
                            

Macroeconomic Dynamics, 1, 1997, 568–587. Printed in the United States of America.
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We study learning in Bayesian games (or games with differential information) with an
arbitrary number of bounded rational players, i.e., players who choose approximate best
response strategies [approximate Bayesian Nash Equilibrium (BNE) strategies] and who
also are allowed to be completely irrational in some states of the world. We show that
bounded rational players by repetition can reach a limit full information BNE outcome.
We also prove the converse, i.e., given a limit full information BNE outcome, we can
construct a sequence of bounded rational plays that converges to the limit full information
BNE outcome.
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1. INTRODUCTION

We study learning in Bayesian games (or games with differential information) by
an arbitrary number of bounded rational players. The description of the Bayesian
game is as follows. Let(Ä,F , µ) be a probability measure space interpreted as the
set of states of the world. A Bayesian game isG = {(Xα, uα,Fα, qα) : α ∈ A},
where

1. A denotes a set ofplayers,
2. Xα(ω) is the set ofactionsavailable to agentα when the state isω,
3. uα(ω, ·) :

∏
a∈A Xa(ω) → R is the state-dependentutility functionof agentα,

4. Fα denotes theprivate informationof agentα,
5. qα is theprior of agentα [qα is a density function or Radon Nikodym derivative, i.e.,∫

ω∈Ä
qα(ω) dµ(ω) = 1].

The strategyx̃α of player α is anFα-measurable function, wherẽxα(ω) ∈
Xα(ω) µ-a.e. Denote byEα(ω) the element inFα containingω. Given Eα(ω),
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define playerα’s conditional expected utilityvα(ω, x̃) for the strategy profile
x̃ = (x̃α)α∈A as

vα(ω, x̃) =
∫

ω′∈Eα(ω)

uα(ω, x̃(ω′))qα(ω′ | Eα(ω)) dµ(ω′),

whereqα(ω′ | Eα(ω)) denotes the conditional probability ofω′, givenEα(ω).
An ε-Bayesian Nash equilibrium(BNE) for G is a strategy profilẽx = (x̃α)α∈A

such that for allα ∈ A, for all ω ∈ D with µ(D) ≥ 1 − ε,

vα(ω, x̃) ≥ vα(ω, x̃−α, ỹα) − ε,

for all strategyyα. Theε-Bayesian Nash equilibrium captures the idea of bounded
rationality of players in the following sense: First, in come states whose measure
is less thanε, players can be completely irrational. Second, even in states where
agents are supposed to be rational, each player’s strategy is required to beε-best
response against others’ strategies. In that sense, we can call theε-BNEoutcome
asbounded rational playand the player who choosesε-BNEstrategiesbounded
rational. We denote byBNEε(G) the set of allε-Bayesian Nash equilibriumfor G.

Consider now the above game in a dynamic learning context. For eacht = 1,

2, . . . , let Gt = {(Xα, uα,F t
α, qα): α ∈ A} denote the Bayesian game in periodt ,

where
F t

α = F t−1
α

∨
σ(x̃t−1), (1)

andσ(x̃t−1) denotes theσ -algebra that theε-Bayesian Nash equilibrium strategy
x̃t−1 of the previous period generated.F t−1

α

∨
σ(x̃t−1) denotes the join, i.e., the

smallestσ -algebra containingF t−1
α andσ(x̃t−1). Consequently, for each playerα

and periodt ,
F t

α ⊆ F t+1
α ⊆ F t+2

α ⊆ · · · .
The above expression represents a learning process for playerα. This learn-
ing process generates a sequence of Bayesian games{Gt : t ∈ T} whereGt =
{(Xα, uα,F t

α, qα) : α ∈ A}.
Let us now define alimit full information Bayesian gameas

Ḡ = {(Xα, uα, F̄α, qα) : α ∈ A},
where

F̄α =
∨
t∈T

F t
α.

Our main objectives in this paper are to address the following questions:

(i) Can bounded rational players by repetition reach a limit full information BNE out-
come? That is, if the sequencex̃t ∈ BNEεt (Gt ) with εt → 0, can we extract a subse-
quence whose limit̃x∗ ∈ BNE(Ḡ)?
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(ii) If x̃∗ ∈ BNE(Ḡ) (i.e., x̃∗ is a limit full information BNE strategy forḠ), can we
construct a sequence of bounded rational playsx̃t [i.e., x̃t ∈ BNEε(Gt )] such thatx̃t

converges tõx∗?

Our main results show that the answers to both questions are affirmative whether
the number of players is finite or continuum.

We now compare our results to the ones in the Bayesian learning literature
[e.g., Feldman (1987), Jordan (1991), Kalai and Lehrer (1993), Koutsougeras and
Yannelis (1994), and Nyarko (1996)]. Jordan (1991) studied the iterative Bayesian
learning process for the finite-player, finite-strategy normal form games. He proved
that if players with common priors about others’ payoffs use Bayesian learning
in each period, myopic Bayesian Nash equilibrium of each period converges to
the complete information Nash equilibrium of the normal form game. Kalai and
Lehrer (1993) also showed that even nonmyopic Bayesian Nash equilibrium of the
repeated game converges to theε-Nash equilibrium of the complete information
normal form game if players use Bayesian updating in each period.

The framework we use in this paper is more general than those of the above
authors in the following sense: Players do not necessarily have common priors and
they are bounded rational during the learning process. Because our framework is
quite general, it may be the case that, in the limit, incomplete information still
prevails. In other words, it could be the case that

F̄α(ω) ⊂
( ∨

α∈A

Fα

)
(ω),

whereF̄α(ω) and(
∨

α∈AFα)(ω) are the smallest elements containingω in F̄α and∨
α∈AFα, respectively. Therefore, our equilibrium in the limit is not necessarily the

Nash equilibrium of the complete information game. It is a Bayesian Nash equilib-
rium of the limit full information game. However, if the learning through Bayesian
Nash equilibrium strategy of each period reaches the complete information in the
limit, i.e.,

F̄α(ω) ⊃
( ∨

α∈A

Fα

)
(ω),

then one of our convergence results (Theorem 1) is comparable to those of Jordan
(1991) and Kalai and Lehrer (1993) because a Bayesian Nash equilibrium of the
complete information game is just a Nash equilibrium.

Also note that we extend and generalize the previous results of Koutsougeras
and Yannelis (1994) in two different directions. First, we have interim, not ex ante,
expected utility function; and second, we allow for a continuum of players. Both
improvements necessitate new arguments.

