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This paper investigates the existence of equilibrium in an economy where preferences may be non-
ordered and possibly satiable. Remarkably, satiation is allowed to occur only inside the set of feasible
and individually rational allocations. One important class of its applications is new developments of
asset pricing models where Knightian uncertainty makes preferences incomplete while the absence of a
riskless asset makes them satiable. Thus, the result of the paper extends Won et al. (2008) to the case that
preferences need be neither complete nor transitive.
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. Introduction

The importance of establishing the existence of equilibrium
ith satiation is already alluded to by Mas-Colell (1992). Since Wal-

asian equilibrium may not exist without nonsatiation, Mas-Colell
1992) introduces a weaker equilibrium notion than the Walrasian
quilibrium. This poses the following question. Is it possible to
rop the assumption of nonsatiation of preferences and still obtain
he existence of Walrasian equilibrium? We provide an affirmative
nswer to this question. In particular, we introduce a new assump-
ion on preferences which subsumes the existing conditions of

atiable preferences as a special case and is automatically fulfilled
henever agents have nonsatiable preferences. As a consequence

f this new assumption, we are able to generalize all classical equi-
ibrium results to allow for possibly satiable preferences.

� We wish to thank V. Filipe Martins-da-Rocha, Nizar Allouch, Guangsug Hahn,
nd competent referees for their comments and suggestions.
∗ Corresponding author.
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1 The author gratefully acknowledges the Korea Research Foundation Grant
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This paper shows the existence of equilibrium in an economy
here preferences may be non-ordered and possibly satiable. This

esult enriches the literature in two important respects. First, it
xtends to the case of satiable preferences both the classical exis-
ence results with non-ordered preferences (e.g., Mas-Colell, 1974;
hafer, 1976; Gale and Mas-Colell, 1975 among others) and the
rbitrage-based equilibrium theorems (e.g., Hart, 1974; Hammond,
983; Page, 1987; Chichilnisky, 1995; Page et al., 2000; Dana et al.,
999; Allouch, 2002, among others). Second, the result of the paper
ubstantially extends the literature with satiable preferences such
s Nielsen (1990), Allingham (1991), and Won et al. (2008) to
he case of non-ordered preferences. The latter literature exam-
nes the equilibrium existence problem with asset pricing models

here preferences are represented by a differentiable expected

tility function and the absence of riskless assets makes them
atiable. As demonstrated in Rigotti and Shannon (2005), prefer-
nces with Knightian uncertainty need be neither complete nor
ifferentiable.1 One important coverage of this paper is asset

1 Uncertainty is called Knightian if the probabilities of risky events are not known.
or the impact of Knightian uncertainty or ambiguity aversion on asset pricing and
isk-sharing, we refer the readers to Rigotti and Shannon (2005) and the literature
herein.
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assets makes preferences possess a single satiation portfolio. To
be discussed later in Example 3.1, another interesting case is the
CAPM where Knightian uncertainty makes preferences incomplete.
In this example, incompleteness of preferences yield a continuum
46 D.C. Won, N.C. Yannelis / Journal of M

ricing models with Knightian uncertainty formulated in Bewley
2002) and Rigotti and Shannon (2005), and model uncertainty
iscussed in Hansen and Sargent (2001), Kogan and Wang (2003),
nd Cao et al. (2005). As illustrated later in Example 3.1, Knight-
an uncertainty makes preferences incomplete while the absence
f riskless assets makes them satiable. In this example, incomplete-
ess of preferences lead to a continuum of satiation portfolios even
hen the vNM utility functions are strictly concave. Moreover, sati-

tion portfolios are not comparable to each other.
As shown in the literature, satiation poses no problem to the

xistence of equilibrium if it does not arise in the set of feasi-
le and individually rational allocations. In this paper, satiation is
llowed to occur anywhere in the consumption set. As discussed
n Won et al. (2008), the CAPM without riskless assets may have
atiation inside the set of feasible and individually rational allo-
ations and thus, the standard existence theorems do no apply to
he CAPM without riskless assets. Nielsen (1990) and Allingham
1991) initiated the research into the equilibrium existence theo-
em for the classical framework of the CAPM. However, their results
o not apply to the recent developments of the CAPM which take

