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Shafer (Economelrica 48 (1980), 467476) proved that in a finite exchange 

economy value allocations exist, provided that each agent has convex, complete, 
transitive, compact and monotone preferences. However, if preferences are not 

convex, then value allocations may not exist. To remedy this difficulty we enlarge 
the set of value allocations by introducing the concept of approximate value 

allocations. and show that in a finite exchange economy approximate value 
allocations exist. even if preferences are not convex, or compact, or monotone. This 
value existence result can be used to provide a very general value existence theorem 

for a sequence of finite economies. Further, we show that value allocations may 
discriminate in favor of or against a coalition of agents. Journal of Economic 

Literature Classification Numbers: 020. 021. 022. 

1. INTRODUCTION 

Shapley [6] showed that in a finite exchange economy if the set of all 
attainable utility vectors (i.e., the Pareto set) is convex and compact, then 
cardinal’ value allocations exist. It can easily be shown that the above result 
guarantees the existence of ordinal value allocations as well. However, 
Kannai and Mantel [4] showed that in a finite exchange economy with 
convex and monotone preferences for each agent, the Pareto set will not be 
convex for any utility function choice. Thus, as a consequence, value 
allocations may not exist. Shafer [8], however, assuming convex and 
monotone preferences for each agent and using a class of utility functions 
known as “minimum income functions,“* was able to prove the existence of 
ordinal value allocations even if the Pareto set was not convex. 

* This paper is based on a chapter of my Ph.D thesis a the University of Rochester under 
the supervision of Professors M. Ali Khan and Lionel W. McKenzie, to whom I am heavily 
indebted. Thanks are also due to Allen Scafuri and to a careful referee for some useful 
remarks. 

I See 18 1 and its reference for a distinction between ordinal and cardinal value allocations. 
’ This will be defined in Section 2.3. 
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It is the purpose of the present paper first to improve further the ordinal 
value allocations existence theorem by allowing not only for a nonconvex 
Pareto set but also for nonconvex and nonmonotone preferences for each 
agent. To this end we enlarge the set of value allocations by introducing the 
concept of approximate value allocations and show that in a finite exchange 
economy approximate value allocations exist. Second, we show that value 
allocations do not satisfy an equity criterion named coalitional fairness of 
allocations. Although our existence theorem was inspired from the elegant 
proof given in Shafer [S], we employ much weaker assumptions. In 
particular, we need not have either convex, or compact, or monotone 
preferences. The relaxation of these assumptions requires a proof of a novel 
type. However, we note that the recent nonstandard existence proof for a 
competitive equilibrium by Khan and Rashid (31 and its translation by 
Anderson et al. [ 1 ] proved very useful in carrying out the arguments. 

The cost that we pay for adopting very weak assumptions is that value 
allocations do not satisfy the requirement that the aggregate excess demand 
is zero. However, aggregate excess demand does have an upper bound. We 
should emphasize that it turns out that the bound depends on the norm of 
endowments, the square root of the number of agents in the economy, and a 
constant number of commodities. In fact, since preferences are not compact 
the bound we derive is independent of preferences and can be easily com- 
puted. 

Finally, it should be emphasized that the advantage of considering a finite 
exchange economy is that it provides a computable bound or error on 
aggregate excess demand. Consequently, we always know how far approx- 
imate value allocations are from value allocations. In contrast, if one 
considers “large” economies3 as in Shapley and Shubik ] 7 1, then the approx- 
imate notions are defined with respect to an arbitrary small positive number, 
i.e., E. Thus, all one could say in the context of a large but finite economy is 
that F is a small positive number which tends to zero as the number of agents 
in the economy goes to infinity. Consequently, in a large but finite economy, 
approximate or s-value allocations will tend to value allocations as the 
economy becomes infinite.4 In order to indicate the relationship between the 
fixed economy formulation and the sequential formulation, we will show how 
our value existence theorem can be used to provide a very genera! value 
existence result for a sequence of finite economies. 

Section 2 of the paper presents the model and results; their proofs are 
concentrated in Section 3. 

3 That is, sequences of finite economies. 

4 Alternatively we could say that as the number of agents in the economy goes to infinity. 
the aggregate excess demand tends to zero. 
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2. THE MODEL AND RESULTS 

2.1. Notation 
R denotes the set of real numbers. 

I?’ denotes the I-fold Cartesian product of R. 

I?‘+ denotes the positive orthant of R ‘, i.e., 

iT?~=(xER’:x>0}. 

