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Summary. Let T deno te  a con t inuous  t ime hor izon  and  {Gt:teT} be a net 
(general ized sequence) of Bayesian games.  We show that:  (i) if {xt: te T} is a net  of 
Bayes ian  Nash  Equi l ib r ium (BNE) strategies for G t, we can ext rac t  a subsequence  
which converges  to a l imit  full in fo rmat ion  B N E  s t ra tegy for a one shot  l imit  full 
in fo rmat ion  Bayes ian  game. (ii) If  {xt:t~T} is a net  of  a p p r o x i m a t e  or  et-BNE 
strategies for the game  G t we can still ext rac t  a subsequence  which converges  to the 
one shot  l imit  full i n fo rmat ion  equi l ib r ium B N E  strategy.  (iii) G iven  a l imit  full 
in fo rmat ion  B N E  s t ra tegy of  a one shot  l imit  full in fo rmat ion  Bayes ian  game,  we 
can find a net  of  et-BNE strategies {xt:t~T} in {Gt:teT} which converges  to the 
l imit  full in fo rmat ion  B N E  s t ra tegy of  the one shot  game. 

1. Introduction 

The def ini t ion of  a Bayesian game and  the no t ion  of  Bayesian ra t iona l i ty  (or 
Bayesian Nash  equi l ibr ium) [see for ins tance A u m a n n  (1987, p. 6)] are  given as 
follows: 

Let  (.O, i f ,  #) be a p robab i l i t y  measure  space and  Y be a l inear  topo log ica l  space. 
A Bayesian game G = { (Xi, ui, ~ i , / 0 : i=  1, 2 , . . . ,  n} is a set of  quadrup le s  where 

(1) Xi: .(2 ~ 2 r is the random strategy correspondence of p layer  I i, 

(2) ui: .(2 x f i  Y~ ~ R is the random payoff function of p layer  i, 
j = l  

(3) ~ i  is the private information of p layer  i, which is a pa r t i t i on  of  (.(2, ~-), and  

'~ We wish to thank Larry Blume, Mark Feldman, Jim Jordan, Charlie Kahn, Stefan Krasa, Gregory 
Michalopoulos, Wayne Shafer, Bart Taub, and Anne Villamil for several useful discussions. The financial 
support of the University of Illinois at Urbana-Champaign Campus Research Board is gratefully 
acknowledged. 
i Notice that in Aumann (1987) X i is a fixed set and doesn't depend on the states of nature. The present 
framework is more general and reduces to that of Aumann simply by setting for each oJ e J-2, the set Xi(~o) 
to be equal to a constant subset Z i of Y. Also note that 2 r denotes the set of all non-empty subsets of Y. 
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(4) /~ is a probability measure on (12, ~ )  denoting the common prior of each 
player. 

A Bayesian Nash equilibrium (BNE) for G is a function x:O ~ f i  Yi such that 
i = l  

each xi: 12 ~ Yi is ~i-measurable xi(co)eXi(co) #-a.e. and for all i, ~ui(eg, x((o))d#(co) > 
ui(co, x 1(co),..., x i- 1 (co), Y i, xi § 1(co) . . . . .  x,(co)) d/~(co) for any ~/-measurable function 

Yi: t2 ~ Yi, yi(co)~X~(co) #-a.e. 
Consider now the above game in a dynamic framework. Specifically, let T be 

the set { 1, 2 . . . .  } denoting the time horizon. Denote by cr(ui, X~) the a-algebra that 
the random payoff function and the random strategy set of player i generate. This 
is the initial information of player i. At any given point in time t in T the private 
information set of player i is defined as: 

(1.1) ~ r  i = a ( u i , X i ,  x t -  l , X  t -  2 . . . .  ) 

where x ~- 1, x t- 2 . . . .  are past period Bayesian Nash equilibrium strategies. In other 
words the private information of a player i at any given point in time consists of 
his/her initial information a(u~, X~) together with the information that BNE strategies 
generated in all previous periods, i.e., t -  1, t -  2 , . . . .  Note that in this setting in 
period t + 1 the private information set of player i will be, ~'i+ 1 = ~ t  v a(xt), (where 
a(x t ) is the information that the BNE strategy x t generated at period t and ~-t i v a(x t) 
denotes the "join," i.e., the smallest a-algebra containing ~-t and a(xt)). Hence, for 
each player i and each time period t we have that: 

The above expression represents a learnino process for player i and it generates a 
sequence of Bayesian games { Gt: t E T) defined as above where the private information 
set of each player is given by (1.1). In other words, in period t each player's strategy 
is based on the initial information as well as the information that BNE strategies 
generated in the previous periods. In this setting agents behave myopically, i.e., they 
do not form expectations over the entire future horizon but only for the current 
period, i.e., their expected payoff is based on the current period private information. 
Since the private information set of each player becomes finer from period to period, 
the expected payoff of each player is changing from period to period as a result of the 
new acquired information. Note that in this scenario the learning process for a player 
is a direct consequence of observing the BNE strategies from period to period and 
refining his/her private information. In this framework, clearly the information that 
the equilibrium strategy generates at a given time t in T, will effect the equilibrium 
outcome in subsequent periods, e.g., t + 1, t + 2 , . . . .  Let us now denote the one shot 
full information game by d = {(Xi,ui,~'i,#): i =  1,2,... ,n} where Hi  is the pooled 

oo 

information of player i over the entire horizon, i.e., ~ = V J-~.~' Since any BNE 
t = 1  co 

strategy for each player i in the game G has the property that it is V ~-~-measurable, 
t = l  

we call such a Bayesian Nash equilibrium strategy as a full information BNE 
strategy. 

