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Abstract We show that when agents become informationally negligible in a large
economy with asymmetric information, every ex ante efficient allocation must be
incentive compatible. This means that any ex ante core or Walrasian allocation is
incentive compatible. The corresponding result is false for fixed finite-agent economies
with asymmetric information. An example is also constructed to show that the ex post
version of the result does not hold. Furthermore, we show that the result is sharp in
the sense that it will fail to hold if one relaxes any of the main assumptions, namely,
strong conditional independence on the information structure, strict concavity on the
utility functions, type independence on the utility functions and endowments.
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36 Y. Sun, N. C. Yannelis

1 Introduction

It is well known that in a finite-agent economy with asymmetric information, there
may not exist any incentive compatible, efficient allocations.1 However, intuition sug-
gests that a perfectly competitive market should still perform efficiently since no
single agent has monopoly power on information. This intuitive idea of perfect com-
petition for an atomless economy with asymmetric information is formalized in Sun
and Yannelis (2007). In particular, it is shown in Sun and Yannelis (2007) that there
exists an incentive compatible, ex post efficient allocation in a perfectly competitive
asymmetric information economy, and thus the well-known conflict between incentive
compatibility and Pareto efficiency is resolved exactly.2

While the existence of incentive compatible and ex post efficient allocations is
shown in Sun and Yannelis (2007). It is easy to construct a large asymmetric informa-
tion economy satisfying all the relevant conditions, and yet it has an ex post efficient
allocation which is not incentive compatible (see Proposition 2 below). The purpose
of this paper is to show that if we shift our attention to the ex ante case, then a totally
different type of result can be obtained. That is, every ex ante efficient allocation is
incentive compatible (see Theorem 1 below). The result is shown under the assump-
tions of strong conditional independence on the information structure, strict concavity
on the utility functions, type independence on the utility functions and endowments.
Such a result is obviously false in a fixed finite-agent economy with asymmetric in-
formation, and there are no analogous results in the literature.

The proof of Theorem 1 requires four main assumptions, namely, strong conditional
independence on the information structure, strict concavity on the utility functions,
type independence on the utility functions and endowments. We show that if one
relaxes any of those assumptions, Theorem 1 may fail to hold. In particular, Propo-
sition 3 shows that if the strong (conditional) independence is relaxed to a slightly
weaker condition of mutual independence, then there exists a large asymmetric infor-
mation economy in which every allocation has an essentially equivalent version that is
not incentive compatible. Proposition 4 shows the importance of the strict concavity
condition on the utility functions while Propositions 5 and 6 demonstrate that Theorem
1 cannot be extended to allow either initial endowments or utility functions to depend
on private signals.

The paper is organized as follows. Sections 2 and 3 introduce, respectively the
information structure and an economy with negligible asymmetric information. The
main result is presented in Sect. 4. The relationship between ex ante and ex post
efficiency is studied in Sect. 5. In particular, it is shown that ex ante efficiency implies
ex post efficiency while the latter does not imply incentive compatibility. Section 6
shows that the main result may fail to hold if one relaxes any of the main assumptions.

1 See, for example (Glycopantis and Yannelis, 2005, p. vi, Example 0.1).
2 Several other different approaches for related problems have also been proposed by different authors.
Prescott and Townsend (1984) introduced a lottery model and showed the existence of incentive compatible,
ex ante efficient lottery allocations. Based on a notion of informational smallness, McLean and Postlewaite
(2002) showed the existence of incentive compatible, ex post efficient allocations in an approximate sense
for a replica economy. Hahn and Yannelis (1997) focused on a second best Pareto efficiency notion which
results in incentive compatible allocations.
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Ex ante efficiency implies incentive compatibility 37

All the proofs are given in the appendix. Finally, we note that our exact result in
Theorem 1 on an atomless economy with asymmetric information have asymptotic
analogs for large but finite asymmetric information economies; this is illustrated in
Sect. 6 of Sun and Yannelis (2007).

2 The information structure

We fix an atomless probability space3 (I, I, λ) representing the space of economic
agents, and S = {s1, s2, . . . , sK } the space of true states of nature (its power set
denoted by S), which are not known to the agents. Let T 0 = {q1, q2, . . . , qL} be the
space of all the possible signals (types) for individual agents, (T, T ) a measurable
space that models the private signal profiles for all the agents, and therefore T is
a space of functions from I to T 0.4 Thus, t ∈ T , as a function from I to T 0, represents
a private signal profile for all agents in I . For agent i ∈ I , t (i) (also denoted by ti ) is
the private signal of agent i while t−i the restriction of the signal profile t to the set
I \ {i} of agents different from i ; let T−i be the set of all such t−i . For simplicity, we
shall assume that (T, T ) has a product structure so that T is a product of T−i and T 0,
while T is the product algebra of the power set T 0 on T 0 with a σ -algebra T−i on
T−i . For t ∈ T and t ′i ∈ T 0, we shall adopt the usual notation (t−i , t ′i ) to denote the
signal profile whose value is t ′i for agent i , and the same as t for other agents.

Let (Ω,F , P) be a probability space representing all the uncertainty on the true
states as well as on the signals for all the agents, where (Ω,F) is the product measur-
able space (S ×T,S ⊗T ). Let P S and PT be the marginal probability measures of P ,
respectively on (S,S) and on (T, T ). Let s̃ and t̃i , i ∈ I be the respective projection
mappings from Ω to S and from Ω to T 0 with t̃i (s, t) = ti .5 For each true state s ∈ S,
we assume without loss of generality that the state is non-redundant in the sense that
πs = P S({s}) > 0; let PT

s be the conditional probability measure on (T, T ) when the
random variable s̃ takes value s. Thus, for each B ∈ T , PT

s (B) = P({s} × B)/πs . It
is obvious that PT = ∑

s∈S πs PT
s . Note that the conditional probability measure PT

s
is often denoted as P(·|s) in the literature.

For i ∈ I , let τi be the signal distribution of agent i on the space T 0,6 and
P S×T−i (·|ti ) the conditional probability measure on the product measurable space
(S × T−i ,S ⊗ T−i ) when the signal of agent i is ti ∈ T 0. If τi ({ti }) > 0, then it is
clear that for D ∈ S ⊗ T−i , P S×T−i (D|ti ) = P(D × {ti })/τi ({ti }).