For any x, y in R ‘, x > y means xi > yi for all i = 1, 2 ,..., 1; x > y means 
x~yandxfy;x~ymeansxi>yiforalli. 

eEli?’ denotese=(l,l,..., 1). 

1 S 1 denotes the number of elements in the set S. 

P(A) denotes the set of subsets of A. 

For any A c R’, con A denotes the convex hull of A. 

\ denotes the set theoretic subtraction. 

S(x, r) denotes the open ball in IR\ of radius r centered at x. For any x, J 
in R’, x . y denotes the inner product, i.e., 

x.y= “‘ xiyi. 
i-1 

2.2. DeJnitions 

Let 3 denote the set of complete, transitive, continuous and locally 
nonsatiated binary relations 2 on iR\ (the commodity space). 

A utility function u for a binary relation 2 on IR\ is a real valued function 
on iR: such that U(X) > u(y) o x 2 y. 

A finite exchange economy B is a mapping of T into 9 x IR\, where T is 
a finite set of agents whose cardinality is n, i.e., (TI = n. Let 2, be the 
projection of a(t) onto 9 and e(t) the projection of k?(t) onto I?\. We 
interpret 2, as the preference of agent t and e(t) as his initial endowment. 

A coalition is a subset of the set of agents. 
A game with side payments G = (T, v) consists of a finite set of agents T 

and a superadditive function v of P(T) into R such that u(0) = 0. 
The Shapley value of the game G assigns to each agent t a value which 
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shows the marginal contribution made by that agent to all the coalitions of 
which he is a member, i.e., st=CscT((lSl- I)! (ITI-ISIYIITI!) 
[v(S) - v(S\{ t ))] . In other words the Shapley value of the same G assigned 
to an agent is given by summing up his dividends from the marginal value of 
each coalition in which he is a member. 

Given a finite exchange economy B and a family u = {utJlsT of utility 
functions representing the preferences {&}rET, define a game (T. UJ by 

UAW = y:,” 
I 
x U(X(t), t) : 2: x(t) = y e(t) 
IES fes IES 

andx(t)ER\ foralltES . 
I 

A function x(t) of T into iR\ is said to be a value allocation for B if and 
only if: 

(i) x x(t) = C e(t); 
tET tET 

(ii) there exists a family u = {u, lleT of utility functions representing 
the preferences {&)lcT such that for all t E T, u(x(t), t) is the 
Shapley value of the game (T, uU). 

Hence, x(t) is a value allocation for the finite exchange economy B if first, 
the aggregate excess demand is zero, and second, it yields to each agent a 
utility which is equal to his shares of the marginal value of each coalition in 
which he is a member. 

2.3. Approximate Value Allocations 

A price system p is a vector in R’ such that p E S = {x E (R\ : max Xi < 1, 
xi > 0, i = 1, 2 ,.,., I}. Let M(x,p, t) be the minimum income function of agent 
t (see McKenzie [S]), which allows him to achieve at the price vector p. a 
commodity combination at least as good as x, i.e., M(x,p, t) = minXfEc, 
p . x’, where C, = {xl E [R: :x’ 2, x). It is known (see, for instance, 
McKenzie [5],’ or Shafer [8, p. 4691) that M(x,p, t) is continuous and 
represents a utility function for the preference &. 

Let p be a price system, and consider the game (T, v(p, v)) defined by 
Y(P, B) = maxXCt,{Ct,, Wx,p, f): CtEB x(0 = LB e(t) and x(t) E R’+ for 
all t E B). Denote by Sh(p, t) the Shapley value of agent t of the above 
game. 

A function x(t) of T into IR\ is said to be an approximate value allocation 
for B if there exists price system p such that 

’ McKenzie 15, footnote 21 shows that M(x,p, t) is concave in p and consequently, 
continuous in p. 
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(i) M(x,p, t) = Sh(p, t) for all t E T; 

(ii) k max 1 x xi(t) - x e,(t), 0 
i=l IET IET r 

< Cl+ 1) $ T:; IIe(t>ll. 

Condition (i) shows that there is a price system p at which if each trader 
will minimize his expenditure over his preferred set then his utility is equal to 
his Shapley value. Condition (ii) says that the aggregate excess demand is 
bounded above by a bound which depends on the norm of the initial 
endowments, the square root of the number of agents and a constant number 
of commodities. Note that the above concept of value allocation is different 
from the one used in Shafer 18, p. 429). In particular, due to nonconvex 
preferences for all agents the aggregate excess demand is not zero as in 
Shafer [8], but does have an upper bound. However, if the bound or error 
(1 + 1) fi maxtEr lIe( is zero then both notions coincide. 

