATION

Let T be a countable set that denotes thetime horizon.An element ofT is denoted
by t . Let(Ä, F, µ)be a complete, finite, separable measure space, whereÄdenotes
the set of states of the world and theσ -algebraF , the set of events. LetY be a
separable Banach space andA be a set of agents (which is any finite or infinite
set).

A repeated Bayesian game(or a repeated game with differential information)
is a sequence of games{Gt : t ∈ T} such that for eacht , Gt = {(Ft

α, Xt
α, uα,qα) :

α ∈ A}, where

1. Ft
α, is a sub-σ -algebra ofF which denotes theprivate informationof agentα in period

t .
2. Xt

α : Ä→ 2Y is theaction set-valued functionof agentα, whereXt
α(ω) is the set of

actions of agentα, in periodt , when the state isω, which isFt
α-measurable.1

3. For eachω ∈ Ä, uα(ω, · ) : 5α∈AXt
α(ω) → R is theutility function of agentα,

which depends on the states.
4. qα : Ä→ R++ is theprior of agentα, [qα is a density function or Radon-Nikodym

derivative, such that
∫
ω∈Ä qα(ω) dµ(ω) = 1].

Let L Xt
α

denote the set of all Bochner-integrable andFt
α-measurable selections

from the action set-valued functionXt
α : Ä→ 2Y of agentα in periodt , i.e.,

L Xt
α
= {xt

α ∈ L1(µ,Y) : xt
α is Ft

α-measurable andxt
α(ω) ∈ Xt

α(ω), µ-a.e.
}
.

Let L Xα be the product ofL Xt
α

over all t ∈ T , i.e., L Xα = 5t∈T L Xt
α
. A typical

element ofL Xα is denoted byxα = {xt
α : t ∈ T} and is a sequence of strategies for
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playerα over the entire horizon, where each element of the sequence belongs to
L Xt

α
, i.e.,xt

α ∈ L Xt
α
. A typical element ofXt

α(ω) is denoted byxt
α(ω) and a typical

element of5t∈T Xt
α(ω) is denoted byxα(ω).

Let L X = 5α∈AL Xα andL X−α = 5a6=αL Xa . A typical element ofL X is denoted
by x and ofL X−α by x−α. We endow all product spaces with the product topology.

Throughout the paper, we assume that for eachα ∈ Aand eacht ∈ T , there exists
a finite or countable partitionPt

α of Ä. Moreover, theσ -algebraFt
α is generated

by Pt
α. For eachω ∈ Ä andt ∈ T , let Et

α(ω) ∈ Pt
α denote the smallest set inFt

α

containingω and assume that, for eachα and for eacht ,∫
ω′∈Et

α(ω)

qα(ω
′) dµ(ω′) > 0.

For eachω ∈ Ä andt ∈ T , theconditional (interim) expected utility functionof
agentα, vα(ω, ·, ·) : L Xt

−α × Xt
α(ω)→ R is defined as

vα
(
ω, xt

−α, xt
α(ω)

) = ∫
ω′∈Et

α(ω)

uα
(
ω, xt

−α(ω
′), xt

α(ω
′)
)
qα
(
ω′
∣∣ Et

α(ω)
)

dµ(ω′),

where

qα
(
ω′
∣∣ Et

α(ω)
) =


0 if ω′ /∈ Et

α(ω)
qα(ω′)∫

ω̃∈Et
α(ω)

qα(ω̃) dµ(ω̃)
if ω′ ∈ Et

α(ω).

The functionvα(ω, xt
−α, xt

α(ω)) is interpreted as the conditional expected utility
of agentα in periodt , when he/she is using the actionxt

α(ω), the realized state is
ω, and the other agents employ the strategy profilext

−α, wherext
−α ∈ L Xt

−α .
For eachω ∈ Ä, thetotal discounted conditional (interim) expected utilityof

agentα,

Uα(ω, ·, ·) : L X−α ×
∏
t∈T

Xt
α(ω)→ R

is defined as

Uα(ω, x−α, xα(ω)) =
∑
t∈T

δtvα
(
ω, xt

−α, xt
α(ω)

)
,

whereδ ∈ [0, 1), is thediscount factor.
The functionUα(ω, x−α, xα(ω)) is interpreted as the total discounted expected

utility of agentα, when he/she is using the sequence of strategiesxα(ω), the realized
state isω, and the other agents employ the sequence-of-strategies profilex−α.