The basic questions that this paper addresses are the following: 



Convergence and approximation results for non-cooperative Bayesian games 845 

(i) If {G~: t = 1,2 . . . .  } is a sequence of Bayesian games and x t is a sequence of 
BNE strategies for the game G t, can we extract a subsequence which converges to 
a full information BNE strategy for the game t~? In other words, will the learning 
process described above eventually lead to a full information BNE strategy? 

(ii) If {G': t  = 1,2 . . . .  } is a sequence of Bayesian games and x ' is a sequence of 
approximate or et-BNE strategies for the game G t can we still extract a subsequence 
which converges to a full information BNE strategy for the game G? In other words, 
can we obtain the counterpart of question (i) for the case of an approximate or 
et-BNE which may be viewed respectively, as bounded rational learning will 
converge to the full information BNE. 

(iii) Given a full information BNE strategy for the full information game G can 
we find a sequence of approximate or e,-BNE strategies x t in G t which converges to 
the full information BNE strategy? Roughly speaking, can we approximate (or 
reach) a full information BNE strategy by a sequence of et-BNE strategies? Alter- 
natively, given a full information BNE strategy can it be reached by a path of plays 
with bounded rational players (i.e., players find "nearly" optimal responses)? 

We provide a positive answer to the above questions. Note that roughly 
speaking (ii) and (iii) may be viewed respectively as a kind of upper semicontinuity 
and lower semicontinuity of the e rBNE correspondence. 

It should be pointed out that aspects of question (i) have already been addressed 
by several authors, notably Feldman (1987), and subsequently by Jordan (1991); 
Nyarko (1992) [-see also the excellent survey of Blume and Easley (1992)], but in a 
different setting. In particular, we don't  require each player's strategy set to be finite, 
we have a continuum of states, we allow for continuous time, payoff functions need 
not be linear and the convergence is not in probability as it is the case in the Feldman 
(1987), Jordan (1991) and Nyarko (1992) papers. The continuous time setting that 
we allow makes our results interesting to the Finance literature where continuous 
time models are particularly attractive. To the best of our knowledge, questions (ii) 
and (iii) are addressed for the first time. 

A few comments on the methodology. In view of the fact that we allow for 
continuous time and a continuum of states, one needs to work with strategies which 
form a net (generalized sequence) in an infinite dimensional strategy space. The 
compactness and continuity arguments in this framework are not straightforward 
and some rather non-elementary functional analytic results seem to be required. 
We have collected most of the results needed for our proofs in Section 2. 

The rest of the paper is organized as follows: Sections 3 and 4 contain the main 
results of the paper, i.e., convergence and approximation theorem.s for games with 
mixed and pure strategy Bayesian Nash equilibrium. The proofs of all our results 
are given in Section 5. 

2. Mathematical preliminaries 

2.1 No ta t ion  

�9 ,." denotes the n-fold Cartesian product of the set of real numbers R. 
+ + denotes the strictly positive elements of R.  

con A denotes the convex hull of the set A. 
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c~fi A denotes the closed convex hull of the set A. 
2 a denotes the set of all nonempty subsets of the set A. 

denotes the empty set. 
/ denotes set theoretic subtraction. 
If A = X, where X is a Banach space, cl A denotes the norm closure of A. 

2.2 Definitions 

Let T and X be sets. The graph of the set-valued function (or correspondence), 
q~: T ~  2 x is denoted by G4 = {(t, y)e T • X: y ~ ( t ) } .  Let now (T, z, #) be a complete, 
finite measure space, and X be a separable Banach space. The correspondence 
~b: T ~  2 x is said to have a measurable graph if Gr ~z | fl(X), where fl(X) denotes the 
Borel a-algebra on X and @ denotes product a-algebra. The correspondence 
c~: T ~ 2  x is said to be lower measurable if for every open subset V of X, the set 
{teT:(a(t)c~ V r  ~ }  is an element of z. Recall [see Debreu (1966), p. 359] that if 
q~: T ~  2 x has a measurable graph, then q6 is lower measurable. Furthermore, if q~(.) 
is closed valued and lower measurable then ~b: T---, 2 x has a measurable graph. A 
result of Aumann says that if (T,z,#) is a complete, finite measure space, X is a 
separable metric space and ~b: T ~ 2 x is a nonempty valued correspondence having 
a measurable graph, then ~b(.) admits a measurable selection, i.e., there exists a 
measurable function f :  T ~  X such that f(t)~c~(t) #-a.e. 

We now define the notion of a Bochner integrable function. We will follow 
closely Diestel-Uhl (1977). Let (T, r, #) be a finite measure space and X be a Banach 
space. A function f :  T ~ X  is called simple if there exist x l , x 2 , . . . , x n  in X and 

al,  ~2,-.. ,  an in z such that f = ~ xiz~,, where Z~,(t)= 1 if t~ai and Z~,(t)= 0 if 
i = 1  

tr A function f :  T - ~ X  is said to be #-measurable if there exists a sequence of 
simple functions f~: T - * X  such that lim II f~(t)-f(t)l[ = 0  for almost all t~T. A 

n ~ o o  

#-measurable function f :  T ~ X  is said to be Bochner integrable if there exists a 
sequence of simple functions {f, :  n = 1, 2 . . . .  } such that 

lim S II f , ( t )  -- f(t)]1 d#(t) = O. 
n "~  ~ 1 7 6  T 

In this case we define for each E~z  the integral to be SEf( t )d#(t)= lim SEf~(t)dl#(t). 
n - ~ o o  

