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The modern convex-analytic rendition of the classical welfare theorems charac-
terizes optimal allocations in terms of supporting properties of preferences by non-
zero prices. While supporting convex sets in economies with finite dimensional com-
modity spaces is usually a straightforward application of the separation theorem, it
is not that automatic in economies with infinite dimensional commodity spaces. In
the last 30 years several characterizations of the supporting properties of convex
sets by non-zero prices have been obtained by means of cone conditions. In this
paper, we present a variety of cone conditions, study their interrelationships, and
illustrate them with many examples. Journal of Economic Literature Classification
Numbers: D46, D51. � 2000 Academic Press

1. INTRODUCTION

Of the many insights of the old neoclassical school of economics, the
characterization of economic optimality in terms of the equality of
marginal rates of substitution, has remained a most enduring (and endear-
ing) result in economic theory. The modern convex-analytic version of this
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classical insight characterizes optimality in terms of the supporting of
preferences by a continuous linear functional (a price). Such a characteriza-
tion is possible in the presence of finitely many commodities since every
closed convex set in a finite dimensional space can be supported by a non-
zero linear functional at each of its boundary points. This remarkable
property can be attributed to a strictly finite dimensional peculiarity which
ensures that every finite dimensional convex set has a non-empty interior
in the smallest affine subspace that contains it; see for instance [17,
Theorem 11.2.7, p. 341].

However, this supporting property fails when there are infinitely many
commodities and when the arena of discourse is an infinite dimensional
commodity space. In such a setting, supporting optimal allocations by
means of prices (the second welfare theorem) is far more onerous a
problem. In fact, convex sets with empty interior arise naturally in many
economic models with infinitely many commodities. For example, if the
positive cone of the commodity space has an empty interior, then every
lower bounded consumption set has an empty interior.

This difficulty has been a subject of investigation throughout the second
half of the twentieth century. Infinite dimensional results that are related
to the second welfare theorem appeared quite early in the literature; see
the works of G. Debreu [24], E. Malinvaud [35], M. Majumdar [34],
B. Peleg and M. E. Yaari [38], and R. Radner [41]. Furthermore, since
the works of K. J. Arrow [15], G. Debreu [24], and T. F. Bewley [18], it
has become apparent that one of the major differences between economic
models with finite and infinite dimensional commodity spaces is that in the
finite dimensional setting the positive cone of the commodity space has an
interior point.3 Therefore, the standard infinite dimensional setting is one
where the well-known cheeper point problem cannot be readily assumed
away��and one may even appreciate the problem elucidated here by con-
sidering curious finite dimensional examples that ``mimic'' this infinite
dimensional difficulty.4

A solution to this problem was presented in a seminal paper by
A. Mas-Colell [36]. His solution was based on the works by Aliprantis and
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3 Recall that the positive cone of an infinite dimensional commodity space has a non-
empty interior basically only if it is a majorizing subspace of some C(0)-space (see [2,
Sect. 7.5])��which is not the most appropriate setting for many economic models.

4 For example, suppose that there are three commodities, i.e., the commodity space is R3.
Assume that consumption sets are the positive orthant of R3 and suppose that the price space
is smaller than R3 and is in fact some two dimensional subspace E of R3. It is clear that if we
require that all decentralizing prices be elements of E instead of R3, then one needs extra
assumptions on preferences to guarantee the validity of this stronger version of the second
welfare theorem. The problem here is that the positive orthant of R3 has no interior points
in the weak topology _(R3, E).



Brown and Chichilnisky and Kalman. In particular, Mas-Colell replaces
the requirement that the total endowment of resources be an interior point
of the consumption sets with two assumptions. First, that the commodity
space be a locally solid vector lattice and that the price space be its
topological dual��a setting introduced into general equilibrium theory by
C. D. Aliprantis and D. J. Brown [4]. Second, that preferences satisfy a
cone condition that he termed uniform properness��an adaptation of a con-
dition that was used in the work of G. Chichilnisky and P. J. Kalman [22].
In essence, this assumption guarantees that there exists a fixed open convex
cone containing the total endowment of the resources such that preferences
can be supported at every point by prices that are positive in the direction
of this open cone. In this sense, Mas-Colell required that the marginal rates
of substitution be bounded.

It is by now well accepted in economics to regard a preference relation
supported by a price at a given point as being ``proper'' at that point.
Furthermore, the properness concept has appeared in many forms and
various contexts and applications including macroeconomic theory; see, for
instance [1, 3, 5�8, 12, 14, 27, 28, 40, 42�47, 49]. However, the rela-
tionship between cone conditions and supporting properties of convex
sets made its debut in mathematics at least since the 1948 work of
V. L. Klee [30, Corollary 1, p. 769]; see also [26, Theorem V.9.10, p. 452;
32, p. 195; 31, p. 457]. Klee characterized the supporting property of
convex sets in terms of cones and in a manner that is closely related to
Mas-Colell's notion of properness��indeed, Mas-Colell's uniform properness
condition is an adaptation of Klee's condition. It appears that in economic
theory, G. Chichilnisky and P. J. Kalman [22, Theorem 2.1] were the first
to use Klee's cone condition to support convex sets; see also [20].5 Welfare
properties of optimal allocations based on ``pointwise'' properness were
obtained by A. Araujo and P. Monteiro [13] and K. Podczeck [40].

The objective of this paper is to discuss the connection between various
cone conditions, paying special attention to cone conditions that have been
used in general equilibrium theory. For a complete (almost) up to date dis-
cussion on the existence of supporting functionals the reader may want to
consult the excellent monograph of R. R. Phelps [39].