For s ∈ S, let PT−i
s and τis be the marginal probability measures of PT

s , respectively
on (T−i , T−i ) and (T 0, T 0). Since redundant signals are allowed for agent i ∈ I
(q ∈ T 0 is a redundant signal for agent i if τi ({q}) = 0), we shall impose the

3 We use the convention that all probability spaces are countably additive.
4 In the literature, one usually assumes that different agents have possibly different sets of signals and
require that the agents take all their own signals with positive probability. For notational simplicity, we
choose to work with a common set T 0 of signals, but allow zero probability for some of the redundant
signals. There is no loss of generality in this latter approach.
5 t̃i can also be viewed as a projection from T to T 0.
6 For q ∈ T 0, τi ({q}) is the probability P(t̃i = q).
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38 Y. Sun, N. C. Yannelis

assumption that for any q ∈ T 0, if τi ({q}) > 0, then τis({q}) > 0 for all s ∈ S,
which means that any non-redundant signal has positive probability conditioned on
any given true state.

Let F be the private signal process from I × T to T 0 such that F(i, t) = ti for any
(i, t) ∈ I × T . In this paper, we need to work with F that is independent conditioned
on the true states s ∈ S. However, an immediate technical difficulty arises, which is
the so-called measurability problem of independent processes. In our context, a signal
process that is essentially independent, conditioned on the true states of nature is never
jointly measurable in the usual sense except for trivial cases.7 Hence, we need to work
with a joint agent-probability space (I × T, I � T , λ � PT

s ) that extends the usual
measure-theoretic product (I ×T, I ⊗T , λ⊗ PT

s ) of the agent space (I, I, λ) and the
probability space (T, T , PT

s ), and retains the Fubini property.8 Its formal definition
is given in Definition 2 of the Appendix.

Let I � F be the collection of all subsets A of I × Ω such that there are sets
As ∈ I �T for s ∈ S such that A = ∪s∈S{(i, s, t) ∈ I ×Ω : (i, t) ∈ As}. By abusing
the notation, we can denote I �F by (I �T )⊗S. Define λ� P on I �F by letting
λ � P(A) = ∑

s∈S πs(λ � PT
s )(As). Thus, one can view λ � PT

s as the conditional
probability measure on I × T , given s̃ = s.

We shall assume that F is a measurable process from (I ×T, I�T ) to T 0. When the
true state is s, the signal distribution of agent i conditioned on the true state is PT

s F−1
i ,

i.e., the probability for agent i to have q ∈ T 0 as her signal is PT
s (F−1

i ({q})), where
Fi = F(i, ·). Let µs be the agents’ average signal distribution conditioned on the
true state s, i.e.,

µs({q}) =
∫

I

PT
s (F−1

i ({q}))dλ =
∫

I

∫

T

1{q}(F(i, t))d PT
s dλ, (1)

where 1{q} is the indicator function of the singleton set {q}. We shall impose the
following non-triviality assumption on the process F :

∀s, s′ ∈ S, s �= s′ ⇒ µs �= µs′ .

This says that different true states of nature correspond to different average conditional
distributions of agents’ signals.

3 The large private information economy

We shall now follow the definition and notation in Sect. 2. We consider a large economy
with asymmetric information. The space of agents is the atomless probability space
(I, I, λ). In this economy, agents i ∈ I are informed with their private signals ti ∈ T 0

7 See Sun (2006) and Sun and Yannelis (2007), and their references for detailed discussion of the measur-
ability problem.
8 I �T is a σ -algebra that contains the usual product σ -algebra I ⊗T , and the restriction of the countably
additive probability measure λ � PT

s to I ⊗ T is λ ⊗ PT
s .
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Ex ante efficiency implies incentive compatibility 39

but not the true state, and they can have contingent consumptions based on the signal
profiles t ∈ T announced by all the agents. Decisions are made at the ex ante level.
The common consumption set is the positive orthant R

m+. In the sequel, we shall state
several assumptions on the economy.

A1. The utility function of each agent depends on her consumption x ∈ R
m+ and the

true state s ∈ S but not on the private signals of the agents in the economy.
Thus, we can let u be a function from I ×R

m+ × S to R+ such that for any given
i ∈ I , u(i, x, s) is the utility of agent i at consumption bundle x ∈ R

m+ and true
state s ∈ S.

A2. For any given s ∈ S, u(i, x, s), (also denoted by us(i, x)),9 is I-measurable in
i ∈ I , continuous, strictly concave and monotonic10 in x ∈ R

m+.
A3. Let e be a λ-integrable function from I to R

m+ with e(i) as the initial endowment
of agent i .11

A4. The private signal process F is a measurable process from (I × T, I � T ) to
T 0 that is strongly conditionally independent, given s̃ in the sense that for
any i ∈ I , agent i’s signal F(i, ·) is independent of all the events in the signal
space (T−i , T−i ), conditioned on the true states of nature.12 In other words,
for each s ∈ S, the probability space (T, T , PT

s ) is the product of its marginal

probability spaces (T−i , T−i , PT−i
s ) and (T 0, T 0, τis).

The Assumption A4 says that conditioned on the true states of nature, the private
signal of an individual agent has strictly no influence over any others. Thus, perfect
competition prevails in this economy in the sense that agents have negligible initial
endowments and negligible private information.

We shall now consider an economy where the agents are informed with their signals
but not the true state. Formally, the collection E p = {(I ×Ω, I�F , λ� P), u, e, F, s̃}
is called a private information economy.

The space of consumption plans for the economy E p is the space L1(PT , R
m+) of

integrable functions from (T, T , PT ) to R
m+, which is infinite dimensional. Fix an

agent i ∈ I . For a consumption plan z ∈ L1(PT , R
m+), let

U p
i (z) =

∫

Ω

u(i, z(t), s)d P (2)

be the ex ante expected utility of agent i for the consumption plan z.13

9 In the sequel, we shall often use subscripts to denote some variable of a function that is viewed as a
parameter in a particular context.
10 The utility function u(i, ·, s) is monotonic if for any x, y ∈ R

m+ with x ≤ y and x �= y, u(i, x, s) <

u(i, y, s).
11 Since the true state s ∈ S is not known to the agents, the agents’ endowments cannot depend on s.
However, as in McLean and Postlewaite (2002) and Sun and Yannelis (2007), here we also assume that the
endowments do not depend on the private signals of agents.
12 For a general justification of using conditional independence, see Hammond and Sun (2003).
13 Fix i ∈ I . Since u(i, ·, s) is strictly concave for each s ∈ S, there are constants c, d ∈ R+ such that
u(i, x, s) ≤ c‖x‖ + d for any x ∈ R

m+, where ‖ · ‖ is the Euclidean norm. From this condition, it is clear
that

∫
Ω u(i, z(t), s)d P is finite.
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40 Y. Sun, N. C. Yannelis

Definition 1 1. An allocation for the economy E p is an integrable function x p from
(I ×T, I �T , λ� PT ) to R

m+; agent i’s consumption plan is x p(i, ·) (also denoted
by x p

i ).
2. An allocation x p is feasible if for PT -almost all t ∈ T ,

∫
I x p(i, t)dλ(i) =∫

I e(i)dλ(i).
3. A feasible allocation x p is said to be ex ante efficient if there does not exist a

feasible allocation y p such that for λ-almost all i ∈ I , U p
i (y p

i ) > U p
i (x p

i ).
4. A feasible allocation x p is said to be ex post efficient if for PT -almost all t ∈ T , x p

t
is efficient in the large deterministic (ex post) economyE p

t ={(I, I, λ),U (·, ·, t), e},
where U (i, x, t) = ∑

s∈S ui (x, s)P S({s}|t) is the ex post utility of agent i (also
denoted by Ui (x |t)) for her consumption bundle x ∈ R

m+ with the given signal
profile t .

