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1. INTRODUCTION

Many aspects of Bayesian games (or games with differential information)
have been studied in the literature. The question regarding the existence of
equilibria in these games is one of them. Milgrom and Weber [16] noted
that the usual fixed point argument of Nash [17] with the standard assump-
tions is not applicable in proving the existence of Bayesian equilibrium and
hence introduced sufficient conditions for the existence. Balder [1, 2]
generalized their result and Radner and Rosenthal [21] presented sufficient
conditions for the existence of pure strategy Bayesian equilibrium. However,
all these existence results are limited to a finite number of agents (or
players). Hence, it is of interest to know not only the conditions which
guarantee existence of a Bayesian Nash equilibrium (BNE) with infinitely
many players, but also how one defines the notion of a BNE in the presence
of a continuum of players. To the best of our knowledge this has not been
done. The main purpose of this paper is to provide equilibrium existence
results for Bayesian games with infinitely many agents.

While equilibrium existence results in Bayesian games have been confined
to the finite number of agents, the literature of games or economies without
differential information has studied models with infinitely many agents. In
this literature, two main different approaches have been employed to model
infinitely many agents. One is to extend the finite agent's model directly to
the infinite case so that the joint strategy profile of all agents is just the
product of each agent's strategy (e.g., Yannelis and Prabhakar [26] among
others). We call this the Cartesian Product Approach. In this approach,
even if there are infinitely many agents, a priori each agent's action can
unilaterally affect the outcome of the game. The other approach is to
impose a measure space structure on the set of agents so that each agent's
action is negligible but the joint action by the agents with positive measure
can affect the outcome of the game (e.g., Khan [15] an Schmeidler [23]
among others). We call this the Measure Theoretic Approach. In this paper
we will examine both settings in the context of Bayesian games and provide
Bayesian equilibrium existence theorems for each one separately.

In modeling differential information in Bayesian games, we use the
information partition approach following the models of Postlewaite and
Schmeidler [20], Palfrey and Srivastava [18]. In this approach all uncer-
tainty arises from an exogenously given probability measure space denoting
the states of the nature of the world and each agent's private information
is a partition of the state space. Therefore, under this approach each agent's
strategy is a function from the state space to his�her set of available actions,
which is measurable with respect to his�her information partition. Thus,
one could interpret a strategy as a behavioral strategy. This is in contrast
with the Bayesian equilibrium existence results of Milgrom and Weber
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[16] and Balder [1, 2] which are based on the Harsanyi type model
and proved the existence of an equilibrium in distributional strategies for
Bayesian games with a finite number of agents.

There are two other works in the literature which prove Bayesian equi-
librium existence with infinitely many agents. First, Balder and Rustichini
[3] proved the existence of a Bayesian equilibrium in distributional strategies
with infinitely many players. They used the Cartesian product approach
and imposed a continuity assumption which amounts to the fact that only
a countable number of agents can affect the payoff of each agent even
though there are uncountably many. They also assumed the independent
types condition which means that each agent's type is drawn independently
from the others. Balder and Yannelis [4] showed the existence of a Bayesian
equilibrium with a measure space of agents but they considered only the
case of symmetric information.

The purpose of this paper is to make three main new advances in the
existing literature. First, we provide existence results for Bayesian games
with infinitely many agents covering the Cartesian product approach as
well as the Measure theoretic approach. Second, we used the information
partition approach to model the differential information rather than the
type set approach and therefore, our equilibrium is in behavioral strategies
rather than in distributional strategies. It should be noted that by using this
approach, we are able to eliminate the independent type assumption used
in Balder and Rustichini [3]. Third, our results allow the individual's
action set to depend on the state of nature and to be an arbitrary subset
of a separable Banach space. In order to obtain existence results which
allow us to incorporate all the above generalization, a new proof of a novel
type is required.

The rest of the paper proceeds as follows: Section 2 contains the notation
and the basic definitions. In Section 3, we introduce the game with differential
information as well as the notion of a Bayesian Nash equilibrium. Sections 4
and 5 contain our main existence theorems, and Section 6 contains some
concluding remarks and open questions. Finally, we have collected the
main technical lemmas for our existence theorems in the Appendices.

2. NOTATION AND DEFINITIONS

We begin with some notation and definitions.
Let 2X denote the set of all nonempty subsets of the set X. If X and Y

are sets, the graph of the set-valued function (or correspondence) , : X � 2Y

is G,=[(x, y) # X_Y : y # ,(x)].
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Let (0, F, +) be a complete, finite measure space and Y be a separable
Banach space. The correspondence , : 0 � 2Y is said to have a measurable
graph if

G, # F�B(Y ),

where B(Y ) denotes the Borel _-algebra on Y and � denotes the product
_-algebra. The measurable function f : 0 � Y is called a measurable selection
of , : 0 � 2Y if

f (|) # ,(|) for +-a.e.

Let (0, F, +) be a finite measure space and Y be a Banach space.
Following Diestel-Uhl [9], the function f : 0 � Y is called simple if there
exist y1 , y2 , ..., yn in Y and E1 , E2 , ..., En in F such that

f = :
n

i=1

yi/Ei ,

where /Ei (|)=1 if | # Ei and /Ei (|)=0 if | � Ei . A function f : 0 � Y is
called F-measurable if there exists a sequence of simple functions fn : 0 � Y
such that

lim
n � �

& fn(|)& f (|)&=0 for +-a.e.

An F-measurable function f : 0 � Y is said to be Bochner integrable if
there exists a sequence of simple functions [ fn : n=1, 2, ...] such that

lim
n � � |

| # 0
& fn(|)& f (|)& d+(|)=0.

