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We present some mathematical theorems which are used to generalize previous results on the 
existence of maximal elements and of equilibrium. Our main theorem in this paper is a new 
existence proof for an equilibrium in an abstract economy, which is closely related to a previous 
result of Borglin-Keiding, and Shafer-Sonneschein, but allows for an i&nite number of 
commodities and a countably infinite number of agents. 

1. Introduction 

The purpose of this paper is two-fold. First, to prove the existence of 
maximal elements over compact subsets of Hausdorff linear topological 
spaces generalizing the previous results of Fan (1962), Sonnenschein (1971), 
Borglin-Keiding (1976) and Aliprantis-Brown (1983). Second, to prove the 
existence of an equilibrium for an abstract economy as defined in Shafer- 
Sonnenschein (1975) and Borglin-Keiding (1976). This theorem is closely 
related to a previous result of Borglin-Keiding (1976, p. 315) but allows for 
an infinite number of commodities and a countably infinite number of 
traders. 

It should be emphasized that the method of proof given in Borglin- 
Keiding (1976, p. 315) cannot be carried out to allow for an infinite number 
of commodities and a countably infinite number of agents. In particular, it 
fails due to the fact that the countably infinite intersection of open sets in a 
linear topological space need not be open.’ Thus, to allow for double 

*We wish to thank David Bindschadler, Kim Border, Jim Jordan, M. Ali Khan, Nicholas 
Papageorgiou and Ket Richter for their comments and suggestions, as well as a careful referee. 

‘We must note that the method of proof given in Shafer-Sonnenschein (1975) cannot be 
carried out in an infinite dimensional commodity space. In fact, it fails due to the fact that the 
convex hull of an upper-semicontinuous correspondence need not be upper-semicontinuous [see 
Larsen (1973, p. 340)]. 
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infinity, i.e., infinite number of traders and commodities, a new proof of a 
novel type is required. 

In order to prove our results we develop some technical tools. In 
particular, we offer two new mathematical results, namely, a selection 
theorem and a fixed point theorem. 

The paper proceeds as follows. Section 2 contains notation and definitions. 
Section 3 presents some mathematical theorems, which constitute the main 
technical tools used to prove our main results in the next sections. We 
remark that those technical theorems are quite general and may be useful to 
a wide field of problems in economics. Section 4 provides a clear 
understanding of the relationship between preference correspondences which 
are lower-semicontinuous and preference correspondences which have open 

sections. Section 5 contains results on the existence of maximal elements, and 
section 6 presents a proof of existence of equilibrium for an abstract 
economy. Finally, section 7 contains some technical remarks. 

2. Notation and definitions 

2.1. Notation 

2A denotes the set of all subsets of A, 
con A denotes the convex hull of the set A, 
cl A denotes the closure of the set A, 
R denotes the set of real numbers. 

If cp: X-2’ is a correspondence QjA denotes the restriction of cp to A, i.e., 

(~1~: A+2Y. 

2.2. Definitions 

Let X, Y be two topological spaces. A correspondence (p:X+2’ is said to 
be lower-semicontinuous (1.s.c.) if the set {xEX:(P(X) A V#$J} is open in X for 
every open subset V of Y A correspondence (p:X&+2’ is said to be upper- 
semicontinuous (u.s.c.) if the set {x EX:(P(X) c V} is open in X for every open 
subset V of Y. A correspondence (p:X+2’ has an open graph if the set 
G,={(x,y)~Xx Y:~E(P(x)} is open in Xx Y 

3. Preliminary results 

3.1. A selection theorem 

Let d(Y) be the set of all nonempty, convex subsets of Y which are either 
finite-dimensional or closed or have an interior point. Michael (1956, 
Theorem 3.1”‘, p. 368) showed that if X is a 7”-space and Y is a separable 
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Banach space,* then any 1.s.c. correspondence q:X-+d(Y) admits a 
continuous selection, i.e., there exists a continuous function f :X+ Y such that 
f(x) E q(x) for all x E X. 