nto account the effects on risk sharing of heterogeneous beliefs
r Knightian uncertainty. Won et al. (2008) extend the existence
heorems of Nielsen (1990) and Allingham (1991) to the case of
eterogeneous expectations about the means and the covariances
f asset returns but fail to cover the CAPM with Knightian uncer-
ainty because of incompleteness of preferences. The occurrence
f satiation is rather a rule in the case where choice sets are com-
act. Indeed if consumption sets are compact and preferences are

ower semicontinuous, convex, and irreflexive, then there always
xists a maximal element (e.g., Yannelis and Prabhakar, 1983), and
hus, agents are satiated. This is the case examined in Mas-Colell
1992). However, Mas-Colell (1992) introduces a weak notion of
quilibrium called ‘equilibrium with slack’ and he does not pro-
ide conditions under which Walrasian equilibrium exists in the
resence of satiation consumptions.

Werner (1987) examines the case with possibly satiated pref-
rences when the set of useful and useless commodity bundles
atisfies a uniformity condition. In particular, the uniformity con-
ition requires that the nonempty set of satiation points be
nbounded. Allouch et al. (2006) extend the results of Werner
1987) by relaxing the uniformity condition in a certain way.
llouch and Le Van (2009) show that satiation is hamrless to the
xistence of equilibrium in the economy with the compact util-
ty set, provided that the set of satiation points is bounded and
tretches outside the set of feasible and individually rational allo-
ations. Martins-da-Rocha and Monteiro (2009) illustrate that the
ompactness of the utility set for all agents may not be sufficient
or the existence of equilibrium when the set of satiation points
s unbounded, and provide an additional condition under which
he existence of equilibrium is reinstated. Sato (2000) goes further
y taking into account the case where preferences allow satiation
o occur on some boundary of the set of feasible and individually
ational consumptions. The results of the general equilibrium liter-
ture, however, do not apply to the case that satiation occurs only
nside the set of feasible and individually rational consumptions.

oreover, they do not cover the case with Knightian uncertainty
hich leads to incompleteness of preferences.

. Economies
We follow the notation, definitions, discussions of assumptions,
nd the preliminary results introduced in Section 2 of Won and
annelis (2008). Thus, this paper should be read in conjunction
ith Won and Yannelis (2008). The basic difference between the

I

atical Economics 47 (2011) 245–250

urrent paper and Won and Yannelis (2008) lies in the possibility
hat preferences for agent i ∈ I can reach satiation in the set H of
easible and individually rational allocations. Specifically, Assump-
ions B1–B4 and B6 in Won and Yannelis (2008) will be kept here,
nd Assumption B5 will be dropped and replaced by new conditions
hich are required to characterize satiation. For the convenience

f the reader, we repeat Assumptions B1–B4 and B6 of Won and
annelis (2008) which are made for all i ∈ I in the economy E = {(Xi,
i, Pi) : i ∈ I}.

1. Xi is a closed, nonempty and convex set in R�.
2. ei is in the interior of Xi.
3. Pi is lower semi-continuous.
4. For all x ∈ X, xi /∈ co Pi(x).
6. Let x be a point in H. Then for each zi ∈ co Pi(x) and vi ∈ Xi, there

exists � ∈ (0, 1) such that �zi + (1 − �)vi ∈ co Pi(x).
7. H is bounded.

The condition B4 implies that R(e) /= ∅ and thus, H /= ∅.2 The
ssumption B7 states that feasible and individually rational allo-
ations form a bounded set.3 Notice that we deliberately skip the
dentifier B5 for later use to keep the notational match between the
urrent paper and Won and Yannelis (2008).

Preferences for agent i are satiated at x ∈ X if Pi(x) =∅. For each
∈ I, let Si denote the set {x ∈ X : Pi(x) =∅ } and Ŝi the projection of Si
nto Xi. The set Si contains the set of choices which lead to satiation
f agent i. The following result is immediate from the lower semi-
ontinuity of Pi.

emma 2.1. The set Si is closed in R� for each i ∈ I.

roof. It is clear that

X \ Si = {x ∈ X : Pi(x) /= ∅}
= {x ∈ X : Pi(x) ∩ Xi /= ∅}.

