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We study learning in Bayesian games (or games with differential information) with an
arbitrary number of bounded rational players, i.e., players who choose approximate best
response strategies [approximate Bayesian Nash Equilibrium (BNE) strategies] and who
also are allowed to be completely irrational in some states of the world. We show that
bounded rational players by repetition can reach a limit full information BNE outcome.
We also prove the converse, i.e., given a limit full information BNE outcome, we can
construct a sequence of bounded rational plays that converges to the limit full information
BNE outcome.
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1. INTRODUCTION

We study learning in Bayesian games (or games with differential information) by
an arbitrary number of bounded rational players. The description of the Bayesian
game s as follows. Lak2, F, 1) be a probability measure space interpreted as the
set of states of the world. A Bayesian gam&is= {(Xq, Uy, Fo, Qy) @ @ € A},
where

1. Adenotes a set gflayers

. Xq(w) is the set ofactionsavailable to agent when the state is,

LUy (w, ) HagA Xa(w) — Ris the state-dependeuatility functionof agentw,

. F, denotes th@rivate informationof agente,

. O is theprior of agentx [q, is a density function or Radon Nikodym derivative, i.e.,

S e G (@) dpa(@) = 1].

The strategyX, of player« is an F,-measurable function, wherg, (w) €
Xq(w) u-a.e. Denote byE, (w) the element inF, containingw. Given E, (w),
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define playera’s conditional expected utilityw, (w, X) for the strategy profile
X = (Xa)aca @S

w@ = [ w566 | B ),

whereq, (o' | E,(w)) denotes the conditional probability @f, givenE, (w).
An g-Bayesian Nash equilibriufBNE) for G is a strategy profil& = (Xy)qeca
such that for allk € A, for all w € D with ©(D) > 1 — &,

Vo (@, X) > vg (0, X_o, Vo) — &,

for all strategyy, . Thee-Bayesian Nash equilibrium captures the idea of bounded
rationality of players in the following sense: First, in come states whose measure
is less thare, players can be completely irrational. Second, even in states where
agents are supposed to be rational, each player’s strategy is required-bebe
response against others’ strategies. In that sense, we can calBtiE outcome
asbounded rational playand the player who choosesBNE strategiesbounded
rational. We denote bBNE, (G) the set of ale-Bayesian Nash equilibriufor G.

Consider now the above game in a dynamic learning context. Forteagh
2,..., letG' = {(Xq, Uy, FL, 0y): @ € A} denote the Bayesian game in pertod
where

Fo=Fyt\[ o™, (1)

ando (X*~1) denotes the -algebra that the-Bayesian Nash equilibrium strategy
%=1 of the previous period generate:~1\/ o (X'~1) denotes the join, i.e., the
smallestr-algebra containing”.~ ando (X'~1). Consequently, for each player
and period,

Flcrtlcrrzc....

The above expression represents a learning process for playEhis learn-
ing process generates a sequence of Bayesian gi@lesc T} whereG! =
{(Xas Uy FL, Q) 1 € A}

Let us now define &imit full information Bayesian gamas

G = {(Xa» Uy, Fur o)t & € A},

where _
Fo=\ T

teT

Our main objectives in this paper are to address the following questions:
(i) Can bounded rational players by repetition reach a limit full information BNE out-

come? That is, if the sequengee BNE,(G') with &, — 0, can we extract a subse-
guence whose lim&* € BNEG)?
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(i) If X*e BNE(G) (i.e., X* is a limit full information BNE strategy f0|G_), can we
construct a sequence of bounded rational pfayse., X' € BNE,(G")] such thatk!
converges t&*?

Our main results show that the answers to both questions are affirmative whether
the number of players is finite or continuum.

We now compare our results to the ones in the Bayesian learning literature
[e.g., Feldman (1987), Jordan (1991), Kalai and Lehrer (1993), Koutsougeras and
Yannelis (1994), and Nyarko (1996)]. Jordan (1991) studied the iterative Bayesian
learning process for the finite-player, finite-strategy normal form games. He proved
that if players with common priors about others’ payoffs use Bayesian learning
in each period, myopic Bayesian Nash equilibrium of each period converges to
the complete information Nash equilibrium of the normal form game. Kalai and
Lehrer (1993) also showed that even nonmyopic Bayesian Nash equilibrium of the
repeated game converges to thBlash equilibrium of the complete information
normal form game if players use Bayesian updating in each period.

The framework we use in this paper is more general than those of the above
authors in the following sense: Players do not necessarily have common priors and
they are bounded rational during the learning process. Because our framework is
quite general, it may be the case that, in the limit, incomplete information still
prevails. In other words, it could be the case that

E@C<VR%W

aeA

whereF, (w) and(V/ ., Fo)(w) are the smallest elements containinim F, and

V 4en Fa, respectively. Therefore, our equilibrium in the limitis not necessarily the
Nash equilibrium of the complete information game. It is a Bayesian Nash equilib-
rium of the limit full information game. However, if the learning through Bayesian
Nash equilibrium strategy of each period reaches the complete information in the
limit, i.e.,

Ew:(Vaym

aeA

then one of our convergence results (Theorem 1) is comparable to those of Jordan
(1991) and Kalai and Lehrer (1993) because a Bayesian Nash equilibrium of the
complete information game is just a Nash equilibrium.