However, the condition that Y is a separable Banach space cannot be 
relaxed in Theorem 3.1”’ in Michael (1956). Specifically, the counterexample 
given in Michael (1956, p. 374) shows that Theorem 3.1”’ fails if the Banach 
space is not separable. Below we prove a related result to Theorem 3.1”’ 
which extends Y from a separable Banach space to a linear topological 
space. This selection theorem is the key mathematical tool to prove our main 
result in section 6. 

Theorem 3.1. Let X be a paracompact3 Hausdorff space and Y be a linear 
topological space. Suppose (p:X+2” is a correspondence such that 

(i) for each x E X, q(x) is nonempty, 
(ii) for each x E X, q(x) is convex, and 
(iii) for each YE Y q-‘(y)={x~X:y~(~(x)} is open in X. 

Then there exists a continuous function f:X-+Y such that f(x) E(P(X) for all 
XEX. 

Proof. For each ye Y &l(y) is open in X, and by (i), for each x EX there 
is a y E Y such that x E cp- ‘(y). Hence, the collection %? = {q-‘(y): y E Y} is an 
open cover of X. Since X is paracompact, there is an open locally finite 
refinement g = {U,:aeA} of %? [Michael (1953, p. 831)]. (A is an index set 
and U, is an open set in X.) By Proposition 2 in Michael (1953, p. 833) we 
can find a family of continuous functions (g,:a E A} such that g,:X+[O, 11, 
g,(x) =0 for x # U, and xoeA g,(x) = 1 for all x EX. For each a E A choose 
y, E Y such that U, c cp-‘(y,). This can be done since 9 is a refinement of %?. 
Define f:X+Y by f(x)=xOEAg.(x)y,, for all xeX. By local finiteness of 9, 
each XEX has a neighborhood N, which intersects only finitely many U,,‘s. 
Hence, f(x) is a finite sum of continuous functions on N, and is therefore 
continuous on N,. So f is a continuous function from X to I: Further, for 
any a E A such that g,(x) # 0, x E U, c cp- ‘(y,) and so y, E q(x). Thus, f(x) is a 
convex combination of elements y, in q(x) and so f(x)Eq(x) for all 
x E X. Q.E.D. 

3.2. Fixed point theorems 

Using Theorem 3.1 in conjunction with an extension of Schauder’s fixed 
point theorem [Smart (1974, p. 33)] we can prove the following fixed point 
result: 

‘See Kelley-Namioka (1963, p. 58) for a definition. 
%ze Michael (1953, p. 831) for a definition. 
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Theorem 3.2. Let X be a paracompact, convex, nonempty subset of a 
Hausdorff locally convex linear topological space; D be a compact subset of X; 
and P:X+2D be a correspondence such that for all x E X P(x) is convex and 
nonempty. Zffor all y E D P- ‘(y) = { XE :y EP(x)} is open in X, then there exists 
x* ED such that x* E P(x*). 

Proof For all XEX P(x) is convex, nonempty and for each yeX P-‘(y) is 
open in X. Hence, by Theorem 3.1 there exists a continuous function 
f:X+X such that f(x) EP(x) for all XEX. By Theorem 4.5.1 in Smart (1974, 
p. 33) there exists x* E X such that x* =f(x*) E P(x*) c D. Q.E.D. 

We will now prove an analogous result for a Hausdorff linear topological 
space E, which need not be locally convex. The theorem below has been 
proved independently by Browder (1968).4 For completeness we give a proof. 

Theorem 3.3. Let X be a compact, convex, nonempty subset of a Hausdor- 
linear topological space E and P:X+2’ be a correspondence such that for all 
xsX P(x) is convex and nonempty. Zf for each y~x P-‘(y)={x~X:y~P(x)} 
is open in X, then there exists x* E X such that x* E P(x*). 

