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Equilibrium Points of
Non-Cooperative Random
and Bayesian Games

N. C. Yannelis and A. Rustichini*

We provide random equilibrium existence theorems for non-cooperative
random games with a countable number of players. Our results yicld as
corollarics generalized random versions of the ordinary equilibrium exis-
tence result of J. Nash (22]. Morcover, they can be used to obtain equilib-
rium existence results for games with incomplete infornation, and in par-
ticular Baycsian games. In vicw of recent work on applications of Baycsian
games and Bayesian cquilibria, the latter results scem to be quite uscful
since they delincate conditions under which such equilibria exist.

1. Introduction

A finite game consists of a set of players I = {1,2,...,n} cach of whom is
characterized by a strategy sct X; and a payoff (utility) function

u;: H X; = R.
jeI

An equilibrium for this game is a strategy vector such that no player can increase
his/her payoff by deviating from his/her equilibrium strategy, given that the
other players use their equilibrium strategies, i.e., z* € Il;¢;X; is an cquilibrium
if

ui(z°) = &a}(‘ ui(z3,. .. 80 a s Wes B o v )

for all i € I. The above game form and the notion of equilibrium were both
j : introduced in a seminal paper by J. Nash [22].! In that same paper Nash proved
? by means of the Brouwer Fixed Point Theorem, the existence of an equilibrium
| for the above game, where strategy sets were subsets of R’, i.e., the ¢-fold Carte-
sian product of the set of real numbers R. The work of Nash has found very

! *We would like to thank Roko Aliprantis, Erik Balder, Kim Border, Taesung Kim, M. Ali
: Khan and David Schmeidler for comments, discussions and suggestions. Of course we are
responsible for any remaining shortcomings.

!Notice that this notion of equilibrium is non-cooperative. No communication between
players is allowed.
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interesting applications in game theory and mathematical economics (see for in-
stance K. J. Arrow and G. Debreu (2] or G. Debreu [10]). Generalizations of
Nash’s equilibrium existence theorem to games where strategy sets were cubsets
of arbitrary Hausdorff linear topological spaces, were obtained by K. Fan [13] and
F. E. Browder [8] among others. The results of Fan and Browder were proved by
means of infinite dimensional fixed point theorems. Subsequently to the above
work, research in economics (see for instance W. J. Shafer and H. F. Sonnen-
schein [31]) necessitated further generalizations of Nash's equilibrium existence
result, to games where each player is equipped with a preference correspondence
(instead of a payoff function), which need not be transitive or complete and
therefore need not be representable by a utility function. The latter work was
motivated by empirical results which indicated that in many instances agents’
behavior is not necessarily transitive.

A common characteristic of all the above results is that they are determinis-
tic, i.e., players cannot accommodate any kind of uncertainty or randomness in
their responses to potential changes in their primitive environment. In reality,
however, there are many factors which go beyond the control of players and can-
not be influenced by their actions. In that sense, it scems natural to assume that
players’ payoff functions depend not only.on the strategies, but on the states of
nature of the world as well. In other words, payoff functions can be random.
This is the type of the game we shall consider in this paper. Of course with the
random payoff functions the equilibrium strategy vector will be random as well,
and therefore the equilibrium will change from one state of the environment to
another.

It is the purpose of this paper to prove random equilibrium existence re-
sults for quite general random games. In particular, as in W. J. Shafer and
H. F. Sonnenschein [31] and N. C. Yannelis and N. D. Prabhakar [32], instead of
assigning each player a random payoff or utility function, we equip each player
with a random prefcrence correspondence which need not be representable by
a random utility function. It should be noted, however, that our random equi-
librium results, provide as corollaries random versions of the theorems of Nash,
Fan, and Browder. Morcover, we show that these random equilibrium theorems
can be used to obtain equilibrium existence results for games with incomplete
information, and in particular, for Bayesian games. The main reference for the
latter type of games is J. C. Harsanyi’s seminal paper [14]. Recently there is
a growing literature on this subject. In particular, Bayesian games have found
very interesting applications in economic theory, e.g., R. J. Aumann (3], R. My-
erson (21], T. Palfrey and S. Srivastava [23, 24), J. Peck and K. Shell [25] and
A. Postlewaite and D. Schmeidler [26] among others.?

As in (3, 14, 21, 23, 24, 25] by the term “Bayesian games” we mean games,
where each player i is characterized by a strategy set X;, a random utility func-
tion u; defined on the product space 2 x X (where 0 is the set of states of

2However, no equilibrium existence results are contained in these papers. E. J. Balder [6],
A. Mas-Colell (18], P. Milgrom and R. Weber [20] and R. Radner and R. Rosenthal [27] have
provided existence of equilibrium theorems for games with incomplete information, but their
approach is different from ours. We shall discuss the work of these authors in Section 3.
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the world and X = I;¢;X;), an information set S; (where S; is a partition of
1), and a prior ¢; (i.e., a probability measure on Q). In this setting the corre-
sponding natural extension of Nash’s equilibrium concept is that of a Bayesian
equilibrium. In particular, if we denote by Ei(w) the event in S; containing the
realized state of nature w € 0, then each agent will choose a strategy which
maximizes expected utility conditional on his/her own event E;(w).

Note that in this Baycsian game the conditional expected utility of each
player is a random function, i.e., depends on the states of nature of the world and
on the strategics. Hence, in essence the problem of the existence of a Bayesian
equilibrium is converted to a random equilibrium problem, simply by thinking of
the conditional expected utility of each player as his/her random payoff function
of some random game. It is exactly for this reason that in certain cases the
existence of a Bayesian equilibrium for a Bayesian game follows directly from
the existence of a random equilibrium for a random game. The latter result
seems to be quite interesting. Specifically, in view of recent work mentioned
above, it is important to delincate conditions under which such cquilibria exist.

As the deterministic results of Nash, Fan and Browder are based on dcter-
ministic fixed point theorems, the proofs of our random cquilibrium existence
results are based on random fixed point theorems. The idea behind the nced
of a random fixed point can be intuitively grasped simply by noting that with
random payoff functions the best reply correspondence becomes random as well,
and thercfore a random extension of the Kakutani—Fan—Glicksberg Fixed Point
Theorem scems to be required. To this end, we prove a random version of
K. Fan's Coincidence Theorem (12, Theorem 6, p. 238}, which gives as corollary
a random version of the Kakutani—Fan—Glicksberg Fixed Point Theorem. In ad-
dition, we employ Aumann-type measurable selection theorems and some recent
Carathéodory-type selection results proved in 16, 17).

The paper is organized as follows: Section 2 contains several preliminary
results of measure theoretic character. Moreover, a random version of Fan's
Coincidence Theorem is cstablished. The main results of the Paper are stated
in Section 3, 4, and 5. Secction 6 contains a discussion of the related literature
on games with incomplete information. Finally, concluding remarks are given in
Section 7.