Also note that we extend and generalize the previous results of Koutsougeras
and Yannelis (1994) in two different directions. First, we have interim, not ex ante,
expected utility function; and second, we allow for a continuum of players. Both
improvements necessitate new arguments.

Finally, the results of Feldman (1987), Jordan (1991), Kalai and Lehrer (1993),
and Nyarko (1996) are in the spirit of convergence to a limit full informaBd{E
[question (i), above]. However, we also obtain the converse result, i.e., given a
BNE strategyx™* of a limit full information gameG, we can construct a sequence
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of e-BNE strategyX! for a gameG! that converges t&*. In other words, we can
always approximate the limit full informatioBNE strategy by the repetition of
bounded rational play. This may be interpreted as a kind of stability oBNie
outcome.

The rest of the paper proceeds as follows: Section 2 contains notation and
definitions. Section 3 describes the Bayesian game with a finite number of players,
and the main notions used inthe paper are rigorously defined. In Section 4, we prove
that bounded rational players by repetition will reach the limit full information
BNE outcome and, conversely, given a limit full informati8NE outcome, we
can construct a sequence of bounded rational play that converges to the limit full
information BNE outcome. Section 5 addresses the same questions as those in
Section 4 but in a Bayesian game with a continuum of players. Finally, we have
collected the technical results in the Appendix.

2. NOTATION AND DEFINITIONS

We begin with some notation and definitions.

Let 2X denote the set of all non-empty subsets of theXself X andY are
sets, thegraph of the set-valued function (or correspondenge)X — 2Y is
Gy ={(X,y) € X x Y1y € p(X)}.

Let (2, F, u) be a complete, finite measure space ¥rigk a separable Banach
space. The correspondenge2 — 2" is said to have aeasurable grapif

G, € F Q) B(Y).

where B(Y) denotes the BorefF-algebra onY and ) denotes the produet-
algebra. The measurable functién 2 — Y is called ameasurable selectioof
0:Q— 2 if
f(w) € p(w) for up-aew.
Let (2, F, u) be a finite measure space avicbe a Banach space. Following
Diestel and Uhl (1977), the functiof: 2 — Y is calledsimpleif there exist
Vi, Y2, ..., Yain Y andEy, Ey, ..., E, in F such that

n
f=Y vixE,
i=1

wherexg (w) = 1if w € Ej andxg (w) = 0if w € E;. Afunction f : Q@ — Y
is calledF-measurabléf there exists a sequence of simple functidgs 2 — Y
such that

nIi_)mOO | fa(w) — f(w)]|=0 for p-a.ew.

An F-measurable functiorf : @ — Y is said to beBochner integrabléf there
exists a sequence of simple functiqrfg:n =1, 2, ...} such that

ym/’nwm—umwmw=0
— X JweQ
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Inthis case, for each € F, we define théntegralof f, denoted by f () du(w),
as

lim / fr(w) du(w).
n—o00 E

It can be shown [see Diestel and Uhl (1977, Theorem 2, p. 45)] tHatdf — Y
is anF-measurable function, thehis Bochner integrable if and only if

/9 I (@)l dp(w) < oco.

It turns out to be important in our paper that tbeminated Convergence Theorem
holds for Bochner integrable functions. In particularfif @ — Y(n=1,2,...)
is a sequence of Bochner integrable functions such thatfae.o,

nIim fa(w) = f(w), and | fa(w)ll < g(w),

whereg: 2 — Ris an integrable function, thefiis Bochner integrable and

lim / (@)~ F(@1du(e) =0

The space of equivalence classesYefalued Bochner integrable functions
y:Q — Y, normed by

Iyll= /Q ly(@)l du(w),

is denoted byL1(u, Y). It is a standard result that, normed by the functignal
above,L1(u, Y) becomes a Banach space [see Diestel and Uhl (1977, p. 50)].
A Banach spac¥ has theRadon-Nikodym properfRNP) with respect to the
measure spacd, 7, v) if for eachv-continuous vector measut& 7 — Y of
bounded variation, there exists some L(v, Y) such that for alE € 7,

G(E)=/Eg(t)dv(t).

It is a standard result [Diestel and Uhl (1977)] thaYif (the norm dual ofr) has
the RNP with respect téT, 7, v), then

(L1(v, Y)* = Loo(v, Y.

A correspondence :  — 2Y is said to bentegrably boundedf there exists a
functionh € L1(u, R) such that

sugllyll :y € ¢(w)} < h(w) for p-aew.

If {An:n=212,...}is asequence of non-empty subsets of a Banach 3fjace
we denote byt s A, the set of itdimit superiorpoints, i.e.,

LsAh:{xeY:x:klim Xny» Xn, € An,  for k=1,2,...}.
—> 00
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3. THE GAME WITH DIFFERENTIAL INFORMATION
3.1. Bayesian Nash Equilibrium

Let (2, F, u) be a complete, finite, separable measure space, whdeaotes the
set of states of the world ang-algebraF, the set of events. Léf be a separable
Banach space andl be a set of agents (which is any finite or infinite set).