Finally, the results of Feldman (1987), Jordan (1991), Kalai and Lehrer (1993),
and Nyarko (1996) are in the spirit of convergence to a limit full informationBNE
[question (i), above]. However, we also obtain the converse result, i.e., given a
BNEstrategyx̃∗ of a limit full information gameḠ, we can construct a sequence
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of ε-BNEstrategyx̃t for a gameGt that converges tõx∗. In other words, we can
always approximate the limit full informationBNE strategy by the repetition of
bounded rational play. This may be interpreted as a kind of stability of theBNE
outcome.

The rest of the paper proceeds as follows: Section 2 contains notation and
definitions. Section 3 describes the Bayesian game with a finite number of players,
and the main notions used in the paper are rigorously defined. In Section 4, we prove
that bounded rational players by repetition will reach the limit full information
BNE outcome and, conversely, given a limit full informationBNE outcome, we
can construct a sequence of bounded rational play that converges to the limit full
informationBNE outcome. Section 5 addresses the same questions as those in
Section 4 but in a Bayesian game with a continuum of players. Finally, we have
collected the technical results in the Appendix.

2. NOTATION AND DEFINITIONS

We begin with some notation and definitions.
Let 2X denote the set of all non-empty subsets of the setX. If X andY are

sets, thegraph of the set-valued function (or correspondence)ϕ : X → 2Y is
Gϕ = {(x, y) ∈ X × Y : y ∈ ϕ(x)}.

Let (Ä,F , µ) be a complete, finite measure space andY be a separable Banach
space. The correspondenceϕ : Ä → 2Y is said to have ameasurable graphif

Gϕ ∈ F
⊗
B(Y),

whereB(Y) denotes the Borelσ -algebra onY and
⊗

denotes the productσ -
algebra. The measurable functionf : Ä → Y is called ameasurable selectionof
ϕ : Ä → 2Y if

f (ω) ∈ ϕ(ω) for µ-a.e.ω.

Let (Ä,F , µ) be a finite measure space andY be a Banach space. Following
Diestel and Uhl (1977), the functionf : Ä → Y is calledsimple if there exist
y1, y2, . . . , yn in Y andE1, E2, . . . , En in F such that

f =
n∑

i =1

yi χ Ei ,

whereχEi (ω) = 1 if ω ∈ Ei andχEi (ω) = 0 if ω 6∈ Ei . A function f : Ä → Y
is calledF -measurableif there exists a sequence of simple functionsfn : Ä → Y
such that

lim
n→∞ ‖ fn(ω) − f (ω)‖ = 0 for µ-a.e.ω.

An F -measurable functionf : Ä → Y is said to beBochner integrableif there
exists a sequence of simple functions{ fn : n = 1, 2, . . .} such that

lim
n→∞

∫
ω∈Ä

‖ fn(ω) − f (ω)‖dµ(ω) = 0.
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In this case, for eachE ∈F , we define theintegralof f , denoted by
∫

E f (ω) dµ(ω),
as

lim
n→∞

∫
E

fn(ω) dµ(ω).

It can be shown [see Diestel and Uhl (1977, Theorem 2, p. 45)] that iff : Ä → Y
is anF -measurable function, thenf is Bochner integrable if and only if∫

Ä

‖ f (ω)‖dµ(ω) < ∞.

It turns out to be important in our paper that theDominated Convergence Theorem
holds for Bochner integrable functions. In particular, iffn : Ä → Y(n = 1, 2, . . .)

is a sequence of Bochner integrable functions such that forµ-a.e.ω,

lim
n→∞ fn(ω) = f (ω), and ‖ fn(ω)‖ ≤ g(ω),

whereg : Ä → R is an integrable function, thenf is Bochner integrable and

lim
n→∞

∫
ω∈Ä

‖ fn(ω) − f (ω)‖dµ(ω) = 0.

The space of equivalence classes ofY-valued Bochner integrable functions
y : Ä → Y, normed by

‖y‖=
∫

Ä

‖y(ω)‖dµ(ω),

is denoted byL1(µ, Y). It is a standard result that, normed by the functional‖·‖
above,L1(µ, Y) becomes a Banach space [see Diestel and Uhl (1977, p. 50)].

A Banach spaceY has theRadon-Nikodym property(RNP) with respect to the
measure space(T, T , ν) if for eachν-continuous vector measureG: T → Y of
bounded variation, there exists someg ∈ L1(ν, Y) such that for allE ∈ T ,

G(E) =
∫

E
g(t) dν(t).

It is a standard result [Diestel and Uhl (1977)] that ifY∗ (the norm dual ofY) has
the RNP with respect to(T, T , ν), then

(L1(ν, Y))∗ = L∞(ν, Y∗).

A correspondenceϕ : Ä → 2Y is said to beintegrably boundedif there exists a
functionh ∈ L1(µ, R) such that

sup{‖y‖ : y ∈ ϕ(ω)} ≤ h(ω) for µ-a.e.ω.

If {An : n = 1, 2, . . .} is a sequence of non-empty subsets of a Banach spaceY,
we denote byLs An the set of itslimit superiorpoints, i.e.,

Ls An =
{

x ∈ Y : x = lim
k→∞

xnk , xnk ∈ Ank for k = 1, 2, . . .
}

.
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3. THE GAME WITH DIFFERENTIAL INFORMATION

3.1. Bayesian Nash Equilibrium

Let (Ä,F , µ) be a complete, finite, separable measure space, whereÄ denotes the
set of states of the world andσ -algebraF , the set of events. LetY be a separable
Banach space andA be a set of agents (which is any finite or infinite set).

A Bayesian game(or agame with differential information) isG = {(Xα, uα,Fα,

qα) : α ∈ A}, where

1. Xα : Ä → 2Y is theaction set-valued functionof agentt , whereXα(ω) is the set of
actions available to agentα when the state isω;

2. for eachω ∈ Ä, uα(ω, ·) :
∏

a∈A Xa(ω) → R is theutility functionof agentα, which
can depend on the states;

3. Fα is a subσ -algebra ofF which denotes theprivate informationof agentα;
4. qα : Ä → R++ is theprior of agentα [qα is a density function or Radon Nikodym

derivative, i.e.,
∫

ω∈Ä
qα(ω) dµ(ω) = 1].

Let L Xα
denote the set of all Bochner integrable andFα-measurable selections

from the action set-valued functionXα : Ä → 2Y of agentα, i.e.,

L Xα
= {x̃α ∈ L1(µ, Y) : x̃α is Fα-measurable and x̃α(ω) ∈ Xα(ω) µ-a.e.ω}.

The typical element ofL Xα
is denoted as̃xα, and that ofXα(ω) asxα(ω) (or xα).

Let L X = ∏
a∈A L Xa andL X−α

= ∏
a 6=α L Xa . Given a Bayesian gameG, a strategy

for agentα is an element̃xα in L Xα
.