2. Mathematical preliminaries

Let X and Y be sets. The graph G, of the set-valued function (or correspon-
dence) @: X — 2Y is the set G, ={(z,y) e XxY: Y € p(z)}. If X and
Y are topological 5paces, a correspondence ¢: X — 2Y s said to have an open
graph if the set Gy, is open in X x Y. A correspondence ¢: X — 2Y is gaid to
be lower semicontinuous (1s.c.) if the set {zeX:p(z)nV # @} is open in
X for every open subset V of Y; and upper semicontinuous (u.s.c.) if the set
{z € X:¢(z)c V} is open in X for every open subset V of Y. It can be
easily checked that if a correspondence has an open graph, then it is Ls.c., but
the converse is not true; see (32, p. 237).
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In our discussion, we shall need several results that will be listed in this
section.

Theorem 2.1 Let X be a topological space and Y be a linear topological space.
If the correspondence ¢: X — 2Y is Ls.c., then the convez hull correspondence
¥: X — 2Y, defined by ¥(z) = cop(z), is also Ls.c.

Proof: See (19, Proposition 3.6, p. 366]. |

Theorem 2.2 Let X be a topological space and let {Y; : i € I} (where the
set I can be finite or infinite) be a family of compact topological spaces. Let
Y = MicYi. If for each i € I, the correspondence Fi: X — 2¥ is u.s.c. and
closed valued, then the correspondence F: X — 2Y | defined by F(z) = I;e1 Fi(z),
is also u.s.c.

Proof: See (11, Lemma 3, p. 124]. |

We now turn our attention to some measure theoretic facts. Let X and Y be
topological spaces and let ¢: X — 2Y be a nonempty valued correspondence. A
continuous selection for ¢ is a continuous function f: X — Y such that f(z) €
¢(z) for all z € X.

Let (R, a) be a measurable space, Y be a topological space and ¢: ! — 2Y be
a nonempty-valued correspondence. A measurable selection for ¢ is a measurable
function f: 2 — Y such that f(w) € ¢(w) for all w € .

We now define the concept of a Carathéodory selection which combines the
notion of continuous selection and measurable sclection.

Let (X,a) be a measurable space and let Y and Z be topological spaces.
Let ¢: X x Z — 2Y be a (possibly empty-valued) arbitrary correspondence.
Let U = {(z,2) € X x Z : p(z,2) # @}. A Carathéodory selection for the
correspondence ¢ is a function f:U — Y such that:

1. f(z,z2) € p(z,2) for all (z,2) € U;

2. the function f(z,-) is continuous on U* = {z € Z : (z,2) € U} for each
z € X; and

3. the function f(-,z) is measurable on U* = {z € X : (z,2) € U} for each
z€ 2.

If (X,a) and (Y, ) are measurable spaces and ¢: X — 2Y is a correspon-
dence, then ¢ is said to have a measurable graph if G, belongs to the product
o-algebra a ® . We are usually interested in the situation where (X,a) is a
measurable space, Y is a topological space and 8 = B(Y) is the Borel o-algecbra
of Y. For a correspondence ¢ from a measurable space into a topological space,
if we say that ¢ has a measurable graph, it is understood that the topological
space is endowed with its Borel o-algebra (unless specified otherwise). In the
same setting as above, i.e., (X, a) a measurable space and Y a topological space,
o is said to be lower measurable if {z € X : p(z) NV # B} € a for every V
open in Y. The following facts will be useful in the sequel.
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Theorem 2.3 Let (02, a,p) be a complete finite measure space, X be a separable
metric space and @:f} — 2Y be a nonempty valued correspondence having a
measurable graph, i.e., G, € a®P(X). Then there ezists a measurable selection

Jor .
Proof: Sce [9, Theorem I11.22, p. 22) or (15, Theorem 5.2, p. 60). |

Theorem 2.4 Let (2, a,p) be a complete finite measure space, X be a complete

separable metric space and p: A x X — 2R pe a convez (possibly empty) valued
correspondence such that:

1. ¢ is lower measurable with respect to the o-algebra a ® f(X), and
9. the set-valued function @(w,") is Ls.c. for each w € 9.
Then there exists a Carathéodory selection for .

Proof: Sce [16, Theorem 3.2]. |

Theorem 2.5 The previous fact remains true if ¢ is a correspondence from
Qx X into2Y, where Y is a separable Banach space and (1) and (2) are replaced

by
(1) G, € a® B(X) ® B(Y), and

(2') the set-valued function p(w,") has an open graph for each w € 9, i.e., for
each w € N the set Gy(u,) = {(z,y) e X xY :y€ ¢(w,z)} is open in
XxY.

Proof: Sce [17, Main Theorem]. |

Theorem 2.8 Let  be a measurable space, {Y; : i € I} (where I is a countable
set) be a family of second countable topological spaces. Let Y = Wie1Y;. If for
each i € I, the correspondence Fi:§l — 2Yi s lower measurable, then the corre-
spondence F: Q — 2Y, defined by F(w) = ;1 Fi(w), is also lower measurable.

Proof: See (15, Proposition 2.3, p. 55]. |

Theorem 2.7 Let N be a measurable space, X be a separable metric space and
for each i € I (where I is a countable set) Fi:Q — 2% is a lower measurable
and closed-valued correspondence. If for each w € N the set Fi(w) is compact
for at least one indez i € I, then the correspondence F:Q — 2X, defined by
F(w) = Nies Fi(w), is lower measurable.

Proof: See |15, Theorem 4.1, p. 58). a

If (X, a), (Y, B) and (Z, L) are measurable spaces, U C XxZand f:U—Y,
we call f jointly measurable if for every B €  we have f~1(B) = UNA for some
A€ a®L. It is a standard result that if Z is a separable metric space, Y is a
metric space and f: X x Z — Y is such that for each fixed z € X the function




28 Yannelis and Rustichini

f(z,-) is continuous and for each fixed z € Z the function f(-, z) is measurable,
then f is jointly measurable (where § = f(Y) and £ = $(Z)). It turns out that
in several instances U is a proper subset of X x Z, and this situation is more
delicate. However, in this more delicate situation it can be shown that f is still
jointly measurable. In particular, we have the following fact.

Theorem 2.8 Let (2, a) be a measurable space, X be a separable metric space,
Y a metric space and U C 0 x X be such that:

1. For each w € N the set U¥ = {z € X : (w,z) € U} is open in X, and
2. for each z € X the set U* = {w € N : (w, z) € U} belongs to a.

Let f:U — Y be a function such that for each w € Q the function f(w,:) is
continuous on U* and for each z € X the function f(-,z) is measurable on U=,
Then f is jointly relatively measurable with respect to the o-algebra a ® f(X),
i.e., for every open subset V of Y we have

{(wz)eU: fw,z)eV}=Un4A
Jor some A € a ® B(X).
Proof: See (16, Lemma 4.12]. L

Theorem 2.9 Let (Q,a,p) be a complete measure space and X ‘be a complete
separable metric space. If a set A belongs to a ® B(X), then its projection
projq(A) belongs to a.

Proof: See |9, Theorem I11.23, p. 75). |

The next result is a random version of Fan's Coincidence Theorem. (See [12,
Theorem 6, p. 238, and also (7, Theorem 17.1, p. 78].)