2.4. Coalitionally Fair Allocations 

A function x(t) of T into F?\ is said to be an allocation if Et,, x(t) = 
CfET e(t). Let S,, S, be two disjoint coalitions. An allocation x(t) is 
coalitionally fair6 (c-jkir) if there exist no y(t) and i = 1, 2 such that for all 
t E Si, y(t) >r x(t) and CIEs,(y(t> - e(t)) = CtESj(x(t) - e(t)),j # i. In other 
words, an allocation is said to be c-fair if no group of agents can redistribute 
among its members the net trade of any other group of agents and become 
better off. More simply, an allocation is c-fair if no coalition of agents envies 
the net trade of any other coalition of agents. 

2.5. Results 

THEOREM 1. An approximate value allocation in B exists. 

THEOREM 2. A value allocation in 8 rnaJ> not be c-fair. 

THEOREM 3. Let 8,, : T,, -+ 9 x iR’+ be a sequence offinite economies. If 

I T, I + 00 and for any S, = T, (IS, l/m> + 0 * II Cs, e,(t)lll~ + 0, 
then there exist x, : T,, + IR ‘+ and p,, E S such that: 

0) Wx,,p,. t) = Wp,, t) for all t E T,. 

6 This concept of c-fair allocations was explored in [2, lo]. where we refer the reader to it’s 
relationship to the literature on fairness. 
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Theorem 2 shows that a value allocation may discriminate in favor of or 
against some coalitions of agents. In other words, at a value allocation a 
group of agents can redistribute among its members the net trade of another 
group of agents and become better ~ff.~ 

Theorem 3 shows the existence of an approximate value allocation for a 
sequence of finite economies provided that initial endowments are integrable, 
i.e., no “small” group of agents can hold sufficiently large endowments8 
Conclusion (i) is the same as that in Theorem 1. Conclusion (ii) shows that 
as the number of agents goes to infinity, the average excess demand goes to 
zero. Consequently, the average demand approximately balances the average 
supply with the approximation getting better the larger the finite economy. 

3. PROOFS 

Proof of Theorem 1. In order to prove Theorem 1 we compactify the 
excess demand space by a bound which depends on the number of agents in 
the economy and the initial endowments; and we let the price space vary 
with the number of agents in the economy. It should be noted that since our 
bounds are chosen independently of the degree of nonconvexity of 
preferences, the approximating procedure will give rise to a computable error 
on aggregate excess demand. 

Note first that, M(x,p, t) = p . x whenever p is normal to a plane of 
support of c,. Moreover, by individual rationality,’ Sh(p, t) > 
M(e(t),p, t) > 0 for all t E T. 

Consider the set valued functions: 

H(p,r)= (xE R::p.x,<Sh(p,t)}, 

D(p, t) = (x E R: : x E H(p, t) and x is maximal for 2, in H( p, t)}. 

Let 

e = 2: e(f), 
IET 

x = x X(f), 
IE7 

’ It should be remarked that the competitive equilibrium is c-fair (see [2 ). 
s The integrability assumption can be weakened to max,,,, ile,(t)~~/ ,/L / T,I 4 0. The latter 

assumption rules out dominant agents, i.e., monopolists or oligopolists, however, it allows for 

dominant classes of individuals. 
’ Individual rationality and group rationality are two of the properties of the Shapley Value. 

i.e.. Sh(p, f) > M(e(f),p. t) and CItr Sh(p, t) = u(p. r) QP. Cre(t); see also Shafer 18. 

p. 414 I. 
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C(P) = D(P) - e, 
z = IR: - (e), 

z=x-e. 

Obviously, z is a point in c(p) c Z. 
Let 

Z’ = (z E Z: JJz/J <n y-i:; Ile(t)l/). (1) 

Define 

A= PES:Pi>- 
i ,i;;; 

i = 1, 2.. . ., I , 

q(z) = (p E A : P . z = max q a z for all q E A}, 

Wp, z) = v(z) X con C(p). 