5. For an allocation x p, an agent i ∈ I , private signals ti , t ′i ∈ T 0, let

Ui (x p
i , t ′i |ti ) =

∫

S×T−i

ui (x p
i (t−i , t ′i ), s)d P S×T−i (·|ti ), (3)

be the interim expected utility of agent i when she receives private signal ti but
mis-reports as t ′i . The allocation x p is said to be incentive compatible if λ-almost
all i ∈ I ,

Ui (x p
i , ti |ti ) ≥ Ui (x p

i , t ′i |ti )

holds for all the non-redundant signals ti , t ′i ∈ T 0 of agent i (i.e., τi ({ti }) > 0 and
τi ({t ′i }) > 0).

6. A feasible allocation x p is said to be an ex ante Walrasian allocation (ex ante
competitive equilibrium allocation) if there is a bounded measurable price function
p from (T, T ) to R

m+ \ {0} such that for λ-almost all i ∈ I , x p(i) is a maximal
element in the budget set

⎧
⎨

⎩
z ∈ L1(PT , R

m+) :
∫

T

p(t) · z(t)d PT ≤
∫

T

p(t) · e(i)d PT

=
⎛

⎝
∫

T

p(t)d PT

⎞

⎠ · e(i)

⎫
⎬

⎭

under the expected utility function U p
i (·).

7. A coalition A (i.e., a set in I with λ(A) > 0) is said to ex ante block an allocation
x p in E p if there exists an allocation y p such that

∫
A y p(i, t)dλ(i) = ∫

A e(i)dλ(i)
for PT -almost all t ∈ T , and for λ-almost all i ∈ A, U p

i (y p
i )) > U p

i (x p
i ).14

14 One can also only define the allocation y p on A × T instead of I × T . However, there is no loss of
generality since one can always extend a function defined on A × T to I × T to keep its integrability.
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Ex ante efficiency implies incentive compatibility 41

A feasible allocation x p is said to be in the ex ante core of E p, or simply an ex
ante core allocation in E p, if there is no coalition that ex ante blocks x p.

4 The main theorem

We are now ready to state the main result of this paper. Its proof will be given in
Subsect. 7.2 of the appendix.

Theorem 1 Under Assumptions A1–A4, any ex ante efficient allocation is incentive
compatible.

It is obvious that any ex ante core allocation is ex ante efficient. It is also easy to
check that any ex ante Walrasian allocation is ex ante efficient. Hence the following
two corollaries are clear consequences of Theorem 1.

Corollary 1 Under Assumptions A1–A4, any ex ante core allocation is incentive
compatible.

Corollary 2 Under Assumptions A1–A4, any ex ante Walrasian allocation is incen-
tive compatible.

5 Ex ante versus ex post efficiency

In this section, we adopt the economic model specified in Sects. 2 and 3. We assume
that Assumptions A1–A4 are satisfied.

As noted in Holmström and Myerson (1983), ex ante efficiency implies ex
post efficiency for a finite-agent economy. The ex post efficiency in Holmström and
Myerson (1983) requires all the states to be revealed, and thus incentive compatibility
is not an issue. In contrast, the notion of ex post efficiency as considered in McLean
and Postlewaite (2002) for a countable replica economy and Sun and Yannelis (2007)
for an atomless private information economy requires only the signals to be revealed
but not the true states. Nevertheless, the following proposition, whose proof will be
given in Subsect. 7.3 of the appendix, shows that ex ante efficiency does imply ex post
efficiency in our setting.

Proposition 1 Every ex ante efficient allocation is ex post efficient.

Theorem 1 above shows that incentive compatibility follows form ex ante effi-
ciency. However, this is not the case for ex post efficiency. In particular, the following
proposition shows that there exists an ex post efficient allocation that is not incentive
compatible;15 by Theorem 1, such an allocation is not ex ante efficient. This means
that the converse of Proposition 1 is not true.

Proposition 2 There exists a large private information economy such that (1) it sat-
isfies all the conditions on the information structure in Sect. 2 as well as Assumptions
A1–A4 in Sect. 3; (2) it has an ex post efficient allocation that is not incentive com-
patible.

15 The details of the construction can be found in Subsect. 7.4 of the appendix.
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6 Relaxation of Assumptions A1–A4

Theorem 1 above shows that under Assumptions A1–A4, incentive compatibility fol-
lows form ex ante efficiency. The purpose of this section is to show that if any of
the assumptions is weakened, the result may fail to hold.16 For simplicity, we only
consider the case that the true state space S is a singleton set.

We first consider A4. The following proposition shows that if the strong (condi-
tional) independence in A4 is relaxed to a slightly weaker condition of mutual indepen-
dence, then every allocation has an essentially equivalent version that is not incentive
compatible.

Proposition 3 There exists a large private information economy E p such that (1) it
satisfies all the conditions on the information structure in Sect. 2 as well as Assumptions
A1–A3 in Sect. 3; (2) the private signal process F is mutually independent in the sense
that for any l different agents, i1, . . . , il , their random private signals Fi1, . . . , Fil are
mutually independent; (3) for any allocation x p in E p, there exists an essentially
equivalent allocation y p that is not incentive compatible.

The condition of strict concavity in A2 plays a key role in the proof of
Theorem 1. The following result shows that if strict concavity is relaxed to just con-
cavity, Theorem 1 may fail.

Proposition 4 There exists a large private information economy E p such that (1) it
satisfies all the conditions on the information structure in Sect. 2 as well as Assumptions
A1, A3, A4 in Sect. 3; (2) the relevant utility functions are measurable, concave and
monotonic;17 (3) the economy has an ex ante efficient allocation that is not incentive
compatible.18

Next, we relax Assumption A1 by considering the case that for each i ∈ I , agent i’s
utility function depends on her private signal ti . Since we take the true state space S to
a singleton set in this section, we can simply ignore its existence in the utility function
by considering u as a function from I ×R

m+ × T 0 to R+ such that for any given i ∈ I ,
u(i, x, q) is the utility of agent i at consumption bundle x ∈ R

m+ and private signal
q ∈ T 0. For a given private signal profile t ∈ T , agent i’s utility function is u(i, ·, ti ).