A nonmyopic Bayesian Nash equilibriumfor G∗ = {Gt : t ∈ T} [denoted by
NBNE(G∗)], is a strategy profilex∗ ∈ L X such that, for allα ∈ A,

Uα

(
ω, x∗−α, x∗α(ω)

) = max
yα∈5t∈T Xt

α(ω)
Uα

(
ω, x∗−α, yα(ω)

)
, µ-a.e.
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Given anε > 0, the strategy profilex∗ ∈ L X is said to be anε-NBNEε(G∗) if, for
eachα ∈ A andµ-a.e.,

Uα

(
ω, x∗−α, x∗α(ω)

) ≥ Uα

(
ω, x∗−α, yα(ω)

)− ε
for all yα(ω) ∈ 5t∈T Xt

α(ω).

4. EXISTENCE OF A NBNE(G∗)

We can now state the assumptions needed for the existence of an NBNE(G∗).
First, we will establish the weak continuity of the total discounted expected utility.
Once this is done, the existence of a NBNE(G∗) follows from [Kim and Yannelis
(1997a) or Yannelis (1997)]. We need the following assumptions:

Assumption 1.Xt
α : Ä→ 2Y is a non-empty, convex, weakly compact-valued

and integrably bounded correspondence, having anFt
α-measurable graph.

Assumption 2.
(i) For eachω ∈ Ä and for eacht ∈ T , uα(ω, ·, ·) : 5αXt

α(ω) → R is continuous,
where eachXt

α(ω) is endowed with the weak topology.
(ii) For eachx ∈ 5α∈AYα, with Yα = Y, uα(·, x) : Ä→ R is F-measurable.
(iii) For eachω ∈ Ä andx−α ∈ 5a6=αXa(ω), uα(ω, x−α, ·) : Xα(ω)→ R is concave.
(iv) uα is integrably bounded.

THEOREM 1. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying Assump-
tions1 and2. Then, there exists a NBNE for G∗.

Proof. It follows from Kim and Yannelis (1997b, Lemma A.1) that the condi-
tional expected utilityvα(ω, xt

−α, xt
α(ω)) is weakly continuous for eacht ∈ T . We

need to show now that the total discounted expected utility,

Uα(ω, x−α, xα(ω)) =
∑
t∈T

δtvα
(
ω, xt

−α, xt
α(ω)

)
,

is weakly continuous as well.
Because the setT is countable, the desired result follows from Balder and

Yannelis (1993, Corollary 2.9).2

SinceUα is weakly continuous, concave andF-measurable and the setsXt
α

satisfy Assumption 1, all conditions of the Kim and Yannelis (1997a) or Yannelis
(1997) equilibrium existence theorem are satisfied and therefore we can conclude
that a NBNE forG∗ exists.

Remark. Because NBNE(G∗) ⊂ NBNEε(G∗), it also follows that NBNEε
(G∗) 6= ∅.

5. NONMYOPIC LEARNING

As we mentioned in the preceding sections,T denotes the time horizon. Agents
enter the game having private information about the states of nature and they choose
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a sequence of actions to maximize the approximate (orε) total discounted expected
utility, given that the other players have chosen anε-optimal strategy. At the end
of each period, each player observes the equilibrium strategies of all the players.
This observation generates new information, and agents refine their partitions.
More formally, letσ(xt ) denote theσ -algebra that the NBNE(G∗) generates in
periodt . Then, the information of playerα in periodt + 1, denoted byFt+1

α , is
given by

Ft+1
α = Ft

α ∨ σ(xt ),

wherext is the projection of a NBNE(G∗) on thet th coordinate andFt
α∨σ(xt ) de-

notes the join, i.e., the smallestσ -algebra containingFt
α andσ(xt ). Consequently,

for each playerα,
Ft
α ⊆ Ft+1

α ⊆ Ft+2
α ⊆ · · · . (3)