Thus, 0 is a set valued function from the set A x Z’ into itself. Standard 
arguments can be applied to show that the mapping 0 satisfies all the 
properties of the Kakutani fixed point theorem. Consequently, there exist 
(p, z) E O(p, z), i.e., z E con r(p) and for all q E A, q. z <P. z < 0. By the 
Corollary of the Shapley-Folkman theorem (Starr 19, p. 351) we can write: 
z=Ctsr, x(t)+Cf=, X’(ti) - C,,, e(t), where T’ = T\( 1, 2,..., I} and x(t) E 
D(P, t) for all t E T’ and x’(ti) @ D(P, ti) for all i = l,..., 1. Pick x(ti) so that 
x(ti) E D(P, ti) for all i = I, 2 ,..., 1. Then 

Z(ti) - Z’(ti) = (X(ti) - X’(ti)) - (e(ti) - e’(ti)) 

= z(ti) + e(ti) - (Z’(ti) + e(ti)) 

< Z(fj) + e(ti). 

Hence. 

i max { zj(ti) - zj (ti), O} < Y i (zj(ti> + ej(tJ) 
j= 1 .i= I 

< 
P . 4ti> 

min(p, ,...,PJ 

< fi ll4>ll. (2) 
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Moreover, 

4. 
[ 

x x(f) - x e(t) = q . 1 [ i XQi) - _ (- e(t,) 
IET tET i= 1 i-l 1 

[ 

I I 

-4. \‘ X’(li) - \ ’ e’(ti) + q . z. 1 (3) 
i-l i-l 

From (2) and (3) it follows that for all q E A 

4’ \‘ x(t) - x e(f) *F-f tET I 

Let 

qi = 1 if x x(t) - x e(t) 
( 

> 0, i = l,..., 1, 
tET tET 1’ 

Substituting (5) into (4), we have 

4. Z: X(t)- X W]= ,sei [zTXi(l)- $Tei(f)] 
IE7 tET 

+ * soye i 
[ 

2, -‘itt) - tyT ei(r) 
I 

Hence, 

I 

T max 
I 
\‘ Xi(t) - ” ei(t), 0 

i=l tET tz 

(4) 

(5) 
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(6) 

Taking into account (l), (6) can be written as follows: 

I 

\’ max \’ -xi(t) - x e,(t), 0 - 
(- I 1 IET IET 1 

< (I+ 1) fi y; Ile(t)ll 3 

which is condition (ii) of approximate value allocation for X. Observe that 
since s(t,) is chosen arbitrarily to belong in the set D(p, ti) for all 
i = 1, 2,..., 1, then x(t) E D(p, t) for all t E T. Since x(t) E D(p, t) c H(p. t) 
then p . x(t) < Sh(p, t). Suppose that there exists Y > 0 such that 
Sh(p, t) --p . x(t) = Y. By local nonsatiation there exists x’ in s(x(t). r) n R’+ 
such that x’ E H(p, t) and s’ >( x(t), but this contradicts maximality of .u(t) 
in N(p. t). Hence, p . x(f) = Sh( p. t) = M(x. p, t) which is condition (i) of the 
definition of approximate value allocation for 8. This completes the proof of 
the theorem. 

Proof of Theorem 2. Consider an exchange economy with three agents 
and two commodities denoted by T = ( 1, 2, 3 } and x, y, respectively. Their 
utility functions and their initial endowments are given as follows: 

A computation of the characteristic function U, gives: 

c,({ 1 }) = 0. 

Ll,({2})= LI,(j3})= 1, 

c,({1.2))=2, 

c,({l,3})=2, 

u,((2. 3)) = uu(( 1,2,3}) = 4. 

Moreover, we can compute the Shapley value of agent 1 and find that 
Sh, = 2/6. Note that by group rationality we have that u({ 1, 2, 3)) = 
xi,, Shi = 4. Since agents 2 and 3 have identical utility functions, they are 
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treated symmetrically and thus we have that Sh, = Sh, = 1 l/6. The value 
allocation is (x1 ,yl) = (2/h 2/Q (q,yJ = (x,,Y,) = (1 l/6, 1 l/6). 
However, the above value allocation is not c-fair. In fact, note that for 
S, = ( I}, S, = (2,3 } the assignment (Z1, -PI) = (0, 0), (X2, F-J = (X3, yj) = 
(13/6, 13/6) makes each member of coalition S, better off by obtaining the 
net trade of coalition S, , i.e., ui(Yi, pi) = ui( 13/6, 13/6) = 13/6 > ui(xi, vi) = 
ui( 1 l/6, 1 l/6) = 1 l/6 for i E S, and (Yz, Jz) - (0,4) + (X3, J3) - (4,O) = 
(x, ,y,) - (0, 0) = (2/6,2/6). 

Proof of Theorem 3. Apply Theorem 1. 
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