A Bayesian gamr agame with differential informations G = {(X,, Uy, F,
Oy) i« € A}, where

1. X,:Q — 2 is theaction set-valued functioof agentt, whereX, () is the set of
actions available to ageatwhen the state is;

2. foreachw € Q, Uy (@, ) : [, o Xa(w) — Ris theutility functionof agentx, which
can depend on the states;

3. F, is a suhw-algebra ofF which denotes thprivate informationof agento;

4. q,: Q2 — R, is theprior of agentu [q, is a density function or Radon Nikodym
derivative, i.e.,fmEQ 0o (@) di(w) = 1].

acA

Let Lx, denote the set of all Bochner integrable afidgmeasurable selections
from the action set-valued functiok, : @ — 2" of agenty, i.e.,

Lx, ={% eLi(n,Y):X, is F,-measurable andX,(w) € X,(w) u-a.ew}.

The typical element of x, is denoted ag,, and that ofX, () asx, (@) (Or X,).
LetLx = [[aen Lx, @andLx , = []ay, Lx.- GivenaBayesian gant®, a strategy
for agentx is an elemenk,, in Ly, .

Throughout the paper, we assume that for aach A, there exists a finite or
countable partitioff [, of 2. Moreover, ther-algebraF, is generated by],,. For
eachw € Q, let E,(w)(€]],) denote the smallest setjf, containinge and we
assume that for ait,

/ (@) du(@) > O.
o' €Ey (w)

For eachw € Q, the conditional (interim) expected utility functiaof agenta,
ve(@, -, +) 1 Lx_, x X4(w) — Ris defined as

0 (@, s Xe) = / U (@, %0 (@), %) G (@ | Ea(@)) du(@),
o' €Ey ()
where
0 if o ¢ Ey(w)

0w (@' | Eo(@)) = Qe (@)
St 0 G (@) A1t (@)

if o e Ey(w).

The functionv, (w, X_4, X,) is interpreted as the conditional expected utility of
agentx using the actiomx, when the realized statedsand the other agents employ
the strategy profil&_,, whereX_, is an element ot x__.
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A Bayesian Nash equilibriufor G [denoted byBNE(G] is a strategy profile
X* € Ly such that for alkx € A,

Vg (a), X" s )'Z;‘(a))) = yurenx%éu) Vg (a), X* s ya) p-a.ew.

Given ane > 0, the strategy profil&* is said to be ar-Bayesian Nash equi-
librium for G [denoted byBNE, (G)] if there existsE(c ) with «(E) < ¢ such
that for alla € A, forallw € Q/E,

Vo (@, K5y, K@) = va (0, Xy, Vo) — &,

forall y, € X, (w).

3.2. Learning

Let T=/{1,2,...} denote the time horizon. For eathe T, let G' denote the
Bayesian game at peridacindo (X') denote ther-algebra that the Bayesian Nash
equilibriumX! generates. At each period, playewill have as private information
the information that the past perieeBayesian Nash equilibrium strategies have
generated. Hence, the information of playeat periodt + 1, F1*1, is

Fit =7\ o, o)

wherex! € BNE(G') and ., \/ o (X') denotes the join, i.e., the smallestilgebra
containingF, ando (X'). Consequently, for each playerand period,

FlcFHlcFit2c ...,

This represents a learning process for player

The learning process generates a sequence of Bayesiangaimes T}, where
G'={(Xq, Uy, FL, Oy) i € A}. All terms inG' are defined as before except that
F! is theo-algebra of playew at timet given by (2). Let

Lx = {)”(0, eli(u,Y):X, is }";—measurable and X, (w) € X, (w) M—a.ew}.

andLx: = [[acalxt-
Let

Fo=\| 7.

teT

whereZ, is interpreted as the pooled information of playesver the entire time
horizonT. The Bayesian game

(g: {(Xola ucu -f;)(a qa) NS A}

is called thdimit information Bayesian gamé x andBN E(G) are defined for the
Bayesian gamé& in an analogous way with those in the gafe
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Note thatF, is not necessarily the same as the full informatgp, 5 o, which
is the pooled information over all players.

3.3. Examples

Next, we present two examples that elaborate the Bayesian learning results we
derive in this paper.

Example 1
There are two states of the word andw,, and two players:
F1 = {{o}, {w2}},
F2 = {{o1, w2}}.
Both players have the common prieron the states
p(w1) = 9/10, w(wz) = 1/10.

Player 1, the row player, choos&wr B and player 2, the column player, chooses
L or R. If statew; is realized, then the game to be played is

L R
T11,1|10
B|00|02

and if statew, is realized, then the game is

L R
T]0,1|0,0
B|1,0|12

In periodt, the Bayesian Nash equilibrium is that player 1 chodgés state
w1, andB in statew,, and player 2 choosdsregardless of the state.

Suppose that the stateds. Then(T, L) will be actually played in period.
After the play in period, player 2 knows that the statedg by observing the
choice of T in periodt by player 1. Then from period+ 1 on, they will play
(T, L), which is a Bayesian Nash equilibrium given the new information. This is
in turn the Nash equilibrium for state.