Theorem 2.10 Let X be a nonempty, compact and convez subset of a locally
convez separable and metrizable linear topological space Y and let (R, L,v) be a
complete finite measure space. Let 7:Qx X — 2Y and 6: 2 x X — 2Y be two non-

emply, conver, closed and at least one of them compact valued correspondences
such that:

1. v and § are both lower measurable,

2. for each w € N, the correspondences y(w,-): X — 2¥ and §(w,-): X — 2Y
are both u.s.c., and

3. for every (w,z) € N x X there ezist three points y € X, u € 7(w,z),
z € §(w,z) and a real number A > 0 such thaty — z = A(u — %)«

Then there ezists a measurable function z*:Q — X such that

v(w,z* (W) N§(w,z*(w)) # @

for almost all w € Q.
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Proof: Define the correspondence W: € x X — 2¥ by
W(w,z) = 7(w, z) N §(w, ).

Since v and & are closed valued and lower measurable and at least one of them is
compact valued, it follows from Theorem 2.7 that W is lower measurable. Define
the correspondence ¢: 1 — 2% by p(w) = {z € X : W(w,z) # @}. Observe
that

G, = {(w,z)EﬂxX:quJ(w)}
= {(w,z)€Nx X:W(w,z) # @}
= {(w,z) €ENXxX:W(w,z)NY # @},

and the latter set belongs to £ ® B(X) since W is lower measurable. Con-
sequently, G, € £ ® f(X). It follows from Fan's Coincidence Theorem (12,
Theorem 6, p. 238] that for cach w € 2 we have p(w) # @. Thus, the cor-
respondence ¢: 0 — 2X satisfics all the conditions of Theorem 2.3 (the Au-
mann Measurable Selection Theorem) and consequently, there exists a measur-
able function z°:2 — X such that z°(w) € ¢(w) for almost all w in , i.e.,
7(w,z* (w)) N §(w,z°(w)) # @ for almost all w in N. This completes the proof
of the theorem. |

An immediate corollary of the above theorem is a random version of the
Kakutani-Fan-Glicksberg Fixed Point Theorem [11, Theorem 1, p. 122].

Corollary 2.11 Let X be a nonempty, compact and convez, subset of a locally
convez separable and metrizable linear topological space Y and let (R, E,v) be a
complete finite measure space. Let v: 1 x X — 2X be a nonempty, closed, convez
valued correspondence such that for each fired w € N the function v is u.s.c. and
v is lower measurable. Then 4 has a random fized point, i.e., there ezists a
measurable function *:Q — X such that z*(w) € 7(w,z°*(w)) for almost all
w € .

Proof: Define the correspondence 6:§ x X — 2% by §(w, z) = {z}. Clearly, for
each fixed w € N the function §(w,-) is u.s.c. and § is nonempty, convex, and
compact valued and lower measurable. Let z € X and w € 2. By choosing
u € 7(w,z), 2 =7 € §(w,z), and X € (0,1), the assumption (3) of Theorem 2.10
is satisfied. (Simply notice that y = z + A(u — z) = Au+ (1 — A)z € X, since X
is convex.) Hence, by the previous corollary, there exists a measurable function
z*:Q — X such that 7(w,z°(w)) N §(w,z*(w)) # @ for almost all w € N, i.e.,
z*(w) € 7(w, z*(w)) for almost all w € N. n

Remarks. Theorem 2.10 and Corollary 2.11 remain true if we replace the as-
sumption that (2, L, v) is a complete finite (or o-finite) measure space, by the
fact that (2, I) is simply a measurable space. In this case one only needs to ob-
serve that in the proof of Theorem 2.10 for each fixed w € Q the function W(w,-)
is u.s.c. (as it is the intersection of two u.s.c. correspondences) and therefore,
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the correspondence ¢: 1 — 2% is closed-valued. Since ¢ is closed-valued and it
has a measurable graph by [15, Theorem 3.3, p. 56], ¢ is lower measurable. One
can now appeal to the Kuratowski and Ryll-Nardzewski Measurable Selection
Theorem (15, p. 60] to complete the proof of Theorem 2.10.

We continue with two more results that will be needed later.

Lemma 2.12 Let (S,a,p) be a complete measure space, let X and Y be sep-
arable metric spaces, and let p:S x X — 2Y be a lower measurable (possibly
empty valued) correspondence. Suppose that for each fized s € S the function
@(s,) is Ls.c. Put O = {(s,z) € S x X : p(s,z) # z} andlet f:0 - Y bea
Carathéodory selection for . Then the correspondence 0:S x X — 2Y, defined

by
— !("v ) ’ if (s, )G O;;
0(3,::)._{{ Y,z } if(a,z:;¢0.- ’

is lower measurable.

Proof: We begin by making a couple of observations. First notice that since ¢
is lower measurable, the set O = {(s,z) € S x X : p(s,z) NY # @} belongs to
a ® A(X). By Theorem 2.9 for each z € X the set

o* = {aES:(z,J)GO}
= projs[{(s,z) € S x X : (s, z) # @} N (S x {z})]
= projs[0On (S x {z})],

belongs to a. Moreover, note that since for each fixed s € S the function (s, )
is l.s.c., it follows that for each s € S the set O* = {z € X : (s,7) € O} is open
in X. Since for each fixed s € S the function f(s,-) is continuous on O* and
for each z € X the function f(-,z) is measurable on O%, by Theorem 2.8 the
function f is jointly measurable. Now it can be easily seen that for every open
subset V of Y the set A = {(s,z) € Sx X : 6(s,z) NV # @} = BUC, where
B={(s,z)€0: f(s,z) €V} andC = {(s,z2) € SxX\O:Y NV #£ @}.
Clearly, B € a® A(X) and C € a ® f(X) and therefore A = B U C belongs to
a ® A(X). Consequently, 8 is lower measurable, as claimed. |

Lemma 2.13 Let (S,a) be a measurable space, Z be a separable metric space
and R* be the extended real line. Let g:S x Z — R* be a function such that for
each fized s € S the function g(s,-) is continuous and for each fized z € Z the
function g(-, z) is measurable. If K: S — 2% is the correspondence defined by

K(s)={z€Z:g(s,2) > 0},
then we have:

a. Gk € a® f(Z2), i.e., K has a measurable graph, and

b. K is lower measurable.
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Proof: (a) Since for each fixed s € S the function g(s,-) is continuous and for
each fixed z € Z the function g(-, z) is measurable, it follows from a standard
result that g is jointly measurable. Observe that

9! ((0’00)) = {(s,2) € S x Z2:9(s,2) > 0}
= {(s,2)€Sx Z:z€K(s)}
= Gg,

and the latter set belongs to a ® B(Z) since g is jointly continuous. (b) We must
show that the set {s € S: K(s)NV # a} belongs to a for every open subset
V of Z. As it was remarked above, g is jointly measurable, i.e., g is measurable
with respect to the product o-algebra a ® §(Z). Let D be a countable dense
subset of Z, and let U = (0,00). Observe that

{seS:K(s)nV#£@} = {s€S:g(s,2) € U for some z € V}
= {sES:g(a,d)eUforsomedED}

= U {s € S:g(s,d) eU},
deD

and the latter set belongs to a since for each fixed z € Z the function g(-, 2) is
measurable. This completes the proof of the lemma. |

The notions that will be introduced next are quite standard (sce for instance
N. C. Yannelis [36]) but we bricfly outline them for the sake of completencss.