Throughout the paper, we assume that for eachα ∈ A, there exists a finite or
countable partition

∏
α of Ä. Moreover, theσ -algebraFα is generated by

∏
α. For

eachω ∈ Ä, let Eα(ω)(∈∏
α) denote the smallest set inFα containingω and we

assume that for allα, ∫
ω′∈Eα(ω)

qα(ω′) dµ(ω′) > 0.

For eachω ∈ Ä, the conditional (interim) expected utility functionof agentα,
vα(ω, ·, ·) : L X−α

× Xα(ω) → R is defined as

vα(ω, x̃−α, xα) =
∫

ω′∈Eα(ω)

uα(ω, x̃−α(ω′), xα)qα(ω′ | Eα(ω)) dµ(ω′),

where

qα(ω′ | Eα(ω)) =


0 if ω′ 6∈ Eα(ω)

qα(ω′)∫
ω̃∈Eα(ω)

qα(ω̃) dµ(ω̃)
if ω′ ∈ Eα(ω).

The functionvα(ω, x̃−α, xα) is interpreted as the conditional expected utility of
agentα using the actionxα when the realized state isω and the other agents employ
the strategy profilẽx−α, wherex̃−α is an element ofL X−α

.
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A Bayesian Nash equilibriumfor G [denoted byBNE(G)] is a strategy profile
x̃∗ ∈ L X such that for allα ∈ A,

vα

(
ω, x̃∗

−α, x̃∗
α(ω)

) = max
yα∈Xα(ω)

vα

(
ω, x̃∗

−α, yα

)
µ-a.e.ω.

Given anε > 0, the strategy profilẽx∗ is said to be anε-Bayesian Nash equi-
librium for G [denoted byBNEε(G)] if there existsE(⊂ Ä) with µ(E) < ε such
that for allα ∈ A, for all ω ∈ Ä/E,

vα

(
ω, x̃∗

−α, x̃∗
α(ω)

) ≥ vα

(
ω, x̃∗

−α, yα

) − ε,

for all yα ∈ Xα(ω).

3.2. Learning

Let T = {1, 2, . . .} denote the time horizon. For eacht ∈ T , let Gt denote the
Bayesian game at periodt andσ(x̃t ) denote theσ -algebra that the Bayesian Nash
equilibriumx̃t generates. At each period, playerα will have as private information
the information that the past periodε-Bayesian Nash equilibrium strategies have
generated. Hence, the information of playerα at periodt + 1,F t+1

α , is

F t+1
α = F t

α

∨
σ(x̃t ), (2)

wherex̃t ∈ BNE(Gt ) andF t
α

∨
σ(x̃t ) denotes the join, i.e., the smallestσ -algebra

containingF t
α andσ(x̃t ). Consequently, for each playerα and periodt ,

F t
α ⊆ F t+1

α ⊆ F t+2
α ⊆ · · ·.

This represents a learning process for playerα.
The learning process generates a sequence of Bayesian games{Gt : t ∈ T}, where

Gt = {(Xα, uα,F t
α, qα) : α ∈ A}. All terms inGt are defined as before except that

F t
α is theσ -algebra of playerα at timet given by (2). Let

L Xt
α
= {

x̃α ∈ L1(µ, Y) : x̃α is F t
α-measurable and x̃α(ω) ∈ Xα(ω) µ-a.e.ω

}
.

andL Xt = ∏
a∈AL Xt

a
.

Let
F̄α =

∨
t∈T

F t
α,

whereF̄α is interpreted as the pooled information of playerα over the entire time
horizonT . The Bayesian game

Ḡ = {(Xα, uα, F̄α, qα) : α ∈ A}
is called thelimit information Bayesian game. L X̄ andBNE(Ḡ) are defined for the
Bayesian gamēG in an analogous way with those in the gameGt .
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Note thatF̄α is not necessarily the same as the full information,
∨

α∈AFα, which
is the pooled information over all players.

3.3. Examples

Next, we present two examples that elaborate the Bayesian learning results we
derive in this paper.

Example 1

There are two states of the worldω1 andω2, and two players:

F1 = {{ω1}, {ω2}},
F2 = {{ω1, ω2}}.

Both players have the common priorµ on the states

µ(ω1) = 9/10, µ(ω2) = 1/10.

Player 1, the row player, choosesT or B and player 2, the column player, chooses
L or R. If stateω1 is realized, then the game to be played is

L R
T 1, 1 1, 0
B 0, 0 0, 2

and if stateω2 is realized, then the game is

L R
T 0, 1 0, 0
B 1, 0 1, 2

In periodt , the Bayesian Nash equilibrium is that player 1 choosesT in state
ω1, andB in stateω2, and player 2 choosesL regardless of the state.

Suppose that the state isω1. Then(T, L) will be actually played in periodt .
After the play in periodt , player 2 knows that the state isω1 by observing the
choice ofT in period t by player 1. Then from periodt + 1 on, they will play
(T, L), which is a Bayesian Nash equilibrium given the new information. This is
in turn the Nash equilibrium for stateω1.

Suppose that the realized state isω2. Then the actual play in periodt will be
(B, L) from Bayesian Nash equilibrium. From periodt + 1 on, player 2 knows
that the state isω2 by observing the choice ofB in periodt by player 1. Therefore,
from periodt +1 on, they will play(B, R), which is a Bayesian Nash equilibrium,
given the information. This is the Nash equilibrium for stateω2.

This example is the one in which both players learn the true state, and the play
path of the Bayesian Nash equilibrium converges to the complete information Nash
equilibrium by Bayesian learning. However, the next example shows that in some
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cases, the true state is not revealed until the end, and the play path only converges
to the Bayesian Nash equilibrium.

Example 2

The structure of the game is the same as the above example except the following:
If stateω1 is realized, then the game to be played is

L R
T 1, 1 1, 0
B 0, 0 0, 0

and if stateω2 is realized, then the game is

L R
T 1, 1 1, 2
B 0, 0 0, 0

In periodt , the Bayesian Nash equilibrium is that player 1 choosesT and player
2 choosesL regardless of the state.

Suppose that stateω2 is realized. In this case, player 2 cannot tell the true state,
even after observing the action in periodt by player 1. So, the play path will be
(T, L) forever, which is just a realization of a Bayesian Nash equilibrium. Notice
that(T, R) is the complete information Nash equilibrium for stateω2.

4. LEARNING IN FINITE BAYESIAN GAMES

We can now state the assumptions needed for our main theorems.

Assumption 1. Xα : Ä → 2Y is a non-empty, convex, weakly compact valued and
integrably bounded correspondence having anFα-measurable graph, i.e.,GXα

∈
Fα

⊗
B(Y).

