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a b s t r a c t

Under the Bayesian–Walrasian Equilibrium (BWE) (see Balder and Yannelis, 2009), agents
form price estimates based on their own private information, and in terms of those prices
they can formulate estimated budget sets. Then, based on his/her own private information,
each agent maximizes interim expected utility subject to his/her own estimated budget
set. From the imprecision due to the price estimation it follows that the resulting equilib-
rium allocation may not clear the markets for every state of nature, i.e., exact feasibility of
allocations may not occur. This paper shows that if the economy is repeated from period
to period and agents refine their private information by observing the past BWE, then in
the limit all agents will obtain the same information and market clearing will be reached.
The converse is also true. The analysis provides a new way of looking at the asymmetric
equilibrium which has a statistical foundation.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is by now well known that a Rational Expectations Equilibrium (REE), as introduced in Radner (1979) may not exist. It
only exists in a generic sense and not universal. Moreover, it fails to be fully Pareto optimal and incentive compatible and
it is not implementable as a perfect Bayesian equilibrium of an extensive form game (Glycopantis et al., 2005, 2009). The
difficulty with the rational expectations equilibrium is that agents are maximizing interim expected utility conditioned on
their own private information and on the information that the equilibrium prices have generated, i.e., agents are acting as
knowing the equilibrium prices.

Balder and Yannelis (2009) introduced a new concept called Bayesian–Walrasian Equilibrium (BWE) which has Bayesian
features. In particular, agents form price estimates based on their own private information,1 and in terms of those prices
they can formulate estimated budget sets. Then, based on his/her own private information, each agent maximizes interim
expected utility subject to his/her own estimated budget set. From the imprecision due to the price estimation it follows that
the resulting equilibrium allocation may not clear the markets for every state of nature, i.e., exact feasibility of allocations
may not occur. This new concept exists under the standard continuity and concavity assumptions on the utility function
and furthermore, it was shown in Balder and Yannelis (2009) that in the example of the non-existence of a REE of Kreps
(1977), a BWE exists, but markets do not clear exactly. The non-market clearing of the BWE, is of course not desirable as in
equilibrium there may be excess supply or demand. However, Balder and Yannelis (2009) do show that in the case of perfect
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1 This is contrary to the rational expectations equilibrium, when agents act as knowing the equilibrium prices.
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foresight (correct price estimates) and also in the case of symmetric information, a BWE exists and the exact feasibility of
allocations holds.

The main purpose of this paper is to provide a dynamic rationalization of the BWE and show that exact market clearing
will always hold in the limit. In particular, we show that if the economy is repeated from period to period and agents refine
their private information by observing the past BWE, then in the limit all agents will obtain the same information and market
clearing will be reached.2

In other words, in the limit there is no asymmetric information among agents, and all markets are cleared for every state
of nature. Furthermore, we show that the limit BWE always exists, it is Pareto optimal and obviously incentive compatible.
Hence, the limit BWE has desirable properties, i.e., it exists under the standard assumptions and it is efficient. This is quite
interesting because, even if in each period we have an excess demand or supply, repeating the asymmetric information
economy, agents eventually will learn all the information (i.e., become symmetrically informed) and in that limit economy
the BWE satisfies exact feasibility.

It is rather surprising that the converse is also true, i.e., starting from a BWE in the limit symmetric economy we can
construct a sequence of approximate BWE or �-BWE which converges to it. This means that even if agents make mistakes
along the sequence by optimizing approximately their conditional expected utility subject to the estimated budget set, and
even if market clearing does not hold in the sequence of the �-BWE, still in the limit agents will reach the exact BWE, where
exact optimization and exact feasibility hold. This result can be viewed as a stability property of the BWE.

The above results have several implications.
First, the BWE concept where agents are symmetrically informed and obviously all markets are cleared can be viewed

as the limit of an asymmetric BWE where the asymmetrically informed agents maximize interim utility based on their own
information subject to an estimated budget constraint and market clearing does not occur. Agents by observing past BWE
learn the information of others and the asymmetries on the private information disappear in the limit.

Second, the above results shed light on some important issues regarding the effect of information. Indeed, as the learning
process unravels near the limit the additional information acquired does not change drastically equilibrium outcomes, that
is small perturbations of the information structure do not have drastic effects on the equilibrium outcomes.

Third, since the BWE is based on estimated prices and thus on estimated budget constraints, our new modeling provides
a statistical foundation of our equilibrium concept which seems to be suitable to econometric applications.

Finally, we have provided a new way to examine the Walrasian equilibrium concept under uncertainty, which is not
subjected to the criticism of the REE. Our new concept universally exists and it is efficient.

The paper is organized as follows: Section 2 introduces the reader to the BWE and its relationship to the REE. Section 3
discusses the dynamics and the idea of learning. Also in the same section we prove results on the convergence of private
information. Section 4 introduces formally the limit symmetric BWE and Section 5 provides the conditions under which
the BWE converges to the symmetric BWE. Section 6 shows that any symmetric BWE can be reached as the limit of an
approximate sequence of BWE. Some concluding remarks are collected in Section 7.

2. Bayesian–Walrasian equilibria

We consider an exchange economy with asymmetric information

E =
{

(˝,F,P); (Xi,Fi, ui, ei)i ∈ I={1,...,n}
}

,

where,

1. (˝,F,P) is a probability measure space describing the exogenous uncertainty, i.e., ˝ is the countable set of all possible
states of nature and F is the �-field that represents the set of all events.

2. (Xi,Fi, ui, ei)i ∈ I is the set of agent’s characteristics. Each economic agent i ∈ I is characterized by:
• Xi : ˝ → 2R

�
+ is agent i’random consumption set.

• Fi is a measurable partition3 of (˝,F) denoting the private information of agent i. The interpretation is as usual: if
ω ∈ ˝ is the state of nature that is going to be realized, agent i observes EFi (ω) the element of Fi which contains ω.

• a random utility function representing his preferences:

ui : ˝ × R�+ → R

(ω, x) → ui(ω, x).

Through the paper, we will assume that for all i ∈ I and ω ∈ ˝, ui(ω, ·) is strongly monotone.