Proof: Since for each y EX the set P-‘(y) is open in X and each x EX is at 
least in one of these open sets, the collection {P-l(y): y E X} is an open cover 
of X. Since X is compact, there exists a finite set {yr,. . . , y.} such that 
Xs uy= 1 P-‘(yi). Let (gl, . . . , g,} be a continuous partition of unity 
subordinated to the above covering [Michael (1953, Proposition 2, p. 833)], 
i.e., each gi:X+[O, l] is continuous and gi(x)=O for x$Pml(yi) and 
I;= 1 g,(x) = 1 f or all x EX. Define the continuous mapping f :X+X by 
f(x)=Cy=l gi(x)yi. Note, that for any i such that gi(x)#O, xEP-‘(yi) or 
yi E P(x). Hence, f(x) is a convex combination of points yi in the convex set 
P(x) and so f(x) EP(x) for all xeX. Let S be the finite dimensional simplex 
spanned by the finite set {yl,. . . , y,}. Since the topology induced on any 
finite dimensional subspace of E by the topology of E coincides with the 
Euclidean topology [Kelley-Namioka (1963, Theorem 7.3, p. 59)], f :S+S 
is a continuous mapping of a finite dimensional simplex S into itself. 
By Brouwer’s fixed point theorem there exists x* ES such that 
x* = f (x*) EP(x*). Q.E.D. 

in a Euclidean space R” the assumption in Theorems 3.2 and 3.3 that for 
each y~x P-‘(y) is open in X can be weakened, to the condition that 
P:X-t2x is 1.s.c. The following elementary fixed point theorem is implicitly in 
Gale-Mas-Cole11 (1975), but it is not given in the present form. 

4We thank Kim Border and a referee for pointing this out to us. 
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Theorem 3.4. Let X be a nonempty, compact, convex subset of W, and let 
P:X+2’ be a 1.s.c. correspondence such that for all XEX P(x) is nonempty and 
convex. Then there exists x* E X such that x* E P(x*). 

Proof. Since P:X+2x is a 1s.~. correspondence with convex and nonempty 
values by Theorem 3.1”’ in Michael (1956), there exists a continuous function 
f:X+X such that for all xeX f(x) E P(x). Since f is a continuous mapping 
from a nonempty, compact, convex set X into itself by Brouwer’s fixed point 
theorem, there exists x* EX such that x* =f(x*) E P(x*). Q.E.D. 

4. Lower-semicontinuous and open sectioned preferences 

Let X be a topological space. A binary relation 9 on X is a subset of 
X x X. We read (x, y) E 9 as ‘x is preferred to y’. Define the correspondence 
P:X+2x by P(x)={y~X:(y,x)~9} and the correspondence P-1:X+2x by 
P-l(y)={xEX:yEP(x)}. w e call P(x) the upper contour set or upper section 
of 9 and P-l(y) the lower contour set or lower section of 9. We say that 
.YcXxX has an open graph if the set G={(y,x)~XxX:(y,x)~g} is open 
in XxX. 

Although the relationship of open graph and openness of lower and upper 
sections is known [see Bergstrom et al. (1976)], the relationship of open 
sections with lower-semicontinuity is still unknown. Below we examine this 
relationship. 

Proposition 4.1. Zf for each y E X P- ‘(y) is open in X, then P is 1,s.~. 

Proof. We must show that the set {x EX: P(x) n V#p} is open in X 
whenever V is an open subset of X. It is easy to check that for any VcX, 

(1) 

Since by assumption P-l(y) is open in X, Uve y P-‘(y) has the same 
property as being the union of open sets in X. Hence, by (1) it follows that 
the set {x E X: P(x) n V # a} is open in X whenever I/’ is an open subset of X. 
Consequently, P is 1.s.c. Q.E.D. 

Corollary 4.1. Zf G = {(y, x) E X x X:(y, x) E Y} is open in X x X, then for all 
XEX, P(x) is open in X and P is 1.s.c. 

Proof: Since G is open in X xX, the sets P(x) and P-‘(y) are open in X. 
But if P-‘(y) is open in X, by Proposition 4.1 P is 1.s.c. Q.E.D. 

Remark 4.1. If P is 1.s.c. then for each ycX P-l(y) may not be open in X. 
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Proof: Let P: Iw+2’ be given by P(x) = C-x, co). Then 

P-'(y)={x:yEP(x)}={x:yE[-x, cm)> 

Notice that P-‘(y) is not open in R. However, we will show that P is 1.s.c. 
Since we have proved (Proposition 4.1) that UYEVP-l(y)={x:P(x)n V#g} 

whenever I/ is an open subset of R, then it is sufficient to show that 

u yeY P-‘(y) is open. To this end let I/ be an open subset of R. Define 
b = sup {KU E V> and observe that b > u for all v E V We will show that 

u YE V P- ‘(y) =(-b, co). Indeed, note that 

xE(-b,co)o-b<xob>-x 

ob>yz -x for some yfz V 

o-ysx for some y E I/ 

*xe[-y,co) for some yeV 

oxEP-l(y) for some ye I/ 

OXE (J P-‘(y). 
YEV 

Thus Uysv P-‘(y) =(- b, 00) which is an open subset of R, and 
consequently, P is 1.s.c. Q.E.D. 