It can be shown [see Diestel-Uhl (1977), Theorem 2, p. 45] that, if ~b: T - ~ X  is a 
#-measurable function then f is Bochner integrable if and only if ST It f(t)II d#(t) < c~. 
It is important to note that the Dominated Convergence Theorem holds for Bochner 
integrable functions, in particular, if f ;  T-~ X (n = 1, 2 . . . .  ) is a sequence of Bochner 
integrable functions such that lim f~(t) = f ( t )  #-a.e., and II fn(t)II -< g(t) #-a.e., where 

n ~ o o  

gEL 1 (#, n~.), then f is Bochner integrable and lim ST II f , ( t )  - f ( t )  II d#(t) = O. 
n - * o o  

We denote by LI(#, X) the space of equivalence classes of X-valued Bochner 
integrable functions x: T ~  X normed by 

II x II = j" II x(t)II d#(t). 
t 
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It is a standard result that normed by the functional I[-[[ above, L 1(/2, X) becomes 
a Banach space [see Diestel-Uhl (1977), p. 50]. We denote by S o the set of all 
selections from 49: T ~  2 x that belong to the space L I(p, X), i.e., 

S o = {xEL 1(/2, X):x(t)~49(t)/2-a.e.}, 

i.e., S o is the set of all Bochner integrable selections from 49(-). Using the above set 
and following Aumann (1965) we can define the integral of the correspondence 
49: T -  2 x as follows: 

ST 49(t)d/2(t) = {ST x(t)d/2(t): xeSr }. 

We will denote the above integral by $49- Recall that the correspondence 49: T-~ 2 x 
is said to be integrably bounded if there exists a map h~LI(/2,R) such that 
sup { II x II:x~ 49(0} -< h(t)/2-a.e. Moreover, note that if Tis a complete measure space, 
X is a separable Banach space and 49: T-~ 2 x is an integrably bounded, nonempty 
valued correspondence having a measurable graph, then by the Aumann measurable 
selection theorem we can conclude that S~ is nonempty and therefore Sr49(t)d/2(t) 
is nonempty as well. If in addition to the fact that 49: T-~ 2 x is integrably bounded 
and nonempty it is also weakly compact and convex valued then by Diestel's 
Theorem [see for instance Yannelis (1991), Theorem 3.1] we can conclude that S~ 
is weakly compact in L1 (/2, X). 

We close this section by defining the notion of a martingale and stating the 
martingale convergence theorem. Let I be a directed set and let {~i: i~l} be a 
monotone increasing net of sub-a-fields o f t  (i.e., ~ i ,  ---- o~2 for i~ < i2, i l ,  i 2 in I). A 
net {x~: i~1} in L1(/2, X) is a martingale if 

g ( x i [ ~ i l  ) = xi ,  for all i_> il. 

We will denote the above martingale by {x i, ~ } i~ t .  The proof of the following 
martingale convergence theorem can be found in Diestel-Uhl (1977, p. 126). A 
martingale {xi, ~ i}~ i  in L 1 (/2, X) converges in the L~ (/2, X)-norm if and only if there 
exists x in LI(/2,X ) such that E ( x [ ~ i ) = x  i for all i~I. Recall [see for instance 
Diestel-Uhl (1977, p. 129)] that if the martingale { x ~ , ~ } ~  converges in the 
L1 (/2, X)-norm to xELI (/2, X), it also converges almost everywhere, i.e., lim x~---x 
almost everywhere. ~ ~o 

3. Convergence and approximation theorems for mixed strategy 
Bayesian Nash equilibria 

3.1 Bayesian games and Bayesian Nash Equilibria 

Let (I2, ~,/2) be a complete, probability measure space, and Y be a separable Banach 
space. As previously, a Bayesian game G = {(Xi, ui, ~ i ,  # ) : i=  1,2 . . . . .  n} is a set of 
quadruples where: 

(1) X F s ~ 2 r is the random strategy correspondence of player i, 

(2) ui: g-2 x FI Yj ~ ~ is the random payoff function of player i, 
j= l  
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(3) ~ i  is the private information set of player i, where ~ i  is a (finite, measurable) 
part i t ion of (.62, ~ ) ,  

(4) # is a probabil i ty measure on (.(2, ~ )  denoting the common prior of each 
player. 2 

Denote  by Lx, the set of all Bochner  integrable and ~ - m e a s u r a b l e  selections from 
the set-valued function X~: .(2 ~ 2 r, i.e., Lx, = {x~eL1 (p, Y): x ;  .(2 ~ y is ~ i -measur-  

n 

able and Xi((D)~Xi(fD ) p-a.e.}. Let L~ = [ I  Lx,, and L2, = 1-I Lxj. Denote  the 
i = 1  j : ~ l  

elements of L~, by ~ .  The expected payoff of player i is a function v~: L~ ~ R defined 
by 

v~(x) = ~ u~(~, x(@)d,(@. 

The strategy x*~L~ is said to be a Bayesian Nash equilibrium for the Bayesian game 
G = {(Xi,u~,~,l~):i = 1,2 . . . . .  n} if for all i, (i = 1,2, . . .  ,n) 

vi(x* ) = max vi(xi, 5c*). 
2ciuLxi 

Note  that  x*~L~ implies that each x* is ~ i -measurable  and therefore the vector 
n 

x* - (x l ,  x 2 . . . . .  x,  ) is V ~i-measurable .  
i = 1  

Suppose that G = {(X i, u~, ~ ,  p): i = 1, 2 . . . .  , n} satisfies the following assumptions 
for all i, (i = 1, 2 . . . . .  n). 

(a.3.1) X i : l - 2 ~ 2  r is integrably bounded,  weakly compact ,  convex, nonempty  
valued and ~ i - lower  measurable correspondence,  

(a.3.2) for each toe.Q, ui(co,. ) is weakly cont inuous on I~ YJ, and for each 
n j = l  

xe  1--[ Yj, ui(',x) is ~i -measurable ,  
j = l  

(a.3.3) for each co~O, and each 2ieYi = I~ Yj, ui(c~ xi) is a concave function 
ofx~ on Y, ~, i  

(a.3.4) u~ is integrably bounded.  