We begin by defining the notion of a Bochner integrable function. Let
(T,Z,p) be a finite measure space and Y be a Banach space. A function
f[:T — Y is called simple if therc exist y,y2,...,¥n in Y and A, Az,...,An
in L such that f = Y0, yix4,, Where x4, denotes the characteristic function
of the set A;. A function f:T — Y is said to be u-measurable if there exists
a sequence of simple functions {f,} such that lima_eo [|fn(t) — f(t)I| = O for
almost all t € T. A p-mecasurable function f:T — Y is said to be Bochner
integrable if there exists a sequence of simple functions {f,} such that

tim [ 11att) = SO du(6) =0.
T

In this case, the integral of f over a set E € I is defined by

[ 10aue) = Jim [ g0 aute
E E

It can be shown that if f:T — Y is a u-measurable function, then f is Bochner
integrable if and only if [, [|f(¢t)[| du(t) < co. We denote by Ly (u,Y) the space of
equivalence classes of Y-valued Bochner integrable functions z: T — Y normed
by llzll = f;. llz(¢)ll du(t). It can be easily shown that L;(u,Y) under the norm
Il - Il is a Banach space.

A Banach space Y has the Radon-Nikodym Property with respect to the mea-
sure space (T, £, p) if for each p-continuous vector measure G: L — Y of bounded
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variation there exists some g € L1(u,Y) such that G(E) = [ g(t) du(t) for all
E € . A Banach space Y has the Radon-Nikodym Property (RNP) if Y has
the RNP with respect to every finite measure space. It is a standard result that
if Y* (the norm dual of Y) has the RNP, then (L;(g,Y))" = Loo(p, Y*).

The correspondence ¢:T — 2Y is said to be integrably bounded if there
exists a map g € L;(p) such that sup{||z]| : z € ¢(t)} < g(t) holds for almost
all t € T. We denote by L, the set of all Y-valued Bochner integrable selections
of p:T — 2Y, i.e,

Ly, = {z € Li(,Y) : z(t) € (t) for almost all ¢ in T}.
Define the integral of the correspondence ¢ by

/T p(t) du(t) = { /T z(t)du(t) : z € L,,,}.

By Theorem 2.3 if T is a complete finite measure space, Y is a separable
Banach space, and ¢:T — 2Y is a nonempty valued correspondence with a
measurable graph (or equivalently ¢ is lower measurable and closed valued),
then (> admits a measurable selection, i.e., there exists a measurable function
J:T — Y such that f(t) € ¢(t) for almost all t € T. By virtue of this result
(and provided that ¢ is integrably bounded), we can conclude that L, # @ and
therefore [ o(t) du(t) # 2.

Finally, we wish to note that Diestel’s Theorem (see for instance [36, The-
orem 3.1]) asserts that if F is an arbitrary nonempty, weakly compact, convex
subsct of a separable Banach space Y (or more generally if F: T — 2 is a non-
empty, integrably bounded, and weakly compact convex valued correspondence)
then Lr is a weakly compact subset of L,(u,F). With all these preliminary
results out of the way, we can turn to our contributions.

3. Random games and equilibria

Let (2, Z, u) be a complete finite measure space. We interpret ) as the states
of nature of the world and assume that {2 is large enough to include all events
that we consider to be interesting. As usual, T denotes the o-algebra of events.
Denote by I the set of players. The set I may be finite or countable.

Definition 3.1 A random game is a set £ = {(X;, P,) : i € I'} of ordered pairs,
where

1. X; is the strategy set of player i, and

2. Pi:Qx X — 2% (where X = ;1 X;) is the random preference (or choice)
correspondence of player i.

We read y; € Pi(w,z) as player i strictly prefers yi to z; at the state of nature
w, if the (given) components of the other players are fized.

A random equilibrium for the game E is a measurable function z*: ) — X
such that for all i € I we have P,-(w,z‘(w)) = @ for almost all w € 0.
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Notice that each player in the game described above is characterized by a
strategy set and a random preference correspondence. We now follow the original
formulation by J. Nash [22] (and its generalizations by Fan [12] and Browder (8]
among others) where random preference correspondences are replaced by random
payoff functions, i.e., real valued functions defined on 2 x X.

LetT = {(X;,ui) i€l } be a Nash-type random qame, i.e.,

1. X; is the strategy set of player i, and

2. ui: ) x X — R (where X = I;g;X;) is the random payoff function of
player i.

Let X; = I;4X; and denote the elements of Xi by £;. A random Nash equi-
librium for T is a mcasurable function z°: 2 — X such that for all i and almost
all w € N we have

ui(w,z* () = max ui(w, v, £ ().
We now state our first random equilibrium existence result.

Theorem 3.2 Let £ = {(X;,Pi) :i € I} be a random game satisfying for each
i the following properties:

1. each X; is a nonempty, compact, and convez subset of R,

2. each co P; is lower measurable, i.e., for every open subset V of X; the set
{(w,z) € A x X : co Pi(w,z) NV # @}
belongs to  ® B(X),

3. for every measurable function z:Q — X we have z;(w) ¢ co P;(w,z(w))
for almost all w € N, and

4. for each w € N the set-valued function Pi(w,-) is l.s.c.

Then there ezists a random egquilibrium for E.

Proof: For each i € I define the correspondence ¢;: 2 x X — 2Xi by p;(w,z) =
co Pi(w, z). Since by assumption (4) each P;(w,-) is L.s.c., it follows from Theo-
rem 2.1 that for each fixed w € 2 the function ¢;(w,-) is 1.s.c. Furthermore, by
assumption (2), the function ¢; is lower measurable and clearly convex valued.
Next, let

0; = {(w,z) €N x X : p(w,z) # 2},

and
Of={z€X:(w,z)€0;} and OF = {we N: (w,z) € O;}.

From Theorem 2.4, it follows that there exists a Carathéodory selection f; for
wi. Le., there exists a function f;: O; — X; such that
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¢ fi(w,z) € pi(w, z) for all (w,z) € O;,
e for each z € X the function f;(-,z) is measurable on OF, and
o for each w € N the function f;(w,-) is continuous on OY.

Now for each i € I define the correspondence Fi:f} x X — 2X¢ by

[ ,z) if (w,z) € O;;
F.-(w,z)—-{{ o) ¥ o go..

Clearly, F is nonempty, closed, and convex valued and by Lemma 2.12 it is also
lower measurable. Since for each fixed w € 11 the function p;(w,-) is Ls.c., the
set

O/ ={z € X:¢pi(w,z) #@} = {z € X : pi(w,z) N X; # 2}

is open in the relative topology of X, and consequently for each fixed w € 1 the
function Fj(w,-) is u.s.c.; sce [32, Lemma 6.1].

Next, define the correspondencc F:Q x X — 2X by F(w,z) = ;¢ Fi(w, z).
Clearly, F is nonempty, closed and convex valued. Since each F; is lower mca-
surable, it follows from Theorem 2.6 that F is lower mecasurable as well. By
Theorem 2.2, the correspondence F(w,-): X — 2% is u.s.c. for each w € 2. Fur-
thermore, F' satisfies the hypotheses of Corollary 2.11 and consequently there
exists a random fixed point, i.e., there exists a measurable function z°*: 2 — X
such that z*(w) € F(w,z*(w)) for almost all w € Q.