Suppose that the realized statesis Then the actual play in periadwill be
(B, L) from Bayesian Nash equilibrium. From period- 1 on, player 2 knows
that the state i&, by observing the choice @& in periodt by player 1. Therefore,
from periodt 4 1 on, they will play(B, R), which is a Bayesian Nash equilibrium,
given the information. This is the Nash equilibrium for state

This example is the one in which both players learn the true state, and the play
path of the Bayesian Nash equilibrium converges to the complete information Nash
equilibrium by Bayesian learning. However, the next example shows that in some
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cases, the true state is not revealed until the end, and the play path only converges
to the Bayesian Nash equilibrium.

Example 2

The structure of the game is the same as the above example except the following:
If statew; is realized, then the game to be played is

L R
T|1,1]10
B|00|00

and if statew; is realized, then the game is

L R

]

11
0,000

T
B

In periodt, the Bayesian Nash equilibrium is that player 1 chodsasd player
2 choosed regardless of the state.

Suppose that state, is realized. In this case, player 2 cannot tell the true state,
even after observing the action in peribly player 1. So, the play path will be
(T, L) forever, which is just a realization of a Bayesian Nash equilibrium. Notice
that(T, R) is the complete information Nash equilibrium for state

4. LEARNING IN FINITE BAYESIAN GAMES

We can now state the assumptions needed for our main theorems.

Assumption 1. X,:Q — 2 is a non-empty, convex, weakly compact valued and
integrably bounded correspondence havingZameasurable graph, i.eGx, €
Fo @ BY).

Assumption 2.

(i) Foreachw € Q,Uq(w,): ][]
with the weak topology.

(i) Foreachx e HaeAYa with Y =Y, u,(-, X) :  — Ris F-measurable.
(iii) u, is integrably bounded.

aca Xa(w) — Ris continuous wher¥, (w) is endowed

Remark. Under Assumptions 1 and 2, and provided théb, -) is concave,
Kim and Yannelis (1996) have shown tBNEG) # @, and therefor8BNE, (G) #
0 as well.

We now state our first result that bounded rational play converges to a limit full
information BNE.
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THEOREM 1. Let {G':t € T} be a sequence of Bayesian games satisfying
Assumptiond and2 and letX' € BNE(G"), wheres; — 0. Then, there exists a
subsequencg™:n = 1,2, ...} of {X':t € T} such thatt™ converges weakly to
%* € BNEG).

Proof. First notice that, by Lemma A.3 in the Appendix, easl is weakly
compact and so iEx: = [[,.a Lx;. By Lemma A.3, Lx is weakly compact. Let
B = {X':t € T}. Becaus&k! € Lx: C Lx andLy is weakly compact, it follows
that the weak closure 0B, denoted byw — clIB, is weakly compact. By the
Eberlein—Smulian theorem [Dunford and Schwartz (1958, p. 430}; cIB is
weakly sequentially compact. Clearly, the weak limikbfdenoted by*, belongs
to w — ¢l B. From Whitley’s theorem [Aliprantis and Burkinshaw (1985, Lemma
10.12, p. 155)], we know that, &* € w — cIB, then there exists a sequence
{X:n = 1,2,...} such that™ converges weakly t&*. Becaus&™ € Lx, C
L %, it follows thatX* € Lk and we can conclude th&} is F,-measurable.

Now fix ¢ € A. Lety, € X, (w). We need to show that a®.€ <,

Vo (0, X5, K2 (@) = vo (0, K5, Vo),

where
Vo (@, Xy, Ya) = / Uy (@, %o (@), Yo) U (' | E(@)) dpa(e).
' €Ey (w)

Becaus&! e BNE,(GY), there existD; (C Q) with u(D;) > 1— & such that for
alla € A, forall w € Dy,

Ve (@ K % (@) = vg (@, Koo Vo) — &,

where
vy (0, 8y V) = / iy Ug (@, X (@), Yo ) Oa (@' | Eg (@) d(a).
o' €Ef (w)

Let D = LsD. Then,u(D) = 1 because; — 0. By taking a subsequence if
necessary, we have that for glfor all w € D,

vfx (a), )N(t_a, )?; (a))) > vfx (a), )N(t_a, ya) — &. 3

BecauseX! converges weakly t&*, it follows from Lemma A.1 in the Ap-
pendix thaw, (o, X' ,, X! (w)) converges ta, (v, X*,,, X (w)) andv', (o, X', Vo)

—a’ o —a’ o

converges ta, (w, X* ,, Yy) ast — oo. Thus, it follows from (3) that a.e» € 2,
Vo (0, X, X (@) = vg (@, K5y, V),

and this completes the proof of the theorem. [ ]
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COROLLARY 1. Let{G':t € T} be a sequence of Bayesian games satisfying
Assumptiond and 2 and letX' € BNE(G'). Then, there exists a subsequence
(Xv:n=1,2,..}of{X':t € T} suchthaik™ converges weakly " ¢ BNEG).

Proof. The conclusion follows if we let = O for allt in Theorem 1. [ |

Remark. Theorem 1 and Corollary 1 still holdAfis any infinite set. The proof
remains unchanged. However, the proof of Theorem 2 faisi#f infinite.

THEOREM 2. Let {G':t € T} be a sequence of Bayesian games satisfying
Assumptiond and 2 and letX* € BNEG). Then for anyes > 0, there exists
(%' :t € T},whereX' € BNE,(G!), such tha&! convergesin k(u, Y)-norm tok*.