In this case, for each E # F we define the integral of f, denoted by
�E f (|) d+(|), as

lim
n � � |

E
fn(|) d+(|).

It can be shown (see Diestel-Uhl [9, Theorem 2, p. 45]) that if f : 0 � Y is
an F-measurable function, then f is Bochner integrable if and only if

|
0

& f (|)& d+(|)<�.
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It turns out to be important in our paper that the Dominated Convergence
Theorem holds for Bochner integrable functions. In particular, if fn : 0 �
Y(n=1, 2, ...) is a sequence of bochner integrable functions such that for
+-a.e.

lim
n � �

fn(|)= f (|) and & fn(|)&�g(|),

where g : 0 � R is an integrable function, then f is Bochner integrable and

lim
n � � |

| # 0
& fn(|)& f (|)& d+(|)=0.

The space of equivalence classes of Y-valued Bochner integrable functions
y : 0 � Y, normed by

&y&=|
0

&y(|)& d+(|),

is denoted by L1(+, Y). It is a standard result that normed by the
functional & }& above, L1(+, Y) becomes a Banach space (see Diestel-Uhl
[9, p. 50]).

A Banach space Y has the Radon-Nikodym Property (RNP) with respect
to the measure space (T, {, &) if for each &-continuous vector measure
G : { � Y of bounded variation, there exists some g # L1(&, Y ) such that for
all E # {,

G(E)=|
E

g(t) d&(t).

It is a standard result (Diestel and Uhl [9]) that if Y* (the norm dual for
of Y ) has the RNP with respect to (T, {, &), then

(L1(&, Y ))*=L�(&, Y*).

A correspondence , : 0 � 2Y is said to be integrably bounded if there
exists a function h # L1(+, R) such that

sup [&y& : y # ,(|)]�h(|) +-a.e.
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If [Fn : n=1, 2, ...] is a sequence of nonempty subsets of a Banach space
Y, we denote by Ls Fn and Li Fn the set of its limit superior and limit
inferior points respectively, i.e.,

Ls Fn=[x # Y : x= lim
k � �

xnk
, xnk

# Fnk
, k=1, 2, ...]

Li Fn=[x # Y : x= lim
n � �

xn , xn # Fn , n=1, 2, ...].

A | in front of Ls Fn (Li Fn) will mean limit superior (inferior) with respect
to the weak topology _(Y, Y*). If Z is a metric space, Y is a Banach space
and , : Z � 2Y is a correspondence, we say that , is upper semicontinuous
(u.s.c.) if Ls ,(zn)/,(z) whenever the sequence zn # Z converges to z
(written as zn � z).

3. THE GAME WITH DIFFERENTIAL INFORMATION

Let (0, F, +) be a complete, finite, separable measure space, where 0
denotes the set of states of the world and the _-algebra F, denotes the set
of events. Let Y be a separable Banach space and T be a set of agents
(either finite or infinite).

A Bayesian game (or a game with differential information) is G=[(Xt ,
ut , Ft , qt) : t # T], where

(1) Xt : 0 � 2Y is the action set-valued function of agent t, where
Xt(|) is the set of actions available to t when the state is |,

(2) for each | # 0, ut(|, } ) : >s # T Xs(|) � R is the utility function of
agent t, which can depend on the states,

(3) Ft is a sub _-algebra of F which denotes the private information
of agent t,

(4) qt : 0 � R++ is the prior of agent t, (where qt is a Radon�
Nikodym derivative such that � qt(w) d+(|)=1).

Let LXt
denote the set of all Bochner integrable and Ft -measurable

selections from the action set-valued function Xt : 0 � 2Y of agent t, i.e.,

LXt
=[x~ t # L1(+, Y ) : x~ t is Ft-measurable and x~ t(|) # Xt(|) +-a.e.].

The typical element of LXt
is denoted as x~ t while that of Xt(|), as xt(|)

(or xt). Let LX=>s # T LXs
and LX&t

=>s{t LXs
. Given a Bayesian game

G, a strategy for agent t is an element x~ t in LXt
.

Throughout the paper, we assume that for each t # T, there exists a finite
or countable partition 6t of 0. Moreover, the _-algebra Ft is generated
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by 6t . For each | # 0, let Et(|) (=6t) denote the smallest set in Ft con-
taining | and we assume that for all t,

|
|$ # Et (|)

qt(|$) d+(|$)>0.

For each | # 0, the conditional (interim) expected utility function of agent
t, "t(|, } , } ) : LXt

_Xt(|) � R is defined as:

"t(|, x~ &t , xt)=|
|$ # Et (|)

ut(|$, x~ &t(|$), xt) qt(|$ | Et(|)) d+(|$),

where

qt(|$ | Et(|))={
0 if |$ � Et(|)

qt(|$)
�|~ # Et (|) qt(|~ ) d+(|~ )

if |$ # Et(|).

The function "t(|, x~ &t , xt) is interpreted as the conditional expected utility
of agent t using the action xt when the state is | and the other agents
employ the strategy profile x~ &t , where x~ &t is an element of LX&t

.
A Bayesian Nash equilibrium for G is a strategy profile x~ * # LX such that

for all t # T

"t(|, x~ *&t , x~ t*(|))= max
yt # Xt (|)

"t(|, x~ *&t , yt) +-a.e.

We can now state the assumptions needed for our first main theorem.

(A.1) Xt : 0 � 2Y is a nonempty, convex, weakly compact valued and
integrably bounded correspondence having a Ft -measurable graph, i.e., GXt

#
Ft �B(Y ).

(A.2) (i) For each | # 0, ut(|, } , } ) : >s{t Xs(|)_Xt(|) � R is
continuous where Xs(|) (s{t) is endowed with the weak topology and Xt(|),
with the norm topology.

