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lemma), Nikaido and Debreu provided similar proofs based on the Kakutani fixed
point theorem, and Kuhn’s proof is based on the Eilenberg and Montgomery fixed
point theorem.

It should be noted that all those proofs are finite dimensional. It is our purpose
to generalize the excess demand theorem to infinite dimensional spaces. Specifically,
we will follow the Gale approach and employ the infinite dimensional generalization
of the KKM lemma due to [8]. Our infinite dimensional version not only gives as
a corollary the excess demand theorem of Gale, Nikaido, Debreu, and Kuhn, but
it is also more general as three of the main assumptions needed are weakened (see
Section 3).

The paper proceeds as follows. Section 2 describes the mathematical preliminaries
and the economy. Section 3 presents the theorem. Section 4 provides concluding
remarks.

2. Model

2.1. Notation and Definitions. We let 2A denote the set of all subsets of A; Rℓ

denotes the ℓ-fold Cartesian product of the set of real numbers R and Rℓ
+ denotes

the closed positive orthant of Rℓ; intA denotes the interior of the set A, clA denotes
its closure, and conA denotes its convex hull; A \B := {x ∈ A : x ∈ A and x ̸∈ B}
denotes the set subtraction. If X is a linear topological space, its topological dual
is the space X ′ of all continuous linear functionals on X; if q ∈ X ′ and y ∈ X,
the value q(y) of q at y is also denoted by q · y; if C is a subset of X, we let
C◦ = {p ∈ X ′ : p · x ≤ 0 for all x ∈ C} be the polar cone of C.

Let X be a topological space and let Y be a linear topological space. A cor-
respondence ψ: X → 2Y is said to be upper semi-continuous (u.s.c.)1 if the
set {x ∈ X : ψ(x) ⊆ V } is open in X for any open subset V of Y . A corre-
spondence ψ: X → 2Y is said to be upper demi-continuous (u.d.c.) if the set
{x ∈ X : ψ(x) ⊆ V } is open in X for any open half space V of Y . Clearly an u.s.c.
correspondence is also u.d.c.. It can be easily checked that the reverse is not true.
The correspondence ψ: X → 2Y is said to have open lower sections if for all
y ∈ Y , the set ψ−1(y) = {x ∈ X : y ∈ ψ(x)} is open in X. If ψ has open lower
sections, then it is lower semi-continuous, i.e., the set {x ∈ X : ψ(x)∩ V ̸= ∅} is
open in X for any open subset V of Y .

2.2. Economy and Equilibrium. An economy E is a set of triples E = {(Xi, ui, ei) :
i ∈ I} where:

• I is a finite set of agents, i.e., I = {1, 2, ..., n},
• Xi ⊆ Rℓ is the consumption set of agent i,
• ui : Xi → R is the utility function of agent i, and
• ei ∈ Xi is the initial endowment of agent i.

Let ∆ℓ−1 = {p ∈ Rℓ
+ :

∑ℓ
l=1 p

l = 1} denote the price set. The budget set of agent

i is a correspondence Bi : ∆
ℓ−1 → 2R

ℓ
defined by Bi(p) = {xi ∈ Xi : p · xi ≤ p · ei},

that is, the set of admissible consumptions whose value, i.e., p · xi, cannot exceed
the value of the initial endowment (resources), i.e., p · ei.

1Sometimes, upper semi-continuous is also called upper hemi-continuous.
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The demand set of agent i is the set of optimal consumptions in the budget set,

i.e., the demand set is a correspondence Di : ∆
ℓ−1 → 2R

ℓ
defined as

Di(p) = {xi ∈ Bi(p) : ui(xi) ≥ ui(yi), ∀yi ∈ Bi(p)}.

The excess demand correspondence ζi for agent i is defined by ζi(p) = Di(p)−
{ei}, and the aggregate excess demand ζ : ∆ℓ−1 → 2R

ℓ
is defined by ζ(p) =∑

i∈I ζi(p).
An equilibrium for the economy E = {(Xi, ui, ei) : i ∈ I} is a consumption-price

pair (x∗, p∗) ∈
∏

i∈I Xi ×∆ℓ−1 such that:

(i) x∗i ∈ Di(p
∗) for all i ∈ I,

(ii)
∑

i∈I x
∗
i ≤

∑
i∈I ei.