We first turn our attention to the classical notions of properness. We
compare the cone condition for unordered preferences introduced by
Yannelis and Zame [49]��called extreme desirability��with the uniform
properness condition of Mas-Colell. Yannelis and Zame's extreme
desirability condition [49] appears to be the most widely used cone condition
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5 G. Chichilnisky and G. M. Heal also established results on the existence of the equilibrium
and the second welfare theorem using variations on Klee's cone condition; these were later
published in [21].



for proving existence of equilibrium with unordered preferences. Though it
is well known that extreme desirability is the same as uniform properness
when preferences are complete preorderings, the relationship between the
two conditions when preferences are neither complete nor transitive has
remained obscure. We establish several results, and show that when
preferences are irreflexive and have open lower sections extreme desirability
implies uniform properness. We also show that these two conditions are no
longer comparable if this continuity assumption is dropped.

Moreover, we show that when there is a continuum of agents assuming
that each agent has uniformly proper preferences, or that each satisfies the
extreme desirability assumption, does not guarantee that the existence of
equilibrium result of R. Aumann [11], the second theorem of welfare
economics, and R. Aumann's core-equivalence theorem [10] hold. There
is a sharp difference between models with a finite number and a con-
tinuum of consumers. In the later case one needs to impose stronger
assumptions; see, for example, the positive results of A. Rustichini and
N. C. Yannelis [43, 44].

We then turn our attention to an investigation of more recent notions of
properness. There are several shortcomings of the uniform properness
assumption and recent notions of properness have been introduced to
alleviate these shortcomings. Uniform properness requires that the
marginal rates of substitution be bounded. In particular, this assumption
excludes preferences whose marginal rates of substitution display a
``fanned'' effect. For example, preferences that satisfy the Inada condition or
preferences that display changing risk aversion and that have been noted
in the literature on non-expected utility theory, see for instance
Machina [33]. Furthermore, in most of the results that prove the existence
of equilibrium in the literature using uniformly proper preferences the
authors also assume that the strong assumption that consumption sets
coincide with the positive cone of the commodity space. We shall, in this
paper, establish that the notions of properness used in the recent results
of [9, 46] are indeed more general than uniform properness, that they
allow for ``fanned'' marginal rates of substitution, and that they allow for
a richer class of consumption sets.

A final caveat is in order. We do not discuss the various cone conditions
that have appeared in the literature on general equilibrium theory with
non-convexities (see for instance [23]). Though, these cone conditions are
closely related to Klee's cone condition and therefore to uniform proper-
ness, a review of this literature is beyond the scope of the present paper.

The paper is organized as follows. The Appendix (Section 4) lists some
definitions and examines the relationship between cone conditions the
separation of convex sets, and supporting properties. It also includes Klee's
cone condition��the forerunner of properness. In Section 2 we turn our
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attention to uniform properness and extreme desirability. Section 3 discusses
the more recent notions of properness.

2. UNIFORM PROPERNESS AND EXTREME DESIRABILITY

Many of the problems that arise in general equilibrium with infinite
dimensional commodity spaces can be appreciated by studying appropriate
finite dimensional examples. In fact, most of the examples in this paper are
set in a two commodity general equilibrium model. Let us begin this sec-
tion by considering an adaptation of K. J. Arrow's classical exceptional
case [15, Fig. 3, p. 27]. In Fig. 1, there are two commodities and one con-
sumer and utility function u(x, y)=- x+- y. The initial endowment of
the consumer is |=(0, 1), which is the only Pareto optimal allocation.
However, since the marginal rate of substitution is infinite at |, there is no
positive price that supports the consumer's preferences at | and gives a
non-zero value to |.6 This is a well known failure of the second welfare
theorem. Of course, here the problem can be assumed away by requiring
that | be an interior point of the positive orthant of R2. However, the
standard infinite dimensional setting is one where the well-known cheeper
point problem cannot be readily assumed away.

We shall fix some notation before proceeding any further. For the rest of
this paper L will denote a Hausdorff locally convex ordered topological
vector space with positive cone L+ and topology {. A correspondence
P : X �� X on a subset X of L is said to be:

(1) irreflexive, if x � P(x) for all x # X,

(2) transitive, if x, y, z # X, x # P( y), and y # P(z) imply x # P(z),

(3) convex-valued, if P(x) is a convex subset of X for all x # X,

(4) locally non-satiated, if for each x # X and each neighborhood V of
x we have V & P(x){< (or, equivalently, if x # P(x) for each x # X), and

(5) with open lower sections, if for each y # X the set P&1 ( y)=
[x # X : y # P(x)] is a {-open subset of X.
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6 In exchange economies with consumption sets that coincide with the positive cone of the
commodity space, the notion of a quasi-equilibrium is vacuous without requiring that the
equilibrium price gives a non-zero value to the total endowment of resources. Indeed, if the
total endowment | is chosen so that there exists a non-zero positive price p for which
p } |=0, then every feasible allocation is a quasi-equilibrium with respect to the price p.
Therefore, for the quasi-equilibrium notion to be useful, we must assume that the supporting
price p satisfies p } |{0.
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FIGURE 1

We now state the definitions of Mas-Colell's [36] uniform properness
and the extreme desirability of Yannelis and Zame [49].

Definition 2.1. Let P : X �� X be a correspondence on a subset X of
L. Then:

(1) (Mas-Colell [36]) P is said to be |-uniformly proper for some
| # L if there exists a {-open convex cone K with vertex zero such that
| # K and (x&K) & P(x)=< for every x # X.