Hence, we conclude that the assumption that the preference 
correspondence P:X+2’ has an open graph is stronger than the assumption 
that P is 1.s.c. and the upper contour set is open. Furthermore, if the lower 
contour set is open, the upper contour set is 1.s.c. but the reverse may not be 
true.5 

5. Existence of maximal elements 

Let X be a nonempty subset of a topological space and P:X+2x be a 
preference correspondence defined by P(x) = (y E X:(y, x) ES}. If there exists 
x* E X such that P(x*) = $3, then x* is said to be a maximal element in X. 

5A simple example of a correspondence which is 1.s.c. and does not have open lower sections 
is the budget set. 
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Let X, Y be topological spaces. A correspondence (p:X+2’ is said to have 
open lower sections if the set q-‘(y) = (x E X:y E q(x)} is open in X for every 
y in Y 

Lemma 5.1. Let X, Y be linear topological spaces and q:X+2’ be a 
correspondence with open lower sections. DeJine the correspondence $:X+2’ 
by 1,9(x) = con q(x) for all x E X. Then II/ has open lower sections. 

ProoJ Let y, E Y and x0 E $ - '(y,). We shall exhibit an open set U in X 
such that x0 E U c I+- ‘(yO). Since y, E $(x,,) = con cp(xJ, we can find y,, . . . , y, 
in cp(x,) and reals a,, . . ., a, such that a, 20, x1= 1 ai = 1 and y, =x1= I a,y,. 
For each i=l,...,n, cp-‘(y,) is open in X and x,,~cp-‘(yi). Define 
U= (7FZ1 cp-‘(yi). Then x0 E U, U is open in X. To complete the proof 
we must show that U cll/-‘(yO). Let x E U, then XE cp-‘(y,) or yi E(P(~) for 
all i= 1 , . . . , n. Hence, y, =cy= 1 aiyi E $(x), i.e., x E I,- ‘(yO). Consequently, 
xO~Uc~-‘(yo). Q.E.D. 

The following theorem extends the Sonnenschein (1971, Theorem 4, p. 219) 
result to Hausdorff linear topological spaces. It also generalizes slightly the 
results of Fan (1962, Lemma 4) [see also Borglin-Keiding (1976, p. 313) and 
Aliprantis-Brown (1983, Theorem 3.5)]. 

Theorem 5.1. Let X be a compact, convex subset of a Hausdorff linear 
topological space and P:X+2x be a correspondence such that for all XEX 
x$conP(x). Iffor each YEX P-‘(y) = {x~X:y~P(x)f is open in X, then there 
exists x* EX such that P(x*)=Q. 

Proof Suppose otherwise, i.e., for all x E X P(x) #Q. Then the corre- 
spondence (p:X+2’ defined by q(x) =con P(x) for all XEX is convex and 
nonempty valued. By Lemma 5.1 for each ycX q-‘(y)={x~X:y~(~(x)} 
is open in X. Hence, by Theorem 3.3 there exists x* EX such that 
x* E cp(x*) = con P(x*), a contradiction to the assumption that for all x EX 
x $ con P(x). Q.E.D. 

In a Euclidean space R” the assumption that for all yeX P-‘(y) is open in 
X can be weakened in a simple way. 

The following theorem slightly generalizes the Sonnenschein (1971, 
Theorem 4, p. 219) result: 

Theorem 5.2. Let X be a nonempty, compact, convex subset of R”, and 
P:X+2’ be a 1.s.c. correspondence such that for all x E X x+&con P(x). Then 
there exists x* E X such that P(x*) = 4. 
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Proof: Suppose that for all x EX P(x) $2 4. Then the correspondence 
(P:X--+~~ defined by q(x) = con P(x) for all x E X is convex, nonempty valued 
and by Proposition 2.6 in Michael (1956) 1.s.c. By Theorem 3.4 there exists 
x* E X such that x* E cp(x*) = con P(x*), a contradiction. Q.E.D. 