Finally, we shall show that the random fixed point is by construction a ran-
dom equilibrium for the game E. Notice that if (w,z*(w)) € O; for all w € S
with p(S) > 0, then by the definition of F;, we have z}(w) = fi(w,z°(w)) €
co P;(w,z*(w)), contrary to assumption (3). Thus, (w,z*(w)) ¢ O; holds for
almost all w € Q and all i € I. In other words, we have co P;(w,z*(w)) = @
for almost all w € N and all i, which in turn implies that P;(w,z*(w)) = @ for
almost all w € 2 and all i € I. That is, z°:2 — X is a random equilibrium for
E, and the proof of the theorem is finished. |

As a corollary of Theorem 3.2 we obtain a generalized random version of
Nash’s equilibrium existence result [22, Theorem 1, p. 288).

Corollary 3.3 LetT = {(X,,u;):i € I} be a Nash-type random game satisfy-
ing for each i the following assumptions:

1. each X; is a nonempty, compact, and convez subset of R¢,
2. for each fized w € N the function u;(w,-) is continuous,
3. for each fized z € X the function u;(-,z) is measurable, and

4. for each w € N and each #; € X; the function u;(w, zi, %) is quasiconcave
inz;.

Then there ezists a random Nash equilibrium for I.
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Proof: For each i € I, define the correspondence Q;: ! x X — 2X¢ by
Qi(w,z) = {v; € X : hi(w,z,1:) > 0},

where hi(w,z,¥i) = ui(w, i, £i) — yi(w, ). Letting S =N x X, Z = X;, a =
E£@P(X), 9(s, 2) = hi(w, z,1:), K(s) = Qi(w, z) for s = (w, z) in Lemma 2.13(b),
we can conclude that each Q; is lower measurable. It follows from assumption (4)
that each Q; is convex valued, and clearly for any measurable function z: — X
we have z;(w) ¢ coQi(w,z(w)) = Q;i(w, z(w)) for almost all w € N. Morcover,
it follows from assumption (2) that each sct-valued function Q;(w, -) has an open
graph in X x X;. Hence, the random game E = {(X;, Q) : i € I} satisfics the
assumptions of Theorem 3.2 and thercfore E has a random equilibrium. That
is, there exists a measurable function z°: 2 — X such that Q;(w,z°(w)) = @
for alimost all w € N and all i € I. But this implics

i, 2°(w)) = max wi(w, 270), - 281 ), s 2T W), ),

for almost allw € R and all i € I, i.c., z° is a random Nash equilibrium for the
game I = {(X;,u;) : i € I}, as claimed. g

We now provide an extension of Theorem 3.2 to strategy scts which may be
subscts of a scparable Banach space.

Theorem 3.4 Let £ = {(X.-,P.-) i€l } de a random game satisfying for each
i the following assumptions:

1. each X; is a nonempty, compact, and conver subset of a separable Banach
space,

2. each co P; has a measurable graph, i.e.,

{(w,z,5:) € 2 x X x X : y; € co Pi(w,z)} € E® B(X) ® B(X),

3. Jor every measurable function z: Q2 — X we have z;(w) ¢ co Pi(w, z(w))
Jor almost all w € N, and

4. for eachw € N the set-valued function P;(w,-) has an open graph in X x X;.

Then £ has a random equilibrium.

Proof: For cach i € I define the correspondence ;: 2 x X — 2% by pi(w,z) =
co Pi(w, z). Since, by assumption (4), each P;(w, -) has an open graph in X x X;,
it can be easily checked (see (33, Lemma 4.1)) that so does o;(w, -) for each w € 0.

Let O0; = {(w,z) € 0 x X : pi(w,z) # @}. Since ¢; has a measurable
graph (by hypothesis (2)) and it is convex valued, Theorem 2.5 guarantees the

existence of a Carathéodory selection ;. To complete the proof now proceed as
in the proof of Theorem 3.2. .
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The following corollary of Theorem 3.4 extends Corollary 3.3 to strategy sets
which may be subsets of arbitrary separable Banach spaces. We thus have a
random version of Nash's result (22, Theorem 1, p, 288 in separable Banach
spaces. It should be noted that Corollary 3.5 below may be seen as a random
generalization of the deterministic equilibrium existence results of K. Fan (13,
Theorem 4, p. 192] and F. E. Browder [8, Theorem 14, p. 277, but only if the
underlying strategy space is separable. Note the latter assumption is needed
in order to make the Aumann Measurable Selection Theorem applicable. It is
worth noting that Fan and Crowder allow only for a finite number of players
whereas in our setting the set of players may be countable,

Corollary 3.5 Replace assuription (1) in Corollary 8.8 by
(') X;isa nonemply, compect, and conver subset of a separable Banach space.

Then the conclusion of Coroliary 3.8 remains true.

Proof: The proof is identical with that of Corollary 3.3 taking into account that
one now has to use Lemma 2.13(a) to show that Qi has a measurable graph, and
appeal to Theorem 3.4 instead of Theorem 3.2 ]

A couple of comments are in order. Notice that the continuity assumption
(4) in Theorem 3.2 is weaker t.1an the continuity assumption (4) of Theorem 3.4,

correspondence that is lower measurable in one variable and ls.c. in the other,
However, in the proof of Theorem 3.4 a different Carathéodory selection result is
used (Theorem 2.5) which requires a stronger continuity assumption. Moreover,
observe that Corollary 3.3 follows directly from Corollary 3.5. Nevertheless, we
choose to state Corollary 2.11 since its proof by means of Theorem 3.2 is slightly
different than the proof of Ccrollary 3.3 which follows from Theorem 3.4. Fj-
nally, it is important to note that the proofs of Theorems 3.2 and 3.4 do not use
any deterministic equilibrium existence results. To the contrary, our arguments
start from scratch and Provide alternative ways to prove the equilibrium results
of Nash, Fan, and Browder.3

4. Bayesian games and equilibria

We now turn to the problem of the existence of equilibrium points for Bayesian
games. Again, let (2,2, u4) be a complete finite measure space. We still denote
by I the set of Players, where ” can be finite or countable.

Definition 4.1 4 Bayesian game on the complete finite measure space (Q, L, u)
isasetG= {(X;,h.',S.-,q.-) :i€l} of quadruples such that

1. each X; is the strategy sct of player i

3An alternative proof of a version of Theorem 3.4 will be given in Section 7.
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2. hiz1 x X — R (where X = Il;g;X;) is the random payoff function of
player i,

3. S; is a measurable partition of (2, L) denoting the (private) information
available to player i, and

4. ¢i: N1 — (0,00) is the prior probability density of player i,' ie, giis a
measurable function having the property that [, q;(t)dp(t) = 1.

As in R. J. Aumann [3] or R. Myerson [21] it is assumed that the game
G = {(Xi,hi,Si,qi) :i € I } is common knowledge, i.c., every player knows G,
cvery player knows that every player knows G, every player knows that every
player knows that every player knows G, and so on.

We first consider the case where the information sect of each player i is the
same, i.e., S; = S for cach i € I. Denote by E(w) the event in S which contains
the realized state of nature w € 2, and suppose that ¢;(E(w)) > 0 for all i € I.