2 Such a conjecture was made in Balder–Yannelis (2009, p. 396) and it was left as an open question if it is true. Theorem 6.2 in Section 6, provides an
affirmative answer to the Balder–Yannelis conjecture.

3 By an abuse of notation we will still denote by Fi the �-algebra that the partition Fi generates.
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• a random initial endowment of physical resources represented by the function

ei : ˝ → R�
+.

We assume that the function ei is Fi-measurable and ei(ω) ∈ Xi(ω) for all ω ∈ ˝.
• P is the common prior.

Suppose that for all ω ∈ ˝, P(ω) > 0. Upon the realization of ω ∈ ˝, which agent i perceives through EFi (ω), he/she forms
the conditional probability given by4

Pi(ω
′|ω) =

⎧⎨
⎩

P(ω′)
P(EFi (ω))

if ω′ ∈ EFi (ω),

0 otherwise.

Denote by

L̄Xi
= {xi : ˝ → R�+ such that xi(ω) ∈ Xi(ω) for all ω ∈ ˝}

LXi
= {xi ∈ L̄Xi

such that xi(·) isFi − measurable}.

Let L̄X =
n∏

i=1

L̄Xi
and LX =

n∏
i=1

LXi
.

An allocation x for an economy E is a function

x : I × ˝ → R�+
(i, ω) → xi(ω), such that x ∈ LX.

An allocation x is said to be feasible if for all ω ∈ ˝,∑
i ∈ I

xi(ω) =
∑
i ∈ I

ei(ω).

Agent i’s interim expected utility is the function vi : ˝ × LXi
→ R, defined by

vi(xi|Fi)(ω) =
∑

ω′ ∈ ˝

ui(ω
′, xi(ω

′))Pi(ω
′|ω).

We can also express the interim expected utility using the conditional probability as

vi(xi|Fi)(ω) =
∑

ω′ ∈ EFi (ω)

ui(ω
′, xi(ω

′))
P(ω′)
P(EFi (ω))

.

A random price vector is a F-measurable, non-zero function p : ˝ → �, where � = {p ∈R�+ :
∑�

j=1pj = 1}. Given a
random price vector p, every agent i adopts the following conditional expectation:

p̂i(ω) =
∑

ω′ ∈ ˝

p(ω′)Pi(ω
′|ω) =

∑
ω′ ∈ EFi (ω)

p(ω′)
P(ω′)
P(EFi (ω))

. (1)

In other words, p̂i(ω) is agent i’s Bayesian price estimate of the random price vector p, given that the state ω has been
realized.5

4 Notice that
∑

ω′ ∈ EFi (ω)
P(ω′)
EFi (ω) = 1.

5 Since we consider countably many states of nature, then for each i ∈ I and each good h ∈ {1, . . . , �}, xh
i

and eh
i

are real sequences (i.e., (xh
i
(ω1), xh

i
(ω2), . . .)

and (eh
i
(ω1), eh

i
(ω2), . . .)). In the same spirit of Peleg and Yaari (1970), we do not restrict the choice of equilibrium prices to the dual space, but we look

at them as functions defined from ˝ to the R�-simplex, and hence for each good h, ph is a real sequence as well as xh
i

and eh
i

are. Therefore, our approach
is not exactly the infinite one, but it is closer to the finite-dimensional case. The reason is that we consider price-quantity inner products point wise
p̂i(ω) · xi(ω), where for each ω and each i, p̂i(ω) and xi(ω) are elements of R�

+ (see for example the budget set below). We consider the topology of point
wise convergence, that is the sequence xt converges to x∗ if and only if limt→∞xt(ω) = x∗(ω) for all ω ∈ ˝. Similarly, a sequence of price pt converges to p∗

if and only if limt→∞pt(ω) = p∗(ω) for all ω ∈ ˝. Moreover, notice that even if (1) is a countable sum, since for each ω, p(ω) ∈ �, then for all i ∈ I and each
ω ∈ ˝, p̂i(ω) ≤ 1. We do not consider uncountably many states since we need a weaker topology and the convergence arguments may not hold. We leave
it as an open question. However, it should be pointed out that recent results by Podczeck et al. (2010) show that with infinitely many states asymmetric
information equilibrium need not exist.
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Using this natural estimate for the price, given his/her information �-algebra, agent i forms the following estimated
budget set

B̂i(ω, p) = {xi ∈ Xi(ω) : p̂i(ω) · xi ≤ p̂i(ω) · ei(ω)} =
{

xi ∈ Xi(ω) :
∑

ω′ ∈ ˝

p(ω′)Pi(ω
′|ω) · xi ≤

∑
ω′ ∈ ˝

p(ω′)Pi(ω
′|ω) · ei(ω)

}
.

We now extend definition of BWE, introduced by Balder and Yannelis (2009), to differential information economies with
a countable set of states of nature.

Definition 2.1. An Asymmetric Bayesian–Walrasian Equilibrium (BWE) of the differential information exchange econ-
omy E is a pair (p, x) such that

(i) p : ˝ → � is a random price vector,

(ii) x = (xi)i ∈ I ∈ LX is an allocation,

(iii) xi(ω) ∈ argmaxyi ∈ B̂i(ω,p)vi(yi|Fi)(ω) for all ω ∈ ˝ and every i ∈ I,

(iv) p(ω) ·
∑
i ∈ I

(xi(ω) − ei(ω)) = max1≤h≤�

∑
i ∈ I

(xi(ω) − ei(ω))h for all ω ∈ ˝.

Condition (iii) states that for all state of nature agent i maximizes his/her interim expected utility based on his/her
own private information subject to his/her estimated budget set. Condition (iv) is an unusual substitute for the classical
feasibility property of Walrasian equilibria. As noted by Balder and Yannelis (see Proposition 2.1, p. 389), condition (iv)
must be considered the price that has to be paid when one wishes to avoid the unrealistic hypothesis surrounding the REE.
However, we obtain the exact feasibility, i.e.,

(iv)
∑
i ∈ I

xi(ω) =
∑
i ∈ I

ei(ω) for all ω ∈ ˝,

provided that

(a) Fi = Fj for all i, j ∈ I (symmetric information)
(b) p̂i = p for all i ∈ I (correct price estimate or perfect forecasting of price p),

as the following proposition shows (see proposition 2.1 in Balder and Yannelis (2009) for the case of finite states of
nature).