Assumption 2.

(i) For eachω ∈ Ä, uα(ω, ·) :
∏

a∈A Xa(ω) → R is continuous whereXa(ω) is endowed
with the weak topology.

(ii) For eachx ∈ ∏
a∈AYa with Ya = Y, uα(·, x) : Ä → R isF -measurable.

(iii) uα is integrably bounded.

Remark. Under Assumptions 1 and 2, and provided thatuα(ω, ·) is concave,
Kim and Yannelis (1996) have shown thatBNE(G) 6= Ø, and thereforeBNEε(G) 6=
Ø as well.

We now state our first result that bounded rational play converges to a limit full
information BNE.



                 

LEARNING BY BOUNDED RATIONAL PLAYERS 577

THEOREM 1. Let {Gt : t ∈ T} be a sequence of Bayesian games satisfying
Assumptions1 and2 and letx̃t ∈ BNEεt (Gt ), whereεt → 0. Then, there exists a
subsequence{x̃tn : n = 1, 2, . . .} of {x̃t : t ∈ T} such thatx̃tn converges weakly to
x̃∗ ∈ BNE(Ḡ).

Proof. First notice that, by Lemma A.3 in the Appendix, eachL Xt
α

is weakly
compact and so isL Xt = ∏

a∈A L Xt
α
. By Lemma A.3, L̄X is weakly compact. Let

B = {x̃t : t ∈ T}. Becausẽxt ∈ L Xt ⊂ L X̄ andL X̄ is weakly compact, it follows
that the weak closure ofB, denoted byw − cl B, is weakly compact. By the
Eberlein–Smulian theorem [Dunford and Schwartz (1958, p. 430)],w − cl B is
weakly sequentially compact. Clearly, the weak limit ofx̃t , denoted bỹx∗, belongs
to w − cl B. From Whitley’s theorem [Aliprantis and Burkinshaw (1985, Lemma
10.12, p. 155)], we know that, if̃x∗ ∈ w − cl B, then there exists a sequence
{x̃tn : n = 1, 2, . . .} such thatx̃tn converges weakly tõx∗. Becausẽxtn ∈ L Xtn

⊂
L X̄, it follows that x̃∗ ∈ L X̄ and we can conclude thatx̃tn

α is F̄α-measurable.
Now fix α ∈ A. Let yα ∈ Xα(ω). We need to show that a.e.ω ∈ Ä,

vα

(
ω, x̃∗

−α, x̃∗
α(ω)

) ≥ vα

(
ω, x̃∗

−α, yα

)
,

where

vα

(
ω, x̃∗

−α, yα

) =
∫

ω′∈Eα(ω)

uα(ω, x̃−α(ω′), yα)qα(ω′ | Ēα(ω)) dµ(ω′).

Becausẽxt ∈ BNEεt (Gt ), there existsDt (⊂ Ä) with µ(Dt ) ≥ 1− εt such that for
all α ∈ A, for all ω ∈ Dt ,

vt
α

(
ω, x̃t

−α, x̃t
α(ω)

) ≥ vt
α

(
ω, x̃t

−α, yα

) − εt ,

where

vt
α

(
ω, x̃t

−α, yα

) =
∫

ω′∈Et
α(ω)

uα

(
ω, x̃t

−α(ω′), yα

)
qα

(
ω′ | Et

α(ω)
)

dµ(ω′).

Let D = LsDt . Then,µ(D) = 1 becauseεt → 0. By taking a subsequence if
necessary, we have that for allt , for all ω ∈ D,

vt
α

(
ω, x̃t

−α, x̃t
α(ω)

) ≥ vt
α

(
ω, x̃t

−α, yα

) − εt . (3)

Becausex̃t converges weakly tõx∗, it follows from Lemma A.1 in the Ap-
pendix thatvt

α(ω, x̃t
−α, x̃t

α(ω)) converges tovα(ω, x̃∗
−α, x̃∗

α(ω)) andvt
α(ω, x̃t

−α, yα)

converges tovα(ω, x̃∗
−α, yα) ast → ∞. Thus, it follows from (3) that a.e.ω ∈ Ä,

vα

(
ω, x̃∗

−α, x̃∗
α(ω)

) ≥ vα

(
ω, x̃∗

−α, yα

)
,

and this completes the proof of the theorem.
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COROLLARY 1. Let {Gt : t ∈ T} be a sequence of Bayesian games satisfying
Assumptions1 and 2 and let x̃t ∈ BNE(Gt ). Then, there exists a subsequence
{x̃tn : n = 1, 2, . . .} of {x̃t : t ∈ T} such that̃xtn converges weakly tõx∗ ∈ BNE(Ḡ).

Proof. The conclusion follows if we letεt = 0 for all t in Theorem 1.

Remark. Theorem 1 and Corollary 1 still hold ifA is any infinite set. The proof
remains unchanged. However, the proof of Theorem 2 fails ifA is infinite.

THEOREM 2. Let {Gt : t ∈ T} be a sequence of Bayesian games satisfying
Assumptions1 and 2 and let x̃∗ ∈ BNE(Ḡ). Then, for any ε > 0, there exists
{x̃t : t ∈ T},wherex̃t ∈ BNEε(Gt ),such that̃xt converges in L1(µ, Y)-norm tox̃∗.

Proof. Letx̃t
α = E[ x̃∗

α |F t
α]. Note that

E
[
x̃∗

α

∣∣F t
α

] = E
[
E

[
x̃∗

α

∣∣F t+1
α

] ∣∣F t
α

]
= E

[
x̃t+1

α

∣∣F t
α

]
.

Hence,{x̃t
α,F t

α}∞t=1 is a martingale inL Xt
α
⊂ L1(µ, Y) and by the martingale con-

vergence theorem,̃xt
α converges in theL1(µ, Y)-norm (and hence weakly tõx∗

α).
To complete the proof, it is enough to show thatx̃t lies in BNEε(Gt ) for t big
enough. Suppose, by way of contradiction, that for infinitely manyt , there exists
Dt with µ(Dt ) ≥ ε andyt

α ∈ Xt
α such that

vt
α

(
ω, x̃t

−α, yt
α

) ≥ vt
α

(
ω, x̃t

−α, x̃t
α(ω)

) + ε,

for all ω ∈ Dt . Let D = LsDt . Thenµ(D) ≥ ε. By taking a subsequence if neces-
sary, we have that for allt there existsyt

α ∈ Xα(ω) such that

vt
α

(
ω, x̃t

−α, yt
α

) ≥ vt
α

(
ω, x̃t

−α, x̃t
α(ω)

) + ε,

for all ω ∈ D. BecauseXα(ω) is weakly compact, we can assume thatyt
α converges

weakly to somey∗
α ∈ Xα(ω) by taking a subsequence if necessary. Then it follows

from Lemma A.1 in the Appendix that for allω ∈ D,

vα

(
ω, x̃∗

−α, y∗
α

) ≥ vα

(
ω, x̃∗

−α, x̃∗
α(ω)

) + ε > vα

(
ω, x̃∗

−α, x̃∗
α(ω)

)
,

which contradicts the fact thatx̃∗ ∈ BNE(Ḡ). The above contradiction establishes
the validity of our theorem.