Proof. LetX! = E[X* | F']. Note that
E[% [ 7] = E[EX |77 | 7l
= E[X{FL].

Hence X!, FL}, is a martingale inLx. C L1(u, Y) and by the martingale con-
vergence theorenX! converges in thé& (., Y)-norm (and hence weakly &y).
To complete the proof, it is enough to show tiktlies in BNE,(G') for t big
enough. Suppose, by way of contradiction, that for infinitely migriiere exists
Dy with «(Dy) > ¢ andy!, € X! such that

v (0, Ky Y8) = vl (0, XY, K (@) + &,
forall w € D;. Let D = LsD. Thenu(D) > ¢. By taking a subsequence if neces-
sary, we have that for allthere existg/! € X, (w) such that

o (0, %y L) = 0t (. K K @) + .

o —a’ o

forallw € D. Becausé, (w) is weakly compact, we can assume tyfatonverges
weakly to somey! € X, (w) by taking a subsequence if necessary. Then it follows
from Lemma A.1 in the Appendix that for all € D,

Vo (a), X, y;) > Uy (a), X* )?*(a))) + &> vy (a), X* )?*(a))),

—a’ o —a’ o

which contradicts the fact th&t < BNE(C:). The above contradiction establishes
the validity of our theorem. [ ]

5. LEARNING IN CONTINUUM BAYESIAN GAMES

In this section, we study the Bayesian ga@&vith a measure space of agents. A
Bayesian game with a measure space of ageéntsl, v) isG = {(X, U, Fy, Qy) :
a € A}, where

1. X:Ax Q — 2" is theaction set-valued functigmwhereX (o, w) is interpreted as
the set of actions available to agentvhen the state i;
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2. foreacho, w) € AxQ, u(o, w, -, -) : L1(v, Y) x X(a, w) — Ristheutility function,
whereu(a, w, X, X,) is interpreted as the utility of ageatusing actiorx,, when the
state isw and other players use the joint action

3. F, is a subo-algebra ofF that denotes thprivate informationof agento;

4. q,: Q2 — R, is theprior of agentx.

As before, letLx, denote the set of all Bochner integrablg,-measurable
selections from the action set-valued functdrt) of agenty, i.e.,
Lx, = {X(o) € L1(u,Y): X(a, ) :Q — Y is F,-measurable and

X(a, w) € X(a, w) p-a.ew}.

Let
Lx ={X € Li(v, L1(i, Y)):X(a) € Lx, for v-a.ea}.

In a Bayesian game with a measure space of ageistsategyfor agentx is an
elementinL x, and gjoint strategy profilés an element i x. For eacha, w) €
A x Q, the conditional expected utility function of agentv(«, w, -, -) : Lx x
X(a, w) — Ris defined as

U(C(, , )’27 XO() = / u(av w, )’.(’((,()/), Xot)qo((w/ | Ea((,())) dM(C{)/),

w'€Eq(w)
where
0 if o ¢Ey(w)
qa(a)/ | Eq(w)) = O (@) ) e
fﬂ)eEa(w) qa(a)) d/L((}')) I o' € Ey(w).

A Bayesian Nash equilibriufior G is a strategy profil&* € L x such that fow-a.e.
«, for u-a.e.w,

v(a, w, X5, X (a, w)) = max v(a, w, X, y).
yeX(a,w)

We can now state the assumptions needed for the proof of the next theorem.
Assumption 3.

() X:A x @ — 2¥ is a non-empty, convex, weakly compact valued and integrably
bounded correspondence having An) F-measurable graph, i.eGx € AQ)
F QR B(Y).

(i) For eacha e A, X(a,-):Q— 2' has anF,-measurable graph, i.erm € Fy

R B(Y).

Assumption 4.

(i) Foreach(o,w) € A x @, U(x,w,-,-):Li1(v,Y) x X(a, w) — Ris continuous
whereL (v, Y) and X («, w) are endowed with the weak topologies.
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(i) Foreach(x,y)eLi(v,Y) x Y,u(,- X, y):A x Q— Ris A) F-measurable.
(i) Foreacha € A, u(a, -, -, -) is integrably bounded.

Assumption 5.

(i) € isacountable set.
(i) The dualY* of Y has the RNP (see Section 2 for definition) with respe¢ftoA, v).

Remark. Note that Assumptions 3 and 4 are the same as Assumptions 1 and 2.
The only new assumption here is Assumption 5, which we need to prove the weak
continuity of the expected utility function in Lemma A.2 in the Appendixlfs
uncountable and each agent’s information partition is uncountable, then to prove
the weak continuity of expected utility we need the following assumption:

Assumption & For each(a, w, X,) e Ax Q@ x Y, U(a, w, -, X)) : L1(v, Y) —
Ris linear.

Assumption 5is rather a strong assumption but it is necessary to prove the weak
continuity if Q is uncountable [see, for example, Balder and Yannelis (1993)].
Instead, we use Assumption 5 for the result below.