We now extend Theorem 5.1 to a more general class of preference 
correspondences. We will need the following definition. 

Definition 5.1. Let X be a subset of a linear topological space. A 
correspondence cp:X-+2’ is said to be of class 9, if 

(i) x$con q(x) for all xEX, 
(ii) q-l(y)={xEX: y E q(x)} is open in X for all y E X. 

Let $:X+2x be a correspondence. The correspondence (P,:X+~~ is an _Y- 
majorant of $ at x if cpx is of class _Y and there is an open neighborhood N, 
of x such that for all ZEN, $(z)ccp,(z). The correspondence $:X+2’ is 
Y-majorized if for each x EX such that I&X) # 4, there is an Z-majorant 
of $ at x. 

The following corollary of Theorem 5.1 generalizes Corollary 1 in Borglin- 
Keiding (1976, p. 314) and it can be used to provide their results. 

Corollary 5.1. Let X be a nonempty, compact, convex subset of a Hausdorff 
linear topological space and P:X+2’ be 9-majorized. Then there exists 
x* EX such that P(x*)=r$. 

Proof: It follows from Theorem 5.1 using the same argument adopted in 
Borglin-Keiding (1976, Corollary 1, p. 314). 

The following result is not implied by any of the above theorems since it 
requires neither the range of the preference correspondence to be convex nor 
the domain to be compact. 

Theorem 5.3. Let X be a nonempty, paracompact, convex subset of a 
Hausdorff locally convex linear topological space and D be a compact subset of 
X. Let PIX+~~ be a correspondence such that for all XE D x$conP(x). If for 
all YED P-‘(y)={x~X:y~P(x)} is open in X, then there exists x* EX such 
that P(x*) = 4. 

Proof: Suppose not, i.e., for all XEX P(x) # 4. Then the correspondence 
q:X-+2” defined by q(x) =con P(x) for all x EX is convex and nonempty 
valued. By Lemma 5.1 for each YED qP’(y)={x~X:y~(~(x)) is open in X. 
By Theorem 3.2 there exists x* E D such that x* ~cp(x*) =conP(x*), a 
contradiction. Q.E.D. 
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6. Existence of equilibrium 

In this section we prove the existence of equilibrium for an abstract 
economy with an infinite number of commodities and a countable number of 
agents. 

Before we proceed to our main theorem we will need some facts. 

Fact 6.1. Let X, Y be linear topological spaces, and (p:X-+2’, &X--+2’ be 
correspondences having open lower sections. Then the correspondence 
8:X+2’ defined by (3(x) = cp(x)n$( x ) f or all XCZX has open lower sections. 

Proof Simply, note that V’(y)=cp-‘(y)nr,-‘(y). Since for all ye Y q-‘(y) 
and r+-‘(y) are open in X, O-‘(y) is open in X for all YE I: Q.E.D. 

Fact 6.2. Let X, Y be two topological spaces and (p:X-+2’ be a 
correspondence having open lower sections. Then the correspondence 
cpl,:E-+2Y has open lower sections for EcX. 

ProoJ: Since cp- ‘(y) is open in X for every y E Y then the set En cp- ‘(y) = 
{xeE:y~(~(x)} is open in E. Q.E.D. 

Lemma 6.1. Let X, Y be topological spaces and EcX be open in X. Let 
cp:X-+2’ be an U.S.C. correspondence and f :E+Y be a continuous selection 
from (~1~. Then the correspondence $:X+2’ defined by 

$(x)={f(x)} if XEE, 

= cp(x) if x$E 

is U.S.C. 

Proof: We must show that the set K = {x EX:$(X) c I’} is open in X for 
every open subset V of I! Let A= {xEX:(P(X)C I’> and B={xe E: f(x)E V}. 
It can be easily checked that K =A u B. It follows from the U.S.C. of cp that A 
is open in X. By continuity of f, B is open in E and hence is open in X since 
E is open in X. Thus, K is open in X. Q.E.D. 