Given E(w) in S the conditional expected utility of player i is the function
vi: {1 x X — R defined by

oilwyz) = /E o, SUE@)R2) dute), (4.1)

where
0, if t¢ E(w);

qi(qE(“’)) = { T—_:-"(-L?)‘I‘—(l)’ if te E(W) .
E(w)

A Baycsian equilibrium for a Bayesian game
G = {(Xi, hi,Si,qi) :i € 1)

is a function z°: Q2 — X such that each z{(-) is S-mcasurable and for each i € I
we have

Y (U! z'(w)) = :‘neaxx‘ Vg (wl z;(w), seey zl’—l (w)l Vi, z:{-l(u)t oo ')

for almost all w € N, where v; is given by (4.1).
We are now ready to state our fist Bayesian equilibrium existence theorem.

Theorem 4.2 Let G = {(X.-,h.-,S.-,qi) :i € I} be a Bayesian game satisfying
for each i € I the following properties.

1. each X; is a nonempty, compact and conver subset of a separable Banach
space Y,

2. for each fized w € N the function hi(w, *) is continuous,
3. for each fized z € X the function hi(-,z) is measurable,

4. for each w € N and each z € X; (= £ X;) the function hi(w,z;, £;) is
concave in z;, and
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5. each h; is integrably bounded.
Then the game G has a Bayesian equilibrium.

Proof: The result follows direct’y from Corollary 3.5. To see this, note that
since each h;(w,-) is continuous and h; is integrably bounded by virtue of the
Lebesgue Dominated Convergence Theorem, we can automatically conclude that
the function

w@) = [ a(tE@)E) due
E(w)
is continuous, where

0, ift ¢ E(w);
%(tlEWw)) = { ]’_ﬁ%m' ift e E(w) .
E(w)

Furthermore, it can be easily seen that cach function v;(-, z) is S-measurable.
Finally, it follows from (4) that for cach w € N and each # € X; that the
function v;(w,z;,%;) is concave in z;. We consider the Bayesian game G =
{(Xi,hi,S,qi) : i € I} as a random game £ = {(Xi,v):i€ I}. Obviously, the
existence of a random Nash equilibrium for the game £ implies the existence of
a Bayesian equilibrium for the game G. It can be easily seen that the random
game £, satisfies the assumptions of Corollary 3.5 and consequently, the game £
has a random Nash equilibrium.* Hence, there exists an S-measurable function
z*: 1 — X such that

vi(w,z°(w)) = max vi(w, 2} (W), - - ., Z7_y (W), ¥ir 2341 (), - - )

for almost all w € N and all i € I. In other words, z° is a Bayesian equilibrium
for the game G = {(X;,h;,S,q;) : i € I }, and the proof of the theorem is
finished. L

5. Asymmetric Bayesian games

We now turn our attention to the rather more interesting case where the infor-
mation set of each player is different.

Let G = {(X.-,h.-,S, gi):i€ I} be a Bayesian game as described before.
Denote by Lx, the set of all Bochner integrable and S;-measurable selections
from the strategy set X; of player i, i.e.,

Lx, = {z; € Ly(p,Y) : z; is S;-measurable and z;(w) € X; for p-a.e. w}.

“Note that the proofs of Theorems 3.2 and 3.4 and Corollaries 3.3 and 3.5 remain unchanged
if the measurability assumptions on either the preference correspondence P, or the payoff
function u; of each player are made with respect to the algebra generated by the partition S;
instead of L.
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Let Lx = Il;erLx,. Denote by E;(w) the even: in S; containing the true state
of nature w € 2 and suppose that g;(Ei(w)) > 0 for all § € I. Given E;(w) in S;
define the conditional expected utility function v;: 02 x Lx — R of player i by

gl ) = /E ( )q.-(tlE.-(w))h.-(t,:(l)) du(t). (5.1)

A Bayesian equilibrium for G = {(X,-, hi,S,qi):iel } is an elecment z°* € Ly
such that

vi(w,z°) = mnélg Ui (“’v zi(w),..., zi_1(w), ¥i, ::-{-I(w)s .. -)v

where v; is given by formula (5.1).
We now state the following result.

Theorem 5.1 Let G = {(X;,hi,S,qi) : i = 1,2,...,n} be a Bayesian game
satisfying the properties:

1. the measure space (Q, L, 1) is finite, separable and complete, ‘

2. each X; is a nonempty, convez, and weakly compact subset of a separable
Banach space Y whose dual Y* has the RNP,

3. each function hi(w,-) is weakly continuous,
4. each function hi(-,z) is measurable,

5. for each w € N and each % € X the function hi(w, z;, £;) is concave in z;,
and

6. each h; is integrably bounded.

Then G has a Bayesian equilibrium.

Proof: For cach i € I define the correspondence ¢;: L %, 2Lx; by
@(2:) = {vi € Lx, : vi(w,yi, %) = max vi(w, i, £;) for almost all w € N}.
xy X4

Also, define the correspondence F: Lx — 2Lx by
F(z) =[] i(#:).
i€l

We shall show that the correspondence F satisfies the hypotheses of the Fan-
Glicksberg Fixed Point Theorem (see for instance (12]). It can be easily seen that
a fixed point of the correspondence F is by construction a Bayesian equilibrium
for the game G. We shall complete the proof by several steps.

L. Lx is nonempty, conver, weakly compact and metrizable.
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The proof of this claim is similar to that of Theorem 3.1 in (36] but we
provide an outline for the sake of completeness. First note that since (2, L, u)
is separable and Y is separable, L;(u,Y) is a separable Banach space. Since
by assumption each X; is nonempty, convex and weakly compact, it follows
from Diestel’s Theorem that each Lx, is a weakly compact subset of Li(p,Y).
Obviously, each Lx, is convex since each X is convex and by virtue of the
Aumann Measurable Selection Theorem, we can conclude that each L x, is also
nonempty. Furthermore, since each Lx, is a weakly compact subset of the
separable Banach space Ly(u,Y), it is also metrizable; sce (1, Theorem 10.11,
P- 154). Clearly, Ly = MiesLy, is nonempty, convex, weakly compact and
metrizable as well.

IL The function v;(w,-) is weakly continuous for each w € 9.

Fixiel= {l,2,...,n}, w € (1 and E;(w) € S;. Let {za} be a sequence of
Lx converging weakly® to z € Lx, i.e., the sequence {za:n=1,2,...} of Lx,
converges weakly to z' € Ly, for each i € I. We must show that the sequence
{z} XEi(w)} converges pointwise in the weak topology of X; to ::"xg(w, for each i.
Then in view of (3) and (6) the result will follow from the Lebesgue Dominated
Convergence Theorem.

Now if S; = {E}, E?, .. .} is a partition of Player i, then the fact that z¢ and
z' belong to Ly, implies that

'3 m o 3 w
Zh=) zhtxgs and o' = Y= xe,
k= k=1
with z3;*, z9% € X,  and therefore we can conclude that

00
TaXEw) = ) ThtXernEi(w)
k=1

converges weakly to z'xg,(,) = T2, z"kXE"‘nB‘(u)'

L. Each correspondence wiilg — 2Le; g nonempty, convezr valued and
weakly u.s.c.

It follows from assumption (5) that for each w € N and for each TelLy
that v;(w, z;, £;) is a concave function of z; on Lx,, and therefore we can con.
clude that ¢; is convex valued. By virtue of Berge’s Maximum Theorem (see
for instance (7, Theorem 12.1)), we see that i is weakly u.s.c. Finally, an ap-
peal to the Weicrstrass’ Theorem guarantees that ¢; is also a nonempty valued
correspondence.