For a PIE allocation x p, the expected utility of agent i when she receives private
signal ti but mis-reports as t ′i is

Ui (x p
i , t ′i |ti ) =

∫

S×T−i

ui (x p
i (t−i , t ′i ), s, ti )d P S×T−i (·|ti ). (4)

16 For the convenience of the reader, the results are stated in this section, using common measure-theoretic
terms, while the details of the constructions, which use nonstandard analysis, will be given in Subsect. 7.4
of the appendix.
17 That is, the strict concavity condition in A2 is replaced by the concavity condition while the measurability
and monotonicity conditions are kept as in A2.
18 The general idea for this result was suggested by Eric Maskin.
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The incentive compatibility can be defined in the same way as in Definition 1. For a
consumption plan z ∈ L1(PT , R

m+), the ex ante utility can be defined as in equation
(2) by

U p
i (z) =

∫

Ω

u(i, z(t), s, ti )d P (5)

Proposition 5 below shows that if Assumption A1 is relaxed to allow type dependent
utilities, then Theorem 1 can fail strongly so that every ex ante efficient allocation
in some large private information economy is not incentive compatible. On the other
hand, the economy in Proposition 5 does have an incentive compatible, ex post efficient
allocation as shown by Theorem 2 of Sun and Yannelis (2007).

Proposition 5 There exists a large private information economy E p such that (1) it
satisfies all the conditions on the information structure in Sect. 2 as well as Assumptions
A2–A4 in Sect. 3; (2) agent i’s utility function depends on her private signal ti as
described above; (3) every ex ante efficient allocation in the economy is not incentive
compatible.

Finally, we relax Assumption A3 by considering the case that for each i ∈ I , agent
i’s endowment depends on her private signals. Let e be a function from I × T 0 to R

m+
with e(i, ti ) as the initial endowment of agent i with private signal ti . We assume that
for each q ∈ T 0, e(i, q) is λ-integrable.

Fix an allocation x p. When agents’ endowments do not depend on their private
signals, Eq. (3) defines the expected utility of agent i when she receives private signal
ti but mis-reports as t ′i . If we consider the case that the endowment of every agent
depends on her private signal as above, then the expected utility of agent i when she
receives private signal ti but mis-reports as t ′i is19

Ui (x p
i , t ′i |ti ) =

∫

S×T−i

ui (x p
i (t−i , t ′i ) − e(t ′i ) + e(ti ), s)d P S×T−i (·|ti ). (6)

The incentive compatibility can be defined in the same way as in Definition 1.

Proposition 6 There exists a large private information economy E p such that (1) it
satisfies all the conditions on the information structure in Sect. 2 as well as Assumptions
A1, A2, A4 in Sect. 3; (2) agent i’s endowment depends on her private signal ti as
described above; (3) every ex ante efficient allocation in the economy is not incentive
compatible.

19 The idea is that when agent i receives private signal ti but mis-reports as t ′i , her total consumption is her

endowment e(ti ) plus her net trade x p
i (t−i , t ′i ) − e(t ′i ).
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7 Appendix

7.1 The exact law of large numbers

In order to work with independent processes constructed from signal profiles, we need
to work with an extension of the usual measure-theoretic product that retains the Fubini
property. Below is a formal definition of the Fubini extension in Definition 2.2 of Sun
(2006).

Definition 2 A probability space (I × Ω,W, Q) extending the usual product space
(I × Ω, I ⊗ F , λ ⊗ P) is said to be a Fubini extension of (I × Ω, I ⊗ F , λ ⊗ P) if
for any real-valued Q-integrable function f on (I × Ω,W),

(1) the two functions fi and fω are integrable, respectively on (Ω,F , P) for
λ-almost all i ∈ I , and on (I, I, λ) for P-almost all ω ∈ Ω;

(2)
∫
Ω

fi d P and
∫

I fωd P are integrable, respectively on (I, I, λ) and (Ω,F , P),
with

∫
I×Ω

f d Q = ∫
I

(∫
Ω

fi d P
)

dλ = ∫
Ω

(∫
I fωdλ

)
d P .20

To reflect the fact that the probability space (I × Ω,W, Q) has (I, I, λ) and
(Ω,F , P) as its marginal spaces, as required by the Fubini property, it will be denoted
by (I × Ω, I � F , λ � P).

We shall now follow the notation of Sect. 2. When the probability space (I ×T, I �
T , λ� PT

s ) is a Fubini extension of the usual product space (I ×T, I⊗T , λ⊗ PT
s ), for

each s ∈ S, it can be checked that (I ×Ω, I �F , λ� P), defined in the last paragraph
of Sect. 2, is a Fubini extension of the usual product space (I × Ω, I ⊗ F , λ ⊗ P).

The following is an exact law of large numbers for a continuum of independent
random variables shown in Sun (2006), which is stated here as a lemma using our
notation for the convenience of the reader.21

Lemma 1 If a I � T -measurable process G from I × T to a complete separable
metric space X is essentially pairwise independent conditioned on s̃ in the sense
that for λ-almost all i ∈ I , the random variables Gi and G j from (T, T , PT

s ) to
X are independent for λ-almost all j ∈ I , then for each s ∈ S, the cross-sectional
distribution λG−1

t of the sample function Gt (·) = G(t, ·) is the same as the distribution
(λ� PT

s )G−1 of the process G viewed as a random variable on (I ×T, I�T , λ� PT
s )

for PT
s -almost all t ∈ T . In addition, for each s ∈ S, when X is the real line R and G

is (λ� PT
s )-integrable,

∫
I Gt dλ = ∫

I×T Gd(λ� PT
s ) holds for PT

s -almost all t ∈ T .

7.2 Proof of Theorem 1

Let x p be any ex ante efficient allocation. Then the Fubini property implies that there
is a set A∗ ∈ I with λ(A∗) = 1 such that for any i ∈ A∗ and any s ∈ S, the integral

20 The classical Fubini Theorem is only stated for the usual product measure spaces. It does not apply to
integrable functions on (I × Ω, W, Q) since these functions may not be I ⊗ F -measurable. However,
the conclusions of that theorem do hold for processes on the enriched product space (I × Ω, W, Q) that
extends the usual product.
21 See Corollaries 2.9 and 2.10 in Sun (2006). We state the result using a complete separable metric space
X for the sake of generality. In particular, a finite space or an Euclidean space is a complete separable metric
space.
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∫
T x p(i, t)d PT

s is finite.22 We can define an allocation x̄ p by letting x̄ p
i (·) = x p

i (·)
for i ∈ A∗ and x̄ p

i (·) ≡ ei for i /∈ A∗. Then, the integral
∫

T x̄ p(i, t)d PT
s is finite for

all i ∈ I and s ∈ S. It is obvious that x̄ p is feasible and ex ante efficient.
Define the following sets

∀s ∈ S, Ls = {t ∈ T : λF−1
t = µs}; L0 = T − ∪s∈S Ls .