Let the set of agents be any countable ‘set denoted by I. For each iEZ 
let Xi be a nonempty set. An abstract economy r =(Xi, Ai, Pi)isI is defined 
as a family of ordered triples (Xi, Ai,Pi), where Ai:njGlXj+2xi 
and Pi :njs I Xj -+2x’ are correspondences. An equilibrium6 for r is an 

6This definition of an equilibrium is due to Borglin-Keiding (1976, p. 315). 
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X* E X = ni E I Xi satisfying for each i E I: 

(i) xi* E cl I&(X*), 
(ii) P,(x*) n A,(x*) = 4. 

We can now state our main result. 

Theorem 6.1. Let T=(Xi,Ai, Pi)isI be an abstract economy satisfying for 
each ie I: 

(9 Xi is a nonempty, compact, convex, metrizable subset of a locally convex 
linear topological space, 

(ii) Ai is convex and nonempty for all XEX, 
(iii) the correspondence Ai:X+2” defined by Ai =cl Ai for all XEX is 

U.S.C., 

KY) 

Ai has open lower sections, 
Pi has open lower sections, 

(vi) Xi fi con Pi(X) for all X E X. 

Then P has an equilibrium. 

Proof Define for each ill 
Ai neon Pi(X) for all XEX. 

the correspondence F~:X+~~’ by q,(x)= 

By Lemma 5.1 and Fact 6.1 ‘pi has open _. 
lower sections. Hence, by Proposition 4.1 Cpi:X~2”i is 1.s.c. and so the set 
Ui={XEX:cpi(X)#~) . p IS o en7 in X. Since X is a metrizable space [Kelley- 

Namioka (1963, p. 50)] Ui is paracompact [Michael (1956, p. 831)] Further, 
the correspondence ‘pi 1 Ui: Ui+2” is nonempty, convex valued and by Fact 
6.2 has open lower sections. Hence, by Theorem 3.1 there exists a continuous 
function fi: Ui-+Xi such that f;:(x) E q,(x) for all XE Ui.. Define the 
correspondence Fi :X -2” by 

Fi(x) = {A(x)} if x E Ui, Fi(x) = Ai if x $ Ui. 

By Lemma 6.1 Fi is U.S.C. Define F:X+2X by F(x)=niG,Fi(x). By Lemma 3 

[Fan (1952, p. 124)] F is U.S.C. Since for each xeX F(x) is convex, closed 
and nonempty, by Theorem 1 [Fan (1952, p. 122)] there exists x* EX 
such that x*~F(x*). Note that for each in I, if x* E Ui, then 

xi* = fi(x*) l (pi(x*) ccon Pi(x*), a contradiction to (vi). Hence, x* & Ui and so 
for all ill, xi*EAi(X*) and Cpi(X*)=~, i.e., Ai(x*)ncon Pi(x*)=4 which 
implies A,(x*) A P,(x*) = 4. Consequently, r has an equilibrium.’ Q.E.D. 

‘Since ‘pi is l.s.c., Ui = {x E X: q,(x) # $3} = {x EX: q,(x) nXi #g} is open in X. 
*Note that if in Theorem 6.1 one assumes that Pi(x) is open in Xi for all XEX, then condition 

(ii) of the definition of equilibrium can be strengthened to P,(x*)nclA,(x*)=E). This is in fact 
the notion of equilibrium that Shafer-Sonnenschein (1975) prove. 
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The following useful corollary of Theorem 6.1 may be of independent 
interest. 

Corollary 6.1. Let F=(Xi, Ai,Pi)i.r be an abstract economy satisfying for 
each iel: 

(i) Xi is a nonempty, weakly compact, convex subset of a separable Banach 
space, 

(ii) Ai is convex and nonempty for all XEX, 
(iii) the correspondence &:X-+2” defined by ;i,(x)=cl Ai for all XE A is 

U.S.C. in the weak topology [see Dunford-Schwartz (1966, p. 419)], 
(iv) Ai has open lower sections with respect to the weak topology, 
(v) Pi has open lower sections in the weak topology, 
(vi) Xi #conPi for all X EX. 

Then F has an equilibrium. 