Now since each ¢; is nonempty, closed, convex valued and weakly u.s.c., it
follows from Theorem 2.2 that likewise is F: Ly — 2Lx (and Lx is weakly

SLet {fn} be a sequence in Li(1Y). Then {fn} converges weakly to f if and only if
(fa,p) (the value of Jn at p) converges to (/,p) for any p € Loo(ps,Y*) (recall that Y*
has the RNP). The latter is equivalent to saying that (fux4,p) = (/n.XAP) converges to
(/,X4P) = (fux4,p) for each p € Loo(p,Y*) aud each 4 € E. Each condition above implies
that (faxa,z°) = (fn,XxAZ") converges to (fxa,z°) = (/1x42°) for each z* € Y* and each
A€l
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compact). Hence, the correspondence F satisfies all the conditions of the Fan-
Glicksberg Fixed Point Theorem. Consequently, there exists some z°* € Lx
such that z* € F(z*). Now it is a routine matter to verify that z* is a Bayesian
equilibrium for G = {(X;, hi,S,q:) : i = 1,2,...,n}. This completes the proof
of the theorem. |

Remarks. The proof of Theorem 5.1 remains unchanged if (2) is replaced by:

(2') Xi:Q — 2Y is a nonempty, weakly compact and convex valued correspon-
dence having a measurable graph.

We now indicate how one can prove the existence of a pure strategy Bayesian
equilibrium. Denote by X§ the sct of all extreme points of X;. A pure strategy
Bayesian equilibrium for G = {(X.-,h,-,S.-,q.-) i€l } is some clement z° in the
set

I1 [ Xt duce) =

ﬁ{ / zi(w) du(w) : zi(+) is Si-measurable and z;(w) € X§(w) p-a.e.}

i=1

such that for all i, we have

vi(w,z°) = max u.-(w,z;,...,z,?_,,y.-,z,?ﬂ,...,z;)
wef x;

for almost all w € N (where v; is defined as in (5.1)).
For the next result, we will assume that S; is a o-subalgebra of L.

Theorem 5.2 Let § = {(X.-,h.-,S.-,q.-) 1= l,2,...,n} be a Bayesian game
satisfying assumptions (1), (4), (6), and (7) of Theorem 5.1 in addition to the
following conditions:

1. (R, Si, ) is an atomless measure space,

2. XpoQ =28 isa nonempty, closed, convez and integrably bounded corre-
spondence with a measurable graph and for each w € Q the function hy(w, -)
is linear and continuous on X.

Then there ezists a pure strategy Bayesian equilibrium for G.

Proof: First note that since for each fixed w € Q the function hi(w,-) is lin-
ear and continuous on X the domain of v; is now @ x I, [ X;. Let [ X =
I, [ X:. The set [ X will turn out to be equal to [ X = II7, [ X¥ as we
shall show below.
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For each i define the correspondence ¢;: [ X§ — of Xi by

() = {y.- € /)l"¢ 1vi(w, i, £i) = max v;(w,xq, £) for almost all w € Q}.
:.efx"

Also, define F: [ X¢ — 2I X by F(z) = NI, pi(Zi). Note that by repeating
the proof of Theorem 5.1, we can see that each ¢; is nonempty, closed, and
convex valued and u.s.c. Clearly, a fixed point of F is a pure strategy Bayesian
equilibrium for the game G. If we establish that [ X = [ X* and that [ X is
compact, convex and nonempty, then we are done.

Since X is a compact convex set, it follows from the Krein-Milman Theorem
that co(X§) = X;. By [4, Theorem 3, p. 2], we have [co(X§) = [ X = I X,
and therefore [ X = [ X¢. Morcover, by [4, Theorem 4, p. 2], J X; is compact.
Hence [ X; is compact, convex and nonempty (the nonemptiness follows from
the Mcasurable Selection Theorem), and so is [ X. Now by the Kakutani Fixed
Point Theorem there exists z* € [ X¢ such that z* € F(z*), i.c,, z° is a pure
strategy equilibrium for the game G. ]

If assumption (2) of Theorem 5.2 is replaced by

(2') Xi:Q — 2Y (where Y is a separable Banach space whose dual has the
RNP) is a nonempty, weakly compact, convex and integrably bounded
correspondence having a measurable graph,

then only an approximate pure strategy Bayesian equilibrium can be obtained.
The reason is that Aumann’s Theorem 3 in [4] is no longer true. (See, for
instance, [29] or [36] for a counterexample.) In particular, in this case we have
only that [ X = [&5(X°®) = W Moreover, by [35, Lemma 31, p. 307, [ X
is weakly compact. Carrying out now the argument outlined in the proof of
Theorem 5.2 one can easily prove the existence of an approximate pure strategy
Bayesian equilibrium. For other results on approximate purification of mixed
strategies see 5, 20, 27, 28).

We close the section by mentioning that all the equilibrium existence results
in Sections 3 and 4 can be easily extended to abstract economies as defined
in (10], [31], and [32]. Moreover, one can use the equilibrium results for ab-
stract economies to obtain equilibrium existence theorems for random exchange
economies or Bayesian exchange economies. In particular, in this setting of in-
complete information the appropriate equilibrium notion is that of a rational
expectations equilibrium. We hope to take up these details, however, in a sub-

sequent paper.

6. Related literature

The equilibrium existence results for games with incomplete information which
are related to Theorems 4.2 and 5.1 that we know of, are those in E. J. Balder (6],
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P. Milgrom and R. Weber [20] and R. Radner and R. Rosenthal [27).6

Their approach is based on distributional strategies and it is entirely different
than ours, which is based on measurable functions. For purposes of comparison,
it may be instructive to briefly outline their approach. Following [20] a game is
a sextuple G= (N’ {Tl'}iENs {Al'}l'GNt T0| {ui}iENt ()v where

1. N ={1,2,...,n} is the set of players.

2. {Ti:i € N} is the set of types for each player. Each T; is a complete and
scparable metric space.

3. {Ai: i € N} is the sct of actions for each player. Each A; is a compact
metric space.

4. To is the set of possible states; T is a complete and separable metric space.

5. 4T xA— R (where T =Ty x---xT,and A = A; x --- x A,) is the
payoff function of player i. Each u; is bounded and mecasurable.

6. ( is the information structure and is a probability mecasure on the Borel
subscts of T. Dcnote by (; the marginal distribution on each T;.

A distributional strategy for player i is a probability measure #i on the Borel
subscts of T; x A; such that the marginal distribution of T; is (;. The expected
payoff of player i is:

Vi(pay- -y 1) =/ui(tta)“l(dalltl)'“I‘n(danltn)((dt)' (6.1)

The two basic assumptions that P. Milgrom and R. Weber (20] make are:
a. Payoffs are equicontinuous; and
b. The information structure is absolutely continuous.