Equivalently, we say that the economy E has an equilibrium if there exists a price
p∗ ∈ ∆ℓ−1 such that ζ(p∗) ∩ (−Rℓ

+) ̸= ∅.
In this sequel we will describe the economy by an excess demand correspondence

ζ : ∆ℓ−1 → 2R
ℓ
. This is the approach originated by Gale, Nikaido, Debreu, and

Kuhn. Although we consider in this paper a finite set of consumers, the excess
demand theorem can also apply to infinitely many consumers. In particular, in the
above setting, one could replace the finite set I with an atomless measure space,
and also replace the sum with an integral. See for example [12].

2.3. Finite Dimensional Excess Demand Theorem. [9] and subsequently [15],
[7], and [13] proved the following finite dimensional fundamental result in general
equilibrium theory.

Theorem 2.1 (Excess Demand Theorem). Let ∆ℓ−1 = {p ∈ Rℓ
+ :

∑ℓ
l=1 pl = 1}

be the price simplex in Rℓ, and ζ : ∆ℓ−1 → 2R
ℓ
be an excess demand satisfying the

following assumptions:

(i) the correspondence ζ is u.s.c.,
(ii) for all p ∈ ∆ℓ−1, ζ(p) is nonempty, compact, and convex,
(iii) (Walras’ Law) for every p ∈ ∆ℓ−1 and for every z ∈ ζ(p), p · z ≤ 0.

Then, there exists an equilibrium, i.e., there exists p∗ ∈ ∆ℓ−1 such that ζ(p∗) ∩
(−Rℓ

+) ̸= ∅.

Gale’s proof of the above theorem is based on the Knaster-Kuratowski-Mazurkiewicz
lemma (KKM lemma), Nikaido and Debreu provided similar proofs based on the
Kakutani fixed point theorem, and Kuhn’s proof is based on the Eilenberg and
Montgomery fixed point theorem.

3. An infinite dimensional generalization of the Gale excess demand
theorem

3.1. Infinite Dimensional Excess Demand Theorem. This section provides
an infinite dimensional generalization of the previous excess demand theorem (The-
orem 2.1), whose proof will rely on the KKMF lemma, an infinite dimensional
generalization of the KKM lemma due to [8].

We now state our main result.
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Theorem 3.1. Let X be a Hausdorff locally convex linear topological space, C ⊆ X
a closed, convex cone (of vertex 0) such that C ̸= X and intC ̸= ∅. For v ∈ intC,
define ∆ = {p ∈ C◦ : p · v = −1} and let ζ : ∆ → 2X be an excess demand
correspondence such that:

(i) ζ : ∆ → 2X is weak* u.d.c., i.e., ζ is u.d.c. with ∆ ⊆ X ′ endowed with
the relative weak* topology of X ′, and X endowed with its initial Hausdorff
topology;

(ii) for each p ∈ ∆, ζ(p) is nonempty, closed, and convex;
(iii) (Weak Walras’ Law) for all p ∈ ∆, there exists z ∈ ζ(p), such that p · z ≤ 0.

Then, there exists p∗ ∈ ∆ such that 0 ∈ cl
[
ζ(p∗)− C

]
.

Moreover, if we additionally assume that the excess demand ζ is compact valued,
then there exists an equilibrium, i.e., p∗ ∈ ∆ such that ζ(p∗) ∩ C ̸= ∅.

We point out that Theorem 3.1 also generalizes the finite dimensional result of
Gale-Nikaido-Debreu-Kuhn as (i) our excess demand correspondence is only as-
sumed to be u.d.c. (a weaker condition than u.s.c.), (ii) Walras’ law is stated in a
weaker form, in the sense that, for all p ∈ ∆, p · z ≤ 0 for some z ∈ ζ(p) (instead of
for all z ∈ ζ(p)), and (iii) we show the existence of a price p∗ satisfying a weaker
form of equilibrium when the excess demand correspondence is not assumed to be
compact valued.

The proof of the theorem is given in the next section and it relies on the following
infinite dimensional generalization of the KKM lemma, due to [8], that will be called
hereafter the KKMF lemma.

Lemma 3.2 (KKMF Lemma). Let Y be a nonempty subset in a Hausdorff linear
topological space V and F : Y → 2V satisfy:

(i) F (x) is closed for all x ∈ Y and F (x) is compact for some x ∈ Y , and
(ii) the convex hull of any finite subset {x1, ..., xn} of Y is contained in

∪n
i=1 F (xi).