(ii) For each x # >s # T Ys with Ys=Y, ut( } , x) : 0 � R is F-measurable.

(iii) For each | # 0 and x&t # >s{t Xs(|), ut(|, x&t , } ) : Xt(|) � R
is concave.

(iv) ut is integrably bounded.

Remark. Since the norm topology is finer than the weak topology,
(A.2) (i) is weaker than the weak continuity of ut(|, } , } ) in actions of all
agents.
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4. COUNTABLY MANY AGENTS

We can now state our first main result.

Theorem 4.1. Let T be a countable set. Let G=[(Xt , ut , Ft , qt) : t # T]
be a Bayesian game satisfying (A.1)�(A.2). Then there exists a Bayesian
Nash equilibrium for G.

Proof. It follows from Lemma A.1 in Appendix I that for each | # 0,
"t(|, } , } ) : LX&t

_Xt(|) � R is continuous where LXs
(s{t) is endowed

with the weak topology and Xt(|), with the norm topology. It is easy to
see that for each (x~ &t , xt) # LX&t

_Xt , "t( } , x~ &t , xt) : 0 � R is Ft-measurable.
Since ut(|, x&t , xt) is concave in xt , so is "t(|, x~ &t , xt). For each t # T,
define ,t : 0_LX&t

� 2Y by

,t(|, x~ &t)=[xt # Xt(|) : "t(|, x~ &t , xt)= max
yt # Xt (|)

"t(|, x~ &t , yt)].

A direct application of Weierstrass theorem implies that for each (|, x~ &t)
# 0_LX&t

, ,t(|, x~ &t) is nonempty. By the Berge maximum theorem for
each | # 0, ,t(|, } ) : LX&t

� 2Xt(|) is u.s.c. where Xt(|) is endowed with the
norm topology and LX&t

, with the weak topology. Moreover, it follows
from the concavity of "t in xt that for each | # 0, ,t(|, } ) is convex-valued.

For each t # T, define 8t : LX&t
� 2LXt by

8t(x~ &t)=[x~ t # LXt
: x~ t(|) # ,t(|, x~ &t) +-a.e.].

By Lemma A.2 in Appendix I, for each x~ &t # LX&t
, .t( } , x~ &t) has a Ft -

measurable graph. Therefore, by the Aumann measurable selection theorem
for each fixed x~ &t # LX&t

, there exists an Ft -measurable function ft : 0 � Y
satisfying ft(|) # .t(|, x~ &t) +-a.e. Since for each (|, x~ &t) # 0_LX&t

,
.t(|, x~ &t)/Xt(|) and Xt( } ) is integrably bounded, it follows that ft # LXt

.
Therefore, ft # 8t(x~ &t), i.e., 8t is nonempty valued. By Lemma A.4 in
Appendix I, LXt

is a weakly compact subset of L1(+, Y ). Since the weak
topology of a weakly compact subset of a separable Banach space is
metrizable (Dunford and Schwartz [10, p. 434]), LXt

is metrizable. Since
the set of agents T is countable, LX&t

is also metrizable. Therefore, by
Lemma A.5 in Appendix I, 8t is weakly u.s.c. Define 8 : LX � 2LX by

8(x~ )= `
s # T

8s(x~ &s).

Since LXs
is weakly compact for all s, so is LX . Since Xt : 0 � 2Y has a

measurable graph and it is integrably bounded, LXt
is nonempty by the
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Aumann measurable selection theorem. It follows from the convex valued-
ness of Xt that LXt

is convex. Since 8t is weakly u.s.c., so is 8. It is easy
to see that 8 is convex, nonempty valued. Therefore, by the Fan�Glicksberg
fixed point theorem there exists x~ * # LX such that x~ * # 8(x~ *). The reader
can easily verify that x~ * is a Bayesian Nash equilibrium for G by construction.
This completes the proof of the theorem. K

5. EXISTENCE RESULT: UNCOUNTABLY MANY AGENTS

In this section, we present Bayesian Nash equilibrium existence theorems
with uncountably many agents. There are two different ways of modeling
games with uncountably many agents. One is to model games without any
measure structure on the set of agents T. In this case, the joint strategy of
all agents is simply an element in the Cartesian product of each agent's
strategy set LXt

. The other is to model games with a measure structure on
the set of agents T. In this approach, naturally each individual agent's
action can be negligible but the aggregate action can matter. Each model
has its own merits depending on the situation. In this section, we provide
Bayesian equilibrium existence theorems for both settings. We first begin
with Bayesian games without a measure structure on T, which we call the
Cartesian Product Approach.

5.1. The Cartesian Product Approach

In this model, all the aspects of the Bayesian game G is the same as the
model with the countably many agents except that T is now uncountable.
Unfortunately, the proof given in the previous section does not hold since
if T is uncountable, LX&t

is not metrizable, which means that we can no
longer use Lemma A.5 in Appendix I. However, in our proposition below
the continuity assumption on the utility function implies that for each
agent t, there exists a countable set Jt(/T ) such that the actions of agents
in T&Jt do not affect the utility of agent t. In a different setting, a similar
property of the continuous utility function was called Countable Myopia by
Balder and Rustichini [3].

Proposition 5.1 (Countable Myopia). If f # C(LX) (where C(LX) is the
class of continuous functions on LX), then there exists a countable subset J
of T such that for every x~ , y~ # LX , if x~ t= y~ t for t # J, then f (x~ )= f ( y~ ).