Proposition 2.2. If (p, x) is a BWE as in Definition 2.1, then free-disposal feasibility

∑
i ∈ I

xi(ω) ≤
∑
i ∈ I

ei(ω) for all ω ∈ ˝

holds in each of the following cases:

(a) Fi = Fj for all i, j ∈ I (symmetric information)

(b) p̂i = p for all i ∈ I (correct price estimate or perfect forecasting of price p).

Moreover, if in additional ui(ω, ·) is strongly monotonic on Xi(ω) for all i ∈ I and for all ω ∈ ˝, then the above feasibility condition
sharpens into

∑
i ∈ I

xi(ω) =
∑
i ∈ I

ei(ω) for all ω ∈ ˝.

Proof. Similar arguments to the ones used in Balder–Yannelis (2009, Proposition 2.1) can be adopted to complete the
proof. �

Thus, we are interested in finding a framework which guarantees that either condition (a) or condition (b) are satisfied,
and hence in the BWE exact feasibility of allocations is obtained, as the definition below shows.
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Definition 2.3. A pair (p∗, x∗) is said to be a symmetric Bayesian–Walrasian equilibrium if

(i∗) p∗ : ˝ → � is a random price vector,

(ii∗) x∗ = (x∗
i
)
i ∈ I

∈ L̄X is an allocationF∗ − measurable,

whereF∗ is the symmetric information ( i.e., for all i ∈ I,Fi = F∗)

(iii∗) x∗
i
(ω) ∈ argmaxyi ∈ B̂i(ω,p∗)vi(yi|F∗)(ω) for all ω ∈ ˝ and every i ∈ I,

(iv∗)
∑
i ∈ I

x∗
i (ω) =

∑
i ∈ I

ei(ω) for all ω ∈ ˝.

We will consider a dynamic framework, in which agents learn by observing the past BWE and refining their private
information. This allows us to get in the limit a symmetric information economy and under certain additional assumptions
a full information economy (i.e., all agents know everything, i.e., Fi = F for all i ∈ I). Therefore, we will prove not only that
in the limit a BWE satisfies the exact feasibility, but also that it exists, it is (interim) Pareto optimal and obviously incentive
compatible.

Let �(p) be the smallest sub-�-algebra ofF for which p is measurable and let Gi = �(p) ∨ Fi denote the smallest �-algebra6

containing both �(p) and Fi. The notion below is due to Radner (1979), (see also Allen (1981)).

Definition 2.4. A pair (p, x), where p is a price system and x = (x1, . . . , xn) ∈ L̄X is an allocation, is a rational expectations
equilibrium (REE) for the economy E, denoted by REE(E) if

(i) for all i the consumption function xi(·) is Gi-measurable.
(ii) for all i and for all ω the consumption function maximizes

vi(xi|Gi)(ω) =
∑

ω′ ∈ EGi (ω)

ui(ω
′, xi(ω

′))
P(ω′)
P(EGi (ω))

,

(where EGi (ω) is the event in Gi which contains ω and P(EGi (ω)) > 0) subject to

p(ω) · xi(ω) ≤ p(ω) · ei(ω)

i.e. the budget set at state ω, and

(iii)
∑n

i=1xi(ω) =
∑n

i=1ei(ω) for all ω.

The REE and BWE are different concepts. For example, as it is shown in Balder–Yannelis (2009, p. 390), in the Kreps
example the REE does not exist, but the BWE exists. However, in the case that the private information of each agent in a
BWE is singletons and if the REE is full revealing,7 then both notions become an ex-post Walrasian equilibrium.

3. Learning and convergence of private information

Let T = {1, 2, . . .} be the discrete set of time horizon and Et be a differential information economy with initial endowment
et for each t ∈ T . Denote by �(Xi, ui, e1

i
) the �-algebra generated by random utility function, the random initial endowment,

and the random strategy set of agent i at beginning, that is F1
i = �(Xi, ui, e1

i
). At time t, there is additional information

available to agent i acquired by observing past BWE prices and allocations. We can express each agent’s private information
recursively by

Ft+1
i

= Ft
i ∨ �(pt, xt),

where �(pt, xt) is the information that the BWE generates at period t, i.e., the smallest �-algebra for which the
Bayesian–Walrasian equilibrium in period t is measurable, andFt

i ∨ �(pt, xt) is the join (i.e., the smallest �-algebra containing

6 The field of events discernable by every player is the “coarse” �-field
∧

i ∈ I
Fi , which is the largest �-algebra contained in each Fi . While, agents by

pooling their information, discern the events in the “fine” �-field
∨

i ∈ I
Fi , which denotes the smallest �-algebra containing all Fi .

7 A REE price p is said to be full revealing if the information it generates is singletons, that is �(p) = F, and hence for each agent i, Gi = F.



M. Pesce, N.C. Yannelis / Journal of Mathematical Economics 46 (2010) 762–774 767

Ft
i and �(pt, xt)). Thus, for all i ∈ I,

if t = 1 then, F1
i = �(Xi, ui, e1

i
)

if t = 2 then, F2
i = F1

i ∨ �(x1, p1)

if t = 3 then, F3
i = F2

i ∨ �(x2, p2)

= F1
i ∨ �(x1, p1) ∨ �(x2, p2)

...

Therefore, the private information of agent i at time t is given by

Ft
i = �(Xi, ui, e1

i , (pt−1, xt−1), (pt−2, xt−2), . . . , (pt−(t−1), xt−(t−1))) = F1
i ∨

∨t−1

k=1
�(pk, xk),

where (pt−1, xt−1), (pt−2, xt−2), . . . , (pt−(t−1), xt−(t−1)) are past Bayesian–Walrasian equilibria. Clearly, for each agent i and
each time period t we have

Ft
i ⊆ Ft+1

i
⊆ Ft+2

i
⊆ · · ·

The above expression represents a learning process for player i and it generates a sequence of exchange economies
Et = {(Xi,Ft

i , ui, et
i
) : i = 1, . . . , n}.