Since Pi is lower semi-continuous, X \ Si is open and therefore,
i is closed. �

The set H is bounded in many interesting cases. For example,
f Pi is represented by a concave utility function ui on Xi, and Ŝi is
onempty and bounded for each i ∈ I, then H is bounded.

emma 2.2. Suppose that for each i ∈ I, ui is concave on Xi and Ŝi is
onempty and bounded. Then H is bounded.

roof. The preferred set Ri(xi) = {zi ∈ Xi : ui(zi) ≥ ui(xi)} is convex
or each xi ∈ Xi. Let Ci denote the recession cone of Ri(ei). By apply-
ng Theorem 8.7 of Rockafellar (1970) to concave functions, the
ecession of Ri(xi) for each xi ∈ Xi is equal to Ci. We claim that
ach Ri(ei) is bounded. Suppose otherwise. Then by Theorem 8.4
f Rockafellar (1970), there is a nonzero vector vi ∈ Ci for some i ∈ I.
et si denote a satiation point in Ŝi. Then for all � > 0, ui(si + �vi) ≥
i(si). This implies that si + �vi ∈ Ŝi for all � > 0 and therefore, Ŝi is
nbounded, which contradicts the boundedness of Ŝi. Thus, the set
(e) =

∏
i∈IRi(ei) is bounded and therefore, H is bounded. �

A notable example where H is bounded is the classical CAPM of
ielsen (1990) and Allingham (1991) where the absence of riskless
2 Suppose that R(e) =∅. Then for each x ∈ X, there exists i ∈ I such that ei ∈ co Pi(x).
n particular, we have ei ∈ co Pi(e) for some i ∈ I, which contradicts Assumption B4.

3 The case that H is unbounded is referred to Won and Yannelis (2009).
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To illustrate that S5 is fulfilled, we consider the more specific
case that m1 = m2 = (1.1, 1.1), � equals the 2 × 2 identity matrix, and
D.C. Won, N.C. Yannelis / Journal of M

f satiation portfolios even if the vNM utility function is strictly
oncave.

For each x ∈ X, we define the set Is(x) = {i ∈ I : Pi(x) =∅ } and
(x) = I \ Is(x). If Si ∩ H =∅ for all i ∈ I, this is done in Won and Yannelis
2008) (Assumption B5). Thus, without loss of generality, we may
uppose that that Si ∩ H /= ∅ for some i ∈ I. We also add the follow-
ng assumption.

8. For each x ∈ H, Is(x) /= I.

Assumption B8 excludes the relatively uninteresting case that
s(y) = I for some y ∈ H. To make it clear, we consider an economy

here agent i’s preferences are represented by a utility function
i on Xi which has a unique satiation point yi in XH

i
, i.e., Ŝi = {yi}

or all i ∈ I, where XH
i

denotes the projection of cl H onto Xi. In this
ase, either y is the unique equilibrium allocation or no equilib-
ium exists. To show this, let Z denote the # I × � matrix whose j
h row equals yj − ej for all j ∈ I, where # I indicates the number
f agents in I. There will be two cases: the rank of Z is either (a)
ess than � or (b) equal to �. In case (a), there exists a nonzero
∈R� such that p · (yi − ei) = 0 for all i ∈ I. Since every agent is sati-
ted at the allocation y ∈ H, (p, y) is an equilibrium. We claim that
is the unique equilibrium allocation. Suppose that there exists

n equilibrium (q, x) with x /= y. Then for some i ∈ I with xi /= yi,
e have q · yi > q · xi = q · ei and q · yj ≥ q · xj = q · ej for all j /= i. This

mplies
∑

j∈Iq · yj >
∑

j∈Iq · ej, which contradicts the feasibility of y.
n case (b), y cannot be an equilibrium allocation because the fact
hat p · (yi − ei) = 0 for all i ∈ I implies p = 0. By the previous argu-

ents, we can also show that there exists no equilibrium (q, x)
ith x /= y.

. Possibly satiated preferences

Equilibrium may fail to exist in economies where satiation
ccurs to XH

i
for some i ∈ I. Thus, we impose the following condition

n satiable preferences.

5. For all x ∈ H, xi − ei ∈ cl[
∑

j∈I(x)con (Pj(x) − {xj})] for each i ∈ Is(x).