Proof The proof follows from Theorem 6.1. Indeed, by Theorem 3 
[Dunford-Schwartz (1966, p. 434)] the weak topology of a weakly compact 
subset Xi of a separable Banach space is a metric topology. Q.E.D. 

7. Remarks 

Remark 7.1. Theorem 6.1 was proved for metrizable subsets of a locally 
convex linear topological space. We needed metrizability in order to show 
that the set Ui={x~X:~i(~)#4} ’ p 1s aracompact. Without the metrizability 
assumption Ui may not be paracompact [Michael (1956, p. 835)] and, 
consequently, our selection Theorem 3.1 cannot be applied. Hence, we do not 
know if Theorem 6.1 can be extended to nonmetrizable subsets without 
introducing additional assumptions. 

Remark 7.2. In Theorem 6.1 the assumption of metrizability can be relaxed 
if one introduces the assumption that the set Ei = {x~X:Pi(x) #4} is 
perfectly normal, i.e., every open subset of Ei is an F,, where F, denotes the 
countable union of closed sets [see Michael (1956)]. Hence, since in the proof 
of Theorem 6.1 Ui is an open subset of Ei, it is an F,. Consequently, by 
Proposition 3 in Michael (1956, p. 835) Ui is paracompact and therefore the 
selection Theorem 3.1 can be ,applied. 

Remark 7.3. In Theorem 6.1 the set of agents I was assumed to be a 
countable set. The reason for this is that, if each Xi is a metrizable subset of 
a locally convex linear topological space, then X = ni EI Xi is metrizable if I 
is a countable set [Kelley-Namioka (1963, p. 50)]. However, if the 
metrizability assumption is relaxed by introducing the additional assumption 
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that the set Ei = {x E X:Pi(x) # d} is perfectly normal (Remark 7.2) then I can 
be any countable or uncountable set because X = ni EI Xi is a subset of a 
locally convex linear topological space [Kelley-Namioka (1963, p. 47)]. 

Remark 7.4. We will now give examples of locally convex linear topological 
spaces which are metrizable, and have been used in economics. 

(i) A normed space’ is a locally convex metrizable linear topological space 
[Berge (1963, Example 1, p. 249)]. 

(ii) A Banach space is a complete normed space” and so it is a normed 
space. Hence, it is a locally convex metrizable linear topological space. 

(iii) Let p be a real number 15,~ < co. The space 1, consists of all sequences 
of scalars {a,, a2,. . .} for which c?= 1 jail p < co. The norm of an element 
~={a,} in 1, is defined by [[x//=(~~~ lailP)l’P. The space 1, consists of 
bounded sequences. The norm of an element ~={a,} in 1, is defined by 
[[x(1, =sup, la,(. The space 1, 15~5 co is a Banach space [Luenberger 
(1969, Example 4, p. 36)] and, consequently, it is a locally convex 
metrizable linear topological space. 

(iv) The space L,[O, l] consists of those real valued measurable functions x 
on the interval [O, l] for which jx(t)l” is Lebesgue integrable. The norm 
is defined by J(x((~ = (Ji Ix(r)1 d ) p t ‘jp. L,[O, 11, 15;~s cc is a Banach space 
[Luenberger (1969, Example 5, p. 37)] and, consequently, it is a locally 
convex metrizable linear topological space. 

(v) The space C[O, l] of continuous functions on [0, l] with norm /(XII 

=suPoS,S, I ( )I x t is a Banach space [Luenberger (1969, Example 1, p. 
34)] and so it is a locally convex metrizable linear topological space. 

Remark 7.5. Theorem 6.1 remains true if assumption (i) is replaced by the 
condition that Xi is a nonempty, compact, convex subset of any of the five 
spaces, i.e., (i-v) in Remark 7.4. Hence, the commodity space in Theorem 6.1 
is general enough to include the separable Banach commodity spaces used in 
Khan (1982) and Yannelis-Prabhakar (1983) and the space L, used in 
Bewley (1972). Note that I, and L,, 15;~ < cc are separable Banach spaces 
[Luenberger (1969, pp. 36 and 43)]. 

%ee Berge (1963, p. 23 1) for a definition. 
“See Berge (1963, p. 252) for a definition. 
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