It was shown in Yannelis-Rustichini (1991) that under the assumptions (a.3.1)-(a.3.4) 

2 One may allow for different priors as follows: Let q~:.Q~R§ be a Radon-Nikodym derivative 
(density function) denoting the prior of agent i. For each i = 1,..., n, denote by Ei(~) the event in ~ 
containing the realized state of nature coEl2 and suppose that ~,~E,t,o~ qi(t)d#(t) > 0. Given E i ( ~ ) ~  i define 
the conditional expected utility of agent i as follows: 

where 

~,~E,~,I ui( t, xi(t) )qi( t l Ei( @ ) d~(t), 

t 
O if tCEi( @ 

qi(tlEi(~)) = _ qi(t ) 

I,~t~e,~o, qi(t)d#(t ) if t EE~(o~). 

All the results of the paper remain valid if we use the above conditional expected utility formulation. 
However, for the simplicity of the exposition we do not do so. 



Convergence and approximation results for non-cooperative Bayesian games 849 

the game G = {(Xi, ui, ~ i ,  #): i =  1, 2 . . . . .  n} has a (mixed strategy) Bayesian Nash 
equilibrium. 

3.2 Learning 

Let T be any directed set (countable or uncountable) denoting the time horizon. 
Denote by a(ui, Xi) the a-algebra that the random payoff function and random 
strategy set of player i generate. This is the initial information of agent i. However, 
the private information set of player i at time t~ T, is not only a(u~, X~) but also the 
information that past period Bayesian Nash equilibrium strategies (denoted by x t' 
for t I < t, t, t 1 in T) have generated. Hence the private information set of player i 
at time t is defined as: 

(3.1) ~ t  = a(ui, Xi, {xt,:t 1 < t}). 

The private information set of player i in period t o > t will be ~ti~ = ~ I  v a({xr:t < 
t' < t~ and consequently, for each player i and each time period t' we have that: 

(3.2) ~I" ~ ~-,o for t' _< t ~ t', t o in T. 

The expression (3.2) represents a learning process for player i. 
A learning process generates a net of Bayesian games {Gt:teT}, where 

Gt= { (X , , u , ,~ l , p ) : i=  1,2,.:. ,n}. As previously, 

(1) X~: .(2 ~ 2 r is the random strategy set of player i, 

(2) ui:g2 x [-[ Yi ~ ~;~ is the random payoff function of player i, 
j = l  

(3) ~ I  is the private information set of palyer i at time t, given by the expression 
(3.1), and 

(4) p is the common prior of each player. 

Let Lx~= {xi~Ll(iz ' y ) : x  i is ~l-measurable and Xi((D)c~Xi(o))  /~-a.e.}. Set Lx, = 

[] Lx~. Define the expected utility of player i, v~: Lx, ~ R  by 
i = l  

v,(x) = ~ u,(~o, x (~)  ) d~(~o). 

The interpretation of the above dynamic game is as follows: In period t each player's 
strategy is based on the initial information (i.e., a(u~, X~)) and the information that 
all Bayesian Nash equilibrium strategies have generated in the previous periods. 
Note that each player doesn't form expectations for future periods but only for the 
current period t. (Recall that the expected payoff is based on the current period 
private information.) However, since the private information set of each player is 
increasing it follows that his/her expected payoff is changing from period to period 
as a result of the increased information. Denote by BNE (G t) the set of all Bayesian 
Nash equilibrium strategies for G' at time t. 

3.3 The full information Bayesian game 

Let ~ i  be the pooled information set of player i over the entire time horizon T, i.e., 
~ i  V o~t (Note that V ~ t  denotes the "join" of the ~ t  i, i.e., the minimal 

r~T t~T 
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a-algebra containing all ~ i.) The Bayesian game (; = { (-gi, ui, ,r #): i = 1,2 . . . . .  n} 
where u~, # are defined as previously but )(i is now ~;-measurable, is called the limit 

full information Bayesian 9ame. Notice that the special case of symmetric information, 
i.e., o~ = ~ j  for i r  (i,j = 1 ,2 , . . . ,  n) follows from our setting. However, we don't 
need to insist on symmetric information in the Bayesian game C,. Denote by BNE(G) 
the set of  all Bayesian Nash equilibrium strategies for the 9ame G, i.e., x*eBNE((~) 

implies that x * e L x  = 1~I Lj?, and a for all i, 
i = 1  

v,(x*) = m a x  vi(xi,~*). 
x i f fLx_  i 

3.4 Remarks 

3.4.1: As we discussed above, the expression (3.2) represents a learning process. 
However, this is not the only way to generate a learning process. We now follow 
some ideas of McKelvey-Page (1986) and define an alternative learning process as 
follows: 

Let f :  IeI Lx, ~ R be interpreted as a publicly observable statistic. For each 
i = 1  

ts  T ifxt~BNE(G t) then the statistic f conveys information specified as a(f(xt)) ,  i.e., 
the smallest a-field with respect to which f ( x  t) is measurable. This information 
refines the information already available to each player at time t, i.e., up to time 
taT, the information available to each player i, is given by 

(3.4.1) ~ t  i = a(ui, Xi, { f (x t ' ) : t  I < t}), 

where a ( { f ( x " ) : t  1 < t}) is the publicly known information up to (but not including) 
period t. Note that a(f (x t ) )  is not contained in ~-ti, but for to>  t, o~ti~ ~ t  i v 
a ({ f (xC): t  < t' < to}) and a( f (x t ) ) i s  contained in ffti~ Hence we have the following 
learning process, for each player i, 

(3.4.2) f i t  i' ___ o~i ~ for t' <_ t ~ t', t o in T. 