(2) (Yannelis and Zame [49]) A bundle | # X is called extremely
desirable for the correspondence P if there exists a non-empty {-open
convex cone K with vertex zero such that | # K and (x+K) & X�P(x) for
every x # X.

The geometric interpretation of these definitions (when L=R2 and
X=R2

+) is illustrated in Fig. 2.

FIGURE 2
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We emphasize here that if the uniform properness assumption is to have
its intended effect, then one must require that preferences be v-uniformly
proper for some positive bundle v that is order dominated by the total
endowment of resources |, i.e., 0�v�|. Similarly, for the extreme
desirability condition to be useful one needs to assume that there exists an
extremely desirable bundle that is order dominated by the total endowment
of resources. In fact, a quick glance at Arrow's exceptional case above
shows that the preference relation is (1, 1)-uniformly proper��and that the
bundle (1, 1) is extremely desirable��but it is not |-uniformly proper. It is
also clear how |-uniform properness excludes Arrow's exceptional case��it
places a bound on the marginal rates of substitution at |. However, it is
not at all clear how the extreme desirability of | precludes this exceptional
case. The next results shed some light on this matter.

The next theorem is the major result in this section. It states that under
very mild conditions, the existence of an extremely desirable commodity
implies uniform properness.

Theorem 2.2. If a correspondence P : L+ �� L+ is irreflexive, convex-
valued with open lower sections and 0<| # L is extremely desirable, then P
is |-uniformly proper.

Proof. Let K be a {-open convex cone satisfying | # K and
(x+K) & L+ �P(x) for every x # L+ . To finish the proof, it suffices to
show that (x&K) & P(x)=< for every x # X. To this end, assume by way
of contradiction that this is not the case.

This means that there exist vectors x, z # L+ such that z # (x&K) & P(x).
Since x � P(x), it follows that x{z. Clearly, z # P(x) is equivalent to
x # P&1 (z). From

lim
: A 1

[(1&:) x+:z]=z and lim
: A 1

[:x+(1&:) z]=x,

z # x&K, x # P&1 (z), the {-openess of x&K (in L), and the openess of
P&1 (z) (in L+), it follows that there exists some 0<:0<1 such that

(1&:) x+:z # x&K and :x+(1&:) z # P&1 (z)

for all :0<:<1. Now let #=(1+:0 )�2 and x$=#x+(1&#) z # L+ . From
x$ # P&1 (z), we see that z # P(x$). Moreover, from (1&#) x+#z # x&K,
there exists some k # K such that (1&#) x+#z=x&k, and so z=#x+
(1&#) z&k=x$&k # x$&K. Thus, x$&z # K. Next consider the vector

y=;x$+(1&;) z=;#x+(1&;#) z,

102 ALIPRANTIS, TOURKY, AND YANNELIS



and notice that for some ;>1 (close to 1) we must have :0<;#<1. This
implies y # L+ . On the other hand, taking into account that x$&z # K, we
see that for this ;>1 we have

y=;x$+(1&;) z=x$+(;&1)(x$&z) # x$+K .

Therefore, y # (x$+K) & L+ �P(x$).
Now re-writing y=;x$+(1&;) z in the form x$= 1

;y+(1& 1
;) z and

taking into account that P(x$) is a convex set (and that y, z # P(x$)), we
see that x$ # P(x$), which contradicts the irreflexivity of P. Hence,
(x&K) & P(x)=< for every x # X, and so P is |-uniformly proper. K

The next example shows that one cannot dispense with the ``openess of
the lower sections'' in Theorem 2.2.

Example 2.3. Let L=R2 be equipped with the Euclidean topology and
the pointwise ordering and let |=(0, 1). Let �l denote the lexicographic
ordering of R2; that is, (x, y)�l (x$, y$) if either x>x$ or else x=x$ and
y� y$. Now define the correspondence P : R2

+ �� R2
+ by

P(x, y)={[(x$, y$) # R2
+ : (x$, y$)�l (0, 1)]

[(x$, y$) # R2
+ : y$> y]

if (x, y)=(0, 1)
otherwise.

It is easy to see that the vector | is extremely desirable for P with
respect to the open convex cone K with vertex zero given by

K=[(x, y) # R2 : y>0 and y>&x].

However, if C is an arbitrary open convex cone with vertex zero containing
|, then it should be clear that (|&C) & P(|){< holds. This shows that
P cannot be |-uniformly proper. Finally, notice that from

P&1 (|)=[(x, y) # R2
+ : | # P(x, y)]=[(x, y) # R2

+ : y<1] _ [|],

it easily follows that P&1 (|) is not an open subset of R2
+ (since | cannot

be an interior point of P&1 (|) in L+), and so P does not have open lower
sections. K

A converse of Theorem 2.2 is true for complete preferences.

Theorem 2.4. Let p be a complete preference relation on a subset X of
L, and as usual define its strict preference correspondence P : X �� X by

P(x)=[ y # X : ypx and xp� y]=[ y # X : yox]
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for each x # X. If [ y # X : ypx]�P(x) holds for every x # X and P is
|-uniformly proper, then | is extremely desirable for P.

Proof. Let K be a {-open convex cone with vertex zero satisfying
(z&K) & P(z)=< for each z # X and | # K. Assume that for a pair of
bundles x, y # X we have y # x+K, i.e., x # y&K. It suffices to show that
y # P(x).

To see this, assume by way of contradiction that y � P(x). This implies
(in view of the completeness of p) that xpy, so that x # P( y). Now from
x # y&K and the opennes of K, we see that there exists a {-neighborhood
Vx of x such that Vx �y&K. Also from x # P( y), it follows that there
exists some v # Vx such that v # P( y). This implies v # ( y&K) & P( y)=<,
which is impossible. This shows that y # P(x), and so (x+K) & X�P(x)
for each x # X, proving that | is extremely desirable for P. K

The following theorem is related to Theorem 2.2.