This condition is related to the conditions of Nielsen (1990),
llingham (1991), and Won et al. (2008).4

To motivate the current research, we provide an example
ased on the recent developments of the asset pricing literature.
pecifically, we consider the CAPM without riskless assets where
nightian uncertainty makes preferences incomplete. As in Rigotti
nd Shannon (2005), we take the approach of Bewley (2002) to
ncorporate Knightian uncertainty into preferences. In this exam-
le, incompleteness of preferences allows agents to possess a
ontinuum of satiation portfolios even if the vNM utility function is
trictly concave. Moreover, the size of the satiation set gets bigger as
gents have more Knightian uncertainty. No existing literature cov-
rs the equilibrium existence issue of the following CAPM because
references are incomplete and satiable. It is also shown that the
ssumption S5 is fulfilled in the CAPM.

xample 3.1. To examine the effect of Knightian uncertainty on
he capital asset pricing model without riskless assets, we con-

ider an economy with two agents and two risky assets. Agents
re allowed to take unlimited short sales, i.e., Xi = R� for each i = 1,
. For each j = 1, 2, let r̃j denote the return of asset j and r̃ the random
ector (r̃1, r̃2).

4 For more details on how they are related to S5, see Won and Yannelis (2009).
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We suppose that agents know that r̃ is jointly normally dis-
ributed but do not know the exact form of the normal distribution.
hey have ambiguity about the true distribution in that they believe
t will be within an ‘admissible distance’ from the reference normal
istribution �i characterized by the mean vector mi and the covari-
nce matrix �i. Let �i be an admissible normal distribution. Then
here is a Radon–Nikodym derivative �i such that d�i = �id�i. To
escribe Knightian uncertainty, for some number �i > 0, we define
he admissible set of normal distributions

i = {	i : E�i (�i ln �i) ≤ �i}
here E�i indicates the expectation operator with respect to �i.

he number E�i (�iln �i) is the relative entropy index which mea-
ures the closeness between �i and �i.5 The set �i contains normal
istributions which are in less distance from �i than �i in terms
f the relative entropy. We assume that agent i’s preferences are
epresented by the utility function

i(xi) = min
	i ∈ �i

E	i [
i(xi · r̃)]

here 
i is a strictly increasing, strictly concave utility function of
ealth.

Since a normal distribution is determined by the mean vector
nd the covariance matrix, here Knightian uncertainty can be char-
cterized by parametric uncertainty about them. For tractability,
ollowing Kogan and Wang (2003) and Cao et al. (2005), we assume
hat for each i = 1, 2, agent i knows about the covariance matrix of �i
ut feels uncertain about the mean vector. Let � denote the com-
on covariance matrix agents have in mind. Thus, distributions in
i have the covariance matrix � but may have distinct mean vec-

ors. Kogan and Wang (2003) show that the utility function of agent
is rewritten as

i(xi) = min
m′

i
∈ �i

E�i [�i
i(xi · r̃)]

i = {m′
i
∈R� : 1

2 (m′
i
− mi)

��−1(m′
i
− mi) ≤ �i} and �i

xp
{

1
2

(m′
i − mi)

��−1(m′
i − mi) − (m′

i − mi)
��−1(m′

i − r̃)
}

.

For a normal distribution �i ∈ �i, let gi denote the
ean–variance utility function derived from E�i [
i( · )] such

hat for each xi ∈ Xi,

i(�i(xi; 	i), i(xi; 	i)) = E	i [
i(xi · r̃)]

here �i(xi;�i) and i(xi;�i) is the mean and the variance of xi · r̃
nder the distribution �i. Since 
i is strictly increasing and strictly
oncave, gi is increasing in the first argument and strictly decreas-
ng in the second argument.

Following Bewley (2002), the strict preference ordering 	i is
efined on R� such that for any xi, yi in R�, xi 	 iyi if and only if

	i (
i(xi · r̃)) > E	i (
i(yi · r̃)) for all 	i ∈ �i.

The preference ordering 	i is incomplete and transitive. For each
i ∈R�, let Pi(xi) denote the set {yi ∈R� : yi	ixi}. Since 
i is concave,
i(xi) is convex.
i = ε/2 for some ε > 0 and each i = 1, 2. For simplicity, we assume
hat agent 1 has ambiguity only about the mean return of the

5 The relative entropy index indicates how uncertain agent i feels about the true
istribution around the reference distribution �i . For details, see Hansen and Sargent
2001). An interesting example of model uncertainty in static asset pricing models
s found in Kogan and Wang (2003) and Cao et al. (2005).
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rst asset while agent 2 has ambiguity only about the mean of
he second asset. This assumption implies that for each �i ∈ �i,
here exist m′

i
∈R2 for each i = 1, 2 such that m′

1 = (1.1 + �1, 1.1)
nd m′

2 = (1.1, 1.1 + �2) for some �1 and �2 in R. Then we see
hat for each i = 1, 2,

1 = {(�1, 0) ∈R2 : −ε ≤ �1 ≤ ε} and

2 = {(0, �2) ∈R2 : −ε ≤ �2 ≤ ε}.