Proof. Note that LX (#>t # T LXt
) is endowed with the product topol-

ogy of the weak topology in each LXt
. Then LXt

is weakly compact by
Lemma A.4 in Appendix I. Since LXt

is a separable Banach space, the
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weak topology in LXt
is metrizable and hence Hausdorff. Therefore, LX is

compact, Hausdorff. Define the subset A of C(LX) by

A={g # C(LX) : g(x~ )= `
s # J

gs(x~ s) for some finite index set J and

gs # C(LXs
)= .

Then A is an algebra which contains the constant function 1 and separates
points of LX (i.e., for x~ , y~ # LX with x~ { y~ , there exists g # A such that
g(x~ ){ g( y~ )). Therefore, by the Stone-Weierstrass theorem, A is dense in
C(LX) by the sup. norm.

Now let f # C(LX). Since A is dense in C(LX), for every n, there exists
f n # A such that

sup
x # LX

| f (x~ )& f n(x~ )|<
1
n

.

Since f n # A, f n(x~ )=>s # Jn
fs(x~ s) for some finite index set Jn . Moreover,

we can have Jn /Jn+1. Let J=��
n=1 Jn . Then, if x~ t= y~ t for t # J,

f (x~ )= `
t # J

ft(x~ t)= `
t # J

ft( y~ t)= f ( y~ ). K

Now, we are ready to state our second main existence theorem.

Theorem 5.2. Let T be an uncountable set. Let G=[(Xt , ut , Ft , qt):
t # T] be a Bayesian game satisfying (A.1)�(A.2). Then, there exists a
Bayesian Nash equilibrium for G.

Proof. By Lemma A.1 in Appendix I, for each | # 0, "t(|, } , } ) :
LX&t

_Xt(|) � R is continuous. By the above Proposition, there exists a
countable set J |

t (/T ) such that

"t(|, x~ &t , x)="t(|, y~ &t , xt) if x~ j= y~ j for j # J |
t . (1)

Notice that if | and |$ are in the same partition,

"t(|, } , } )="t(|$, } , } ).

So, we can assume that J |
t =J |$

t if | and |$ are in the same partition. Let
Jt=U| # 0J |

t . Since 6t is a countable partition, Jt is still a countable set
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as it is a countable union of countable sets. Now by (1) we can define
"~ t(|, } , } ) : >s # Jt

LXs
_Xt(|) � R by

"~ t(|, x~ Jt
, xt)="t(|, x~ &t , xt),

where x~ Jt
=(x~ t)s # JT

. Define ,t : 0_>s # Jt
LXs

� 2Y by

,t(|, x~ Jt
)=[xt _Xt(|) : "~ t(|, x~ Jt

, xt)= max
yt # Xt (|)

"~ t(|, x~ Jt
, yt)].

As it was shown in Theorem 4.1, it is easy to show that ,t is nonempty,
convex valued and ,t is weakly u.s.c. in x~ Jt

. Moreover, ,t( } , x~ Jt
) has

Ft -measurable graph. For each t # T, define 8t : >s # Jt
LXs

� 2LXt by

8t(x~ Jt
)=[x~ t # LXt

: x~ t(|) # ,t(|, x~ Jt
) +-a.e.].

Since >s # Jt
LXs

is metrizable, 8� t is weakly u.s.c. (recall Lemma A.5 in
Appendix I) and nonempty, convex valued. Define 8 : LX � 2LX by

8(x~ )= `
t # T

8t(x~ Jt
)

Then again 8 is weakly u.s.c. and nonempty, convex valued. Since LX is
weakly compact, convex set, by the Fan�Glicksberg fixed point theorem
there exists x~ * # LX such that x~ * # 8(x~ *). It can be easily checked that x~ *
is a Bayesian equilibrium for G. K

5.2. Measure Space of Agents

In this section, we study the Bayesian game G with a measure space of
agents. A Bayesian game with a measure space of agents (T, T, &) is G=
[(X, u, Ft , qt) : t # T )], where

(1) X : T_0 � 2Y is the action set-valued function, where X(t, |) is
interpreted as the set of actions available to agent t when the state is |,

(2) for each (t, |) # T_0, u(t, |, } , } ) : L1(&, y)_X(t, |) � R is
the utility function, where u(t, |, x, xt) is interpreted as the utility of
agent t using action xt when the state is | and other players use the joint
action x,

(3) Ft is the sub _-algebra of F which denotes the private information
of agent t,

(4) qt : 0 � R++ is the prior of agent t.
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As before, let LXt
denote the set of all Bochner integrable, Ft -measurable

selections from the action set-valued function X(t) of agent t, i.e.,

LXt
=[x~ (t) # L1(+, Y) : x~ (t, } ) : 0 � Y is Ft-measurable and

x~ (t, |) # X(t, |) +-a.e.].

Let

LX=[x~ # L1(&, L1(+, Y )) : x~ (t) # LXt
for &-a.e.].

In a Bayesian game with a measure space of agents, a strategy for agent t
is an element in LXt

and a joint strategy profile is an element in LX .
For each (t, |) # T_0, the conditional expected utility function of agent
t, &(t, |, } , } ) : LX_X(t, |) � R is defined as

"(t, |, x~ , xt)=|
|$ # Et(|)

u(t, |$, x~ (|$), xt) qt(|$ | Et(|)) d+(|$),

where

qt(|$ | Et(|))={
0 if |$ � Et(|)

qt(|$)
�|~ # Et(|) qt(|~ ) d+(|~ )

if |$ # Et(|).

A Bayesian Nash equilibrium for G is a strategy profile x~ * # LX such that for
&-a.e. and for +-a.e.,

&(t, |, x~ *, x~ *(t, |))= max
y # X (t, |)

&(t, |, x~ *, y).

We can now state the assumptions needed for the proof of the next
theorem.