Theorem 2.5. Let P : X �� X be a correspondence on a subset of L such
that whenever x, y # X satisfy x # P( y), then y � P(x). If | # L is extremely
desirable for P, then P is |-uniformly proper.

Proof. Let K be a non-empty open convex cone with vertex zero such
that | # K and (x+K) & X�P(x) for each x # X. We claim that
(x&K) & P(x)=< holds for each x # X. Indeed, if for some x # X we have
z # P(x) and z # x&K, then x # z+K, which (in view of the extreme
desirability of P) implies x # P(z), a contradiction. K

There are many examples of uniformly proper preferences without any
extremely desirable commodity. For instance, the trivial case of satiated
preferences where P(x)=< for all x, has no extremely desirable com-
modity but it is uniformly proper. To continue our discussion, we need the
notion of majorization between correspondences

Definition 2.6. A correspondence Q: X �� X majorizes (or dominates)
another correspondence P : X �� X if P(x)�Q(x) holds for all x # X.

Likewise, a correspondence Q: X �� X on a topological space weakly
majorizes (or weakly dominates) another correspondence P : X �� X if
P(x)�Q(x) holds for all x # X.

In the next theorem we establish that certain uniformly proper pre-
ferences are majorized by preferences with extremely desirable bundles.

Theorem 2.7. Let X be a convex subset of L such that x+:| # X for all
x # X and :�0, and let P : X �� X be a locally non-satiated, convex-valued,
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correspondence. Assume further that P has open lower sections in X and is
|-uniformly proper for some bundle | # X. The following statements hold:

(1) There exists a correspondence that weakly majorizes P which is
irreflexive, convex-valued, has an open graph in X_X, and has | as an
extremely desirable bundle.

(2) If, in addition, P is irreflexive and has an open graph in X_X,
then there exists a correspondence that majorizes P which is irreflexive, con-
vex-valued, has an open graph in X_X, and has | as an extremely desirable
bundle.

Proof. (1) Let K be a nonempty {-open convex cone with vertex zero
satisfying | # K and (x&K) & P(x)=< for each x # X. We claim that the
correspondence Q: X �� X defined by

Q(x)=[K+P(x)] & X

satisfies the desired properties.
Note first that Q is convex-valued. Moreover, if y # P(x), then from

:|+ y # Q(x) for each :�0 and lim: a 0 (:|+ y)= y, it follows that
y # Q(x). Thus, P(x)�Q(x) for each x # X, and so Q weakly dominates P.

We show next that the bundle | is extremely desirable for Q. To see this,
fix x # X, take an arbitrary y # (x+K) & X and let z= y&x # K. Since z is
an interior point of K, there is some neighborhood V of zero such that
z+V�K. Let [x:] be a net in P(x) that converges to x; such a net always
exists since P is locally non-satiated. Clearly, y:=z+x: � y. Noting that
&V is also a neighborhood of 0, we see that for some : large enough
y: # y&V, and so y # x:+z+V�x:+K. Thus, y # Q(x) and (x+K) & X
�Q(x), proving that | is extremely desirable for Q.

We show next that Q is irreflexive. To see this, suppose by way of con-
tradiction that x # Q(x) for some x # X. This implies that there is some
y # P(x) such that x # y+K. Therefore, (x&K) & P(x){<, which is a
contradiction.

Now we show that the graph of Q is open in X_X. To see this, let
x, y # X satisfy (x, y) # Graph(Q), i.e., y # Q(x). This means that there is
some z # P(x) such that y # z+K; clearly z+K is a neighborhood of y.
Since x # P&1 (z) and P&1 (z) is an open subset of X, there exists a
neighborhood V of zero such that (x+V) & X�P&1 (z). To complete the
proof, we shall show that the neighborhood W=[(x+V)_(z+K)] &
(X_X) of (x, y) in X_X satisfies W�Graph(Q).

To this end, let (x$, y$) # W. Then x$, y$ # X, x$=x+v for some v # V and
y$=z+k for some k # K. It follows that x$ # P&1 (z). This implies z # P(x$),
and so y$=z+k # [P(x$)+K] & X=Q(x$). Therefore, (x$, y$) # Graph(Q),
and so W�Graph(Q), proving that Graph(Q) is open in X_X.
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(2) Let C=K _ [0] and note that C is a convex cone. We claim that
the correspondence R: X �� X defined by

R(x)=[C+P(x)] & X

satisfies the desired properties.
Note first that R(x)=Q(x) _ P(x) for all x # X. Therefore, R dominates

P and the bundle | is also extremely desirable for R, since Q(x)�R(x).
Furthermore, R is convex-valued.

We show next that R is irreflexive. To see this, suppose by way of con-
tradiction that x # R(x) for some x # X. Since Q is irreflexive it must be that
x � Q(x). Therefore, x # P(x), which contradicts the assumption that P is
irreflexive.