We assume that the mean–variance utility function is linear as
ollows.6

i(�, ) = � − 1
2

2.

For each w1 = (x1, y1) and w2 = (x2, y2) inR2, we set ui(wi; 	i) =
i(�i(wi; 	i), i(wi; 	i)). Then it follows that

u1(w1; 	1) = w1 · m′
1 − 1

2
w�

1 �w1

= (1.1 + �1)x1 + 1.1y1 − 1
2

(x2
1 + y2

1)

u2(w2; 	2) = w2 · m′
2 − 1

2
w�

2 �w2

= 1.1x2 + (1.1 + �2)y2 − 1
2

(x2
2 + y2

2)

Then the previous relation is rewritten as

u1(w1; 	1) = −1
2

‖(x1, y1) − (1.1 + �1, 1.1)‖2

+ 1
2

[(1.1 + �1)2 + 1.12]

u2(w2; 	2) = −1
2

‖(x2, y2) − (1.1, 1.1 + �2)‖2

+ 1
2

[(1.1 + �2)2 + 1.12].

Thus, the preferred sets P1(w1) and P2(w2) are given by

P1(w1) = {w̃1 ∈R2 : ‖(x̃1, ỹ1) − (1.1 + �1, 1.1)‖2

< ‖(x1, y1) − (1.1 + �1, 1.1)‖2 for all �1 ∈ [−ε, ε]}
P2(w2) = {w̃2 ∈R2 : ‖(x̃2, ỹ2) − (1.1, 1.1 + �2)‖2

< ‖(x2, y2) − (1.1, 1.1 + �2)‖2 for all �2 ∈ [−ε, ε]}.

It is easy to see that for each i = 1, 2, the set of satiation portfolios
s compact as shown below.

Ŝ1 = {(x1, y1) ∈R2 : x1 ∈ [1.1 − ε, 1.1 + ε], y1 = 1.1}
Ŝ2 = {(x2, y2) ∈R2 : x2 = 1.1, y2 ∈ [1.1 − ε, 1.1 + ε]}.

In particular, the size of Ŝi relies on that of �i and thus, gets
igger as agent i has more Knightian uncertainty. Moreover, satia-

ion portfolios are not comparable to each other. To show this, let
n = (0, 1/n) for each n. Clearly, the satiation point w̄0

1 ≡ (1.1, 1.1)
or agent 1 belongs to P1(w̄0

1 + ın) for each n. It is easy to see

hat ∩∞
n=1P1(w̄0

1 + ın) = {w̄0
1}. Let w̄1 be a point in Ŝ1 with w̄1 /= w̄0

1.

6 This condition holds when the vNM utility function displays constant absolute
isk aversion.

i
w
X

o
a

1.4 21.1 1.4 21.1

Fig. 1. Preferred sets and satiation

hen there exists n such that w̄1 /∈ P1(w̄0
1 + ın).7 Similarly, we have

¯ 0
1 /∈ P1(w̄1 + ın) for some n. Thus, w̄1 is incomparable to w̄0

1.
Now we check the validity of the Assumption S5 here. To do

his, we suppose that e1 = (1.4, 0.6) and e2 = (0.6, 1.4) and ε = 0.05.
ake a feasible allocation (w1, w2) such that w1 is a point in Ŝ1, i.e.,
1 = (1.1 + �1, 1.1) for some �1 ∈[− 0.05, 0.05], and w2 = (2, 2) −
1 = (0.9 − �1, 0.9) /∈ Ŝ2. Then we get w1 − e1 = (−0.3 + �1, 0.5).
ecalling that | �1 |≤0.05 and | �2 |≤0.05, for any ˛ ∈ (0, 0.01], it is
asy to see that

w2 + ˛(−0.3 + �1, 0.5) − (1.1, 1.1 + �2)
∥∥2

= (0.2 + �1 + 0.3˛ − ˛�1)2 + (0.2 + �2 − 0.5˛)2

< (0.2 + �1)2 + (0.2 + �2)2

= [(0.9 − �1) − 1.1]2 + [0.9 − (1.1 + �2)]2

= ‖w2 − (1.1, 1.1 + �2)‖2

This implies that w2 + ˛(−0.3 + �1, 0.5) is in P2(w2) and
hus, w2 + ˛(w1 − e1) ∈ P2(w2). In other words, we have w1 −
1 ∈ con(P2(w2) − {w2}). Therefore, the condition of S5 holds true
or agent 1. Similarly, we can check the condition of S5 for agent 2.
hus, the current example satisfies S5.