Notice that our framework is not a dynamic model since we repeat the economy over time allowing each agent to refine
his/her own private information. Thus, the utility function ui as well as the random consumption set Xi do not change.
However, since agents update their information, the �-algebra Ft

i changes from period to period, and consequently, the
interim expected utility function changes as well.

We suppose that at beginning (i.e., t = 1) there are at least two agents who are asymmetrically informed, where for
each agent i, the private information F1

i is the information generated by the initial endowment, the utility function and the
consumption set, that is F1

i = �(Xi, ui, e1
i
). We call this assumption a non-trivial differential information economy.

Notice that agents do not form expectations over the entire horizon but only for the current period, i.e., each agent’s
interim expected utility is based on his/her current period private information. Obviously, since the private information
set of each agent becomes finer over time, the interim expected utility of each agent is changing as well. The information
gathered at a given time t will affect the outcome in periods t + 1, t + 2, . . .. Furthermore notice that for each agent i ∈ I and
each time t ∈ T ,

Ft
i = F1

i ∨
(∨t−1

k=1
�(pk, xk)

)
,

that is for all i and for all t, Ft
i = F1

i ∨ Gt , where for all t ∈ T , Gt =
∨t−1

k=1�(xk, pk) is the information generated by all past
Bayesian–Walrasian equilibria until time t.

Thus, the information of each player i, after t periods, has two components. The former is given by his/her initial private
information F1

i which contributes to the asymmetric part and the latter is given by the information generated by the past
period BWE allocations which creates the common part of information since all agents see the same BWE outcome in each
period. In the limit economy, the private information of each agent i, F∗

i , is the initial private information of i, F1
i , together

with the information generated by all past periods BWE, that is

F∗
i = F1

i ∨
∨∞

k=1
�(xk, pk) = F1

i ∨ G∞.

Notice that even in the limit economy, agents may have different private information. Consider, for example, the case in
which in each period t ∈ T , the information generated by the equilibria is coarser than the information of each trader, that is
�(xt, pt) ⊆ Ft

i for all i ∈ I. This means that no agent learns anything, that is

Ft+1
i

= Ft
i for all i ∈ I and for all t ∈ T.

Since in each period agents learn nothing, even in the limit economy the information of each agent i is the initial one.
Hence, it might be that in each period the same economy is replicated and therefore the equilibria remains the same. This
makes the convergence results trivial, because a constant sequence of identical equilibria converges always to itself and vice
versa. Clearly, we want to avoid this trivial case. In other words, we want the learning process to make sense. Formally, we
need that at least one agent learns something in at least one period. This is guaranteed by the following assumption which
we call “non-trivial learning”.

(A.0) F1
i ⊆ G∞ =

∨∞

k=1
�(xk, pk) for all i ∈ I.
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Assumption (A.0) states that for each agent i, the pooled information generated by all past equilibria is at least as fine as
agent i’s initial information.

Remark 3.1. Notice that the “no-trivial learning assumption” does not mean that all agents will learn something, it only
implies that at least one agent learns something in some period. Indeed, if nobody can learn, that is

for all i ∈ I and for all t ∈ T Ft
i = Ft+1

i
,

then for all i ∈ I, F1
i = F∗

i = F1
i ∨ G∞, and therefore by (A.0), F1

i = G∞. This means that already at the beginning, (i.e. t = 1)
all agents have the same information, which is a contradiction to the assumption of the non-trivial differential information
economy.

Remark 3.2. We notice that, under the non-trivial learning assumption (A.0), as time goes to infinity each agent gets
the same information, given by the information generated by all the past periods Bayesian–Walrasian equilibria, i.e., G∞ =∨∞

k=1�(pk, xk). In other words, the private information Ft
i of each player i converges to G∞. This follows from the fact that in

the limit, the information of each agent i is given by

F∗
i = F1

i ∨ G∞,

which is finer than G∞. On the other hand, by the non-trivial learning assumption (A.0), for all i ∈ I, F1
i ⊆ G∞. Hence, for

each agent i, F∗
i coincides with G∞. This means that as time goes on, the common part of information becomes prevalent

and in the limit all agents will have the same information generated by all the past periods BWE. Therefore, in the limit
we reach an economy with symmetric information in which, if utility functions are strongly monotone, a BWE satisfies the
exact feasibility as indicated in Section 2, condition (a). Notice that (A.0) is also a necessary condition for F∗

i = G∞ for all i ∈ I.
In fact, if for all i ∈ I, F∗

i = G∞, then (A.0) holds.

Remark 3.3. If ˝ is finite, since agents can not learn forever, from Remark 3.2 it follows that there exists a period s ∈ T from
which all agents will have the same information G∞, that is, there exists s ∈ T such that for all i ∈ I,

Ft
i = G∞ for all t > s.

Remark 3.4. Notice that we have stated that in the limit we reach an economy in which all agents have the same information.
However, this does not mean that in the limit agents will know everything (i.e., G∞ may not be singletons). Indeed, it might be
the case that G∞ ⊂ F. However, if there exists a period t in which the pooled information of all agents is the full information
F, then after that period, agents will learn everything. Formally,

if there exists k ∈ Tsuch that
∨

i ∈ I
Fk

i = F, then G∞ = F. (2)

Indeed, for all i ∈ I, Fk
i ⊆ G∞ (by assumption (A.0)), thus

F =
∨

i ∈ I
Fk

i ⊆ G∞ ⊆ F,

hence G∞ = F.