This represents a learning process for playerα.
Now, let

F̄α = ∨t∈T Ft
α, (4)

where F̄α is interpreted as the pooled information of playerα over the entire
horizonT . A one-shot Bayesian game,

Ḡ = {(F̄α, Xα, uα,qα) : α ∈ A},
whereXα, uα,qα are defined as before and̄Fα is given by (4), is called alimit
full-information Bayesian game. L̄ X and NBNE(Ḡ) are defined for the Bayesian
gameḠ in a way analogous to that withL X and NBNE(G∗) in the gameG∗.

Note thatF̄α may or may not be the same as the full-information∨α∈AFα, which
is the pooled information over all players.

6. NONMYOPIC LEARNING IN FINITE BAYESIAN GAMES

We now state our first result that nonmyopic bounded rational play converges to a
limit full-information NBNE.

THEOREM 2. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying Assump-
tions1 and2 and let{xt : t ∈ T} be a sequence in NBNEε(G∗). Then, there exists
a subsequence{xtn : n = 1, 2, . . .} of {xt : t ∈ T} such that{xtn : n = 1, 2, . . .}
converges weakly to x∗ ∈ NBNE(Ḡ).

Proof. Let{xt : t ∈ T} be an element of NBNEε(G∗). First, notice that, from
Diestel’s Theorem [see, e.g., Kim and Yannelis (1997b, Lemma A.3)], eachL Xt

α
is

weakly compact. From the measurability constraints, it follows that for eacht ∈ T ,
L Xt ⊂ L̄ X. Becausext ∈ L Xt for eacht andL̄ X is weakly compact, it follows from
theEberlein-Smulian Theorem[Dunford and Schwartz (1958, p. 430)], that there
exists a subsequence{xtn : n = 1, 2, . . .}, such thatxtn converges weakly to
x∗ ∈ L̄ X. Hence, for eachα, x∗α is F̄α-measurable.
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Fix α ∈ A andω ∈ Ä. Let yα(ω) ∈ Xα(ω) be a strategy in the limit full-
information Bayesian gamēG. We need to show thatx∗ is a NBNE forḠ, i.e.,
thatµ-a.e.,

Uα

(
ω, x∗−α, x∗α(ω)

) ≥ Uα

(
ω, x∗−α, yα(ω)

)
.

Suppose by way of contradiction that for some playerα ∈ A and for D ⊂ Ä
with µ(D) > 0, there existsyα(ω) such that, for allω ∈ D,

Uα

(
ω, x∗−α, yα(ω)

)
> Uα

(
ω, x∗−α, x∗α(ω)

)
.

Let [
Uα

(
ω, x∗−α, yα(ω)

)−Uα

(
ω, x∗−α, x∗α(ω)

)] = ρ.
For eachm, (m= 1, 2, . . .) andω ∈ D, setym

α = E[yα | Fm
α ]. Note that

E
[
yα
∣∣ Fm

α

] = E
[
E
[
yα
∣∣ Fm+1

α

] ∣∣ Fm
α

] = E
[
ym+1
α

∣∣ Fm
α

]
.

Hence,{ym
α , Fm

α }∞m=1 is a martingale inL Xt
α
⊂ L1(µ,Y) and by the martingale

convergence theorem [see Diestel and Uhl (1977, Corollary 2, p. 126)]ym
α con-

verges [in theL1(µ,Y)-norm] and thus weakly toyα.3 It follows that (recall that
Uα is weakly continuous) we can choosem1 large enough so that, form≥ m1, we
have4 ∣∣Uα

(
ω, x∗−α, yα(ω)

)−Uα

(
ω, xm

−α, ym
α (ω)

) |< ρ − ε
2

and ∣∣Uα

(
ω, xm

−α, xm
α (ω)

)−Uα

(
ω, x∗−α, x∗α(ω)

)∣∣ < ρ − ε
2

,

where(ρ − ε)/2> 0.
Thus,∣∣Uα

(
ω, x∗−α, yα(ω)

)−Uα

(
ω, xm

−α, ym
α (ω)

)+Uα

(
ω, xm

−α, xm
α (ω)

)
−Uα

(
ω, x∗−α, x∗α(ω)

)∣∣ < ∣∣Uα

(
ω, x∗−α, yα(ω)

)−Uα

(
ω, xm

−α, ym
α (ω)

)∣∣
+ ∣∣Uα

(
ω, xm

−α, xm
α (ω)

)−Uα

(
ω, x∗−α, x∗α(ω)

)∣∣ < ρ − ε
2
+ ρ − ε

2
= ρ − ε.