Given ans > 0, the strategy profil&* is said to be ar-BNEfor G if there
existB(C A) andE(c Q) with v(B) < ¢, u(E) < ¢ such that for ale € A/B,
forallw € Q/E,

v(e, w, X, X" (o, w)) > v(o, , X*, ) — ¢,

forally € X(«, w).

THEOREM 3. Let {G':t € T} be a sequence of Bayesian games satisfying
Assumption8-5 and letX' € BNE, (G'), wheres; — 0. Then, there exists a sub-
sequencgX:n = 1,2,...} of {X':teT} such thatk converges weakly to
%* € BNE(G).

Proof. LetB = {X':t € T}. Because&x' € Lx: C Lx andLy is weakly
compact, it follows that the weak closure Bf denoted byw — clB, is weakly
compact. As in the proof of Theorem 1 we can extract a sequéiicen =
1,2, ...} from B such thak™ converges weakly t&*. Becaus&™ € Lx, C Ly,
it follows thatX* € L, and thereforé&! is F,-measurable.

We need to show that far-a.e «, for y-a.ew,

v(e, o, X, X (o, w)) = v(o, o, X", y),

forally € X(«, w), where

v(a,w,f(,w:/ i U@, , X(@"), Y)u (@' | Eq(@)) du(a).
o' €Ey (w)
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Becaus&! € BNE,(G!Y), there existB,(C A) andDy(C Q) with v(By) > 1 — &
andu(Dy) > 1 — & such that for alkk € By, for all w € Dy,

v (e, 0, X X, 0) > vl (e, 0, XY Y) — e,

forall y € X(«, w), where

W, o, X y) = / U(er, o, X' (@), V)t (@' | E (@) dw(e).
'€EL (w)
LetB = LsB andD = LsD. Then,v(B) = 1 andu(D) = 1 because; — 0.
By taking a subsequence if necessary, we have that, forfall all « € B, for all
we D,
e, 0, %, K (@, ) =2 v (@ 0,8, y) — e, @)

forally € X(a, w). Becaus&' converges weakly t&*, it follows from LemmaA.2
in the Appendix thav'(«, w, X', X' (o, ) = v(a, o, X*, ¥* (o, w)) andv! (o, o,
K, y) = v(a, 0, X*, y) ast — co. So, it follows from equation (4) that fora.e «,
u-a.ew,

v(a, w, X*, X (a, ) > v(a, o, X, y),

forally € X(«, w). [ |

COROLLARY 2. Let{G':t € T} be a sequence of Bayesian games satisfying
Assumption8-5and letx! € BNE(G'). Thenthere exists asubsequer{&é :n =
1,2,...}of {X':t € T} such thatk™ converges weakly t&* € BNEG).

Proof. The conclusion follows if we let = O for all t in Theorem 3. [ |

THEOREM 4. Let {G':t € T} be a sequence of Bayesian games satisfying
Assumption8-5 and letX* € BNE(G). Then for anys > 0, there existgX' :t
T}, whereX! € BNE,(G'), such thatk' converges t&* in L1(u, Y)-norm.

Proof. LetX!(«) = E[X*(a)|F!]. Note that
E[X* (@) | Fi] = E[E[&* () | FiH] | Fi]
= E[&" () | FL].

Hence (X' (), FL}i2, is amartingale i x: o, C L1(i, Y) and by the martingale
convergence theorerf! () converges in thé 1 (u, Y)-norm and hence weakly
to X*(a). To complete the proof, it is enough to show tRaties inBNE, (G') for
t big enough. Suppose, by way of contradiction, that for infinitely migriere
existB'(c A) andD'(c Q) andy!(x, w) € X(a, w) With v(By) > ¢, u(DY) > ¢
such that

v, w, X Y, w) = v, o, & K (o, ) + &,

foralla € B!, forallw € E!. Let B = LsB' andD = LsD. Thenv(B) > ¢
andu (D) > ¢. By taking a subsequence if necessary, we have that, farth#ye
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existsy!(a, w) € X(a, w) such that
(o, o, X, Y, w) > vl (a, w, X X, 0) + ¢,

for all « € B, for all w € D. BecauseX(«, w) is weakly compact, we can assume
that y'(«, w) converges weakly to somg (o, o) € X (a, w) by taking a subse-
guence if necessary. Then it follows from Lemma A.2 in the Appendix that for all
o € B, forallw € E,

v(e, w, X", Y(o, ) = v(e, o, X, X (0, ) + & > v, o, X, X (o, 0)),

which contradicts thak* € BNE(G_). [ |

6. CONCLUSIONS

We study learning in Bayesian games with an arbitrary number of players. In par-
ticular, we show that in a very general setting (i.e., under quite weak assumptions)
repeated bounded rational play will converge to a limit full information Bayesian
Nash equilibrium. This result holds for not only a finite or countable number of
players (Theorem 1), but even for a continuum (Theorem 3). Moreover, we show
the converse, i.e., given a limit full information Bayesian Nash equilibrium strategy
we can construct a sequence of bounded rational plays that converges to a limit full
information Bayesian Nash equilibrium outcome. This result also holds for finitely
many players (Theorem 2) and for a continuum of players (Theorem 4), as well.
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APPENDIX

We begin the Appendix by proving the weak continuity of the conditional expected utility
function of each agent. For eaghe A, for eachw € Q, definev!, (w, -, ) : ina x Xy, = R
andvy(w, -,-):Lx , x X, > Ras

vl (0.5, y,) = / Ug (@, X (@), 3) G (@ | EL (@) dpa(@),
' eQ

and
E, (@) du(@).