(B.1) (i) X : T_0 � 2Y is a nonempty, convex, weakly compact valued
and integrably bounded correspondence having a T�F-measurable graph,
i.e., GX # T�F�B(Y ).

(ii) For each t # T, X(t, } ) : 0 � 2Y has a Ft -measurable graph, i.e.,
GX(t) # Ft �B(Y ).

(B.2) (i) For each (t, |) # T_0, u(t, |, } , } ) : L1(&, Y )_X(t, |) � R is
continuous where L1(&, Y ) is endowed with the weak topology and X(t, |)
with the norm topology.

(ii) For each (x, y) # L1(&, Y)_Y, u( } , } , x, y): T_0 � R is T�F-
measurable.
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(iii) For each (t, |, x) # T_0_L1(&, Y ), u(t, |, x, } ) : X(t, |) � R is
concave.

(iv) ut is integrably bounded.

(B.3) (i) 0 is a countable set.

(ii) The dual Y* of Y has the RNP (Radon-Nikodym property) with
respect to (T, T, &). (The definition of RNP is in Section 2.)

(B.4) The correspondence t [ LXt
has a T-measurable graph.

Theorem 5.3. Let (T, T, &) be a finite, complete, separable measure
space. Let G=[(X, u, Ft , qt) : t # T] be a Bayesian game satisfying (B.1)�
(B.4). Then there exists a Bayesian Nash equilibrium for G.

Proof. It follows from (B.3) and Lemma A.6 in Appendix II that
for each (t, |) # T_0, &(t, |, } , } ) : LX _X(t, |) � R is continuous where
LX (/L1(&, L1(+, Y ))) and L1(+, Y) are endowed with the weak topology
and X(t, |)(/Y ), with the norm topology. It is easy to see that for each
(x~ , y) # LX _Y, &( } , } , x~ , y) : T_0 � R is T�F-measurable and for each
(t, x~ , y) # T_LX _Y, &(t, } , x~ , y) is Ft -measurable. Now define , : T_0_
LX � 2Y by

,(t, |, x~ )=[ y # X(t, |) : &(t, |, x~ , y)= max
z # X(t, |)

&(t, |, x~ , z)].

By the same argument as the proof of Theorem 4.1, , is nonempty, convex
valued and weakly u.s.c. in x~ . Moreover, by Lemma A.2 in Appendix I,
,(t, } , x~ ) : 0 � 2Y has a Ft -measurable graph and ,( } , } , x~ ) : T_0 � 2Y

has a T�F-measurable graph. Now, define 8 : T_LX � 2L1(+, Y ) by

8(t, x~ )=[ y~ (t) # L1(+, Y ) : y~ (t, |) # ,(t, |, x~ ) +-a.e.] & LXt
.

It follows from Balder�Yannelis ([4, Proposition 5.3, p. 342]) that the
correspondence t [ [ y~ (t) # L1(+, Y) : y~ (t, |) # ,(t, |, x~ ) +-a.e.] has a T-
measurable graph. Moreover, by (B.4) the correspondence t [ LXt

has a
T-measurable graph. Therefore, for each fixed x~ # LX , 8( } , x~ ) has a T-
measurable graph, too. It follows from the Aumann measurable selection
theorem that 8 is nonempty valued. Also, by Lemma A.4 in Appendix I we
have that LXt

is a weakly compact subset of L1(+, Y). Therefore, LX is also
a weakly compact subset of L1(&, L1(+, Y )) and we can conclude that
LX is metrizable (Dunford�Schwartz [10, p. 434]). By Lemma A.5 in
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Appendix I, the correspondence 8(t, } ) : LX � 2L1(+, Y ) it weakly u.s.c.
Define the correspondence 9 : LX � 2LX by

9(x~ )=[ y~ # LX : y~ (t) # 8(t, x~ ) &-a.e.].

Since for each x~ # LX , 8( } , x~ ) has a T-measurable graph, 9(x~ ) is a non-
empty set (recall the Aumann measurable selection theorem). Another
application of Lemma A.5 in Appendix I enables us to conclude that � is
weakly u.s.c. It is easy to see that � is convex valued and that the set LX

is nonempty, convex and weakly compact. Therefore, by the Fan�Glicksberg
fixed point theorem there exists x~ * # LX such that x~ * # 9(x~ *). Then by the
construction of 9, x~ * is a Bayesian Nash equilibrium for G. This completes
the proof. K

6. CONCLUDING REMARKS AND OPEN QUESTIONS

Remark 6.1. In the Cartesian product approach, the continuity assumption
dictates that for each agent t, there is only a countable number of agents
whose action can affect the agent t 's utility. Hence the remaining uncoun-
tably many agents' actions are meaningless in this infinite game. It is
always a countable few who affect the agent t 's utility even though this
countable set can change depending on the functional form of the utility.
Even a single agent's action can affect the agent t 's utility if that agent is
in the important countable set. We don't know if one can dispense with this
assumption, this is an open question.

Remark 6.2. In the measure theoretic approach, actions of a countable
number of agents are meaningless unless they are atoms in the measure
space. An individual agent's action is negligible but the joint actions of set
of agents with positive measure matter. Hence, the measure theoretic
approach is more appropriate if one wants to analyze the models of perfect
competition.

Remark 6.3. Note that assumptions (B.1), (B.2) in Section 5.2 are the
same as (A.1), (A.2) and that (B.4) is the measurability assumption
(needed since we introduce a measure structure on the set of agents, T ).
The only new assumption is (B.3), which we need to prove the weak
continuity of the expected utility function in Lemma 4.6 in Appendix II.
If 0 is uncountable and each agent's information partition is uncountable,
then to prove the weak continuity of expected utility we need another
assumption:
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(B.3)$ For each (t, |, xt) # T_0_Y, u(t, |, } , xt) : L1(&, Y ) � R is
linear.