5. LEARNING IN CONTINUUM BAYESIAN GAMES

In this section, we study the Bayesian gameG with a measure space of agents. A
Bayesian game with a measure space of agents(A,A, ν) is G = {(X, u,Fα, qα) :
α ∈ A}, where

1. X : A × Ä → 2Y is theaction set-valued function, whereX(α, ω) is interpreted as
the set of actions available to agentα when the state isω;
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2. for each(α, ω) ∈ A×Ä, u(α, ω, ·, ·) : L1(ν, Y)×X(α, ω) → R is theutility function,
whereu(α, ω, x, xα) is interpreted as the utility of agentα using actionxα when the
state isω and other players use the joint actionx;

3. Fα is a subσ -algebra ofF that denotes theprivate informationof agentα;
4. qα : Ä → R++ is theprior of agentα.

As before, letL Xα
denote the set of all Bochner integrable,Fα-measurable

selections from the action set-valued functionX(t) of agentα, i.e.,
L Xα

= {x̃(α) ∈ L1(µ, Y) : x̃(α, ·) : Ä → Y is Fα-measurable and

x̃(α, ω) ∈ X(α, ω) µ-a.e.ω}.
Let

L X = {x̃ ∈ L1(ν, L1(µ, Y)) : x̃(α) ∈ L Xα
for ν-a.e.α}.

In a Bayesian game with a measure space of agents, astrategyfor agentα is an
element inL Xα

and ajoint strategy profileis an element inL X. For each(α, ω) ∈
A × Ä, the conditional expected utility function of agentα, v(α, ω, ·, ·) : L X ×
X(α, ω) → R is defined as

v(α, ω, x̃, xα) =
∫

ω′∈Eα(ω)

u(α, ω, x̃(ω′), xα)qα(ω′ | Eα(ω)) dµ(ω′),

where

qα(ω′ | Eα(ω)) =


0 if ω′ 6∈ Eα(ω)

qα(ω′)∫
ω̃∈Eα(ω)

qα(ω̃) dµ(ω̃)
if ω′ ∈ Eα(ω).

A Bayesian Nash equilibriumfor G is a strategy profilẽx∗ ∈ L X such that forν-a.e.
α, for µ-a.e.ω,

v(α, ω, x̃∗, x̃∗(α, ω)) = max
y∈X(α,ω)

v(α, ω, x̃∗, y).

We can now state the assumptions needed for the proof of the next theorem.

Assumption 3.

(i) X : A × Ä → 2Y is a non-empty, convex, weakly compact valued and integrably
bounded correspondence having anA

⊗
F -measurable graph, i.e.,GX ∈A⊗

F
⊗
B(Y).

(ii) For eachα ∈ A, X(α, ·) : Ä → 2Y has anFα-measurable graph, i.e.,GX(α)
∈Fα⊗

B(Y).

Assumption 4.

(i) For each(α, ω) ∈ A × Ä, u(α, ω, ·, ·) : L1(ν, Y) × X(α, ω) → R is continuous
whereL1(ν, Y) andX(α, ω) are endowed with the weak topologies.
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(ii) For each(x, y) ∈ L1(ν, Y) × Y, u(·, ·, x, y) : A × Ä → R isA
⊗
F -measurable.

(iii) For eachα ∈ A, u(α, ·, ·, ·) is integrably bounded.

Assumption 5.

(i) Ä is a countable set.
(ii) The dualY∗ of Y has the RNP (see Section 2 for definition) with respect to(A,A, ν).

Remark. Note that Assumptions 3 and 4 are the same as Assumptions 1 and 2.
The only new assumption here is Assumption 5, which we need to prove the weak
continuity of the expected utility function in Lemma A.2 in the Appendix. IfÄ is
uncountable and each agent’s information partition is uncountable, then to prove
the weak continuity of expected utility we need the following assumption:

Assumption 5′. For each(α, ω, xα) ∈ A× Ä × Y, u(α, ω, ·, xα) : L1(ν, Y) →
R is linear.

Assumption 5′ is rather a strong assumption but it is necessary to prove the weak
continuity if Ä is uncountable [see, for example, Balder and Yannelis (1993)].
Instead, we use Assumption 5 for the result below.

Given anε > 0, the strategy profilẽx∗ is said to be anε-BNE for G if there
exist B(⊂ A) andE(⊂ Ä) with ν(B) < ε, µ(E) < ε such that for allα ∈ A/B,
for all ω ∈ Ä/E,

v(α, ω, x̃∗, x̃∗(α, ω)) ≥ v(α, ω, x̃∗, y) − ε,

for all y ∈ X(α, ω).

THEOREM 3. Let {Gt : t ∈ T} be a sequence of Bayesian games satisfying
Assumptions3–5 and letx̃t ∈ BNEεt (G

t ), whereεt → 0. Then, there exists a sub-
sequence{x̃tn : n = 1, 2, . . .} of {x̃t : t ∈ T} such thatx̃tn converges weakly to
x̃∗ ∈ BNE(Ḡ).

Proof. Let B = {x̃t : t ∈ T}. Becausẽxt ∈ L Xt ⊂ L X̄ and L X̄ is weakly
compact, it follows that the weak closure ofB, denoted byw − cl B, is weakly
compact. As in the proof of Theorem 1 we can extract a sequence{x̃tn : n =
1, 2, . . .} from B such that̃xtn converges weakly tõx∗. Becausẽxtn ∈ L Xtn

⊂ L X̄,
it follows that x̃∗ ∈ L X̄, and thereforẽxtn

α is F̄α-measurable.
We need to show that forν-a.e.α, for µ-a.e.ω,

v(α, ω, x̃∗, x̃∗(α, ω)) ≥ v(α, ω, x̃∗, y),

for all y ∈ X(α, ω), where

v(α, ω, x̃, y) =
∫

ω′∈Eα(ω)

u(α, ω, x̃(ω′), y)qα(ω′ | Ēα(ω)) dµ(ω′).
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Becausẽxt ∈ BNEεt (Gt ), there existBt (⊂ A) andDt (⊂ Ä) with ν(Bt ) ≥ 1 − εt

andµ(Dt ) ≥ 1 − εt such that for allα ∈ Bt , for all ω ∈ Dt ,

vt (α, ω, x̃t , x̃t (α, ω)) ≥ vt (α, ω, x̃t , y) − εt ,

for all y ∈ X(α, ω), where

vt (α, ω, x̃t , y) =
∫

ω′∈Et
α(ω)

u(α, ω, x̃t (ω′), y)qα

(
ω′ ∣∣ Et

α(ω)
)

dµ(ω′).