Then, we have

Uα

(
ω, x∗−α, yα(ω)

)−Uα

(
ω, xm

−α, ym
α (ω)

)+Uα

(
ω, xm

−α, xm
α (ω)

)
−Uα

(
ω, x∗−α, x∗α(ω)

)
< ρ − ε,

and by rearranging, we obtain

Uα

(
ω, xm

−α, ym
α

)
> Uα

(
ω, xm

−α, xm
α

)+ ε
for all ω ∈ D and for allm ≥ m1. Hence, we found a strategy{ym

α : m ≥ m1}
that is an approximate Bayesian Nash equilibrium for playerα from periodm1
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onward, while the other players have kept their strategies fixed. This contradicts
the fact that{xt : t ∈ T} ∈ NBNEε(G∗).

COROLLARY 1. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying
Assumptions1 and2 and let{xt : t ∈ T} be a sequence in NBNE(G∗). Then, there
exists a subsequence{xtn : n = 1, 2, . . .} of {xt : t ∈ T} such that{xtn : n =
1, 2, . . .} converges weakly to x∗ ∈ NBNE(Ḡ).

Proof. It follows if we setε = 0 in the above proof.

THEOREM 3. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying Assump-
tions1 and2 and let x∗ be an element of NBNE(Ḡ). Then, for anyε > 0 and t′

large enough, there exists{xt : t ≥ t ′} in NBNEε(G∗), such that xt converges in
the L1(µ,Y)-norm to x∗.

Proof. Letxt
α = E[x∗α

∣∣ Ft
α]. Note that

E
[
x∗α
∣∣ Ft

α

] = E
[
E
[
x∗α
∣∣ Ft+1

α

] ∣∣ Ft
α

] = E
[
xt+1
α

∣∣ Ft
α

]
.

Hence,{xt
α, Ft

α}∞t=1 is a martingale inL Xt
α
⊂ L1(µ,Y) and, by the martingale

convergence theorem,xt
α converges in theL1(µ,Y)-norm tox∗. To complete the

proof, it is enough to show that, fort large enough,xt ∈NBNEε(G∗). Suppose by
way of contradiction that, for infinitely manyt ’s, there existsD, with µ(D) > 0
andyt

α(ω) ∈ 5t≥t ′Xt
α(ω) such that

Uα

(
ω, xt

−α, yt
α(ω)

)
> Uα

(
ω, xt

−α, xt
α(ω)

)+ ε
for allω∈ D.BecauseXt

α(ω)⊂ Xα(ω)and the latter set is weakly compact, we can
assume thatyt

α(ω) converges weakly to somey∗α(ω) (by passing to a subsequence
if necessary).5 It follows from the weak continuity ofUα that, for allω∈ D,

Uα

(
ω, x∗−α, y∗α(ω)

) ≥ Uα

(
ω, x∗−α, x∗α(ω)

)+ ε > Uα

(
ω, x∗−α, x∗α(ω)

)
,

which contradicts the fact thatx∗ ∈ NBNE(Ḡ).

7. NONMYOPIC LEARNING IN BAYESIAN GAMES WITH A
CONTINUUM OF PLAYERS

In this section, we study the Bayesian gameG∗ = {Gt : t ∈ T}, where the set
of players is a measure space. A Bayesian game with a measure space of agents
(A,A, ν) is a sequence of games{Gt : t ∈ T} such that, for eacht , Gt = {(Ft

α,

Xt
α, uα,qα) : α ∈ A}, where

1. Ft
α, is a sub-σ -algebra ofF which denotes theprivate informationof agentα in period

t .
2. Xt : A× Ä → 2Y, is theaction set-valued function, whereXt (α, ω) is the set of

actions available to agentα in periodt when the state isω, which isFt
α-measurable.
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3. For each(α, ω) ∈ A × Ä, u(α, ω, ·, ·) : L1(ν,Y) × Xt (α, ω) → R is the utility
function of agentα, using actionxt

α(ω), when the state isω and the other players use
the joint actionxt .