The non-triviality assumption implies that for any s, s′ ∈ S with s �= s′, Ls ∩ Ls′ = ∅.
The measurability of the sets Ls, s ∈ S and L0 follows from the measurability of F .
Thus, the collection {L0} ∪ {Ls, s ∈ S} forms a measurable partition of T .

By Eq. (1) and the Fubini property for (I × T, I �T , λ� PT
s ), we have µs({q}) =∫

I×T 1{q}(F(i, t))d(λ � PT
s ) for any q ∈ T 0. Thus, µs is actually the distribution

(λ � PT
s )F−1 of F , viewed as a random variable on the product space I × T . Since

the signal process F satisfies the condition of conditional independence, it certainly
satisfies the condition of essential pairwise conditional independence, the exact law
of large numbers in Lemma 1 implies that PT

s (Ls) = 1 for each s ∈ S.
For each (i, t) ∈ I × T , let

y p(i, t) =
⎧
⎨

⎩

∫

I
e(i)dλ if t ∈ L0,

∫

T
x̄ p(i, t ′)d PT

s (t ′) if t ∈ Ls, s ∈ S.
(7)

Since the Fubini property implies that
∫

T x̄ p(·, t)d PT
s (t) is I-measurable on I , it is

clear that y p is I ⊗ T -measurable and hence I � T -measurable. For t ∈ L0, y p(·, t)
is the constant

∫
I e(i)dλ and thus

∫
I y p(i, t)dλ = ∫

I e(i)dλ; for s ∈ S and t ∈ Ls ,
y p(i, t) is

∫
T x̄ p(i, t)d PT

s , and hence

∫

I

y p(i, t)dλ(i) =
∫

I

∫

T

x̄ p(i, t ′)d PT
s (t ′)dλ(i)

=
∫

T

∫

I

x̄ p(i, t ′)dλ(i)d PT
s (t ′) =

∫

I

e(i)dλ(i),

where the last identity follows from the feasibility of x̄ p. Therefore, y p is a feasible
allocation in E p that satisfies the feasibility condition for all t ∈ T .

We shall prove that x̄ p(i, t) = y p(i, t) for λ � PT -almost all (i, t) ∈ I × T .
Suppose not; then there exist s0 ∈ S and coalition A ∈ I (with λ(A) > 0) such that
for each i ∈ A, PT

s0
({t ∈ T : x̄ p(i, t) �= y p(i, t)}) > 0, i.e., the random variable x̄ p

i (·)
is not essentially constant under the probability measure PT

s0
. For each i ∈ A, since

22 The Fubini property only implies the integrability of x p(i, ·) for λ-almost i ∈ I . It also means that
x p(i, ·) may not be integrable for i in a λ-null subset of I .
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u(i, ·, s0) is strictly concave, Jensen’s inequality implies that

∫

T

ui (x̄ p
i (t), s0)d PT

s0
(t) < ui

⎛

⎝
∫

T

x̄ p
i (t)d PT

s0
, s0

⎞

⎠ . (8)

The assumption of monotonicity implies that for each i ∈ A, ui (0, s0) ≤ ui (x̄ p
i (t), s0)

for all t ∈ T , which implies that ui (0, s0) ≤ ∫
T ui (x̄ p

i (t), s0)d PT
s0

(t). By Eq. (8), we
have for each i ∈ A, ui (0, s0) < ui

(∫
T x̄ p

i (t)d PT
s0

, s0
)
, and hence

∫
T x̄ p

i (t)d PT
s0

must
have positive components. By the continuity of the utility functions u(i, ·, s0), one can
choose a coalition A0 ⊆ A (with 0 < λ(A0) < 1), a positive number ε0 and a vector
e0 ∈ R

m+ with e0 �= 0 such that for any i ∈ A0,
∫

T x̄ p
i (t)d PT

s0
≥ e0, and

∫

T

ui (x̄ p
i (t), s0)d PT

s0
(t) + ε0 < ui

⎛

⎝
∫

T

x̄ p
i (t)d PT

s0
, s0

⎞

⎠

< ui

⎛

⎝
∫

T

x̄ p
i (t)d PT

s0
− e0, s0

⎞

⎠ + ε0. (9)

For each (i, t) ∈ I × T , let

z p(i, t) =
⎧
⎨

⎩

y p(i, t) for (i, t) ∈ I × (T \ Ls0),

y p(i, t) − e0 for (i, t) ∈ A0 × Ls0 ,

y p(i, t) + λ(A0)
1−λ(A0)

e0 for (i, t) ∈ (I \ A0) × Ls0 .

(10)

It is obvious that z p is I � T -measurable. When (i, t) ∈ A0 × Ls0 , z p(i, t) =
y p(i, t) − e0 = ∫

T x̄ p
i (t ′)d PT

s0
(t ′) − e0 ≥ 0. It is thus clear that z p takes values

in R
m+. The feasibility of y p for all t ∈ T implies immediately that for t ∈ (T \ Ls0),∫

I z p(i, t)dλ = ∫
I e(i)dλ. For t ∈ Ls0 ,

∫

I

z p(i, t)dλ =
∫

A0

(y p(i, t) − e0)dλ +
∫

I\A0

(

y p(i, t) + λ(A0)

1 − λ(A0)
e0

)

dλ

=
∫

I

y p(i, t)dλ − λ(A0)e0 + λ(I \ A0)
λ(A0)

1 − λ(A0)
e0

=
∫

I

y p(i, t)dλ =
∫

I

e(i)dλ.