Assumption (B.3)$ is rather strong but it is necessary to prove the weak
continuity if 0 is uncountable (see, for example, Balder�Yannelis [4]).

Remark 6.4. Assumption (B.3) can also be replaced by the fact that
each partition is countable and the proof of Theorem 5.3 will still go
through.

Remark 6.5. One may wonder as to whether or not the ``information
partition'' approach adopted in this paper is superior to the ``Harsanyi
type'' approach. It is difficult to answer this question because we are not
aware of any existence results for the latter approach with the continuum
of players. However, for the finite or countable set of players model, all we
can say is that our assumptions seem to be less restrictive. However, this
doesn't mean that one cannot eventually obtain more general existence
results for the ``Harsanyi-type'' model. It is important to note that one may
be able to show that we can go back and forth from the one approach to
the other. However, at the moment in a general setting this seems to be an
open question. As far as the applicability of our model is concerned we feel
that the ``information partition'' approach is closer to the one adopted
in the implementation literature as well as in the growing literature on
economies with differential information.

Remark 6.6. Throughout the paper we employ the concept of Bochner
integration. This notion may be a restriction in some cases because it
becomes difficult to work with spaces which are not separable. Indeed, one
may adopt the notion of Gelfand integral (or Pettis) in order to remedy
this difficulty. However, at the moment the corresponding results on
Bochner integration, e.g., Fatou's Lemma, integration preserves u.s.c., etc.
(see, for example, Yannelis [25]) are not available for the Gelfand or
Pettis integrals. Once such results are available, one may be able to obtain
equilibrium existence theorems for non-separable spaces. At the moment
this is an open question.

Remark 6.7. For the deterministic model with a continuum of players,
equilibrium existence results in pure strategies are available and by now
we know that the non-atomicity of the measure space of players makes
the Lyapunov theorem applicable. However, in the present framework
Lyapunov's theorem fails (due to the infinite dimensionality of the strategy
space) and approximate or even exact versions under certain conditions
may be needed in order to obtain purification results. The work of
Podczeck [19] and Rustichini�Yannelis [22] may be useful in order to
obtain pure strategy equilibrium results.
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APPENDIX I

We begin the Appendix by proving the weak continuity of the condi-
tional expected utility function of each agent.

Lemma A.1. Let ut : >s{t Xs_Xt � R be continuous when Xs(s{t) is
endowed with the weak topology and Xt , with the norm topology. Then for
E # F, &t : >s{t LXs

_Xt � R defined by

&t(x~ &t , xt)=|
| # E

ut(x~ &t(|), xt) d+(|)

is continuous where LXs
(s{t) is endowed with the weak topology and Xt ,

with the norm topology.

Proof. Let x~ n
&t , x~ &t # >s{t LXs

and xn
t , xt # Xt satisfying x~ n

&t � x~ &t

and xn
t � xt . By the property of the product topology, for each s({t),

x~ n
s � x~ s weakly (written as x~ n

s �| x~ s). We need to show that

|
| # E

ut(x~ n
&t(|), xn

t ) d+(|) � |
| # E

ut(x~ &t(|), xt) d+(|).

We prove this via two steps. First, we show:

Claim 1. For each s({t), for each | # 0, the sequence [x~ n
s(|)] in Xs

converges weakly to x~ s(|).

Proof of Claim 1. Fix | # 0. To prove the claim, we need to show that
for all y* # Y*, y*(x~ n

s (|)) converges to y*(x~ s(|)). Since >s=[E 1
s , E 2

s , ...]
is a countable partition of 0 of agent s, x~ n

s and x~ s can be written as

x~ n
s = :

�

k=1

nn, k
s /E s

k and x~ s= :
�

k=1

xk
s /E s

k ,

where xn, k
s , xk

s # Xs . Note that for each s # T, there exists a unique
Ek(|)

s # >s with | # E k(|)
s . Then

y*(x~ n
s (|))=|

|$ # 0
x~ n

s(|)
y*

+(E k(|)
s )

/E s
k(|) (|$) d|$

=|
|$ # 0

x~ n
s(|$)

y*
+(E k(|)

s )
/E s

k(|) (|$) d|$ (2)
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since x~ n
s (|$)=x~ n

s (|) if |$ # E k(|)
s . Note that

y*
+(E k(|)

s )
# L�(+, Y*) and x~ n

s # L1(+, Y).

Since x~ n
s converges to x~ s weakly in L1(+, Y ), (2) converges to

|
|$ # 0

x~ s(|$)
y*

+(E k(|)
s )

/E s
k(|) (|$) d+(|$)= y*(x~ s(|)).

Since the choice of y* # Y* is arbitrary, x~ n
s (|) converges weakly to x~ s(|).

This proves Claim 1.

Claim 2. �| # E ut(x~ n
&t(|), xn

t ) d+(|) converges to �| # E ut(x~ &t(|), xt) d+(|).

Proof of Claim 2. By Claim 1, for each s({t), for each | # 0, x~ n
s (|)

converges weakly to x~ s(|). By the continuity of ut with the given topo-
logies, for each | # 0, ut(x~ n

&t(|), xn
t ) converges to ut(x~ &t(|), xt). Therefore,

by the Lebesgue dominated convergence theorem

|
| # E

ut(x~ n
&t(|), xn

t ) d+(|) converges to |
| # E

ut(x~ &t(|), xt) d+(|),

which completes the proof.