4. qα : Ä→ R++, is theprior of agentα [qα is a density function, or Radon-Nikodym
derivative, such that

∫
ω∈Ä qα(ω) dµ(ω) = 1].

As before, letL Xt
α

denote the set of all Bochner-integrable andFt
α-measurable

selections from the action set-valued functionXt (α, ω) of agentα in periodt , i.e.,

L Xt
α
= {xt (α) ∈ L1(µ,Y) : xt (α, ·) is Ft

α-measurable andxt (α, ω)

∈ Xt (α, ω), µ-a.e.
}
.

Let
L Xt = {xt ∈ L1(ν, L1(µ,Y)) : xt (α) ∈ L Xt

α
, ν-a.e.

}
.

A typical element ofL Xt is denoted byxt .
Let L X be the product ofL Xt over all t ∈ T , i.e., L X =5t∈T L Xt . A typical

element ofL X is denoted byx={xt : t ∈ T} and is a sequence of strategy pro-
files over the entire horizon, where each element of the sequence belongs toL Xt ,
i.e., xt ∈ L Xt . A strategy of agentα is an element ofL Xα =5t∈T L Xt

α
denoted by

{xt (α) : t ∈ T}. For each(α, ω) ∈ A×Ä, the conditional expected utility function
of agentα, v (α, ω, ·, ·) : L Xt × Xt (α, ω)→ R is defined as

v(α, ω, xt , xt (α, ω))=
∫
ω′∈Et

α(ω)

u(α, ω, xt (ω′), xt (α, ω))qα
(
ω′
∣∣ Et

α(ω)
)

dµ(ω′),

where

qα
(
ω′
∣∣ Et

α(ω)
) =


0 if ω′ /∈ Et

α(ω)
qα(ω′)∫

ω̃∈Et
α(ω)

qα(ω̃) dµ(ω̃)
if ω′ ∈ Et

α(ω).

For eachω∈Ä, thetotal discounted conditional (interim) expected utilityof player
α, U (α, ω, ·, ·) : L X ×5t∈T Xt (α, ω)→ R is given by

U (α, ω, x, x(α, ω)) =
∑
t∈T

δtv(α, ω, xt , xt (α, ω)).

A nonmyopic Bayesian Nash equilibriumfor G∗ is a strategy profilex∗ ∈ L X such
that, forν-a.e. andµ-a.e.,

U (α, ω, x∗, x∗(α, ω)) = max
y∈5t∈T Xt (α,ω)

U (α, ω, x∗, y(α, ω)).

We can now state the assumptions needed for the proof of the next theorem.6

Assumption 3.
(i) Xt : A× Ä→ 2Y is a non-empty, convex, weakly compact valued and integrably

bounded correspondence havingA⊗ F-measurable graph, i.e.,GXt ∈A ⊗ F⊗
B(Y).
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(ii) For eachα ∈ A andt ∈ T , Xt (α, ·) : Ä → 2Y has anFt
α-measurable graph, i.e.,

GX(α) ∈ Ft
α ⊗ B(Y).

Assumption 4.
(i) For each(α, ω) ∈ A× Ä andt ∈ T , u(α, ω, ·, · ) : L1(ν,Y) × Xt (α, ω) → R is

continuous whereL1(ν,Y) andXt (α, ω) are endowed with the weak topologies.
(ii) For each(x, y) ∈ L1(ν,Y)× Y, u(·, ·, x, y) : A×Ä→ R isA⊗ F-measurable.
(iii) For eachα ∈ A, u(α, ·, ·, ·) is integrably bounded.

Assumption 5.
(i) The dualY∗ of Y has the RNP with respect to(A,A, ν).