Let B = LsBt andD = LsDt . Then,ν(B) = 1 andµ(D) = 1 becauseεt → 0.
By taking a subsequence if necessary, we have that, for allt , for all α ∈ B, for all
ω ∈ D,

vt (α, ω, x̃t , x̃t (α, ω)) ≥ vt (α, ω, x̃t , y) − εt , (4)

for all y ∈ X(α, ω). Becausẽxt converges weakly tõx∗, it follows from Lemma A.2
in the Appendix thatvt (α, ω, x̃t , x̃t (α, ω))→ v(α, ω, x̃∗, x̃∗(α, ω)) andvt (α, ω,

x̃t , y) → v(α, ω, x̃∗, y) ast → ∞. So, it follows from equation (4) that forν-a.e.α,
µ-a.e.ω,

v(α, ω, x̃∗, x̃∗(α, ω)) ≥ v(α, ω, x̃∗, y),

for all y ∈ X(α, ω).

COROLLARY 2. Let {Gt : t ∈ T} be a sequence of Bayesian games satisfying
Assumptions3–5and letx̃t ∈ BNE(Gt ). Then, there exists a subsequence{x̃tn : n =
1, 2, . . .} of {x̃t : t ∈ T} such thatx̃tn converges weakly tõx∗ ∈ BNE(Ḡ).

Proof. The conclusion follows if we letεt = 0 for all t in Theorem 3.

THEOREM 4. Let {Gt : t ∈ T} be a sequence of Bayesian games satisfying
Assumptions3–5 and letx̃∗ ∈ BNE(Ḡ). Then, for anyε > 0, there exists{x̃t : t ∈
T}, wherex̃t ∈ BNEε(Gt ), such thatx̃t converges tõx∗ in L1(µ, Y)-norm.

Proof. Letx̃t (α) = E[ x̃∗(α)|F t
α]. Note that

E
[
x̃∗(α)

∣∣F t
α

] = E
[
E

[
x̃∗(α)

∣∣F t+1
α

] ∣∣F t
α

]
= E

[
x̃t+1(α)

∣∣F t
α

]
.

Hence,{x̃t (α),F t
α}∞t=1 is a martingale inL Xt (α) ⊂ L1(µ, Y) and by the martingale

convergence theorem,x̃t (α) converges in theL1(µ, Y)-norm and hence weakly
to x̃∗(α). To complete the proof, it is enough to show thatx̃t lies inBNEε(Gt ) for
t big enough. Suppose, by way of contradiction, that for infinitely manyt , there
exist Bt (⊂ A) andDt (⊂ Ä) andyt (α, ω) ∈ X(α, ω) with ν(Bt ) ≥ ε, µ(Dt ) ≥ ε

such that
vt (α, ω, x̃t , yt (α, ω)) ≥ vt (α, ω, x̃t , x̃t (α, ω)) + ε,

for all α ∈ Bt , for all ω ∈ Et . Let B = LsBt and D = LsDt . Thenν(B) ≥ ε

andµ(D) ≥ ε. By taking a subsequence if necessary, we have that, for all,t there
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existsyt (α, ω) ∈ X(α, ω) such that

vt (α, ω, x̃t , yt (α, ω)) ≥ vt (α, ω, x̃t , x̃t (α, ω)) + ε,

for all α ∈ B, for all ω ∈ D. BecauseX(α, ω) is weakly compact, we can assume
that yt (α, ω) converges weakly to somey∗(α, ω)∈ X(α, ω) by taking a subse-
quence if necessary. Then it follows from Lemma A.2 in the Appendix that for all
α ∈ B, for all ω ∈ E,

v(α, ω, x̃∗, y(α, ω)) ≥ v(α, ω, x̃∗, x̃∗(α, ω)) + ε > v(α, ω, x̃∗, x̃∗(α, ω)),

which contradicts that̃x∗ ∈ BNE(Ḡ).

6. CONCLUSIONS

We study learning in Bayesian games with an arbitrary number of players. In par-
ticular, we show that in a very general setting (i.e., under quite weak assumptions)
repeated bounded rational play will converge to a limit full information Bayesian
Nash equilibrium. This result holds for not only a finite or countable number of
players (Theorem 1), but even for a continuum (Theorem 3). Moreover, we show
the converse, i.e., given a limit full information Bayesian Nash equilibrium strategy
we can construct a sequence of bounded rational plays that converges to a limit full
information Bayesian Nash equilibrium outcome. This result also holds for finitely
many players (Theorem 2) and for a continuum of players (Theorem 4), as well.
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APPENDIX

We begin the Appendix by proving the weak continuity of the conditional expected utility
function of each agent. For eachα ∈ A, for eachω ∈ Ä, definevt

α(ω, ·, ·) : L Xt
−α

× Xα → R
andvα(ω, ·, ·) : L X̄−α

× Xα → R as

vt
α

(
ω, x̃t

−α, yt
α

) =
∫

ω′∈Ä

uα

(
ω, x̃t

−α(ω
′), yt

α

)
qα

(
ω′ ∣∣ Et

α(ω)
)

dµ(ω′),

and

vα(ω, x̃−α, yα) =
∫

ω′∈Ä

uα

(
ω, x̃t

−α(ω
′), yα

)
qα

(
ω′ ∣∣ Ē

t
α(ω)

)
dµ(ω′).

LEMMA A.1. Assume that for eachωÄ, uα(ω, ·) :
∏

a∈A Xa(ω) → R is weakly con-
tinuous. If x̃t converges weakly tõx∗ and yt

α converges weakly to y∗
α, then for eachω,

vt
α(ω, x̃t

−α, yt
α) converges tovα(ω, x̃−α, yα).