Remark 3.5. Typically, it is assumed that in the starting period t = 1,
∨

i ∈ IF1
i = F. As noted above, this condition is a

particular case of (2) (i.e., k = 1). This means that in the limit the information of each agent will be generated by the partition
of only singletons. Therefore, in the limit the measurability assumption will play no role, since the full information BWE will
be an ex-post Walrasian equilibrium. Our more general framework includes the above case, where

∨
i ∈ IF1

i = F, as a special
case.8

4. Limit symmetric Bayesian–Walrasian equilibrium

We define the limit symmetric information economy

E∗ = {(˝,F,P), (Xi,F∗
i , ui, e∗

i )
i ∈ I

}
as follows: (˝,F,P), Xi and ui are defined as in Section 2. While,

F∗
i = G∞ =

∨∞

k=1
�(xk, pk) for all i = 1, . . . , n

and e∗
i

is the initial endowment of agent i which is assumed to be F∗
i -measurable and such that e∗

i
(ω) ∈ Xi(ω) for all ω ∈ ˝.

Obviously, all agents in this economy have the same private information generated by the Bayesian–Walrasian equilibria in
all periods (i.e., F∗

i = G∞ =
∨∞

k=1�(xk, pk)).

8 As it was pointed out in Section 2, in the special case of the full revealing REE, the BWE and REE coincide as they lead to an ex-post Walrasian equilibrium.
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Remark 4.1. Since in the limit all agents will get the same information (i.e., F∗
i = G∞ for all i ∈ I), then they will have also the

same Bayesian estimate price (i.e., p̂i(ω) = p̂(ω) for all ω ∈ ˝), and therefore, if the utility functions are strongly monotone,
then the limit symmetric BWE satisfies the exact feasibility.

For each i, define the set9

L∞
Xi

= {xi ∈ L̄Xi
: xi(·) is G∞ − measurable}.

Let L∞
X =

∏n
i=1L∞

Xi
.

The BWE(E∗) is defined for the economy E∗ analogously with the economy Et .

Definition 4.2. A pair (p∗, x∗) is said to be a limit symmetric Bayesian–Walrasian equilibrium of the limit symmetric
information economy E∗, denoted by BWE(E∗), if

(i∗) p∗ : ˝ → � is a random price vector,

(ii∗) x∗ ∈ L∞
X ,

(iii∗) x∗
i
(ω) ∈ argmaxyi ∈ B̂i(ω,p∗)vi(yi|G∞)(ω) for all i and for all ω.

(iv∗)
∑
i ∈ I

x∗
i (ω) =

∑
i ∈ I

e∗
i (ω) for all ω ∈ ˝.

Condition (iii∗) indicates that agents maximize interim expected utility subject to a point wise budget set conditioned
on an event which is an element of the pooled information that all past BWE prices and allocations have generated. Notice
that this event is the same for each agent, as the private information of each agent F∗

i is the same for each individual, i.e.,
F∗

i = G∞ for all i ∈ I. Condition (iv∗) is the standard feasibility condition.
Using Kreps’s example, Balder and Yannelis have underlined that the BWE and REE are distinct concepts. It is also true

that in general, the limit of the BWE equilibria may be far from the REE because the learning process might be “trapped”
at a point, where not all information has been revealed by prices. However, in the case of “non-trivial learning” in the limit
the learned information becomes prevalent. In particular, in this case, the equilibrium price p∗ of the limit symmetric BWE
generates a �-algebra �(p∗) which is coarser than the common information G∞, i.e., �(p∗) ⊆ G∞. This allows us to observe
that for all ω ∈ ˝ and i ∈ I,⎡

⎣ ∑
ω′ ∈ EG∞ (ω)

p∗(ω′)
P(ω′)

P
(

EG∞ (ω)
)
⎤
⎦ · [x∗

i (ω) − e∗
i (ω)] = p∗(ω) · [x∗

i (ω) − e∗
i (ω)].

Therefore in the case of non-trivial learning the limit symmetric BWE can be viewed as a REE. The convergence property
of the REE is another issue and we plan to work on this problem in a future paper.

Although, in this economy all agents have the same information, it may be still the case that the pooled information over
the entire horizon may not be singletons. Therefore, the G∞ measurability condition of allocations makes sense. However,
if the pooled information over the entire horizon is singletons, Definition 2.3 reduces to an ex-post Walrasian equilibrium.

5. Convergence of the Bayesian–Walrasian equilibria to the symmetric one

In the following section we will provide conditions under which any sequence (pt, xt) ∈ BWE(Et) will have a subsequence
that converges to (p∗, x∗) ∈ BWE(E∗) in the limit symmetric information economy E∗. This result on convergence to a limit
symmetric BWE suggests that, as the learning process unravels near the limit, the additional information acquired does not
change drastically equilibrium outcomes. In order to appreciate the value of the next theorem, one should contemplate the
consequence of its failure: it would mean that small perturbation of the information structure would have drastic effects on
the equilibrium outcome, which would have implications on the robustness of the equilibrium concept.

The following assumptions will be needed for our results.

(A.1) For every i ∈ I, Xi : ˝ → 2R
�
+ is a convex and closed-valued correspondence.10

(A.2) ui(ω, ·) is continuous, strongly monotone and bounded for all ω ∈ ˝ and for each i ∈ I.
(A.3) For every i ∈ I, t ∈ T and for all ω ∈ ˝, the initial endowment et

i
(ω) is an interior point of Xi(ω).

(A.4) {et
i
,Ft

i }t ∈ T
is a martingale.

(A.5) {
∑n

i=1et
i
, ∧n

i=1Ft
i }t ∈ T

is a martingale.

9 Notice that since for all i ∈ I, Ft
i
⊆ Ft+1

i
for all t, then LXt ⊆ L∞

X
for all t.

10 Notice that Xi is also a non-empty correspondence, since we assume that it contains the initial endowment, i.e., ei(ω) ∈ Xi(ω) for all ω ∈ ˝.
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Remark 5.1. Endowments of agents are allowed to vary over time according to measurability requirements as the private
information of each agent become finer and finer due to the learning process. However, this is just a generalization since
in the easy case of constant initial endowments (i.e., e1

i
= et

i
for all i and t) hypotheses (A.4) and (A.5) are satisfied. Indeed,

for all i, e1
i
(·) is F1

i -measurable and since F1
i ⊆ Ft

i then for all i and t e1
i
(·) is Ft

i -measurable. Moreover, for all i ∈ I, t ∈ T and
s = 1, 2, . . .