Moreover, we see that Ŝi ⊂ XH
i

for each i = 1, 2. In fact, as shown in
ig. 1, P1(e1) is the open set inR2 surrounded by two circles in solid
ine through e1 where the small one is centered at the rightmost
oint (1.15, 1.1) of Ŝ1 and the larger one is centered at its leftmost
oint (1.05, 1.1). The set P2(e2) is the open set in R2 surrounded
y two circles in dotted line through e1 where the small one is
entered at the lowest point (1.1, 1.05) of Ŝ2 and the larger one is
entered at its highest point (1.1, 1.15). On the other hand, R1(e1)
s the closed ball with the larger solid-line circle as its boundary

hile R2(e2) is the larger dotted-line circle as its boundary. Thus,
H
1 and XH

2 are represented by the hatched region, the intersection
f the two closed balls. Since the hatched region includes both Ŝ1
nd Ŝ2, satiation occurs only inside XH

i
for each i = 1, 2.

7 This is because for all n, P1(w̄0
1 + ın) is in the ball centered at w̄0

1 with radius 1/n.
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. The existence of equilibrium

We provide the existence of equilibrium for economies where
is bounded. The proof of the theorem will freely borrow notation

nd preliminary results from Won and Yannelis (2008).

heorem 4.1. Suppose that E satisfies the Assumptions B1–B4, S5
nd B6–B8. Then there exists an equilibrium of the economy E.

roof. The proof of the theorem is broken into several steps. The
rst three steps of the proof will be exactly the same as the first
hree steps of the proof of Theorem 2.3.1 of Won and Yannelis
2008). Thus the readers are referred to the proof of Theorem 2.3.1
f Won and Yannelis (2008) for the overlapped portion of the proof
nd mathematical notation used therein. As in Won and Yannelis
2008), without loss of generality, B4 and B6 are replaced by the
ollowing conditions B4

′
and B6

′
.8

4
′
. For all x ∈ X with Pi(x) /= ∅, Pi(x) is convex, xi /∈ Pi(x), and for

each yi ∈ Pi(x), (xi, yi] is in Pi(x).
6

′
. Let x be a point in H. Then for each zi ∈ Pi(x) and vi ∈ Xi, there

exists � ∈ (0, 1) such that �zi + (1 − �)vi ∈ Pi(x).

First, we summarize the preparatory part and Step 1 of the proof
f Theorem 1 of Won and Yannelis (2008) to remind the reader of
otation and definitions.

Step 1: By B7, we can choose a closed and bounded ball K cen-
ered at the origin in R� which contains XH

i
and ei in its interior for

ll i ∈ I. We introduce the truncated economy Ê = (X̂i, ei, P̂i) where
or all i ∈ I,

ˆ i = Xi ∩ K, X̂ =
∏
i ∈ I

X̂i and P̂i(x) = Pi(x) ∩ K for all x ∈ X̂.

We introduce the sets � and �1 in R� defined by

� = {p ∈R� : ‖p‖ ≤ 1}
�1 = {p ∈R� : ‖p‖ = 1}.

We consider the abstract economy � = (X̂i, Ai, Gi)i ∈ I′ where
′ = I ∪ {0} by adding the agent 0 as follows; if i = 0, we set X̂0 = �
nd define

G0(p, x) = {q ∈ � : q ·
(∑

i ∈ I

(xi − ei)
)

> p ·
(∑

i ∈ I

(xi − ei)
)

},

A0(p, x) = � for all (p, x) ∈ � × X̂,

nd if i ∈ I, for all (p, x) ∈ � × X̂ we set

Gi(p, x) = P̂i(x), and
Ai(p, x) = {xi ∈ Xi : p · xi < p · ei + 1 − ‖p‖} ∩ K.

Step 1 of Theorem 2.3.1 of Won and Yannelis (2008) shows that
has a quasi-equilibrium, i.e., there exists (p̂, x̂) ∈ � × X̂ such that

a) p̂ ∈ cl A0(p̂, x̂) = � and G0(p̂, x̂) ∩ � = ∅

and for all i ∈ I,

b) x̂i ∈ cl Ai(p̂, x̂), i.e., p̂ · x̂i ≤ p̂ · ei + 1 − ‖p̂‖, and

c) Gi(p̂, x̂) ∩ Ai(p̂, x̂) = ∅, i.e., P̂i(x̂) ∩ Ai(p̂, x̂) = ∅.