Proof. We prove this via two steps. First, we show:

Claim A.1. For eacha ∈ A, for eachω ∈ Ä, the sequence{x̃t
a(ω)} in Xa converges weakly

to x̃a(ω).
Proof of Claim A.1. Fixω ∈ Ä. To prove the claim, we need to show that for ally∗ ∈ Y∗,

y∗(x̃t
a(ω)) converges toy∗(x̃a(ω)). Because

∏
a = {E1

a, E2
a, . . .} is a countable partition of

Ä of agents, x̃t
a andx̃a can be written as

x̃t
a =

∞∑
k=1

xn,k
a χEk

α
and x̃a =

∞∑
k=1

xk
aχEk

a
,

wherexn,k
a , xk

a ∈ Xa. Note that for eachs∈ T , there exists a uniqueEk(ω)
a ∈ ∏

a with ω ∈
Ek(ω)

a . Then,

y∗(x̃t
α(ω)

) =
∫

ω′∈Ä

x̃t
a(ω)

y∗

µ
(

Ek(ω)
a

)χEk(ω)
a

(ω′) dµ(ω′)

=
∫

ω′∈Ä

x̃t
a(ω

′)
y∗

µ
(

Ek(ω)
a

)χEk(ω)
a

(ω′) dµ(ω′) (A.1)

becausẽxt
a(ω

′) = x̃t
a(ω) if ω′ ∈ Ek(ω)

a . Note that

y∗

µ
(

Ek(ω)
a

) ∈ L∞(µ, Y∗) and x̃t
a ∈ L1(µ, Y).

Becausẽxt
a converges tõxa weakly inL1(µ, Y), equation (A.1) converges to∫

ω′∈Ä

x̃a(ω
′)

y∗

µ
(

Ek(ω)
a

)χEk(ω)
a

(ω′) dµ(ω′) = y∗(x̃a(ω)).

Because the choice ofy∗ ∈ Y∗ is arbitrary,x̃t
a(ω) converges weakly tõxa(ω). This proves

Claim A.1.
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Claim A.2. For eachω ∈ Ä,∫
ω′

uα

(
ω, x̃t

−α(ω
′), yt

α

)
qα

(
ω′ ∣∣ Et

α(ω)
)

dµ(ω′)

→
∫

ω′
uα(ω, x̃−α(ω

′), yα)qα(ω
′ | Ēα(ω)) dµ(ω′).

Proof of Claim A.2. By Claim A.1, for eacha ∈ A, for eachω ∈ Ä, x̃t
a(ω) con-

verges weakly tõxa(ω). By the continuity ofuα(ω, ·, ·) with the given topologies, for each
ω ∈ Ä, uα(ω, x̃t

−α(ω), yt
α) converges touα(ω, x̃−α(ω), yα). BecauseEt

α(ω) ⊃ Et+1
α (ω) ⊃

Ēα(ω) for all t , µ(Et
α(ω)) → µ(Ēα(ω)). So, by the definition ofqα, qα(ω

′ | Et
α(ω)) →

qα(ω
′ | Ēα(ω)) a.e.ω. Therefore, by the Lebesgue dominated convergence theorem,∫

ω′
uα

(
ω, x̃t

−α(ω
′), yt

α

)
qα

(
ω′ | Et

α(ω)
)

dµ(ω′)

→
∫

ω′
uα(ω, x̃−α(ω

′), yα)qα(ω
′ | Ēα(ω)) dµ(ω′).

For eachα ∈ A, for eachω ∈ Ä, definevt (α, ω, ·, ·) : L1(ν, L Xt ) × Xα(ω) → R and
v(α, ω, ·, ·) : L1(ν, L X̄) × Xα(ω) → R as

vt
(
α, ω, x̃t , yt

α

) =
∫

ω′∈Ä

u
(
α, ω, x̃t (ω′), yt

α

)
qα

(
ω′ ∣∣ Et

α(ω)
)

dµ(ω′),

and

v(α, ω, x̃, yα) =
∫

ω′∈Ä

u(α, ω, x̃(ω′), yα)qα(ω
′ | Ēα(ω)) dµ(ω′).

LEMMA A.2. Let (A,A, ν) and (Ä,F , µ) be finite measure spaces, whereÄ is a
countable set. Let X be a weakly compact subset of the separable Banach space Y whose
dual Y∗ has the RNP (Radon–Nikodym property) with respect to(T,T , ν). Assume that for
eachα ∈ A, for eachω ∈ Ä, u(α, ω, ·, ·) : L1(ν, X) × X → R is weakly continuous. If̃xt

converges weakly tõx∗ and yt
α converges weakly to y∗

α, then for eachω, vt (α, ω, x̃t
−α, yt

α)

converges tov(α, ω, x̃−α, yα).

Proof. We prove this via two steps. First, we show
Claim A.3. For eachω ∈ Ä, the sequence{x̃t (ω)} in L1(ν, X) converges weakly to

x̃(ω).
Proof of Claim A.3. Fixω ∈ Ä. To prove the claim, we need to show that for all

y∗ ∈ [L1(ν, Y)]∗ = L∞(ν, Y∗) [by the RNP ofY∗ with respect to(A,A, ν)],∫
∞∈A

x̃t
α(ω)y∗(α) dν(α) converges to

∫
α∈A

x̃α(ω)y∗(t) dν(t).

Because
∏

α
= {E1

α, E2
α, . . .} is a countable partition ofÄ of agentt , x̃t

α and x̃α can be
written as

x̃t
α =

∞∑
k=1

xn,k
α χEk

α
and x̃α =

∞∑
k=1

xk
αχEk

α
,
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wherexn,k
α , xk

α ∈ X. Note that for eacht ∈ T , there exists a uniqueEk(ω)
α ∈ ∏

α
with

ω ∈ Ek(ω)
α . Moreover, for eacht ∈ T ,

µ
(

Ek(ω)
α

)
> µ({ω}) > 0.

First, choosey∗ ∈ L∞(ν, Y∗) such that

y∗ = a∗χT0, where a∗ ∈ Y∗ and T0 ∈ T .

Then,∫
t∈T

x̃t
α(ω)y∗(t) dν(t) =

∫
t∈T0

x̃t
α(ω)a∗ dν(t)

=
∫

t∈T0

[∫
ω′∈Ä

x̃t
α(ω)

a∗

µ
(

Ek(ω)
α

)χEk(ω)
α

(ω′) dµ(ω′)

]
dν(t)

=
∫

t∈T0

[∫
ω′∈Ä

x̃t
α(ω

′)
a∗

µ
(

Ek(ω)
α

)χEk(ω)
α

(ω′) dµ(ω′)

]
dν(t) (A.2)

becausẽxt
α(ω

′) = x̃t
α(ω) if ω′ ∈ Ek(ω)

α . Note that, for eacht ∈ T ,

a∗

µ
(

Ek(ω)
α

) ∈ L∞(µ, Y∗) and x̃t
α ∈ L1(µ, Y).