Lemma A.2. Let " : 0_Xt � R is a measurable function. Then , : 0 � 2Xt

defined by

,(|)=[xt # Xt : "(|, xt)= sup
yt # Xt

"t(|, yt)],

has a measurable graph.

Proof. See Castaing�Valadier [7, p. 86] or Debreu [8].

Lemma A.3. Let (0, F, +) be a finite measure space and Y be a
separable Banach space. Let [x~ n : n=1, 2, ...] be a sequence of functions in
L1(+, Y ) such that x~ n converges weakly to x~ # L1(+, Y). Suppose that for all
n, xn(|) # F(|) +-a.e. |, where F : 0 � 2Y is a weakly compact, integrably
bounded, nonempty valued correspondence. Then

x~ (|) # con w&Ls[x~ n(|)] +-a.e.,

where con A is the closure of the convex hull of A.

Proof. See Yannelis [25, p. 11].
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The lemma below is known as Diestel's theorem and several alternative
proofs can be found in the literature. For completeness, we provide a proof
(see also Yannelis [25, p. 7] and the references therein).

Lemma A.4. Let Y be a separable Banach space and Xt : 0 � 2Y be
integrably bounded, weakly compact, convex valued correspondence. Then the
set

LXt
=[x~ # L1(+, Y ) : x~ is Ft&measurable and x~ (|) # Xt(|) +-a.e. |]

is weakly compact in L1(+, Y).

Proof. The proof is based on the celebrated theorem of James [14].
Note that the dual of L1(+, Y ) is L�(+, Y*w*) where w* denotes the
w*-topology), i.e., L1(+, Y )*=L�(+, Y*w*) (see, for instance, Tulcea�Tulcea
[24]). Let x be an arbitrary element of L�(+, Y*w*). If we show that x
attains its supremum on LXt

, the result will follow from James' theorem
(James [14]). Note that

sup
9 # LXt

9 } x= sup
9 # LXt

|
| # 0

(9(|)_(|)) d+(|)

=|
| # 0

sup
, # Xt (|)

(, } x(|)) d+(|),

where the second equality follows from Theorem 2.2 of Hiai�Umegaki
[13]. Define gt : 0 � 2Y as

gt(|)=[ y # Xt(|) : y } x(|)= sup
, # Xt(|)

, } x(|)].

It follows from the weak compactness of Xt(|) that for all | # 0, gt(|) is
nonempty. Define ft : 0_Y � R by

ft(|, y)= sup
, # Xt(|)

, } x(|)& y } x(|).

It is easy to see that for each |, ft(|, } ) is continuous and for each
y, ft( } , y) is Ft -measurable and hence ft( } , } ) is jointly measurable. Then
observe that Ggt

= f &1
t (0) & GXt

and that since f &1
t (0) and GXt

belong to
Ft �B(Y ), so does Ggt

. It follows from the Aumann measurable selection
theorem that there exists an Ft -measurable function zt : 0 � Y such that
zt(|) # gt(|) +-a.e. | Thus, zt # LXt

and we have

sup
, # LXt

, } x=|
| # 0

(zt(|) x(|)) d+(|)=zt } x.
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Since x # L�(+, Y*w*) was chosen arbitrarily, we conclude that every
element of (L1(+, Y ))* attains its supremum on LXt

and this completes the
proof of the fact that LXt

is weakly compact. The result below is taken from
Yannelis [25, p. 19] and it is reported for the share of completeness.

Lemma A.5. Let (0, F, +) be a complete, finite, separable measure
space, Z be a metric space and Y be a separable Banach space. Let
, : 0_Z � 2Y be a nonempty, convex valued correspondence satisfying

(i) for each | # 0, ,(|, } ) : Z � 2Y is weakly u.s.c., i.e., is continuous
when Z is endowed with the metric topology and Y, with the weak topology.

(ii) for all (|, z) # 0_Z, ,(|, z)/X(|), where X : 0 � 2Y is an
integrably bounded, convex, weakly compact and nonempty valued corre-
spondence.

Then 8 : Z � 2L1(+, Y ) defined by

8(z)=[x~ # L1(+, Y) : x~ (|) # ,(|, z) +-a.e.]

is weakly u.s.c.

Proof. First, note that L1(+, X ) defined by

L1(+, X )=[x~ # L1(+, Y ) : x~ (|)_X(|) +-a.e.]

is weakly compact in L1(+, Y ) (recall Lemma A.4). By Lemma A.4, for
each z # Z, the set

8(z)=[x~ # L1(+, Y) : x~ (|) # ,(|, z) +-a.e.]

is weakly compact. Since the measure space (0, F, +) is separable and Y
is a separable Banach space, L1(+, Y ) is a separable Banach space. Hence,
L1(+, X ) is metrizable as it is a weakly compact subset of L1(+, Y )
(Dunford and Schwartz [10, Theorem V.6.3, p. 434]). Consequently, in
order to show that 8 is weakly u.s.c., it suffices to show that 8 has a
weakly closed graph. To this end, let [zn] and [x~ n] be a sequence converg-
ing weakly to z and x~ satisfying x~ n # 8(zn) for all n. We must show that
x~ # 8(z). Since x~ n # 8(zn), x~ n(|) # ,(|, zn) +-a.e. It follows from Lemma A.3
that

x~ (|) # con w&Ls[x~ n(|)]/con w&Ls[,(|, zn)] +-a.e. (3)

Since for each | # 0, ,(|, } ) has a weakly closed graph, we have that

w&Ls[,(|, zn)]/,(|, z). (4)
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Since ,(|, z) is convex and weakly compact, we can conclude from (3) and
(4) that x~ (|) # ,(|, z) +-a.e. Since , is integrably bounded, it follows that
x~ # 8(z). This completes the proof of the Lemma. K

APPENDIX II

In this Appendix we prove the continuity of the expected utility for the
case of a measure space of players.