E
[
et+s

i
|Ft

i

]
= E

[
e1

i
|Ft

i

]
= e1

i
= et

i

E

[∑
i ∈ I

et+s
i

|
∧

i ∈ I
Ft

i

]
= E

[∑
i ∈ I

e1
i |
∧

i ∈ I
Ft

i

]
=

∑
i ∈ I

e1
i =

∑
i ∈ I

et
i .

This means that {e1
i
,Ft

i }t ∈ T
and {

∑n
i=1e1

i
, ∧n

i=1Ft
i }t ∈ T

are martingales.

Remark 5.2. Notice that the above assumptions may not guarantee the existence of a BWE when ˝ is countable. On the
other hand, if ˝ is finite and ui(ω, ·) is concave for all i and ω, from assumptions (A.1), (A.2) and (A.3) it follows that in each
period a BWE exists (see Theorem 4.1 in Balder and Yannelis (2009)).

Remark 5.3. From assumption (A.4) it follows that et
i
(ω) converges to e∗

i
(recall the Martingale convergence Theorem), and

(A.5) implies that the total initial endowment also converges.11

It is easy to see that the following lemma, needed for the next theorem, holds true (for sake of completeness see the proof
in Pesce and Yannelis (2009)).

Lemma 5.4. Let a1
n, a2

n, . . . , ad
n be d sequences that converge respectively to a1, a2, . . . , ad. Then

lim
n→+∞

max1≤j≤daj
n = max1≤j≤d lim

n→+∞
aj

n.

We are now ready to state the following Theorem.

Theorem 5.5. Let {Et : t ∈ T} be a sequence of differential information economies satisfying assumptions (A.0) − (A.4) and let
(pt, xt) ∈ BWE(Et). Then, there exists a subsequence (ptn , xtn ) which converges to (p∗, x∗) ∈ BWE(E∗).

Proof. Let (pt, xt) be a sequence of BWE, we need to find a subsequence (ptn , xtn ) that converges to (p∗, x∗). Let Z = {(pt, xt) :
t ∈ T} where (pt, xt) ∈ BWE(Et) for each t. Let L� be the space of all F-measurable functions f : ˝ → �. Define LP,X = L� × LX .
We may take the random consumption set of each agent to be Xi(ω) = [0, supt

∑n
i=1et

i
(ω)]. Such a set is clearly compact,

convex and nonempty, therefore LX is compact. Since L� is defined on a compact set �, it is also compact. Therefore by
Tychonoff’s theorem, their product LP,X is compact. Thus, the closure of the set Z, Z̄ , is compact, and hence there exists a
subsequence {(ptn , xtn ) ∈ LP,X : n = 1, 2, . . .} which converges to (p∗, x∗).

We must show that (p∗, x∗) is a Bayesian–Walrasian equilibrium for the limit symmetric information economy E∗, i.e.,
(p∗, x∗) ∈ BWE(E∗). It is clear that p∗ is a price system. Since for all t and for all i, Ft

i ⊆ G∞ and xt
i

is Ft
i -measurable, then xt

i
is

G∞-measurable for all t and i (recall (A.0)). Therefore, x∗ ∈ L∞
X . Thus the conditions (i∗) and (ii∗) hold.

We want now to prove that condition (iii∗) also holds. Suppose otherwise that x∗ violates (iii∗), then there exist an agent
i, a state ω∗, and an allocation y ∈ L∞

X such that

vi(yi|G∞)(ω∗) > vi(x
∗
i |G∞)(ω∗) (3)

and

p̂∗(ω∗) · yi(ω
∗) ≤ p̂∗(ω∗) · e∗

i (ω∗).

Notice that if ω∗ is such that p̂∗(ω∗) · yi(ω∗) = p̂∗(ω∗) · e∗
i
(ω∗), then since the conditional expected utility is continuous,

from assumption (A.3), we can find ỹi in the neighborhood of yi such that vi(ỹi|G∞)(ω∗) > vi(x∗
i
|G∞)(ω∗) and p̂∗(ω∗) · ỹi(ω∗) <

p̂∗(ω∗) · e∗
i
(ω∗). Without loss of generality, let ỹi equal to yi, then it follows from above that

p̂∗(ω∗) · yi(ω
∗) < p̂∗(ω∗) · e∗

i (ω∗). (4)

For any i, Ftn
i is an increasing sequence of private information, then for any time t, it is coarser than its limit G∞, and thus

EG∞
(ω∗) ⊆ EFtn

i (ω∗). Let us define ytn
i

by

ytn
i (ω) =

{
yi(ω) for ω ∈ EG∞

(ω∗)

xtn
i

(ω) for ω /∈ EG∞
(ω∗).

11 Similar assumptions were made in Koutsougeras and Yannelis (1999).
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Then,

vi(ytn
i

|Ftn
i )(ω∗) =

∑
ω ∈ E

Ftn
i (ω∗)

ui(ω, ytn
i (ω))

P(ω)

P(EFtn
i (ω∗))

=
∑

ω ∈ EG∞ (ω∗)

ui(ω, ytn
i (ω))

P(ω)

P(EFtn
i (ω∗))

+
∑

ω ∈ E
Ftn

i (ω∗)\EG∞ (ω∗)

ui(ω, ytn
i (ω))

P(ω)

P(EFtn
i (ω∗))

=
∑

ω ∈ EG∞ (ω∗)

ui(ω, yi(ω))
P(ω)

P(EFtn
i (ω∗))

+
∑

ω ∈ E
Ftn

i (ω∗)\EG∞ (ω∗)

ui(ω, xtn
i (ω))

P(ω)

P(EFtn
i (ω∗))

= vi(xtn
i

|Ftn
i )(ω∗) +

[
vi(yi|G∞)(ω∗) − vi(xtn

i
|G∞)(ω∗)

] P(EG∞
(ω∗))

P(EFtn
i (ω∗))

.