Step 2: This step is exactly the same as Step 2 of Theorem 2.3.1
f Won and Yannelis (2008). In particular, we obtain x̂ ∈ F .

8 For details, see Appendix B of Won and Yannelis (2008).
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Step 3: This step is also exactly the same as Step 3 of Theorem
.3.1 of Won and Yannelis (2008). In particular, we obtain x̂ ∈ R(e).

Step 4: By Steps 2 and 3, we have x̂ ∈ H = F ∩ R(e) and therefore,
ˆi ∈ XH

i
for each i ∈ I. Recalling that XH

i
⊂ int K , we have x̂i ∈ int K for

ll i ∈ I.
To analyze the impact of satiation on equilibrium of the trun-

ated economy Ê, we set Î
s
(x̂) = {i ∈ I : P̂i(x̂) = ∅} and Î(x̂) = I \ Î

s
(x̂).

e claim that Î
s
(x̂) = Is(x̂). Since Pi(x̂) = ∅ implies P̂i(x̂) = ∅, we

ave Is(x̂) ⊂ Î
s
(x̂). Let i be a point in I with Pi(x̂) /= ∅. Then we

an choose zi ∈ Pi(x̂). Since x̂i is in the interior of K, there exists
′ ∈ (0, 1) such that ˛′x̂i + (1 − ˛′)zi ∈ K . By B4

′
we have ˛′x̂i + (1 −

′)zi ∈ P̂i(x̂), and thus, i ∈ Î(x̂). This implies that Î
s
(x̂) ⊂ Is(x̂).

Satiation at x̂ may occur either to some agent, or to no agent,
r to all agents in the truncated economy Ê. Thus, the proof will
e divided into the three cases; (i) Î(x̂) /= ∅ and Î

s
(x̂) /= ∅, and (ii)

(̂x̂) = I.9 The arguments made below will take advantage of the fact
hat Î(x̂) = I(x̂).

Now we verify the following claims.
Claim 1: For each i ∈ I(x̂),

ˆ · x̂i = p̂ · ei + 1 − ‖p̂‖.

roof. By condition (b) we have p̂ · x̂i ≤ p̂ · ei + 1 − ‖p̂‖ for all i ∈ I.
n particular, it holds for all i ∈ I(x̂). By applying the arguments of
tep 4 of Theorem 2.3.1 of Won and Yannelis (2008) to each i ∈ I(x̂),
e have p̂ · x̂i ≥ p̂ · ei + 1 − ‖p̂‖ for all i ∈ I(x̂). �

Claim 2: For each j ∈ Is(x̂),

ˆ · x̂j ≥ p̂ · ej.

roof. First we show that for each i ∈ I(x̂) and all zi ∈ Pi(x̂),

ˆ · zi ≥ p̂ · ei + 1 − ‖p̂‖. (1)

Suppose otherwise. Then there exists z′
i
∈ Pi(x̂) such that p̂ · z′

i
<

ˆ · ei + 1 − ‖p̂‖. By B4
′

we have that ˛x̂i + (1 − ˛)z′
i

is in Pi(x̂) for all
∈ [0, 1). On the other hand, by Step 4, x̂i is in the interior of K.
ence there exists ˛′ ∈ (0, 1) such that ˛′x̂i + (1 − ˛′)z′

i
∈ K . Since

ˆi(x̂) = Pi(x̂) ∩ K , it follows that ˛′x̂i + (1 − ˛′)z′
i
∈ P̂i(x̂). On the other

and, we have

p̂ · (˛′x̂i + (1 − ˛′)z′
i
)

= ˛′p̂ · x̂i + (1 − ˛′)p̂ · z′
i

≤ ˛′(p̂ · ei + 1 − ‖p̂‖) + (1 − ˛′)p̂ · z′
i
, (sincex̂i ∈ cl Ai(p̂, x̂))

< p̂ · ei + 1 − ‖p̂‖, (sincep̂ · z′
i

< p̂ · ei + 1 − ‖p̂‖).

Thus, ˛′x̂i + (1 − ˛′)z′
i
∈ P̂i(x̂) ∩ Ai(p̂, x̂) for each i ∈ Î(x̂), which

ontradicts the fact that P̂i(x̂) ∩ Ai(p̂, x̂) = ∅, and this proves that
1) holds.