Lemma A.6. Let (T, T, &) and (0, F, +) be finite measure spaces, where
0 is a countable set. Let X be a weakly compact subset of the separable
Banach space Y whose dual Y* has the RNP (Radon�Nikodym property)
with respect to (T, T, &). For each t # T, let u(t, |, } , } ) : L1(&, X )_X � R be
continuous where L1(&, X) are endowed with the weak topology and X, with
the norm topology. Then for each t # T, for E # F, &t : L1(&, L1(+, X))_
X � R defined by

&t(x~ , xt)=|
| # E

u(t, x~ (|), xt) d+(|)

is continuous where L1(&, L1(+, X )) is endowed with the weak topology and
X, with the norm topology.

Proof. Let x~ n, x~ # L1(&, L1(+, X )) and xn
t , xt # Y such that x~ n converges

weakly to x~ and x~ n
t converges (in norm) to xt . We need to show that

|
| # E

u(t, x~ n(|), xn
t ) d+(|) � |

| # E
u(t, x~ (|), xt) d+(|).

We prove this via two steps. First, we show

Claim 1. For each | # 0, the sequence [x~ n(|)] in L1(&, X) converges
weakly to x~ (|).

Proof of Claim 1. Fix | # 0. To prove the claim, we need to show that
for all y* # [L1(&, Y )]*=L�(&, Y*) [by the RNP of Y* with respect to
(T, T, &)],

|
t # T

x~ n
t (|) y*(t) d&(t) converges to |

t # T
x~ t(|) y*(t) d&(t).
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Since 6t=[E 1
t , E 2

t , ...] is a countable partition of 0 of agent t, x~ n
t and x~ t

can be written as

x~ n
t = :

�

k=1

xn, k
t /E t

k and x~ t= :
�

k=1

xk
t /E t

k ,

where xn, k
t , xk

t # X. Note that for each t # T, there exists a unique E k(|)
t # 6t

with | # E k(|)
t . Moreover, for each t # T,

+(E k(|)
t )>+([|])>0.

First, choose y* # L�(&, Y*) such that

y*=a*/T0
, where a* # Y* and T0 # T.

Then

|
t # T

x~ n
t (|) y*(t) d&(t)=|

t # T0

x~ n
t (|) a* d&(t)

=|
t # T0

_||$ # 0
x~ n

t (|)
a*

+(E k(|)
t )

/E t
k(|) (|$) d+(|$)& d&(t)

=|
t # T0

_||$ # 0
x~ n

t (|$)
a*

+(E k(|)
t )

/E t
k(|) (|$) d+(|$)& d&(t)

(5)

since x~ n
t (|$)=x~ n

t (|) if |$ # E k(|)
t . Note that for each t # T,

a*
+(E k(|)

t )
# L�(+, Y*) and x~ n

t # L1(+, Y).

Since +(E k(|)
t ) is uniformly bounded from below by +([|]), the mapping

t [
a*

+(E k(|)
t )

/E t
k(|)

is in L�(&, L�(+, Y*)). Since x~ n converges weakly to x~ in L1(&, L1(+, Y )),
(5) converges to

|
t # T0

_|| # 0
x~ t(|$)

a*
+(E k(|)

t )
/Et

k(|) (|$) d+(|$)& d&(t)=|
t # T0

x~ t (|) a* d&(t)

=|
t # T

x~ t(|) y*(t) d&(t),
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where the first equality holds since x~ n
t (|$)=x~ n

t (|) if |$ # E k
t (|). So, for any

simple function y* # L�(&, Y*),

|
t # T

x~ n
t (|) y*(t) d&(t) converges to |

t # T
x~ t(|) y*(t) d&(t).

Next, let y* # L�(&, Y ). Since (T, F, &) is a finite measure space, there
exists a sequence of simple functions converging to y* uniformly (recall the
Egoroff theorem). Let =>0 be given and let h # L1(&, Y ) be a simple
function such that

&y*&h&<
=
p

where p>sup {|t # T
&x~ n

t (|)& d&(t), |
t # T

&x~ t(|)& d&(t) : n=1, 2, ...= .

Then

}|t # T
x~ n

t (|) y*(t) d&(t)&|
t # T

x~ t(|) y*(t) d&(t)}
� }|t # T

x~ n
t (|)( y*(t)&h(t)) d&(t) }+ }|t # T

(x~ n
t (|)&x~ t(|))h(t) d&(t) }

+}|t # T
x~ t(|)(h(t)& y*(t)) d&(t)}

�2=+ }|t # T
(x~ n

t (|)&x~ t(|)) h(t) d&(t) } .
Since h is simple, we obtain

lim
n � � }|t # T

(x~ n
t (|)&x~ t(|)) h(t) d&(t)}=0.

Thus, the above estimates imply that

|
t # T

x~ n
t (|) y*(t) d&(t) converges to |

t # T
x~ t(|) y*(t) d&(t)

for all y* # L�(&, Y*). This proves Claim 1.

Claim 2. �| # E u(t, x~ n(|), xn
t ) d+(|) converges to �| # E u(t, x~ (|), xt) d+(|).

Proof of Claim 2. By Claim 1, for each | # 0, x~ n(|) converges weakly
to x~ (|). By the continuity property with the given topologies, for each
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| # 0, u(t, x~ n(|), xn
t ) converges to u(t, x~ (|), xt). Therefore, by the Lebesgue

dominated convergence theorem,

|
| # E

u(t, x~ n(|), xn
t ) d+(|) converges to |

| # E
u(t, x~ (|), xt) d+(|),

which completes the proof.
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