Given anε >0, the strategy profilex∗ ∈ L X is said to be a NBNEε(G∗) if, for
µ-a.e. andν-a.e.,

U (α, ω, x∗, x∗(α, ω) ≥ U (α, ω, x∗, y(α, ω))− ε

for all y(α, ω) ∈ 5t∈T Xt (α, ω).

THEOREM 4. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying Assump-
tions3–5 and let{xt : t ∈ T} be a sequence in NBNEε(G∗). Then, there exists a
subsequence{xtn : n = 1, 2, . . .} of {xt : t ∈ T} such that{xtn : n = 1, 2, . . .}
converges weakly to x∗ ∈ NBNE(Ḡ).

Proof. Let{xt : t ∈ T} be an element of NBNEε(G∗). Recall that eachL Xt
α

is weakly compact. From the measurability constraints, it follows that, for each
t ∈ T , L Xt ⊂ L̄ X. Becausext ∈ L Xt for eacht and L̄ X is weakly compact,
it follows from theEberlein-Smulian Theorem[Dunford and Schwartz (1958, p.
430)] that there exists a subsequence{xtn : n = 1, 2, . . .} such thatxtn converges
weakly tox∗ ∈ L̄ X. Hence, for eachα, x∗α is F̄α-measurable.

Fix α ∈ A andω ∈ Ä. Let y(α, ω) ∈ X(α, ω) be a strategy in the limit full-
information game. We need to show thatx∗ is a NBNE forḠ, i.e., thatµ-a.e. and
ν-a.e.,

U (α, ω, x∗, x∗(α, ω)) ≥ U (α, ω, x∗, y(α, ω))

for all y(α, ω) in the limit full-information game.
Suppose by way of contradiction that, for someM ⊂ A and D ⊂ Ä with

ν(M) > 0 andµ(D) > 0, there existsy(α, ω) in the limit full-information game
such that, for allα ∈ M andω ∈ D,

U (α, ω, x∗, y(α, ω)) > U (α, ω, x∗, x∗(α, ω)).

Let

[U (α, ω, x∗, y(α, ω))−U (α, ω, x∗, x∗(α, ω))] = ρ > 0.

For eachm (m= 1, 2, . . .) andω ∈ D, setym
α = E[yα|Fm

α ]. Note that

E
[
yα
∣∣ Fm

α

] = E
[
E
[
yα
∣∣ Fm+1

α

] ∣∣ Fm
α

] = E
[
ym+1
α

∣∣ Fm
α

]
.
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Hence,{ym
α , Fm

α }∞m=1 is a martingale inL Xt
α
⊂ L1(µ,Y) and by the martingale

convergence theoremym
α converges [in theL1(µ,Y)-norm] and thus weakly to

yα. It follows that (recall thatUα is weakly continuous) we can choosem1 large
enough so that, form≥ m1, we have7

|U (α, ω, x∗, y(α, ω))−U (α, ω, xm, ym(α, ω))| < ρ−ε
2

and

|U (α, ω, xm, xm(α, ω))−U (α, ω, x∗, x∗(α, ω))| < ρ − ε
2

.

Thus,

|U (α, ω, x∗, y(α, ω))−U (α, ω, xm, ym(α, ω))+U (α, ω, xm, xm(α, ω))

−U (α, ω, x∗, x∗(α, ω))| < |U (α, ω, x∗, y(α, ω))

−U (α, ω, xm, ym(α, ω))| + |U (α, ω, xm, xm(α, ω))

−U (α, ω, x∗, x∗(α, ω))| < ρ − ε
2
+ ρ − ε

2
= ρ − ε.

Then, we have

U (α, ω, x∗, y(α, ω))−U (α, ω, xm, ym(α, ω))+U (α, ω, xm, xm(α, ω))

−U (α, ω, x∗, x∗(α, ω)) < ρ − ε,
and by rearranging, we obtain

U (α, ω, xm, ym(α, ω)) > U (α, ω, xm, xm(α, ω))+ ε
for all α ∈ M andω ∈ D and for allm ≥ m1, a contradiction to the fact that
{xt }t∈T ∈ NBNEε(G∗).