It should be noted that for each ieI ,  o~z, ' = f i t  for all t > t 1 if and only if for at 
least one sE T, s > t 1, a({ f (xr:  r < s})__c a({f(xr): r < tl}). In this case the publicly 
observed statistic does not convey any new information after period t 1 and the 
learning process of each player stops. As a result xt 'e  BNE(G t) for all periods t >__ t 1, 
since the information structure does not change after period t 1. 

In other words, the evolution of the information partitions [i.e., the learning 
process represented by the expression (3.4.2)] stops if and only if the information 
conveyed by the publicly observable statistic is common knowledge to all players. 
Now if we define ~'i = V o~t i where each o~ti is as in (3.4.1), then for each i, 

t e T  

(3.4.3) o~i = a(ui, Xi,  { f ( x ' ) : t e  T}). 

Thus, in the limit the information conveyed by the statistic f is common knowledge. 

3 Obviously, L~, is the set {xiEL1 (#, Y): each xl is .~i,measurable and xi(~)6J(i(e)) ~-a.e.}. 
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That  is, players have enough information to predict the statistic. In this respect, the 
strategy vector for the limiting game has the flavor of a Rational Expectations 
Equilibrium [see also McKelvey-Page (1986, p. 122)]. 

Notice that even in the full information Bayesian game, agents may have 
different information partitions. However, the asymmetry in information partitions 
expressed by (3.4.3) persists as long as the statistic f does not convey any new 
information. Hence, the term full information Bayesian game refers to the fact that 
players have learned all the information that can be conveyed by the statistic f 
which aggregates the information available to each player. For  example, if 

a(f(xt)) = ~/ ~ t  i then x ~ is a fully revealing BNE for the game G t, and in this case 
i = 1  

for t' > t the information partition of each agent will be the same and therefore in 
the full information Bayesian game t~ players will have symmetric information. 

3.4.2: If in the full information game t~, we assume that .O is a finite set and that 
each player has a finite set of strategies X~, then the concept of BNE or Bayesian 
rationality coincides with the correlated equilibrium [Aumann (1987)]. In this 
specific setting we can conclude that Bayesian rational learning will lead to 
correlated equilibrium 4. 

3.5 Theorem 

Theorem 3.5.1: Let {G': t~T} be a net of Bayesian games satisfying (a.3.1)-(a.3.4) 
and let {x': t~ T} be a net in BNE(G~). Then we can extract a sequence {x"t: n, = 1, 2,... } 
from the net {xt: t~ T} such that x "t converges weakly to x*~BNE((~). 

3.6 Approximate Bayesian Nash equilibrium 

Given an e > 0, the strategy x*eLx is said to be an approximate or e-BNE for the 
Bayesian game G = {(Xi, ui, ~ , / t ) :  i = 1, 2 . . . . .  n} if for all i, 

vi(x*) > vi(xi, Y * ) -  ~ for all xieLx,. 

This concept of an approximate BNE has been widely discussed in the literature 
[-e.g., Radner (1980)]. The justification of this notion is that it may be too costly to 
find the exact optimal response than a "nearly" optimal one [Radner (1980, p. 153)]. 
The latter may be viewed as a kind of bounded rationality. Denote by BNE~(G) the 
set of all approximate or e-BNE strategies for the game G. We now obtain the counter- 
part  of Theorem 3.5.1 for the case of an approximate  BNE. 

Theorem 3.6.1: Let {Gt:t~ T} be a net of Bayesian games satisfying (a.3.1)-(a.3.4) 
and let {xt:t~ T} be a net in BNE,,(Gt), where et + 0. Then we can extract a sequence 
{x ' :n  t = 1,2,... } from the net {x':t~ T} such that x"  converges weakly to x*~BNE(G). 

'~ Nyarko (1992) has also shown that Bayesian learning leads to correlated equilibrium. His model, 
however, is different than ours. Moreover, Kalai-Lehrer (1993) have proved a non-myopic version of 
our Theorem 3.6.1 (see below). Their model is different than ours, specifically, they assume that the time 
horizon is discrete, each player's strategy set is finite and payoff functions are linear. Obviously, these 
assumptions are stronger than ours (compare with (a.3.1)-(a.3.4)). 
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Theorem 3.6.2: Let {G~: t rT}  be a net of Bayesian games satisfying (a.3.1)-(a.3.4) 
and let x * e B N E ( G ) .  Then  for each net {e,: teT} bounded  away f rom zero, there 
exists a net of strategies {x~:teT} in BNE~(G ') such that  x t converges (in the 
LI(/~, Y)-norm) to x*. 

Theo rem 3.6.1 indicates that  even approx ima te  B N E  will converge to the (exact) 
full in format ion  BNE.  This theorem gives as a corol lary Theo rem 3.5.1. 5 It  is 
impor t an t  to note that  Theo rem 3.6.2 has an interesting interpretat ion.  In 
part icular,  it shows that  an (exact) full informat ion  B N E  can be achieved by a pa th  
of plays by agents who have bounded  rationali ty,  i.e., this pa th  of plays consti tutes 
an approx ima te  B N E  for each period. 