Then,
∩

x∈Y F (x) ̸= ∅.

A proof of the KKMF lemma can be found in [8]. See also Section 4 for the
equivalence between the KKMF lemma and a fixed point theorem due to [4].

3.2. Proof of Theorem 3.1. The proof of the theorem is a consequence of the
following claims.

• Claim 1. The set ∆ is nonempty and weak* compact.

Proof. For the weak* compactness we refer to James (1970). We now prove that ∆ is
nonempty. Since C is a closed convex cone (of vertex 0) that is not the whole space,
we deduce that Co ̸= {0} from the bipolar theorem. Thus, we can choose q∗ ∈ C◦,
q∗ ̸= 0 and it suffices to prove that q∗ · v < 0 (where v ∈ intC by assumption),
which implies that q∗/− q∗ · v ∈ ∆.

We now prove that q∗ · v < 0. Indeed, there exists e ∈ X such that q∗(e) ̸= 0
(since q∗ ̸= 0) and we can additionally suppose that q∗ ·e > 0. Thus, for t > 0 small
enough, v + te ∈ C (since v ∈ intC), hence q∗ · (v + te) ≤ 0 (since q∗ ∈ C◦). Thus,
q∗ · v ≤ −tq∗ · e < 0. □

• Claim 2. ∃p∗ ∈ ∆, ∀q ∈ ∆, ∃z ∈ ζ(p∗), q · z ≤ 0.
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Proof. Define the correspondence F : ∆ → 2∆ by:

F (q) := {p ∈ ∆ : ∃z ∈ ζ(p), q · z ≤ 0} for q ∈ ∆.

Then Claim 2 is equivalent to:

∃p∗ ∈ ∆, p∗ ∈
∩

q∈∆ F (q).

The existence of such a p∗ is a consequence of the KKMF lemma and we only need
to prove that all assumptions of KKMF lemma are satisfied by the correspondence
F .

(i) We first show that, for each q ∈ ∆, F (q) is weak* closed in ∆. To see this,
let q ∈ ∆, then Vq = {x ∈ X : q · x > 0} is an open half space in X, thus the set
∆ \ F (q) = {p ∈ ∆ : ζ(p) ⊆ Vq} is weak* open in ∆ since ζ is weak* u.d.c.. Thus
F (q) is weak* closed in ∆.

Moreover, for all p ∈ ∆, F (p) is weak* compact, since F (p) is a weak* closed
subset of ∆, which is weak* compact by Claim 1.

(ii) We now prove that for any set of points {q1, ..., qn} ⊆ ∆, con{q1, ..., qn} ⊆∪n
ι=1 F (qι). Suppose otherwise that there exists q ∈ con{q1, ..., qn}, that is, q =∑n
ι=1 λιqι for some λι ≥ 0, such that

∑n
ι=1 λι = 1, and q ̸∈

∪n
ι=1 F (qι), that is,

q ∈
∩n

ι=1∆ \ F (qι). This implies that ζ(q) ⊆ Vqι := {x ∈ X : qι · x > 0} for all ι,
that is, for all z ∈ ζ(q) one has qι ·z > 0 for all ι, and hence, q ·z =

∑n
ι=1 λιqι ·z > 0.

But this contradicts the Weak Walras’ Law (Assumption (iii)).

• Claim 3. 0 ∈ cl
[
ζ(p∗)− C

]
for some p∗ ∈ ∆.

Proof. We let p∗ as in Claim 2 and we prove that 0 ∈ cl
[
ζ(p∗)−C

]
by contradiction.

Suppose that 0 ̸∈ cl
[
ζ(p∗)−C

]
. Then the point 0 and the nonempty, closed, convex

set cl
[
ζ(p∗) − C

]
⊆ X can be strictly separated by a continuous linear functional,

i.e., there exists q∗ ∈ X ′, q∗ ̸= 0 such that:

0 = q∗ · 0 < infx∈cl[ζ(p∗)−C] q
∗ · x ≤ infz∈ζ(p∗), c∈C q

∗ · (z − c).

Thus one has:

a := supc∈C q
∗ · c < infz∈ζ(p∗) q

∗ · z =: b.

But a = 0 since C is a cone (of vertex 0). Thus, supc∈C q
∗ ·c ≤ 0, that is, q∗ ∈ C◦.