Vo (@, Xg, Ya) = / Ug (a), %, (@), ya)qa (a)’
o' €Q

LEMMA A.1. Assume that for each?, u,(w, -): HagA Xa(w) — R is weakly con-
tinuous. IfX' converges weakly t&* and y, converges weakly to}ythen for eachw,
v (w, X, V) converges ta, (w, X_q, Yo)-

Proof. We prove this via two steps. First, we show:

ClaimA.1. Foreach € A, for eachw € Q, the sequenci} (»)} in X, converges weakly
to Xa(w).

Proof of Claim A.1. Fixv € Q. To prove the claim, we need to show that fonglle Y*,
y* (R (@) converges ty* (Xa(w)). BecauseH = {EL, E2, ...} is a countable partition of
Q of agents, X} andX, can be written as

oo

o0
X :E X3*xex  and )?a=§ XA Xk
k=1

k=1

wherex, xX € X,. Note that for eacls € T, there exists a uniqueX e ], with w €

a ' Ma

Ek@. Then,
Y (% (@) = / % (@) (Ek(w))ngm(w’)dM(w/)
'eQ

:/w,EQ () — s (Ek(“’)) Xeko (@) dpu (o) (A1)

becaus&! (') = X (w) if ' € EX®. Note that

y*

— T € Loo(u, Y*) and X} € Li(n.Y).
u(EX) :

Becausex! converges t&, weakly inL1(x, Y), equation (A.1) converges to
v / y:‘F / / *
Xa (@) — =5 Xgko (@) d (@) = Y (Xa(w)).
o'eQ M(Ea ) :

Because the choice gf € Y* is arbitrary,X! (w) converges weakly t&, (w). This proves
Claim A.1.
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Claim A.2. Foreaclw € Q,

/ Uy (w, )?t—a (@), y;)qoz (w/

'

EL(®)) du(e)

- / U (@, %o (@), Ya) G (@' | E (@) dpa ().

Proof of Claim A.2. By Claim A.1, for eacla € A, for eachw € @, X! (w) con-
verges weakly t&, (w). By the continuity ofu, (w, -, -) with the given topologies, for each
w € Q, Uy (v, X, (w), Y!) converges tal, (w, X, (®), Ya). BecauseE! (w) D ELH(w) D
Eq(w) for all t, u(El(w)) - n(E,(w)). So, by the definition ofy,, q, (o' | EL(®)) —
. (@' | E4(w)) a.ew. Therefore, by the Lebesgue dominated convergence theorem,

/ Ug (@, X (@), ¥4 ) o (0| Ef (@) dia(@)

- / Uy (@, %o (@), V)G (@' | Eq(@)) dit(e0). .

For eachx € A, for eachw € Q, definev'(a, w, -, ) : L1(v, Lxt) x X4 (w) — Rand
v(a, , -, ) 1 L1y, L) x Xy (w) > Ras

V' (a, o, X, y;) = / U(a, w, X (), y;)qoz (w’

w'eQ

E. (@) du(@),

and
v, w, X, Yy) =/ U(er, w, (@), Vo) (@' | E_a(w))d/«L(a/)-
' eQ

LEMMA A.2. Let (A, A,v) and (22, F, u) be finite measure spaces, whepeis a
countable set. Let X be a weakly compact subset of the separable Banach space Y whose
dual Y* has the RNP (Radon—Nikodym property) with respectt@, v). Assume that for
eacha € A, for eachw € Q, U(a, w, -, ) : L1(v, X) x X — R is weakly continuous.
converges weakly t&* and y}, converges weakly tofythen for eachw, v'(a, w, X', y!)
converges ta(a, w, X_q, Vo).

Proof. We prove this via two steps. First, we show

Claim A.3. For eachw € Q, the sequencéX'(w)} in Li(v, X) converges weakly to
X(w).

Proof of Claim A.3. Fixw € Q. To prove the claim, we need to show that for all
y* € [L1(v, Y)]* = Lo (v, Y*) [by the RNP ofY* with respect tq A, A, v)],

/ X (@)y* (@) dv(a) convergesto/ Ko () Y* (1) du(t).
oo€eA aeA

Because[ [, = {E., EZ....} is a countable partition of2 of agentt, X!, and%, can be

written as
oo oo
% = E XMy and X, = E XK Xk,
k=1 k=1
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wherex, x¥ € X. Note that for eacht € T, there exists a uniqueX e [ with
o € EX®_ Moreover, for each e T,

n(Ex) > (o)) > 0.
First, choosg/* € L. (v, Y*) such that
y*=a'xy,, where a*eY* and ToeT7.