4. Pure strategy Bayesian Nash equilibrium convergence 
and approximation theorems 

In this section will derive the counte rpar t s  of Theo rem 3.5.1 and Theorems  3.6.1 and 
3.6.2 for pure  s trategy Bayesian Nash  equilibria for the game G. Previously the strat-  
egy set of  each player  i, i.e., Xi, was assumed to be a set-valued function f rom ,Q to Y. 
We now set Y = R " .  N o w  each ~ i  will be a sub-a-a lgebra  of  (12, ~ )  and the restric- 
t ion of # to ~ will be still denoted by #. We denote  by ext X~ the extreme points of 
Xi. (Recall tha t  in this setting pure  strategies are identified with extreme points.) 

Formal ly ,  a pure strategy Bayesian Nash equilibrium for the game G = 

{X~,ui,~,it):i= 1,2 , . . . ,n}  is an x * : , O ~  f i  Yi such that  each x* is ~ c m e a s u r -  
i = 1  

able x*(~o)eext Xi(og) #-a.e. and for all i, (i = 1,2 . . . . .  n), 

(u,(o~, x*(~))d~(~o) >_ (ui(o~, x,(~), ~*(o~))d~(~o) 

for any f f i -measurab le  function xi: s ~ Y~, x,(og)~ext Xi(co) ~t-a.e. 
The following assumpt ions  guarantee  the existence of a pure strategy Bayesian 

Nash  equil ibrium for the game G [see Yannelis-Rustichini  (1991)]. 

(a.4.1) Fo r  each i, (.O, f f i ,  #) is a complete,  a tomless  probabi l i ty  measure  space, 
(a.4.2) F o r  each i, X i : I2~2  Rm is an integrably bounded,  compact ,  convex, 

n o n e m p t y  valued and f f c l o w e r  measurable  correspondence,  n 

(a.4.3) Fo r  each i, and each e g ~ ,  ui(og, .) is linear and cont inuous  on [7[ yj _ 

~ m ,  and it is also integrably bounded.  ~ = t 

As in Section 3.2 we can similarly recast the idea of learning. The only difference 
now is that  the private informat ion set of agent  i at  t ime t depends on the informat ion  
he/she has acquired f rom past  per iod Bayesian Nash  equil ibrium pure strategies 
still denoted by x tl, x t~ . . . . .  Everything else remains the same. 

5 Despite the fact that Theorem 3.5.1 can be obtained as a corollary of Theorem 3.6.1 we have tried to 
separate the cases that Bayesian rational learning leads to the full information BNE (Theorem 3.5.1) and 
that e-Bayesian rational (or bounded rational) learning leads to the full information BNE (Theorem 
3.6.1), because we believe that both cases are of interest. Perhaps, the experimental work will indicate 
which kind of equilibrium is more appropriate. Some recent work in this direction is reported in the 
papers of E1-Gamal-McKelvey-Palfrey (1992) and Rustichini-Villamil (1992 and 1992a). 
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Denote by PBNE (G t) the set of all pure strategy Bayesian Nash equilibria for G t 
at time t, and by PBNE (t~) the set of all pure strategies Bayesian Nash equilibria 
for the full information Bayesian Nash equilibrium game G. 

Theorem 4.1: Let {Gt: te  T} be a net of Bayesian games satisfying (a.4.1)-(a.4.3) and 
let {x': t �9 T} be a net in PBNE (G'). Then we can extract a sequence {x"t: n, = 1, 2 . . . .  } 
from the net {xt: te  T} such that x"' converges weakly to x*ePBNE((7). 

We conclude this section by mentioning that the counterparts of Theorems 3.6.1 
and 3.6.2 for the case of pure strategies can be readily obtained. Since we have 
outlined the proofs of Theorems 3.6.1 and 3.6.2 in Section 6, we leave the proof for 
the case of pure strategies to the reader, in order to avoid repetition. 

5. Proof  of  the theorems 

We begin with a few observations. Note that since each u I is integrably bounded 
and weakly continuous it follows from the Lebesgue dominated convergence 
theorem that each v~ is weakly continuous [Fact 4.2 in Yannelis-Rustichini (1991)]. 
Moreover, since each ul is concave in the i th coordinate so is vl. For  each i, 
(i = 1, 2 , . . . ,  n) define PI: Lx ~ 2Lx' by 

Pi(x) = {yieLx,:vi(Yi, 21) > vi(x) }. 

It follows from the weak continuity of vl that Pg has a weakly open graph (i.e., the 
set Gp, = {(x,y~)eL x x Lx,:yiePi(x)} is weakly open in L x • Lx, ). Also from the 
concavity of v~ in the i th coordinate it follows that PI is convex valued. Since each 
X i is G'-i-lower measurable and compact valued, it has a measurable graph. By the 
Aumann measurable selection theorem there exists an ~-:measurable function 
f~:.O ~ Y such that fi(~o)~Xi(co)/t-a.e. Since X i is integrably bounded f~eL 1 (#, Y) 

and therefore each set Lx, is nonempty and so is I~I Lx, = L x. Clearly each Lx, 
i = l  

is convex and therefore L x is convex as well. By Diestel's theorem [see Theorem 3.1 
in Yannelis (1991)] Lx, is weakly compact subset of LI(/~, Y). Hence the set L x is 
weakly compact, convex and nonempty. Finally notice that for t 1 > t 2, (t 1, t 2 in T) 
we have that Lx,~ ~= Lxt~, i.e., as information increases the strategy set of each player 

expands. 
With all these preliminary observations out of the way we can begin the proof 

of Theorem 3.5.1. 