Since vi(yi|G∞)(ω∗) > vi(x∗
i
|G∞)(ω∗) (see (3)) and xtn

i
converges to x∗

i
, by the continuity of the conditional expected utility

vi( · |G∞)(ω∗), there exists large enough t such that vi(yi|G∞)(ω∗) > vi(xtn
i

|G∞)(ω∗). Therefore, we have

vi(y
tn
i |Ftn

i )(ω∗) > vi(x
tn
i |Ftn

i )(ω∗).

Then,

p̂tn
i (ω∗) · ytn

i (ω∗) > p̂tn
i (ω∗) · etn

i (ω∗)

or equivalently by the definition of ytn
i

in the state ω∗,

p̂tn
i (ω∗) · yi(ω

∗) > p̂tn
i (ω∗) · etn

i (ω∗). (5)

Notice that, since EFt
i (ω∗) ⊇ EFt+1

i (ω∗) ⊇ EG∞
(ω∗) for all i and t, P(EFt

i (ω∗)) converges to P(EG∞
(ω∗)), then P(ω∗|Ft

i ) con-
verges to P(ω∗|G∞). Moreover, since pt converges to p∗, then p̂t

i
(ω∗) converges to p̂∗(ω∗) for all i ∈ I. Therefore, assumption

(A.4) and the condition (5) imply that

p̂∗(ω∗) · yi(ω
∗) ≥ p̂∗(ω∗) · e∗

i (ω∗),

which contradicts (4). Hence, also the third condition (iii∗) holds. To complete the proof, we must show that condition
(iv∗) holds as well.

By the definition of BWE(Etn ), for all ω ∈ ˝,

ptn (ω) ·
∑
i ∈ I

(xtn
i (ω) − etn

i (ω)) = max1≤h≤�

∑
i ∈ I

(xtn
i (ω) − etn

i (ω))
h
,

by the continuity of the inner product and by Lemma 5.4 we have that

p∗(ω) ·
∑
i ∈ I

(x∗
i (ω) − e∗

i (ω)) = max1≤h≤�

∑
i ∈ I

(x∗
i (ω) − e∗

i (ω))
h
.

Therefore, (p∗, x∗) must be a Bayesian–Walrasian equilibrium of the limit symmetric information economy and hence by
Proposition 2.2, it follows that

∑n
i=1x∗

i
(ω) =

∑n
i=1e∗

i
(ω) for all ω ∈ ˝. This means that (x∗, p∗) ∈ BWE(E∗). �

Corollary 5.6. If ˝ is finite and ui(ω, ·) is concave for all i and ω, then under assumptions (A.0)–(A.4), there exists a limit
symmetric Bayesian–Walrasian equilibrium (p∗, x∗) of the limit economy E∗.

Proof. Theorem 4.1 in Balder and Yannelis (2009) guarantees in each period t the existence of a Bayesian–Walrasian
equilibrium (xt, pt) for the economy Et . From Theorem 5.5 it follows that a limit symmetric Bayesian–Walrasian equilibrium
exists. �

The pair (x∗, p∗) is trivially incentive compatible because in the economy E∗ all agents have the same information. We
now recall the definition of incentive compatibility (see Krasa and Yannelis (1994) or Koutsougeras and Yannelis (1993)).

Definition 5.7. An allocation x fulfills coalitional incentive compatibility if and only if the following does not hold: there
exist a coalition S � I and states a, b, a /= b which members of I \ S are unable to distinguish and such that members of S are
strictly better off by announcing b whenever a has actually occurred. Formally x is coalitional incentive compatible if and
only if there do not exist a coalition S � I and states a, b, a /= b, such that

(1) b ∈ EFi (a) for every i /∈ S and

(2) ui(a, ei(a) + xi(b) − ei(b)) > ui(a, xi(a)) for every i ∈ S.
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It is still an open question whereas in each period t ∈ T the BWE satisfies the incentive compatibility since the feasibility
requirement may not hold. On the other hand, in the limit symmetric information economy, incentives to misreport the
realized state of nature do not exist. Therefore the limit symmetric information BWE is coalitional incentive compatible, and
fortiori individual incentive compatible.

Moreover a limit symmetric Bayesian–Walrasian equilibrium of the economy E∗ is also (interim) Pareto optimal as the
next proposition indicates. We first recall the notion of an (interim) Pareto optimal allocation.

Definition 5.8. An allocation x ∈ L∞
X is said to be interim Pareto optimal if the following is not true: there exist y ∈ L∞

X and a
state ω ∈ ˝, such that

(i) vi(yi|G∞)(ω) > vi(xi|G∞)(ω) for all i ∈ I

(ii)
∑
i ∈ I

yi(ω) =
∑
i ∈ I

e∗
i (ω).

The proof of the Proposition below is standard.

Proposition 5.9. Any limit symmetric BWE of the limit symmetric information economy E∗ is (interim) Pareto optimal.

6. Stability of the symmetric Bayesian–Walrasian equilibrium

We now show the converse of Theorem 5.5, i.e., any limit symmetric information BWE can be reached by a sequence of
approximate BWE outcomes. We can view this result as a stability property of Bayesian–Walrasian equilibrium, in the sense
that we can always construct a route to reach the limit symmetric information BWE.

Before we state the result, we first define the notion of an approximate (or ε-) BWE where each agent optimizes the
conditional expected utility within a small error ε > 0 in each state. Since we allow the possibility of making errors in
maximization, agents are considered to be bounded rational.

Definition 6.1. A pair (p, x) is said to be an ε-Bayesian–Walrasian Equilibrium (ε-BWE) of the differential information
exchange economy E if

(i) p : ˝ → � is a random price vector,

(ii) x ∈ LX is an allocation,

(iii) for all i and for all ω the consumption function

xi maximizes the conditional expected utility within ε > 0,i.e.,

vi(xi|Fi)(ω) ≥ max{vi(yi|Fi)(ω) : yi(ω) ∈ B̂i(ω, p)} − ε

and xi(ω) ∈ B̂i(ω, p),

(iv) p(ω) ·
∑

i ∈ I(xi(ω) − ei(ω)) = max1≤h≤�

∑
i ∈ I(xi(ω) − ei(ω))h for all ω ∈ ˝.