It follows from (1) and Claim 1 that for each i ∈ I(x̂), all zi ∈ Pi(x̂)
atisfy

ˆ · zi ≥ p̂ · ei + 1 − ‖p̂‖ = p̂ · x̂i.

Again by Claim 1, it holds that p̂ · x̂i ≥ p̂ · ei for each i ∈ I(x̂). Thus,
he condition S5 allows us to have p̂ · x̂j ≥ p̂ · ej for each j ∈ Is(x̂) and
his completes the proof of the claim.

Step 5: Suppose that (i) holds, i.e., I(x̂) /= ∅ and Is(x̂) /= ∅. We
how that
p̂‖ = 1 and p̂ · x̂i = p̂ · ei for all i ∈ I.

9 The case with Î
s
(x̂) = I is excluded by the Assumption B8.
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By summing up the relations in Claim 1 and 2 above, we see that

i ∈ I

p̂ · (x̂i − ei) ≥
∑
i ∈ I(x̂)

(1 − ‖p̂‖).

Recalling that
∑

i ∈ I(x̂i − ei) = 0, we obtain ‖p̂‖ ≥ 1. Since p̂ ∈ �,
e conclude that ‖p̂‖ = 1 and therefore, p̂ · x̂i = p̂ · ei for all i ∈ I.

Step 6: We consider the case (ii), i.e., I(x̂) = I. In this case, the
rguments made for each i ∈ I(x̂) in Steps 4 and 5 can be repeated
ere to show that ‖p̂‖ = 1 and p̂ · x̂i = p̂ · ei for all i ∈ I.

Step 7: In summary, by Steps 4–6, p̂ /= 0, p̂ · x̂i = p̂ · ei and
i(x̂) ∩ ˇi(p̂) = ∅ for all i ∈ I. By Step 2, x̂ is in F. Hence, (p̂, x̂)
s a quasi-equilibrium of the economy E. All it remains is to
how that Pi(x̂) ∩ Bi(p̂) = ∅ for all i ∈ I. Fix i. If x̂ ∈ Si, then Pi(x̂) =

and therefore, Pi(x̂) ∩ Bi(p̂) = ∅. Suppose that x̂ ∈ X \ Si. By the
ame arguments of Step 5 of the proof of Theorem 2.3.1 of Won
t al. (2008), the fact that Pi(x̂) ∩ ˇi(p̂) = ∅ implies that Pi(x̂) ∩
i(p̂) = ∅. Thus, we conclude that (p̂, x̂) is an equilibrium of the
conomy E. �

emark 4.2. It should be noted that Theorem 4.1 does not follow
rom Theorem 2.3.1 of Won et al. (2008) because the preferences
f each agent i are allowed to reach satiation in XH

i
. Suppose that

i is compact for each i ∈ I. Then preferences are satiable and H is
ounded. In this case, Theorem 4.1 is applicable. However, Won
t al. (2008) may not work because of satiation. On the other hand,
ssumption S5 is vacuously true whenever I(x) = I for all x ∈ cl H. If

his is the case, Theorem 4.1 reduces to Theorem 2.3.1 of Won and
annelis (2008). Thus, the former subsumes the latter as a special
ase.

. Concluding remarks

This paper extends the results of Won et al. (2008) to the
ase where preferences may be non-ordered and satiable. The
lassical literature of general equilibrium theory allows pref-
rences to reach satiation outside the set H of individually
ational and feasible allocations. In this case, satiation has no
mpact on the existence of equilibrium. Equilibrium may not
xist, however, when satiation occurs only inside the set H. To
ddress the problem with satiable preferences, we have intro-
uced Assumption S5. This condition allows us to provide a unified
pproach to the economy with possibly satiated preferences. In
articular, the paper encompasses as a special case the litera-
ure including Nielsen (1990), Allingham (1991), and Won et al.
2008).

The outcomes of the paper are particularly useful in addressing

he equilibrium existence issue for asset pricing models without
iskless assets. One interesting application is found in Won et al.
2008) which are concerned about the capital asset pricing model
CAPM) with heterogeneous expectations. More intriguing exam-
les are recent developments of the CAPM which investigate the

W

Y

p

atical Economics 47 (2011) 245–250

ffect on asset pricing of mean-preserving-spread risk,10 model
ncertainty or Knightian uncertainty.
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