5.1 Proof of  Theorem 3.5.1 

Let {x t : teT}  be a net in BNE(G~), (i.e., x~eLx, and Pi(xt)C~Lx~= c~ for all i, or 

equivalently xteLx,  and for all i, vi(x')= max v~(yi,~ti)). For 'simplicity let us 
yieLx~ 

denote the net {x~: t~ T} by B. As we observed above the set Lxt is weakly compact 
and nonempty. Since for each t~ T, x~Lx~ and Lxt is weakly compact it follows that 
the weak closure of the set B denoted by ~o-cl B, is weakly compact. By the 
Eberlein-Smulian Theorem [Dunford-Schwartz (1958, p. 430)], c~-cl B is weakly 
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sequentially compact .  Clearly the weak limit of  x ', denoted by x*, belongs to o9-cl 
B. F rom Whitley's theorem [Aliprantis-Burkinshaw (1985, Lemma 10.12, p. 155)1 
we know that  i fx*em-c l  B then there exists a sequence { x " s L x ,  m:m = 1, 2 . . . .  } such 
that  x t" converges weakly to x*. (For  notat ional  convenience we denote  the above 
sequence simply by { x " : m =  1,2,. . .}.) Since ~tic:~ti~ for t l > t  we have that  
Lx, ~= L f ,  and since each x m is in Lx,, ~ L f ,  it follows that  x*~L,f.  Hence, for each 

i, x* is an ~ i -measu rab l e  selection i~rom 3fi. To  complete the proof  we must  show 
that  

(5.1.1) ei(x*)nL,~,  = q~ for all i. 

Suppose otherwise, i.e., for some i, P~(x*)c~L~, 4: (a. Choose  yieP~(x*)c~Lz,, then 
l)i(Yi, X~) :> Oi(X* ). Let 

(5.1.2) 5 = vi(yi, ~ * ) -  vi(x*) > O. 

m E ra m For  each m, (m = 1,2 . . . .  ) set yi = [ y ~ l ~  ]eLx, .  Note  that  

E l -Y, l~"]  = e [ E I - Y , l ~ " + ' ]  I ~  "] 

--- E[y~'+ 110~' ] . 

,, ~ , ,  ~o is a martingale in Lx7 = La(!a, Y) and by the mart ingale Hence, { y , ,  y,  ~ }m = 1 

convergence theorem, YT' converges (in the L~ (#, Y) norm) and thus weakly to y~. It 
follows (recall that  vi is weakly continuous) that  we can choose m~ large enough so 
that for m >_ m~ we have 

Iv~(y~,ff*)- Vi(ym,~m)l < e/2 and Ivi(x ' ) - -  vi(x*)l < e/2. 

Thus 

D m ~ m  Iv,(yi, ~*) - i(Yi ,xi  ) + vi(x") - vi(x*)[ < Iv i (Yi ,~*)-  ve(y~', ~")] 

+lvi(x m) - vi(x*)l < e/2 + g/2. 

Then in view of (5.1.2) we have 

vi(yi, .~*) -- vi(y m, 5C m) + Vi(X m) -- Vi(X* ) < v(yi, :~*) -- v,(x*) 

and by rearranging we obtain 

v,(y m, ;c m) > vi(x') for all m >_ ml,  

a contradict ion to the fact that  x m lies in BNE(Gm). The above contradict ion 
establishes the validity of (5.1.1), i.e., P~(x*)caLz, = c~ for all i, or  equivalently 
v~(x*) = max vi(y ~, 2*) for all i. This completes the proof  of Theorem 3.5.1. 

yieLx4 

5.2 Proof  of  Theorem 3.6.1 

For  each i, (i = 1, 2 . . . . .  n) and each 5 > 0, define P~: L x ~ 2 L;', by 

P~(x) = { yleLx,:  vi(yi, Yq) > vi(x) + 5}. 

Let {x~:t~T} be a net in BNE,,(Gt), i.e., x 'eLx ,  and for all i, P~t(xZ)nLx~=da. 
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Adopting the argument in the proof  of Theorem 3.5.1 we can extract a sequence 
{xnt:n, = 1,2 . . . .  } from the net {x~:teT} such that x"' converges weakly to x * ~ L  2. 
To complete the proof  we must show that x*sBNE(G),  i.e., 

Pi(x*)nL2,  = 49 for all i. 

Suppose otherwise, i.e., for at least one i, Pi(x*)c~L2, :~ 49. Let yiEPi(x*)nL2, ,  then 
v,(y~, ~*) - v~(x*) > 0. Set 

(5.2.1) v,(yi, ~* ) - v,(x*) = 6. 

For each m, (m = 1,2 . . . .  ) se ty  m = E [y~ [~  m] = E[E[y , [~m+~][~?]  = E[y~ '+~ [ ~ " ] .  
Thus, {y~n,~-m}~=~ is a martingale in L x , , c L a ( # ,  Y) and by the martingale 
convergence theorem ym converges (in the La'(#, Y)-norm and therefore weakly) to 
y~. By the weak continuity of v~ we can choose m I large enough so that for m _> m 1 
we have that 

I v,(y~, :~*)-  v,(y m, ~ m ) l < -  
2 

and 

- -  / ~ m  Ivs(x m) - vi(x*)[ < - -  
2 

Recall that et ~ 0 and so does the sequence era. Thus, 

[vi(yl, ~ . ) _  vi(ym, X m) + vi(x m) __ Vi(x*)l < [vi(Yi, ~ * ) _  vi(ym, .~m)] 

+ [ v i ( x  m) - v ~ ( x * ) l  < ,~ - ~... 

In view of (5.2.1) we have 

vi(Yi, .~,) _ vi(ym, ~m) + Vi(x,n)_ Vi(X* ) < vi(yl, .~*)_ vi(x* ) _ i ~  m 

and by rearranging we obtain that 

m ~ m  vi(y i , x i ) > vi(x" ) + e m for all m > ml, 

a contradiction to the fact that x'n~BNE~,(Gm). Hence, we can conclude that 
P~(x*)~L$, = 49 for all i, i.e., x*sBNE(G).  This completes the proof  of Theorem 
3.6.1. 