COROLLARY 2. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying Assump-
tions 3–5 and let{xt : t ∈ T} be in NBNE(G∗). Then, there exists a subsequence
{xtn : n= 1, 2, . . .} of {xt : t ∈ T} such that{xtn : n = 1, 2, . . .} converges weakly
to x∗ lies inNBNE (Ḡ).

Proof. It follows if we setε = 0 in the above proof.

THEOREM 5. Let G∗ = {Gt : t ∈ T} be a Bayesian game satisfying Assump-
tions3–5 and let x∗ in NBNE(Ḡ). Then, for anyε > 0 and t′ large enough, there
exists{xt : t ≥ t ′} in NBNEε(G∗) such that xt converges in the L1(µ,Y)-norm
to x∗.

Proof. Letxt
α = E[x∗α | Ft

α]. Note that

E
[
x∗α
∣∣ Ft

α

] = E
[
E
[
x∗α
∣∣ Ft+1

α

] ∣∣ Ft
α

] = E
[
xt+1
α

∣∣ Ft
α

]
.

Hence,{xt
α, Ft

α}∞t=1 is a martingale inL Xt
α
⊂ L1(µ,Y) and, by the martingale con-

vergence theorem,xt
α converges in theL1(µ,Y)-norm to x∗. To complete the
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proof, it is enough to show that, fort large enough,xt ∈NBNEε(G∗). Suppose by
way of contradiction that, for infinitely manyt ′, there existsM ⊂ A andD ⊂ Ä,
with ν(M) > 0,µ(D) > 0, andyt (α, ω) ∈ 5t≥t ′Xt (α, ω) such that

U (α, ω, xt , yt (α, ω)) > U (α, ω, xt , xt (α, ω))+ ε

for all α ∈ M andω ∈ D.8 BecauseXt (α, ω) ⊂ X(α, ω) and the latter set is
weakly compact, we can assume thatyt (α, ω) converges weakly to somey∗(α, ω),
by passing to a subsequence if necessary. Then, it follows from the weak continuity
of U (α) that, for allα ∈ M andω ∈ D,

U (α, ω, x∗, y∗(α, ω)) ≥ U (α, ω, x∗, x∗(α, ω))+ ε > U (α, ω, x∗, x∗(α, ω)),

which contradicts the fact thatx∗ ∈ NBNE(Ḡ).

8. CONCLUSIONS

We showed that the assumption of myopia can be disregarded from Bayesian learn-
ing at no real cost. In particular, players can choose strategies by taking into account
future actions and still by repetition the nonmyopic bounded rational players can
reach a limit full-information Bayesian Nash equilibrium outcome. The converse is
also true, i.e., given a limit full-information Bayesian Nash equilibrium outcome,
we can construct a sequence of nonmyopic bounded rational plays converging to
the limit full-information Bayesian Nash outcome.

NOTES

1. Xt
α depends ont only through the measurability constraint.

2. See also Section 2.
3. ym

α converges toy∞α = E[yα | F̄α ], which is equal toyα because, by construction,yα is in the
limit full-information game and hence is̄Fα -measurable.

4. By ym
α (ω), we mean{ym

α (ω) : m≥ m1} and similarly forxm−α .
5. We say that there exists a time periodt ′ such that the strategy of a player is a NBNE from that

period onward. Thus, when we writeyt
α , we really mean that{yt

α : t ≥ t ′}. The same applies toxt−α .
6. Notice that the assumptions below also guarantee the existence of a NBNE forG∗ by appealing

to Kim and Yannelis (1997a) and by recalling that, for each(α, ω) ∈ A× Ä, U (α, ω, ·, ·) is weakly
continuous. The latter follows directly from Kim and Yannelis (1997b, Lemma A.2) and Balder and
Yannelis (1993, Corollary 2.9).

7. By ym
α (ω), we mean{ym

α (ω) : m≥ m1} and similarly forxm.
8. We say that there exists a time periodt ′ such that the strategy of a player is a NBNE from that

period onward. Thus, when we writeyt
α , what we really mean is{yt

α}t≥t ′ . The same applies toxt−α .
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