Then,
/ ié(w)y*(t)dV(t)z/ %! (w)a* dv(t)
teT teTp
=/ / ~t(w) k(w) XEk(m(a))d/L(w) dv(t)
teTo W' e ( )

=/ [/ ~t(a)) k(a)) XEk<w>(w)du(w)1dv(t) (A.2)
teTo o'eQ ( )

becaus&! (¢') = & (w) if ' € EX®. Note that, for eache T,

Becausen(EX®) is uniformly bounded from below by:({w}), the mappingt >
[a* /i (EXN)] X gk 1S IN Loo(v, Loo (12, Y¥)). Becausek' converges weakly té in Ly(v,
L1(u, Y)) equation (A.2) converges to

€ Lo(pe, Y and )N(; e Li(u,Y).

I~ / ar / / v *
/ / Xa(a))WXEkm(a))du(w) dv(t) :/ X, (w)a* dv(t)
teTo »'eQ M(Ea ) “ teTo
=/ K (@)y* (1) dv (1),

where the first equality holds becaugfw’) = &\ (o) if o' € EX@. So, for any simple
functiony* € Lo (v, Y*),

/ XL (@)y*(t) dv(t) convergesto/ X (w)y* (1) dv(t).
teT

teT

Next, lety* € L. (v, Y*). BecausgT, F,v) is a finite measure space, there exists a
sequence of simple functions converging/tauniformly (recall the Egoroff theorem). Let
& > 0 begivenand lelh € L1(v, Y) be a simple function such that
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Iy* — hj| < % where p > sup{ / IR ()| v (D).
teT

/ X (@) ldv(t):n=1,2,... }
teT

Then,

/f(f,(w)y*(t)dV(t)—/ ?a(w)y*(t)dV(t)‘
teT teT

+

=<

/ %, (@) (y* () = h(t)) dv(t)
teT

/ (% (@) — % (@)) h(t) dv ()
teT

+

/ X (@) (h(t) — y*(1)) dV(t)‘
teT

<2+

/ (% (@) — % (@)) h(t) dv (1)
teT

Becausé is simple, we obtain

lim =0.

n—o00

/ (X (@) — Xy (@)) (1) dv(t)
teT

Thus, the above estimates imply that

/ KL (w)y* (1) du(t) convergesto/ %, () Y* (1) du(t),
teT teT

forall y* € Lo (v, Y*). This proves Claim A.3.
Claim A.4. For eaclx € A, for eachw € ,

/ u(a, w, X (w), y;)qa (a)’

- / U(@, @, X(@), Yo) Qe (@' | E4(@)) dp(@).

Ei (@) du(@)

Proof of Claim A.4. By Claim A.3, for each € Q, X'(w) converges weakly t&(w).
By the weak continuity ofi(«, w, -, -), for eachx € A, for eachw € Q, u(a, w, X' (w), Y1)
convergesta(a, w, X(w), Y,). Becaus&! (w) D ELY(w) D E,(w) forallt, u(E! (w)) —
w(Eq(w)). So, by the definition of,, q. (@’ | EL(w)) = (@' | E4 (@) a.e.w. Therefore,
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by the Lebesgue dominated convergence theorem,

/ u(a, w, X (), y;)qa (w’

124

E;, (@) du(e)

- / U, @, X(@), Yo) G (@' | Eq (@) dia(@). -

The Lemma below is known as Diestel's theorem and several alternative proofs can be
found in the literature. For completeness, we provide a proof [see also Yannelis (1991, p. 7)
and the reference therein].

LEMMA A.3. LetY be a separable Banach space and$X— 2" be an integrably
bounded, weakly compacionvex valued correspondence. Then

Lx ={XeLi(u,Y):X Iis F-measurable and X(w) € X(w) u-a.ew}

is weakly compact in {(u, Y).

Proof. The proof is based on the celebrated theorem of James (1964). Note that the
dual of L1(u, Y) is Lo(t, Y,i) wherew* denotes thew*-topology, i.e.,L1(u, Y)* =
Lo (u, Y2 [see, for instance, Tulcea and Tulcea (1969)]. kdte an arbitrary element
of Lo (i, Y7.). If we show thatx attains its supremum olny, the result will follow from
James’ theorem [James (1964)]. Note that

Sup ¥ - X = sup (Y (@)X(w)) du(w)

YebLx velx Jwen

= / sup (¢ - X(w)) du(w),
weQ PEX(®)
where the second equality follows from Theorem 2.2 of Hiai and Umegaki (1977). Define
0:Q— 2" as
() ={y € X(w):y-x(w) = sup ¢ - X(w)}.
peX(w)
It follows from the weak compactness ¥f(w) that for allw € @, g(w) is non-empty.
Definef: Q2 xY — Rby

flw,y) = sup ¢ X(w) =y X(®).
peX(w)
Itis easy to see thatfor eaeh f (w, -) is continuous and for eagh f (-, y) is F-measurable
and hencef (., -) is jointly measurable. Then observe tia§ = f~1(0) N Gx and that
becausef ~1(0) andGy belong toF Q) B(Y), so doesG,. It follows from the Aumann
measurable selection theorem that there exist&-aneasurable function: 2 — Y such
thatz(w) € g(w) nu-a.e.w. Thus,z € Ly and we have

supg - X = / (Z(w)X(w)) du(w) =z - X.
pelx weQ

Becausex € L (u,Y,.) was chosen arbitrarily, we conclude that every element of
(Li(u, Y))* attains its supremum ohyx and this completes the proof of the fact that
L x is weakly compact. |