Becauseµ(Ek(ω)
α ) is uniformly bounded from below byµ({ω}), the mappingt 7→

[a∗/µ(Ek(ω)
α )]χEk(ω)

α
is in L∞(ν, L∞(µ, Y∗)). Becausẽxt converges weakly tõx in L1(ν,

L1(µ, Y)) equation (A.2) converges to

∫
t∈T0

[∫
ω′∈Ä

x̃α(ω
′)

a∗

µ
(

Ek(ω)
α

)χEk(ω)
α

(ω′) dµ(ω′)

]
dν(t) =

∫
t∈T0

x̃α(ω)a∗ dν(t)

=
∫

t∈T

x̃α(ω)y∗(t) dν(t),

where the first equality holds becausex̃t
α(ω

′) = x̃t
α(ω) if ω′ ∈ Ek(ω)

α . So, for any simple
function y∗ ∈ L∞(ν, Y∗),∫

t∈T

x̃t
α(ω)y∗(t) dν(t) converges to

∫
t∈T

x̃α(ω)y∗(t) dν(t).

Next, let y∗ ∈ L∞(ν, Y∗). Because(T,F , ν) is a finite measure space, there exists a
sequence of simple functions converging toy∗ uniformly (recall the Egoroff theorem). Let
ε > 0 be given and leth ∈ L1(ν, Y) be a simple function such that
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‖y∗ − h‖ <
ε

p
where p > sup

{∫
t∈T

‖x̃t
α(ω)‖dν(t),

∫
t∈T

‖ x̃α(ω)‖dν(t) : n = 1, 2, . . .

}
.

Then,

∣∣∣∣∫
t∈T

x̃t
α(ω)y∗(t) dν(t) −

∫
t∈T

x̃α(ω)y∗(t) dν(t)

∣∣∣∣
≤

∣∣∣∣∫
t∈T

x̃t
α(ω)(y∗(t) − h(t)) dν(t)

∣∣∣∣ +
∣∣∣∣∫

t∈T

(
x̃t

α(ω) − x̃α(ω)
)
h(t) dν(t)

∣∣∣∣
+

∣∣∣∣∫
t∈T

x̃α(ω)(h(t) − y∗(t)) dν(t)

∣∣∣∣
≤ 2ε +

∣∣∣∣∫
t∈T

(
x̃t

α(ω) − x̃α(ω)
)
h(t) dν(t)

∣∣∣∣.
Becauseh is simple, we obtain

lim
n→∞

∣∣∣∣∫
t∈T

(
x̃t

α(ω) − x̃α(ω)
)
h(t) dν(t)

∣∣∣∣ = 0.

Thus, the above estimates imply that

∫
t∈T

x̃t
α(ω)y∗(t) dν(t) converges to

∫
t∈T

x̃α(ω)y∗(t) dν(t),

for all y∗ ∈ L∞(ν, Y∗). This proves Claim A.3.
Claim A.4. For eachα ∈ A, for eachω ∈ Ä,∫

ω′
u
(
α, ω, x̃t (ω′), yt

α

)
qα

(
ω′ ∣∣ Et

α(ω)
)

dµ(ω′)

→
∫

ω′
u(α, ω, x̃(ω′), yα)qα(ω

′ | Ēα(ω)) dµ(ω′).

Proof of Claim A.4. By Claim A.3, for eachω ∈ Ä, x̃t (ω) converges weakly tõx(ω).
By the weak continuity ofu(α, ω, ·, ·), for eachα ∈ A, for eachω ∈ Ä, u(α, ω, x̃t (ω), yt

α)

converges tou(α, ω, x̃(ω), yα). BecauseEt
α(ω) ⊃ Et+1

α (ω) ⊃ Ēα(ω) for all t ,µ(Et
α(ω)) →

µ(Ēα(ω)). So, by the definition ofqα, qα(ω
′ | Et

α(ω)) → qα(ω
′ | Ēα(ω)) a.e.ω. Therefore,
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by the Lebesgue dominated convergence theorem,∫
ω′

u
(
α, ω, x̃t (ω′), yt

α

)
qα

(
ω′∣∣Et

α(ω)
)

dµ(ω′)

→
∫

ω′
u(α, ω, x̃(ω′), yα)qα(ω

′ | Ēα(ω)) dµ(ω′).

The Lemma below is known as Diestel’s theorem and several alternative proofs can be
found in the literature. For completeness, we provide a proof [see also Yannelis (1991, p. 7)
and the reference therein].

LEMMA A.3. Let Y be a separable Banach space and X: Ä → 2Y be an integrably
bounded, weakly compact, convex valued correspondence. Then

L X = {x̃ ∈ L1(µ, Y) : x̃ is F -measurable and x̃(ω) ∈ X(ω) µ-a.e.ω}
is weakly compact in L1(µ, Y).

Proof. The proof is based on the celebrated theorem of James (1964). Note that the
dual of L1(µ, Y) is L∞(µ, Y∗

w∗) wherew∗ denotes thew∗-topology, i.e.,L1(µ, Y)∗ =
L∞(µ, Y∗

w∗) [see, for instance, Tulcea and Tulcea (1969)]. Letx be an arbitrary element
of L∞(µ, Y∗

w∗). If we show thatx attains its supremum onL X , the result will follow from
James’ theorem [James (1964)]. Note that

sup
ψ∈L X

ψ · x = sup
ψ∈L X

∫
ω∈Ä

(ψ(ω)x(ω)) dµ(ω)

=
∫

ω∈Ä

sup
ϕ∈X(ω)

(ϕ · x(ω)) dµ(ω),

where the second equality follows from Theorem 2.2 of Hiai and Umegaki (1977). Define
g : Ä → 2Y as

g(ω) = {y ∈ X(ω) : y · x(ω) = sup
ϕ∈X(ω)

ϕ · x(ω)}.

It follows from the weak compactness ofX(ω) that for all ω ∈ Ä, g(ω) is non-empty.
Define f : Ä × Y → R by

f (ω, y) = sup
ϕ∈X(ω)

ϕ · x(ω) − y · x(ω).

It is easy to see that for eachω, f (ω, ·) is continuous and for eachy, f (·, y) isF -measurable
and hencef (·, ·) is jointly measurable. Then observe thatGg = f −1(0) ∩ GX and that
becausef −1(0) andGX belong toF

⊗
B(Y), so doesGg. It follows from the Aumann

measurable selection theorem that there exists anF -measurable functionz : Ä → Y such
thatz(ω) ∈ g(ω) µ-a.e.ω. Thus,z ∈ L X and we have

sup
ϕ∈L X

ϕ · x =
∫

ω∈Ä

(z(ω)x(ω)) dµ(ω) = z · x.

Becausex ∈ L∞(µ, Y∗
w∗) was chosen arbitrarily, we conclude that every element of

(L1(µ, Y))∗ attains its supremum onL X and this completes the proof of the fact that
L X is weakly compact.