Now we show that the graph of R is open in X_X. To see this, let
x, y # X satisfy (x, y) # Graph(R), i.e., y # R(x). Now if y # Q(x), then there
exists a neighborhood W of X_X such that W�Graph(Q)�Graph(R). If
on the other hand y # P(x), then there exists a neighborhood W of X_X
such that W�Graph(P)�Graph(R), proving that Graph(R) is open in
X_X. K

We now turn our attention to economies with a continuum of agents. In
their papers, A. Rustichini and N. C. Yannelis [43, 44] use notions of proper-
ness that are stronger than extreme desirability to extend R. Aumann's [10]
important core-equivalence theorem to separable Banach lattices. We
present an example that shows that |-uniform properness not strong
enough an assumption when there are infinitely many agents. We show
that the existence of equilibrium result of R. Aumann [11], the second
theorem of welfare economics, and Aumann's core-equivalence theorem fail
when endowments of resources are not in the interior of the consumption
sets. This is even though consumption sets coincide with the positive cone
of R2 and preferences are strictly monotone and |-uniformly proper.7

The following example can be seen as an extension of Arrow's excep-
tional case to economies with a continuum of agents. Notice that each
agent has bounded marginal rates of substitution. However, the ``mean''
marginal rate of substitution at | is infinite.

Example 2.8. The space of agents is a complete atomless measure
space (0, 7, +); we assume that +(0)=1. The commodity space is R2 and
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consumption sets are R2
+ . For each consumer, t # 0, the endowment of

resources |t is the point (0, 1). Let |=�0 |t d+(t)=(0, 1).
Now note that if t [ (xt , yt) # R2

+ is an allocation and �S (xt , yt) d+(t)
=�S |t d+(t) for some measurable coalition S (i.e., S # 7), then

x=0 and 0� yt�1 for +-almost all t. (V)

In particular, any feasible allocation must satisfy property (V).
Now let Vn be a disjoint sequence of non-negligible measurable subsets

of 0. Such a sequence exits since (0, 7, +) is atomless. For each t # Vn

define the utility function Ut : R2
+ � R+ by

Ut (x, y)=nx+ y .

The functions Ut are linear and strictly monotone. Furthermore, each Ut

is |-uniformly proper. We need to show that Aumann's measurability
assumption also holds. This assumption states that if t [ r(t) and t [ s(t)
are two measurable allocations, then the set S=[t # 0 : Ut (r(t))>Ut (s(t)]
is a measurable subset of 0. Since each Ut is a linear function, it is clear
that Sn=[t # Vn : Ut (r(t))>Ut (s(t)] is a measurable set for each n. Hence,
S=��

n=1 Sn is also measurable since it is the union of countable many
measurable sets. Therefore, Aumann's measurability assumption holds.

Thus, with the exception of the strict positivity of |, all of Aumann's
assumptions are satisfied. We show next that the existence of equilibrium
and Aumann's core-equivalence theorem fail in this economy.

Consider the allocation t [ |t . It is clear by (V) and the monotonicity
of preferences that no non-negligible coalition of agents can improve upon
this allocation. Therefore, the allocation is in the core of the economy.
Moreover, it is the only core allocation in this economy, since by (V) it
Pareto dominates all other feasible allocations.

Now suppose that there is some price system ( p, q) that supports this
allocation as a valuation equilibrium. That is, for any n,

(x, y) # R2
+

and

Ut (x, y)=nx+ y>1=Ut (|t) imply px+qy>p0+q1=q.

Take the point (0, 2), it must be that 2q>q and q>0. Taking the point
( 1

q , 0) and n>q we see that
p
q>q>0 and that p>0. Finally, take the point

(
q
2p , 0) and n>

2p
q . We get 1

2 q>q, which is a contradiction.
Therefore, there is no price system that supports this core allocation as

a valuation equilibrium��this also shows that the second welfare theorem
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is not valid. Also, since this is the only core allocation, the economy does
not have a Walrasian equilibrium. K

The literature contains many instances where the authors assume that |
is extremely desirable in the Mackey topology of (L, L$) and that the
preference correspondence is non-transitive and has weakly open lower sec-
tions. We close the section with an example of a non-transitive, non-empty,
and convex-valued preference correspondence with a weakly open graph
which is also irreflexive, strictly monotone and |-uniformly proper��and
also proper according to Definition 3.1 in the next section. Obviously, such
a preference is not representable by a utility function.

Example 2.9. The commodity space is the Hilbert space L=l2

equipped with its norm topology {. Let p1 and p2 be the two strictly
positive prices of L$=l2 given by

p1=(1, 1, 1
2 , 1

22 , 1
23 , ...) and p2=(1, 4, 1

2 , 1
22 , 1

23 , ...).

Next, we consider the correspondences P1 , P2 : l+
2 �� l+

2 defined by

P1 (x)=[ y # l+
2 : p1 } y>p1 } x and p2 } y>p2 } x],

and

P2 (x)=[ y # l+
2 : p1 } y>p1 } x].

Now define the correspondence P : l+
2 �� l+

2 by

P(x)={P1 (x) if p1 } x�1
P2 (x) if p1 } x>1.

Then the correspondence P has the following properties:

(1) P is non-empty, convex.

(2) P is irreflexive.

(3) P is strictly monotone.

(4) P has open graph in the weak topology (hence also the norm
topology) of l+

2 _l+
2 .

(5) P is v-proper for every vector v>0, which is also extremely
desirable (for the norm topology).

To see this consider the correspondence P� : l+
2 �� l2 defined by

P� (x)={P� 1 (x) if p1 } x�1
P� 2 (x) if p1 } x>1,
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where

P� 1 (x)=[ y # l2 : p1 } y>p1 } x and p2 } y>p2 } x],

and

P� 2 (x)=[ y # l2 : p1 } y>p1 } x].

Then P� (x) & l+
2 =P(x) for all x # l+

2 and x+v is in the norm interior of
P� (x) for all x # l+

2 and each non-zero positive vector v # l+
2 .

(6) P is a non-transitive correspondence.
To see this, consider the tree vectors of l+

2 :

x=(2, 0, 0, 0, ...) , y=( 1
2 , 1, 0, 0, 0, ...) , and z=( 1

2 , 1
2, 0, 0, 0, ...).