Therefore, z p is a feasible allocation.
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By Eq. (9), we have for any i ∈ A0,

∫

T

ui (x̄ p
i (t), s0)d PT

s0
(t) < ui

⎛

⎝
∫

T

x̄ p
i (t ′)d PT

s0
(t ′) − e0, s0

⎞

⎠

=
∫

T

ui

⎛

⎝
∫

T

x̄ p
i (t ′)d PT

s0
(t ′) − e0, s0

⎞

⎠ PT
s0

(t). (11)

Hence, Eqs. (7), (10) and (11) together with the fact that PT
s0

(Ls0) = 1 imply that for
any i ∈ A0,

∫

T

ui (x̄ p
i (t), s0)d PT

s0
(t) <

∫

T

ui

⎛

⎝
∫

T

x̄ p
i (t ′)d PT

s0
(t ′) − e0, s0

⎞

⎠ PT
s0

(t)

=
∫

Ls0

ui
(
y p(i, t) − e0, s0

)
PT

s0
(t)=

∫

Ls0

ui
(
z p(i, t), s0

)
PT

s0
(t)

=
∫

T

ui (z
p
i (t), s0)d PT

s0
(t). (12)

For any i /∈ A0, Jensen’s inequality together with the monotonicity of ui (·, s0), Eqs.
(7) and (10) and the fact that PT

s0
(Ls0) = 1 imply that

∫

T

ui (x̄ p
i (t), s0)d PT

s0
(t) ≤ ui

⎛

⎝
∫

T

x̄ p
i (t ′)d PT

s0
(t ′), s0

⎞

⎠

=
∫

Ls0

ui
(
y p(i, t), s0

)
PT

s0
(t)

<

∫

Ls0

ui

(

y p(i, t) + λ(A0)

1 − λ(A0)
e0, s0

)

PT
s0

(t)

=
∫

Ls0

ui
(
z p(i, t), s0

)
PT

s0
(t)

=
∫

T

ui (z
p
i (t), s0)d PT

s0
(t). (13)
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48 Y. Sun, N. C. Yannelis

Similarly, Jensen’s inequality together with Eqs. (7) and (10) and the fact that
PT

s (Ls) = 1 imply that for any i ∈ I , s �= s0,

∫

T

ui (x̄ p
i (t), s)d PT

s (t) ≤ ui

⎛

⎝
∫

T

x̄ p
i (t ′)d PT

s (t ′), s

⎞

⎠ =
∫

Ls

ui
(
y p(i, t), s

)
PT

s (t)

=
∫

Ls

ui
(
z p(i, t), s

)
PT

s (t)

=
∫

T

ui (z
p
i (t), s)d PT

s (t). (14)

Hence, we obtain from Eqs. (12), (13) and (14) that for all i ∈ I , s ∈ S,
∫

T ui (x̄ p
i (t), s)

d PT
s (t) ≤ ∫

T ui (z
p
i (t), s)d PT

s (t) with the strict inequality for s = s0. Since πs0 > 0,
we obtain that for all i ∈ I ,

∑

s∈S

πs

∫

T

ui (x̄ p
i (t), s)d PT

s (t) <
∑

s∈S

πs

∫

T

ui (z
p
i (t), s)d PT

s (t). (15)

Now, by the definition of expected utility in Eq. (2), Eq. (15) implies that

U p
i (x̄ p

i ) =
∫

Ω

ui (x̄ p
i (t), s)d P =

∑

s∈S

πs

∫

T

ui (x̄ p
i (t), s)d PT

s

<
∑

s∈S

πs

∫

T

ui (z
p
i (t), s)d PT

s =
∫

Ω

ui (z
p
i (t), s)d P = U p

i (z p
i ).

This contradicts the ex ante efficiency of x̄ p. Therefore, y p must agree with x̄ p except
on a λ � PT -null set.

Since x p
i (·) = x̄ p

i (·) for i ∈ A∗ with λ(A∗) = 1, x p must agree with y p except on
a λ � PT -null set. Hence, by the Fubini property, there is a I-measurable subset A∗∗
of A∗ with λ(A∗∗) = 1 such that for any i ∈ A∗∗, x p

i (t) = y p(t) for PT -almost all
t ∈ T .

It remains to show that x p is incentive compatible. Fix any i ∈ A∗∗ and s ∈ S.
Let Di be a PT -null set such that x p

i (t) = y p
i (t) for any t /∈ Di . Since PT =

∑
s′∈S πs′ PT

s′ and πs > 0, we also have PT
s (Di ) = 0. Since PT

s (Ls) = 1, we
obtain that PT

s (Di ∪ (T \ Ls)) = 0. Denote the set Di ∪ (T \ Ls) by Eis . Let
Eis

q = {t−i ∈ T−i : (t−i , q) ∈ Eis} for any q ∈ T 0.

Let PT−i
s and τis be the marginal probability measures of PT

s , respectively on
(T−i , T−i ) and (T 0, T 0). The conditional independence condition on F in Sect. 3
says that (T, T , PT

s ) is the product of (T−i , T−i , PT−i
s ) and (T 0, T 0, τis).
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For any fixed ti , t ′i ∈ T 0 with τi ({ti }) > 0 and τi ({t ′i }) > 0, our assumption on
non-redundant signals in Sect. 2 implies that τis({ti }) > 0 and τis({t ′i }) > 0. Since

PT
s (Eis) = PT

s (∪q∈T 0 Eis
q × {q}) =

∑

q∈T 0

PT−i
s (Eis

q ) · τis({q}) = 0,

we have PT−i
s (Eis

ti ) = PT−i
s (Eis

t ′i
) = 0. Therefore, PT−i

s (Eis
ti ∪ Eis

t ′i
) = 0.

For any fixed t−i /∈ Eis
ti ∪ Eis

t ′i
, we have (t−i , ti ) /∈ Eis and (t−i , t ′i ) /∈ Eis , which

means that (t−i , ti ) ∈ Ls \ Di and (t−i , t ′i ) ∈ Ls \ Di . Since (t−i , ti ), (t−i , t ′i ) /∈ Di ,
the property of the set Di implies that

x p
i (t−i , ti ) = y p

i (t−i , ti ), and x p
i (t−i , t ′i ) = y p

i (t−i , t ′i ). (16)

Since (t−i , ti ), (t−i , t ′i ) ∈ Ls , the definition of y p implies that

y p
i (t−i , ti ) = y p

i (t−i , t ′i ) =
∫

t ′′∈T

x̄ p(i, t ′′)d PT
s (t ′′), (17)

which also equals
∫

t ′′∈T x p(i, t ′′)d PT
s (t ′′) (since i also belongs to A∗). Hence, for any

t−i /∈ Eis
ti ∪ Eis

t ′i
, Eqs. (16) and (17) imply that x p

i (t−i , ti ) = x p
i (t−i , t ′i ).

The above identity and the fact that Eis
ti ∪ Eis

t ′i
is a PT−i

s -null set imply that

∫

T−i

ui (x p
i (t−i , ti ), s)PT−i

s =
∫

T−i

ui (x p
i (t−i , t ′i ), s)PT−i

s . (18)

It is easy to see that for any q ∈ T 0,

∫

S×T−i

ui (x p
i (t−i , q), s)d P S×T−i (·|ti )

=
∑

s∈S

πsτis({ti })
τi ({ti })

∫

T−i

ui (x p
i (t−i , q), s)PT−i

s . (19)

By taking q to be ti or t ′i in Eq. (19), Eqs. (3) and (18) then imply that Ui (x p
i , ti |ti ) =

Ui (x p
i , t ′i |ti ). Therefore, the condition of incentive compatibility is satisfied by an

arbitrary ex ante efficient allocation x p.