Conditions which imply either (a) or (b) are given in (20, p. 625). Balder has
succceded in generalizing their results by relaxing (a), but he still needs (b).7
For the proof of Theorem 4.2 we did not make use of any of these assumptions
and no equicontinuity assumption was needed for the proof of Theorem §.1. It is
important to note that assumption (b) allows the above authors to express the
expected utility (6.1) in a convenient way (see [20, p. 625 or [6]). In particular,
once distributional strategies are topologized with the weak convergence, the
strategy sets are compact metric spaces, the expected utility is continuous and
linear and therefore the standard results of either Glicksberg, Fan, or Browder
(see [20] or [6]) can be directly applied to prove the existence of an equilibrium.

%Since the connection between [20] and [27] has already been discussed by P. Milgrom
and R. Weber elsewhere (see [20) for an exact reference), we shall focus on the mixed strategy
equilibrium existence results given in (6] and [20).

7It should also be mentioned that Balder does not impose any topological structure on the
type spaces T;.
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We would like to note that in our framework the expected utility is required
to be only quasiconcave in each player’s own strategy. Moreover, our expected
utility is random, i.e., depends on the state of the world. The latter is quite
important since with random expected payoffs the Fan—-Glicksberg result is not
directly applicable and the use of measurable selection theorems seems to be
needed.

Although it is not obvious how one from the approach of Milgrom-Weber and
Balder can obtain versions of our Theorems 4.2 and 5.1, it is very clear that these
theorems are not subsumed by any of their results. In particular, no assumption
of equicontinuity of payoffs is needed and the set of players in Theorem 4.2 is not
necessarily finite. It may be instructive to note that our approach, i.e., working
with strategies which are measurable functions, seems to be quite natural to
analyze economies with incomplete information as recently by T. Palfrey and
S. Srivastava [23, 24] and A. Postlewaite and D. Schmeidler [26] or uncertainty
in market games examined in J. Peck and K. Shell [25]. In fact, our approach as
well as Theorems 4.2 and 5.1 have been motivated from the work of the above
authors.

Finally, we would like to note that A. Mas-Colell (18], viewing a game as
a probability measure on the space of utility functions, has proved Nash equi-
librium existence theorems. He also indicates that his existence results may be
useful to obtain results for games with incomplete information.

7. Concluding remarks

We now show how a \}ersion of Theorem 3.4 can be easily obtained by combining
the deterministic equilibrium result of N. C. Yannelis and N. D. Prabhakar (32]
with the Aumann Measurable Selection Theorem.

Theorem 7.1 The conclusion of Theorem 3.4 remains true if one replaces as-
sumptions (2) and (4) by:

(2') co P; is lower measurable, i.e., for every open set V in X; the set
{(w,z) : co Pi(w,z) NV # 2}
belongs to £ ® f(X); and

(4') For each w € Q the function P;(w,-) has open lower sections, i.e., for each
w € Q and for each y; € X; the set P~} (w,y;) = {r € X : y; € Pi(w, 1)}
is open in X.

Proof: For each i € I define ¢;: Q2 x X — 2%i by ¢i(w,z) = co Pi(w,z). By
assumption (a) each function ¢; is lower measurable. Define the correspondence
F:Q x X — 2X by F(w,z) = ierpi(w,z). By virtue of Theorem 2.6 the
function F is lower measurable. Define the correspondence I': 2 — 2X by

[(w) = {z € X : F(w,z) = 2}.
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We shall show that there exists a measurable selection for I' which will turn out
to be a random equilibrium for the random game £ = {(Xi,P):iel }
In order to apply the Aumann Measurable Selection Theorem 2.3, we need to

show that I" has a measurable graph and is nonempty valued. Since F is lower
measurable, the set

K={(wz)€eNxX:F(w,z)#0}={(wz)€NxX:Fw,z)NX £ 2}
belongs to £ ® §(X) and so does its complement K. Now observe that

Gr = {(w,:c)EﬂxX:zGI‘(w)}
= {(w,:r)EﬂxX:F(w,z)=ﬂ}
= {(w,z) €2 x X : F(w,z) # 2)°
= K¢,

and the latter sct belongs to £ ® A(X) as it was noted above. Therefore, T has
a measurable graph. Morcover, an appeal to [32, Theorem 6.1, p. 242 (where
in [32] for cach i € I and for cach z € X we let 4;(z) = A;(z) = X;) shows
that for cach w € N we have I'(w) # @. Therefore, by the Aumann Mcasurable
Sclection Theorem there exists a measurable function z°:Q — X such that
z°(w) € I'(w) for almost all w € R, i.c., F(w,z*(w)) = @ for almost all w € N.
The latter implies that for each i € I we have P;(w,z*(w)) = @ for almost all
w € Q, i.e,, z* is a random equilibrium for the game £. [

Note that in Theorem 7.1 the assumption that (R, L, p) is a complete finite
measure space can be replaced by the fact that (2,X) is a measurable space.
The proof remains the same. In particular, since for each fixed w € 0 the
correspondence F(w,-): X — 2% has open lower sections, it is also L.s.c. (32,
Proposition 4.1, p. 237]) and therefore I is closed valued. Since I' has a mea-
surable graph and is closed valued, it is also lower measurable (15, Theorem 3.3,
p. 60]. One can now appeal to the Kuratowski and Ryll-Nardzewski Mecasurable
Selection Theorem to complete the proof of Theorem 7.1.

Finally, note that assumption (4’) of Theorem 7.1 is weaker than assumption
(4) of Theorem 3.4 and assumption (2') is different from assumption (2) of the
same theorem. Hence, neither result implies the other. However, the methods
of proof are different. It can be easily seen that Corollary 3.5 follows directly
from Theorem 7.1. The idea of the proof is identical with the one used to prove
Corollary 3.3.

Remarks. (A) The form of the Bayesian game defined in Section 4 can be
generalized by replacing each player’s random payoff function h;: 2 x X — R by
a random preference correspondence P;: Q) x X — 2Xi, Following the notation
of Section 4, in this new setting the conditional expected payoff F;(w, z) of each
player is the integral of the correspondence P;, i.e.,

Fi(w,z) = /E  G(HE@) P, 2)duct)




46 ' ‘ Yannelis and Rustichini

By replacing assumptions (2) through (5) in Theorem 4.2 by
(2') for each fixed w €  the function P;(w,-) is Ls.c.,
(3') co F; is lower measurable,

(4) for each measurable function z: Q2 — X we have z;(w) ¢ co F;(w, z(w)) for
almost all w € N, and

(5') P; is integrably bounded and has a measurable graph,

and invoking [34, Theorem 3.2] (which asserts that the integral of a l.s.c. corre-
spondence which is integrably bounded and has a measurable graph is also l.s.c.),
we can guarantee that for each fixed w € 0 the function F;(w,-) is l.s.c. There-
fore, by appealing to Theorem 3.2 one can prove the existence of a Bayesian
equilibrium for this more general form of a Bayesian game.

(B) In Section 5 we remarked that if the dimensionality of the strategy space
is infinite, then [ X¢ = [ X = [t5(X*) and consequently only an approximate
pure strategy equilibrium could be found. However, by assuming that there are
“many more players than strategies,” i.c., if the “dimension” of the measure
space of players is larger than the “dimension” of the strategy space, one can
remove the norm closure and obtain [ X¢ = [ X = [&5(X*). Hence an exact
pure strategy equilibrium can be obtained. Of course, the concept of dimension
has to be given a rigorous formulation. See [30] for a further discussion.
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