We now show that a BWE in the limit can be reached by a sequence of approximate BWE allocations. In other words,
given a price-consumption pair which is a BWE for the limit symmetric economy, and obviously exact feasibility holds, we
can construct a sequence of ε-BWE that converges to it. Notice that in the sequence, agents maximize approximately their
interim utility subject to their estimated budget set and also market clearing does not hold. Therefore, we can conclude that
the BWE is stable.

The following theorem on the approximation of BWE equilibria has an important interpretation as Theorem 5.5. Here
again in order to appreciate the value of this result one should contemplate of its failure: if some equilibria in the limit
economy failed to be approximated even by approximate BWE, that would mean that those equilibria are artifacts of the
definition and they would be irrelevant for analytical purposes. That would cast doubts on the value of the concept of BWE
itself.

Theorem 6.2. Let {Et : t ∈ T} be a sequence of differential information exchange economies satisfying assumptions (A.0)–(A.5)
and let (p∗, x∗) ∈ BWE(E∗). Then, for any ε > 0, there exists a sequence (pt, xt) ∈ BWEε(Et) such that (pt, xt) converges to (p∗, x∗).

Proof. Let xt
i

= E[x∗
i
|∧n

j=1Ft
j ] and pt = E[p∗|∧n

j=1Ft
j ]. Then, since {∧n

j=1Ft
j } is monotone increasing, we have

xt
i = E[x∗

i |∧n
j=1Ft

j ] = E[E[x∗
i |∧n

j=1Ft+1
j

]|∧n
j=1Ft

j ] = E[xt+1
i

|∧n
j=1Ft

j ],

pt = E[p∗|∧n
j=1Ft

j ] = E[E[p∗|∧n
j=1Ft+1

j
]|∧n

j=1Ft
j ] = E[pt+1|∧n

j=1Ft
j ].

Hence, by construction {(pt, xt), ∧n
j=1Ft

j } is a martingale and by the martingale convergence theorem (pt, xt) converges to
(p∗, x∗) ∈ BWE(E∗).
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To complete the proof, we must show that (pt, xt) lies in BWEε(Et) for all but finite t’s. That is, the set

K = {t ∈ T : (pt, xt) /∈ BWEε(Et)}
should be finite. Suppose, by way of contradiction, (pt, xt) /∈ BWEε(Et) for infinitely many t’s.
By using the feasibility (iv∗) of x∗ and assumption (A.5), we have

n∑
i=1

xt
i =

n∑
i=1

E[x∗
i |∧n

j=1Ft
j ] = E

[
n∑

i=1

x∗
i |∧n

j=1Ft
j

]

= E

[
n∑

i=1

e∗
i |∧n

j=1Ft
j

]
=

n∑
i=1

E[e∗
i |∧n

j=1Ft
j ]

=
n∑

i=1

et
i by (A.5).

Thus, for all ω ∈ ˝ condition (iv) is satisfied. In fact,

pt(ω) ·
∑
i ∈ I

(xt
i (ω) − et

i (ω)) = 0 = max1≤h≤�

∑
i ∈ I

(xt
i (ω) − et

i (ω))
h
.

Since xt
i

is defined as the conditional expectation on ∧n
j=1Ft

j , it is Ft
i -measurable, and hence the conditions (i) and (ii) are

satisfied.
Then, from the above assumption, there exist an agent i and a state ω∗ ∈ ˝ such that, for infinitely many t’s,

xt
i (ω

∗) /∈ argmaxyt
i
∈ B̂i(ω∗,pt )vi(y

t
i |Ft

i )(ω
∗) − ε. (6)

Therefore, there exists a sequence yt
i
∈ LXt

i
such that

vi(y
t
i |Ft

i )(ω
∗) > vi(x

t
i |Ft

i )(ω
∗) + ε, and

p̂t
i (ω

∗) · yt
i (ω

∗) ≤ p̂t
i (ω

∗) · et
i (ω

∗). (7)

Since yt
i
∈ LXt

i
, which is a compact set as noted in the proof of Theorem 5.5, then we can find a subsequence {ytn

i
} of {yt

i
}

which converges to yi.
Since for all12i, p̂tn

i
converges to p̂∗, ytn

i
to yi, and etn

i
to e∗

i
(recall assumption (A.4)), then from (7) it follows that

p̂∗(ω∗) · yi(ω
∗) ≤ p̂∗(ω∗) · e∗

i (ω∗).

Moreover taking limits in the expression below

vi(y
tn
i |Ftn

i )(ω∗) > vi(x
tn
i |Ftn

i )(ω∗) + ε,

it follows that

vi(yi|G∞)(ω∗) ≥ vi(x
∗
i |G∞)(ω∗) + ε > vi(x

∗
i |G∞)(ω∗),

which is a contradiction to the fact that (p∗, x∗) ∈ BWE(E∗). Thus K must be a finite set, i.e., (pt, xt) /∈ BWE�(Et) for only
finite number of t’s. Therefore, there exists a sequence (pt, xt) ∈ BWE�(Et) that converges to (p∗, x∗) ∈ BWE(E∗), as it was to be
shown. �

7. Conclusions

We introduced the concept of a symmetric BWE. This concept is free of the undesirable property of the asymmetric BWE
which does not allow for market clearing. Most importantly, the symmetric BWE can provide a dynamic foundation for the
asymmetric one since by repetition, agents observe the equilibrium outcomes, learn the information of the others and in the
limit symmetric information prevails. Thus, despite the fact that from period to period the agent’s price estimates are not
accurate and market clearing does not hold, nonetheless, in the limit the correct estimates will prevail and market clearing
will hold. We also showed that the converse is true, i.e., given a symmetric BWE, we can always construct a sequence of
approximate BWE which converges to the symmetric BWE.

12 See the proof of Theorem 5.5.
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The concept of the symmetric BWE is Pareto optimal, coalitional incentive compatible and it exists universally (compare
with the REE which exists only generically). This new way has a statistical foundation as it is based on price estimates and
on an estimated budget set, which makes our modeling attractive to empirical analysis.
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