Then, an easy computation shows that x # P( y), y # P(z), and x � P(z). K

3. PROPER CORRESPONDENCES

Let us return to the adaptation in the previous section of Arrow's excep-
tional case. It is easy to see that in that particular example one does not
need the full strength of |-uniform properness or extreme desirability.
Indeed, a boundedness condition on the indifference curve at | will suffice.
Such an assumption was offered by R. Tourky [46] who��inspired by
Mas-Colell's uniformly proper production sets [37]��termed it M-proper-
ness. He proved a limit theorem for the core of an economy using only this
properness condition and without making any extra assumption on the
consumption sets. Furthermore, the condition has recently been used by
Aliprantis, Tourky, and Yannelis [9] to extend the literature on the exist-
ence of equilibrium and on the welfare theorems in infinite dimensional
spaces to commodity spaces that are not lattice ordered. The condition
allows for unbounded consumption sets and for preferences with unbounded
marginal rates of substitution. In the next definition, we restrict our atten-
tion to the case of lower bounded consumption sets.

Definition 3.1 (Tourky). Let X be a subset of L+ . A correspondence
P : X �� X is said to be v-proper, where v is a non-zero vector in L+ , if
there exists another correspondence P� : X �� L (which is convex-valued if
P is also convex-valued) such that for each x # X:

(i) the vector x+v is a {-interior point of P� (x); and

(ii) P� (x) & L+=P(x).
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Now assume that p is a preference relation on a subset X of L+ . Then
the preference p gives rise to two natural correspondences P, Q : X �� X
defined by

P(x)=[ y # X : yox] and Q(x)=[ y # X : ypx].

The correspondence Q is called the preference correspondence of p and P
is called (as we saw in Theorem 2.4) the strict preference correspondence of
p. We say that the preference relation p is |-uniformly proper if its
preference correspondence Q is |-uniformly proper.

For complete preferences, it turns out that Tourky's properness condi-
tion is weaker than the Mas-Colell properness condition.

Theorem 3.2. Let p be a complete and transitive preference defined on
the positive cone L+ , and let |>0. If p is |-uniformly proper, then its
strict preference correspondence P : L+ �� L+ , defined by

P(x)=[ y # L+ : yox],

is Tourky |-proper according to Definition 3.1. The converse is false even if
p is continuous, strictly monotone, and convex.

Proof. Assume that p satisfies the stated properties. Pick an open
convex {-neighborhood W of zero such that the open convex cone K with
vertex zero generated by |+W satisfies

(x&K) & Q(x)=(x&K) & [z # L+ : zpx]=<

for each x # L+ . Notice that x+ 1
2|ox, i.e., x+ 1

2| # P(x) holds for each
x # X. Indeed, if this is not the case, then (by completeness) we must have
xpx+ 1

2| for some x # X, and so (x+ 1
2 |)& 1

2|=xpx+ 1
2 |. This implies

x # (x+ 1
2|&K) & Q(x+ 1

2 |)=<, a contradiction. Next, define the
correspondence P� : L+ �� L by

P� (x)=P(x) _ [K+P(x)]=P(x)+[K _ [0]].

Since x+|+ 1
2W=(x+ 1

2 |)+ 1
2 (|+W)�P� (x), we see that x+| is an

interior point of P� (x) and P� is convex-valued if P is convex-valued.
Moreover, we claim that P� (x) & L+=P(x). To see this, note first that
P(x)�P� (x) & L+ is trivially true. Now let y # P� (x) & L+ . Assuming
y # P(x)+K, this means that there exist z # P(x), *>0 and some u # W
such that y=z+*(u+|). We claim that yox. If this is not the case, then
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by completeness, we must have xpy. Now notice that the vector z # L+

satisfies

z= y&*(|+u)oxpy ,

which implies z # ( y&K) & Q( y)=<, which is a contradiction. Hence,
yox, and so P� (x) & L+=P(x). Therefore, the correspondence P is
Tourky |-proper.

We now show by means of an example that the converse is not true. The
example below is a modification of an example presented by R. Tourky
in [46]. Let L=R2 and X=R2

+ . Also, let |=(0, 1). Consider the
preference p represented by the continuous, quasi-concave and strictly
monotone utility function U : R2

+ � R defined by

U(x, y)= 1
2 (x+- x2+4y).

Since for c�0 we have 1
2 (x+- x2+4y)=c if and only if y+cx=c2, we

see that the indifference curves of the utility function U are straight lines,
some of which are shown in Fig. 3(a).

Next, we claim that the preference p is not |-uniformly proper. Indeed,
if a cone K contains | as an interior point, then it is easy to see that
at some point x=(x0 , y0) # R2

+ we must have (x&K) & [(x, y) # R2
+ :

(x, y)p (x0 , y0)]{<, which shows that p is not |-uniformly proper; see
Fig. 3(b).

Now consider the strict preference correspondence P: R2
+ �� R2

+ of U,
defined by

P(x, y)=[(s, t) # R2
+ : U(s, t)>U(x, y)].