5.3 Proof  of Theorem 3.6.2 

Let x be in BNE((~), i.e., x e L 2  and Pg(x)nL2,  = 49 for all i. We will construct a net 
{xt: t~ T} in BNE~, (G t) such that x t converges (in the L1 (/~, Y)-norm) to x. For  each 
i, (i = 1,2 . . . .  ,n) and each t in T set xti = E[xil~t i] .  Note that 

E[x,l~',-I = E[E[x, I~ ' , ' ][~ ' , ]  fort1 ___ t 

= E[_xl~l~t,] for t  1 > t. 

Hence {x l ,~} ,~  r is a martingale in Lx, ~ L I (  #, Y) and by the martingale con- 
vergence theorem xti converges in the Ll(/z, Y)-norm and hence weakly to x~. To 
complete the proof  we must show that x t = (x~ . . . . .  xt,,) lies in BNE~t(G t) for any 
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net {et: t e T} bounded away from zero such that a,~e, (e > 0). For each i, define 

the set K~= {teT:P~'(xt)nLx, q:4) }. Notice that for t e r \  0 K~ we have that 
i = l  

xEBNE~,(Gt). If for each i, K~ is a finite or empty set there is nothing to prove. Hence 
to complete the proof we need to show that for each i, K~ cannot be infinite. To this 
end suppose that for some i, K i is infinite. Then the net {yti: tsK~} has the property 
that, 

(5.3.1) v,(Y'i, x'i) > vi(x') + e,. 

Note that yt~eLx~ c L~,, and the set Lx, is weakly compact. Hence, we can find a 

subnet still denoted by {yt: teK~} such that y~ converges weakly to y~eL~,. By the 
weak continuity of v~ taking weak limits in the inequality (5.4.1) we obtain that 
v~(Yi, Yh) >- vi(x) + e. Thus, we can conclude that yi~P~(x) c~L,2, for some player i, a 
contradiction to the supposition that x lies in BNE(G). 

5.4 Proof of Theorem 4.1 

We begin with some preparatory observations and facts. Denote by Lextx , the set 
{xi6L1 (1~, ~") :  xi: .(2 ~ ~ "  is ~'i-measurable and xi(eo)eext X i(o) /l-a.e.}. Define the 
mapping ~9:LI(#,F-,m)~R " by O(z)=~z(eo)d#(o). Denote the integral of the 
set-valued function ext Xi: $2 ~ 2 ~m by ~ext X i which in turn is equal to ~b(Lextx,) = 

{~(z):z~LextX,}. Set ~extX = l~I ~extX,. Let ~ext)~i = I-I ~extXj and denote the 
i=1  i # i  

points of ~ext)~ i by xi. Since by (a.4.3) for each ~652, ui(o,. ) is linear on 

I~I Y j = R ' "  the domain of the expected utility of each agent i, i.e., g~(x)= 
j = l  

~ui(o~,x(~o))dkt(o~) is now ~X = I~I ~xi. However, we will show that the set ~X is 
i = 1  

equal to ~ext X. To this end first note that since each X~ is compact and convex 
valued, by the standard Krein-Milman-Minkowski theorem we have that 

(5.4.1) con(ext Xi(o)) = Xi(o) #-a.e. 

By Theorem 5.3 in Himmelberg (1975) extXi(.) is lower measurable and so is 
i~fiext X~(.). Integrating (5.4.1) we obtain: 

(5.4.2) ~ c~fi (ext Xi) = ~ X i. 

Since by assumption the measure space ($2, ~ i ,  #) is atomless by Theorem 3 of 
Aumann (1965) we have that: 

(5.4.3) ~ c-6fi (ext Xi) = ~ext Xi. 

Combining (5.4.2) and (5.4.3) we have that for each i, ~ext X i = ~Xi and we conclude 
that ~X = ~ext X. 

As in the proof of Theorem 3.5.1 for each i, define P~: ~extX ~ 2 ~e~tx' by 

(5.4.4) Pi(x) = { y ~ e x t  Xi: g,(Yi, x,) > g,(x)}. 

It follows from the Lebesgue dominated convergence theorem that g~ is (norm) 
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continuous on ~ext X (recall that by (a.4.3) for each o~el2 u~(~, ") is continuous and 
integrably bounded). Moreover, since by assumption for each co,J2, u~(co, .) is linear 
so is 9~. But since 9~ is norm continuous and linear it is also weakly continuous 
I-Dunford-Schwartz (Theorem 15, p. 422)-I. Hence, Pi has a weakly open graph in 
~ext X~ x ~ext X. Finally note that by claim 5.1 in Yannelis-Rustichini (1991), ~ext X 
is weakly compact and nonempty. 

With all these preliminaries out of the way we can now complete the proof of 
Theorem 4.1. As a matter of fact the argument from now on is identical to the one 
adopted for the proof of Theorem 3.5.1 and we will only outline it. Let {xt: t e T} be 

= max a net in PBNE(Gt), i.e., x t e ~ e x t X  t and for all i, gi(x') . tgi(Yl, ~ti). As 
Y i ~  ext X i 

noted above, ~extX t is weakly compact. Hence, by adopting the argument of 
Theorem 3.5.1 we can extract a sequence (zt'~:m = 1,2 . . . .  } from the net {x ' : t~T}  
such that z t" converges weakly to x * e ~ e x t X t c ~ e x t X ,  i.e., for each i, x* is 
Ji-measurable selection from ext 3f~. To complete the proof one must show that 
Pi(x*) c~ ~ext 3f~ = ~b for all i. An identical argument with that used in Theorem 3.5.1 
can be now adopted to complete the proof of Theorem 4.1. 
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