7.3 Proof of Proposition 1

Let x p be an ex ante efficient allocation. We follow the proof of Theorem 1 to show
that x p and y p differ only on a λ � PT -null set, where y p is defined in Eq. (7).
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50 Y. Sun, N. C. Yannelis

Suppose that x p is not ex post efficient. Since x p and y p differ only on a λ�PT -null
set, the Fubini property implies that for PT -almost all t ∈ T , x p

t and y p
t differ only

on a λ-null set. Thus, y p is ex ante efficient, but not ex post efficient.
Let C be the set of t ∈ T such that y p

t is not efficient in the ex post large deterministic
economy E p

t = {(I, I, λ), U (·, ·, t), e}. Then, C is not a null set under the measure
PT , which also means that there exists s0 ∈ S such that C is not a null set under the
measure PT

s0
.

As shown in the proof of Theorem 1 in Sun and Yannelis (2007), we have for
PT -almost all t ∈ Ls0 , U (i, ·, t) = ∑

s∈S u(i, ·, s)P S({s}|t) = u(i, ·, s0) for all
i ∈ I . Hence, there is t0 ∈ C ∩ Ls0 such that U (·, ·, t0) = u(·, ·, s0). Thus, y p

t0 is
not efficient in the large deterministic economy E p

t0 = {(I, I, λ), u(·, ·, s0), e}, which
means that there exists a feasible allocation α for E p

t0 such that for λ-almost all i ∈ I ,

ui (α(i), s0) > ui (y p
t0(i), s0) = ui (y p

t (i), s0) (20)

for all t ∈ Ls0 .
Define a feasible allocation β p such that

β p(i, t) =
{

y p(i, t) if t �∈ Ls0 ,

α(i) if t ∈ Ls0 .
(21)

Then, it is easy to see that U p
i (β

p
i ) > U p

i (y p
i ) for λ-almost all i ∈ I , which contradicts

the ex ante efficiency of y p. Therefore, x p must be ex post efficient.

7.4 Proof of Propositions 2–6

In all the constructions of this subsection, we take S to be a singleton set. Thus, we can
identify Ω with T and P with PT . The constructions will use nonstandard analysis.
One can pick up some background knowledge on nonstandard analysis from the first
three chapters of the book Loeb and Wolff (2000).

We shall fix some notations first for this subsection. Fix n ∈ ∗
N∞. Let

I = {1, 2, . . . , n} with its internal power set I0 and internal counting probability
measure λ0 on I0 with λ0(A) = |A|/|I | for any A ∈ I0, where |A| is the internal
cardinality of A. Let (I, I, λ) be the Loeb space of the internal probability space
(I, I0, λ0), which will serve as the space of agents for the large private information
economies considered in various constructions below.

Let T 0 = {0, 1} be the signals for individual agents, and T the set of all the internal
functions from I to T 0 (the space of signal profiles). Let T0 be the internal power set
on T , P0 an internal probability measure on (T, T0), and (T, T , P) the corresponding
Loeb space. Except in the proof of Proposition 3 below, P0 will be taken to be the
internal counting probability measure on T0 in this subsection, i.e., the probability
weight for each t = (t1, t2, . . . , tn) ∈ T under P0 is 1/2n ; and in this case it is obvious
that condition (A4) is satisfied.

Let (I ×T, I0 ⊗T0, λ0 ⊗ P0) be the internal product probability space of (I, I0, λ0)

and (T, T0, P0). Let (I × T, I � T , λ � P) be the Loeb space of the internal product
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(I × T, I0 ⊗ T0, λ0 ⊗ P0), which is indeed a Fubini extension of the usual product
probability space by Keisler’s Fubini Theorem (see, for example Loeb and Wolff
(2000)).

Proof of Proposition 2: We consider a one-good economy with strictly concave and
monotonic utility functions ui : R+ → R+ and constant endowments ei = 1 for all
the agents i ∈ I . Thus, condition (1) of Proposition 2 is satisfied. Note that any feasible
allocation xi ≥ 0, i ∈ I (i.e.,

∫
I xi dλ = 1) is efficient in the relevant deterministic

economy {(I, I, λ), (ui , ei )i∈I }.
Next, define an allocation x p(i, t) = 2ti in the private information economy. Since

Assumption (A4) is satisfied, one can apply Lemma 1 to claim that for P-almost all
t ∈ T ,

∫
I x p

t (i)dλ = ∫
I

∫
T 2ti d Pdλ = 1, which means that x p is feasible and ex post

efficient. It is easy to see that

Ui (x p
i , 1|0) =

∫

T−i

ui (x p
i (t−i , 1))d PT−i = ui (2)

> ui (0) =
∫

T−i

ui (x p
i (t−i , 0))d PT−i = Ui (x p

i , 0|0). (22)

Hence, x p is not incentive compatible.

Proof of Proposition 3: We need to work with an internal probability measure P0 so
that Assumption (A4) is violated. Define an internal probability measure P0 on (T, T0)

such that for any t = (t1, t2, . . . , tn) ∈ T , its probability weight is defined by23

P0({t}) =
{ 1

2n−1 if
∑n

j=1 t j is odd,
0 if

∑n
j=1 t j is even.

(23)

Fix any 
 different agents i1, . . . , i
 ∈ I . For any k1, . . . , k
 ∈ {0, 1}, if
∑


j=1 k j

is odd, then

P0
(
t ∈ T : ti1 = k1, . . . , ti
 = k


)

= P0

⎛

⎝t ∈ T :
∑

i �=i1,...,i


ti is even, and ti1 = k1, . . . , ti
 = k


⎞

⎠

= 2n−
−1 · 1

2n−1 = 1

2

;

similarly, if
∑


j=1 k j is even, one can also obtain that P0(t ∈ T : ti1 = k1, . . . , ti
 =
k
) = 1

2
 . Hence, the random private signals Fi1 , . . . , Fi
 are mutually independent,
which means that the private signal process F is mutually independent.

23 This definition is motivated by a classical example of Bernstein in Feller (1968, p. 126) and its general-
ization in Wang (1979).
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Define a set A in T by letting A = {t ∈ T : ∑n
j=1 t j is odd.}; then P(A) = 1.

Let ē be the vector (1, . . . , 1) in R
m+. For i ∈ I , let ui and ei be the utility function

and endowment of agent i that satisfy Assumptions (A1)–(A3). For any allocation
x p in the private information economy, define another allocation y p in the private
information economy such that for any (i, t) ∈ I × T ,

y p(i, t) =
{

x p(i, t) if t ∈ A,
x p(i, t−i , 1 − ti ) + ē if t �∈ A.