We claim that the correspondence P is Tourky |-proper according to
Definition 3.1. To see this, fix (x1 , y1) # R2

+ , and notice that

P(x1 , y1)=[(x, y) # R2
+ : U(x, y)>U(x1 , y1)]

=[(x, y) # R2
+ : y+cx>c2],

where c= 1
2 (x1+- x2

1+4y1 ) . Now if we define P� : R2
+ �� R2 by

P� (x1 , y1)=[(x, y) # R2 : y+cx>c2],

then P� (x1 , y1) is an open convex subset of R2 such that P� (x1 , y1) &
R2

+=P(x1 , y1) and the vector (x1 , y1)+|=(x1 , 1+ y1) is an interior
point of P� (x1 , y1). K

The example in the above proof shows how uniform properness does not
allow for the unbounded ``fanning'' of the the marginal rates of substitution.
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FIGURE 3

Preferences that display such behavior include those that satisfy the Inada
condition. Furthermore, the literature on non-expected utility is permeated
with examples of ``fanned'' indifference curves. Indeed, Machina [33]
showed that ``fanning'' can explain several empirical anomalies in the
theory of choice under uncertainty. Tourky properness allows for unbounded
fanning of indifference curves, however, it precludes marginal rates of sub-
stitution that are infinite. That is, it precludes the preferences in Arrow's
counter-example. Notice that the preferences in Fig. 1 are not |-uniformly
proper and thus are not Tourky proper, since the marginal rate of substitution
is infinite at |.

Tourky properness also allows for consumptions sets that are different
from the positive cone of the commodity space. In most of the results that
prove the existence of equilibrium in the literature using uniformly proper
preferences it is also assumed that the consumption sets coincide with the
positive cone of the commodity space. However, K. Back [16] produced
examples which show that these results cannot be extended to more general
convex lower bounded sets without making additional assumptions on the
consumption sets. To compensate for this, K. Back introduced the following
notion of proper consumption sets.

Definition 3.3 (Back [16]). A subset X of L+ is said to be Back
|-uniformly proper, where | is a non-zero bundle, if there exists an open
cone K with vertex zero such that | # K and (K+X) & L+ �X.

See Fig. 4 for Back and non-Back uniformly proper sets.
With this concept of properness Back [16] proved the existence of equi-

librium in exchange economies. He also showed that the Back |-uniformly
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FIGURE 4

proper consumption sets are extendible to convex sets containing | as an
interior point��a result which was also obtained earlier in [42] for
uniformly proper preferences.

The next results presents a connection between Back and Tourky
properness. They show that Tourky properness allows for more general
consumption sets than Back's proper consumption sets.

Theorem 3.4. Let X be a subset of L+ and let P: X �� X be a transitive
correspondence with an extremely desirable bundle | # L+. If the set X is
also Back |-uniformly proper, then P is also a Tourky |-proper corre-
spondence.

Proof. It is easy to see that our assumptions guarantee the existence of
an open convex cone K with vertex zero such that:

(1) | # K,

(2) (X+K) & L+ �X, and

(3) (x+K) & L+ �P(x) for each x # X.

Now define the correspondence P� : X �� L via the formula

P� (x)=K _ [0]+P(x).

We claim that P� satisfies the desired properties. Notice first that P� (x) is
a convex set if P(x) is also convex.

We claim that P� (x) & L+=P(x) holds for each x # X. To see this fix
x # X and note that P(x)�P� (x) & L+ is trivially true. For the reverse
inclusion, let y # P� (x) & L+ and assume that y is of the form y=k+z
with k # K and z # P(x). Then, y=z+k # (z+K) & L+ �P(z), and so
y # P(z). Now using that z # P(x), it follows from the transitivity of P that
y # P(x). Thus, P� (x) & L+ �P(x), and therefore P� (x) & L+=P(x).
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To finish the proof, we must verify that x+| is an interior point of P� (x)
for each x # X. So, fix x # X. Since |, |

2 # K and K is an open set, there exists
some neighborhood V of zero such that |

2 +V�K and |+V�K. We
claim that |+x # P(x) and that |+x+V�P� (x). To see this, notice first
that |

2 +x # L+ and |
2 +x # x+K imply |

2 +x # (x+K) & L+ , which (in
view of (3)) yields |

2 +x # X. Then, |
2 +x # (x+K) & X, and so, from (2),

|
2 +x # P(x). (A similar argument shows that |+x # P(x).) Now note

x+|+V=
|
2

+\|
2

+x+V+�K+P(x)�P� (x).

Therefore, |+x is an interior point of P� (x), and so (according to Defini-
tion 3.1) P is a |-proper correspondence.

In the next example we construct a consumption set with a lower bound
and a smooth ``substance'' frontier. This consumption set does not satisfy
Back's |-uniform properness condition. We then construct a transitive
continuous preference ordering on that set which gives rise to a Tourky
|-proper correspondence.

Example 3.5. Consider the Euclidean space R2 under its canonical
ordering and let |=(0, 1). Also let B be the closed unit ball in R2 centered
at the point (1, 1). Now consider the consumption set

X=B _ [(x, y) # R2
+ : x+ y�1].

Clearly, X is closed, convex, and bounded from below; see Fig. 5. However,
X is not Back |-uniformly proper. This follows easily by observing that if
K is an open convex cone with vertex zero containing |, then
(K+X) & R2

+ �3 R2
+.

FIGURE 5
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We now define a correspondence P : X �� X as follows. For any
(x, y) # X satisfying x+ y�1, we let

P(x, y)=[(x$, y$) # R2
+ : x$+ y$>x+ y].

For any other (x, y) # X let H be the straight line passing through (x, y)
and (0, 1) and let Q(x, y) be the open half-plane determined by H that
contains (1, 1). Clearly, Q(x, y) is an open convex set that contains
(x, y)+|. For these points (x, y) # X, we let

P(x, y)=Q(x, y) & X.