Recalling that q∗ ̸= 0 we deduce that q∗ · v < 0 (as already shown in the proof of
Claim 1). We let λ := −q∗ · v > 0 and, from above, we deduce that (q∗/λ) ∈ ∆.
Consequently, from Claim 2, for q := (q∗/λ) ∈ ∆, there exists z∗ ∈ ζ(p∗) such that
(q∗/λ) · z∗ ≤ 0. Thus

b := infz∈ζ(p∗) q
∗ · z ≤ q∗ · z∗ ≤ 0.

Then b ≤ 0 contradicts the above inequality 0 = a < b. □

• Claim 4. If ζ(p∗) is additionally assumed to be compact, then:

0 ∈ cl
[
ζ(p∗)− C

]
⇔ 0 ∈ ζ(p∗)− C ⇔ ζ(p∗) ∩ C ̸= ∅.

Proof. The first equivalence follows from the fact that the set ζ(p∗) − C is closed
since ζ(p∗) is compact and C is closed. To prove the second equivalence, notice that
0 ∈ ζ(p∗) − C if and only if 0 = z − c for some (z, c) ∈ ζ(p∗) × C if and only if
z ∈ ζ(p∗) ∩ C for some z ∈ X. □
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4. Concluding remarks

The first remark shows that Theorem 3.1 can be proved as a consequence of [4]
fixed point theorem, following [21] who proved that the KKMF lemma and the
Browder fixed point theorem are equivalent in the sense that each one can be derived
from the other.2

Theorem 4.1. Let Y be a nonempty, compact, convex subset of a Hausdorff linear
topological space and ϕ : Y → 2Y be a convex and nonempty valued correspondence
with open lower sections. Then ϕ has a fixed point, i.e., there exists x∗ ∈ Y such
that x∗ ∈ ϕ(x∗).

The Browder fixed point theorem can be equivalently stated as follows.

Theorem 4.2. Let Y be a nonempty, compact, convex subset of a Hausdorff linear
topological space and ϕ : Y → 2Y be a convex valued correspondence with open
lower sections such that x ̸∈ ϕ(x) for all x ∈ Y . Then there exists x∗ ∈ Y such that
ϕ(x∗) = ∅.

Remark 4.3. In the proof of Theorem 3.1, one can replace the KKMF lemma
with the Browder fixed point theorem to prove Claim 2 and the rest of the proof is
unchanged:

(Claim 2:) ∃p∗ ∈ ∆, ∀q ∈ ∆, ∃z ∈ ζ(p∗), q · z ≤ 0.

Alternative Proof of Claim 2. Define the correspondence ϕ : ∆ → 2∆ by:

ϕ(p) = {q ∈ ∆ : q · z > 0, ∀z ∈ ζ(p)}.
Notice that the statement of Claim 2 is equivalent to saying that ϕ(p∗) = ∅ for

some p∗ ∈ ∆. Thus, we will deduce Claim 2 from the Browder fixed point theorem
(Theorem 4) and we only need to check that all its assumptions are satisfied. Indeed,
first p /∈ ϕ(p) for all p ∈ ∆; otherwise we get a contradiction with the Weak Walras’
Law (Assumption (iii)). Second, ϕ is clearly convex-valued. Finally, for all q ∈ ∆,

ϕ−1(q) := {p ∈ ∆ : q ∈ ϕ(p)} = {p ∈ ∆ : ζ(p) ⊆ Vq}
with Vq := {z ∈ X : q · z > 0} is weak* open in ∆ since Vq is an open half-space
and ζ is weak* u.d.c.. □
Remark 4.4. Alternative infinite dimensional proofs of the excess demand theorem
have been obtained by [1] and [20]. The Aliprantis-Brown proof used an approx-
imation argument and it is stated in terms of excess demand functions instead of
correspondences. The proof by [20] makes use of the Tychonoff fixed point theo-
rem. As shown in [20], the [1] is a corollary of [20] and a fortiori a corollary of our
Theorem 3.1.

Remark 4.5. Recent works by [10], [5], [11], [2], and [16] have shown that the
continuity assumption on the excess demand theorem can be further weakened to
the continuous inclusion property. As in [10], one can show that the proof of The-
orem 3.1 can be modified to allow for an excess demand correspondence satisfying
the continuous inclusion property. We hope to take up those details in a subsequent
paper.

2See also [19] for an alternative proof and extension of the Browder fixed point theorem.
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□
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