(24)

It is clear that y p is essentially equivalent to x p.
For any fixed agent i ∈ I , let A−i = {t−i ∈ T−i : ∑

j �=i t j is odd.}. Then it is

easy to see that PT−i (A−i |ti = 0) = 1 and PT−i (A−i |ti = 1) = 0, which means
that Assumption (A4) is not satisfied. By equation (3) in the definition of incentive
compatibility,

Ui (y p
i , t ′i |ti ) =

∫

S×T−i

ui (y p
i (t−i , t ′i ))d PT−i (·|ti ),

and the monotonicity of the utility function ui , we can obtain that

Ui (y p
i , 1|0) =

∫

A−i

ui (y p
i (t−i , 1))d PT−i (·|ti = 0)

=
∫

A−i

ui (x p
i (t−i , 0) + ē)d PT−i (·|ti = 0)

>

∫

A−i

ui (x p
i (t−i , 0))d PT−i (·|ti = 0)

=
∫

A−i

ui (y p
i (t−i , 0))d PT−i (·|ti = 0) = Ui (y p

i , 0|0), (25)

which means that the allocation y p is not incentive compatible.

Proof of Proposition 4: We consider a one-good economy with utility functions
ui (x) = x and constant endowments ei = 1 for all the agents i ∈ I . (1) and (2)
of Proposition 4 are satisfied.

As in the proof of Proposition 2, define a feasible allocation x p(i, t) = 2ti in the
private information economy. It is then easy to check that for all i ∈ I , U p

i (x p
i ) = 1.

Suppose that there is a feasible allocation y p such that U p
i (y p

i ) > U p
i (x p

i ) = 1
for λ-almost all i ∈ I . Then,

∫
I U p

i (y p
i )dλ > 1. On the other hand, by the feasibility

of y p, we have
∫

I y p(i, t)dλ = 1 for P-almost all t ∈ T . The Fubini property
implies that

∫
I U p

i (y p
i )dλ = ∫

I

∫
T y p(i, t)d Pdλ = ∫

T

∫
I y p(i, t)dλd P = 1. This is

a contradiction. Therefore, x p is ex ante efficient. Equation (22) shows that x p is not
incentive compatible.
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Proof of Proposition 5: We consider a one-good economy with utility functions
ui (x, ti ) = (1 + ti )

√
x and constant endowments ei = 1 for all the agents i ∈ I .

(1) and (2) of Proposition 5 are satisfied.
Let x p be an ex ante efficient allocation. Then, Jensen’s inequality implies that

U p
i (x p

i ) =
∫

T

(1 + ti )
√

x p
i (t−i , ti )d P

= 1

2

∫

T−i

√
x p

i (t−i , 0)d PT−i +
∫

T−i

√
x p

i (t−i , 1)d PT−i

≤ 1

2

√
√
√
√

∫

T−i

x p
i (t−i , 0)d PT−i +

√
√
√
√

∫

T−i

x p
i (t−i , 1)d PT−i , (26)

with equality only when for PT−i -almost all t−i ∈ T−i , x p
i (t−i , 0) = ∫

T−i
x p

i (t−i , 0)

d PT−i and x p
i (t−i , 1) = ∫

T−i
x p

i (t−i , 1)d PT−i .

Fix a constant c ≥ 0. The function 1
2
√

x1+√
x2, subject to the constraints x1+x2 =

c, x1, x2 ≥ 0, achieves the maximum value
√

5 c/2 only at x1 = c/5 and x2 = 4c/5.
Let ai = ∫

T x p
i (t)d P . Then,

∫
T−i

x p
i (t−i , 0)d PT−i + ∫

T−i
x p

i (t−i , 1)d PT−i = 2ai .
Therefore,

1

2

√
√
√
√

∫

T−i

x p
i (t−i , 0)d PT−i +

√
√
√
√

∫

T−i

x p
i (t−i , 1)d PT−i ≤

√
5 ai

2
(27)

with equality only when
∫

T−i
x p

i (t−i , 0)d PT−i = 2ai/5 and
∫

T−i
x p

i (t−i , 1)d PT−i =
8ai/5.

Define an allocation y p by letting y p(i, t) = 2
5 (1+3ti )ai . By the exact law of large

numbers, we have

∫

I

y p(i, t)dλ =
∫

I

∫

T

2

5
(1 + 3ti )ai d Pdλ =

∫

I

2

5
(1 + 3/2)ai dλ =

∫

I

ai dλ = 1

for P-almost all t ∈ T . That is, y p is a feasible allocation. It is also easy to check that

U p
i (y p

i ) =
√

5 ai
2 . Hence, U p

i (y p
i ) ≥ U p

i (x p
i ) with equality only when for PT−i -almost

all t−i ∈ T−i , x p
i (t−i , 0) = 2ai/5 and x p

i (t−i , 1) = 8ai/5.
By the ex ante efficiency of x p, there exists a set A in I with λ(A) = 1 such that

for any i ∈ A, x p
i (t−i , 0) = 2ai/5 and x p

i (t−i , 1) = 8ai/5 hold for PT−i -almost all
t−i ∈ T−i . Let B = {i ∈ A : ai > 0}. Since

∫
I ai dλ = 1, we have λ(B) > 0. By the

definition of incentive compatibility, we have, for any agent i ∈ B,
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Ui (x p
i , 1|0) =

∫

T−i

ui (x p
i (t−i , 1), 0)d PT−i =

√
8ai

5

>

√
2ai

5
=

∫

T−i

ui (x p
i (t−i , 0), 0)d PT−i = Ui (x p

i , 0|0). (28)

Hence, x p is not incentive compatible.

Proof of Proposition 6: We consider a one-good economy with strictly concave and
monotonic utility functions ui : R+ → R+, and endowments ei (ti ) = 2ti for all
i ∈ I . Then, as in the proof of Proposition 2, the exact law of large numbers in Lemma
1 implies that

∫
I ei (ti )dλ = 1 for P-almost all t ∈ T .

Let x p be an ex ante efficient allocation. As in the proof of Theorem 1, Jensen’s
inequality implies that for λ-almost all i ∈ I , x p

i (t) = ∫
T x p

i (t)d P(t) for P-almost
all t ∈ T .

By the definition of incentive compatibility in Eq. (6), we have, for λ-almost all
agents i ∈ B,

Ui (x p
i , 0|1) =

∫

T−i

ui (x p
i (t−i , 0) − e(0) + e(1))d PT−i

=
∫

T−i

ui (x p
i (t−i , 1) + 2)d PT−i

>

∫

T−i

ui (x p
i (t−i , 1))d PT−i = Ui (x p

i , 1|1). (29)

Hence, x p is not incentive compatible.
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