An easy verification shows that P is transitive, convex, monotone, and has
an open graph in X_X. It is also easy to check that P(x, y) is Tourky
|-proper. (In addition, it can be seen that P is not |-uniformly proper and
that | is not extremely desirable.) In fact, for each x # X let

P� (x)=P(x) _ [Q(x) & [(x, y) : x�0]]

and note that P� satisfies the desired properties. K

4. APPENDIX: MATHEMATICAL BACKGROUND

Let A be a non-empty subset of a topological vector space. A point a # A
is said to be a support point of A if there exists a non-zero continuous linear
functional f (called a supporting linear functional of A at a) satisfying
f (a)� f (x) for all x # A.8 In other words, a non-zero continuous linear
functional f supports a set A at some point a # A if and only if f attains
its minimum value over the set A at the point a. We also say that A has
the support property at a if A is supported at a. It should be clear that only
boundary points of a set can be support points.

A preference relation p defined on a subset S of a topological vector
space is said to be supported at some point a # S by a non-zero continuous
linear functional f if x # S and xpa imply f (x)� f (a), i.e., if the better-
than-a set of p is supported by f at a. The geometric interpretation of the
support property is shown in Fig. 6.

The supporting property at a point is closely related with the notion of
a cone. We shall discuss this relationship next. But first, let us start with the
definition of a cone.
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FIGURE 6

Definition 4.1. A non-empty subset K of a vector space is called a
cone with vertex k, if for each x # K we have k+:(x&k)=:x+(1&:)
k # K for any :�0; see Figure 7(a). If a cone is also a convex set, then it
is called a convex cone.

In a topological vector space, an open cone K with vertex k is a non-
empty open set such that for each x # K we have k+:(x&k) # K for all
:>0.

Every subspace is a cone with vertex zero. Notice that if K is a cone with
vertex k, then c+K is a cone with vertex c+k. In a vector space, the inter-
section of all cones with vertex k that contain a given non-empty subset S
is called the cone generated by S with vertex k and is denoted K(k, S).
Clearly,

K(k, S)=[k+:(x&k) : :�0 and x # S].

Similarly, the convex cone with vertex k generated by S is the smallest con-
vex cone with vertex k and coincides with the convex hull of K(k, S); see

FIGURE 7
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Fig. 7(b). A straightforward verification shows that if S is a convex set,
then K(k, S) is a convex cone for each k. In a topological vector space, the
closed cone generated by a subset with vertex k is the intersection of all
closed cones with vertex k that contain S. Clearly, the closed cone
generated by S with vertex k is K(k, S).

The next result describes a basic supporting property of a cone. (This
result was established in [30, 31], see also the first part of [26,
Theorem V.9.10, p. 452].)

Lemma 4.2 (Klee). In a locally convex space the vertex of a convex cone
is a point of support of the cone if and only if the cone is not dense.

The following is a simple theorem that characterizes the support
property of a convex set at a given vector��it is the basic principle behind
all cone conditions. Note that the equivalence between (1) and (2) was first
established by V. L. Klee [30, Corollary 1, p. 769].

Theorem 4.3. Let C be a convex subset in a locally convex space and let
c be a boundary point of C. If c # C, then the following statements are
equivalent.

(1) The vector c is a point of support of C.

(2) There is a non-dense convex cone K with vertex c that includes C,
i.e., C�K; or, equivalently, the convex cone K(c, C) is not dense.

(3) There exists an open convex cone K with vertex c such that
K & C=<; or, equivalently, there exists an open convex cone with vertex
zero such that (c+K) & C=<.

(4) There exist a non-zero vector v and a neighborhood V of zero such
that c&:v+z # C with :>0 implies z � :V.

The geometry of the situation in Theorem 4.3 is shown in Fig. 8.

FIGURE 8
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FIGURE 9

Recall that two subsets A and B of a topological vector space can be
separated if there exist a non-zero continuous linear functional f (called a
separating linear functional ) and some constant C such that f (b)�C� f (a)
holds for all a # A and all b # B (or equivalently, if f (b)� f (a) holds for all
a # A and all b # B.) The geometrical meaning of the separation of two sets
is shown in Fig. 9.

Lemma 4.4. Two non-empty subsets A and B in a locally convex space
can be separated if and only if the convex cone with vertex zero generated
by the set A&B is not dense.

Lemma 4.5. In a finite dimensional Hausdorff topological vector space, if
zero does not belong to a non-empty convex set C, then the convex cone with
vertex zero generated by C is not dense.

In finite dimensional vector spaces two non-empty disjoint convex sets
can always be separated.

Theorem 4.6. In a finite dimensional Hausdorff topological vector space
any two non-empty disjoint convex sets can be separated.

As mentioned before, only boundary points of a set can be support
points. Unfortunately, not every boundary point of a non-empty closed
convex set is a support point. The next result presents two cases where the
support points of a closed convex subset are precisely its boundary points.
In most of the results that prove the existence of equilibrium in the
literature using uniformly proper preferences they also assume that the con-
sumption sets coincide with the positive cone of the commodity space.
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Lemma 4.7. Let C be a non-empty convex subset of a topological vector
space (X, {). If either,

(1) (X, {) is finite dimensional and { is Hausdorff, or
(2) the convex set C has a {-interior point,

then every boundary point of C that lies in C is a support point.

In spite of the fact that in infinite dimensional spaces not every boundary
point of a non-empty closed convex set is a support point, we have the
following remarkable result due to E. Bishop and R. R. Phelps [19]. There
are many proofs of this result which are variations of the original proof;
see, for instance, [39, Theorem 3.18, p. 48], [29, Theorem 3.8.14, p. 127],
and [2, Theorem 8.60, p. 329].

Theorem 4.8 (Bishop�Phelps). If C is a non-empty closed convex sub-
set of a Banach space, then the set of support points of C is dense in the
boundary of C.
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