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1 Introduction

We study the collusion of firms with differential information. A game with
differential information consists of a finite number of firms, where each firm
is characterized by its strategy set, its payoff function, its private informa-
tion (which is a partition of an exogeneously given probability measure
space) and a prior. When firms collude, they choose an output level that
maximizes joint expected profits. The information firms can use in the col-
lusive agreement varies. Firms may pool their information, may use their
private information, or they may choose to use their common knowledge
information. Each type of information sharing yields different profits and
most importantly creates different incentives to the individual firms for

*The paper benefited from discussions with Jingang Zhao.
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misreporting their true information.

The main focus of our paper is to address the following questions: i)
How should firms share their private information in collusive agreement
such that industry profits are the highest? ii) How are the collusive prof-
its under different types of information sharing compared to profits from
non-cooperative production? iii) How should colluding firms share their pri-
vate information in a coalitional incentive compatible way? iv) How should
industry profits be distributed among firms in a way which captures the
contribution or the “worth” of each firm to total profits?

Other work on the subject [e.g., Donsimoni et al. (1986) and Crampton
and Palfrey (1990)] follow an approach similar to ours by assuming that
firms abide by the cartel agreement. The problem of explicit collusion in an
industry with heterogeneous firms and private information was first con-
sidered formally by Roberts (1983). He derives properties of the incentive
compatibility constraints associated with a revelation game. He found that
without side payments, if firms are sufficiently similar, then monopoly col-
lusion cannot be achieved, but if side payments are allowed such collusion is
possible with a dominant strategy mechanism essentially equivalent to the
Vickrey (second-price) auction. Rotemberg and Saloner (1990) investigate
a price leadership scheme in a differentiated products duopoly in which the
firms are asymmetrically informed. Crampton and Palfrey (1990) study the
issue of cartel enforcement when the cost of each firm is private informa-
tion. An enforceable cartel is one which is feasible, incentive compatible and
individually rational. They show that if defection results in either Cournot
or Bertrand competition, the incentive problem in large cartels is severe
enough to prevent the cartel from achieving the monopoly outcome. Laf-
font and Martimort (1997) study collusion of agents whose objectives are
not aligned with that of their organization under asymmetric information.

Our model is different from the above ones. In particular, we have a gen-
eral model and we address the issue of collusion in a differential information
game for the first time. We show that collusion under the pooled informa-
tion yields the highest industry profits. However, this type of information
sharing is not coalitional incentive compatible.! We present examples with
two firms where one firm can distinguish between two states of nature and
the other cannot and the firm with the “superior” information finds it prof-
itable to misreport the true state of nature to the other firm. Only collusion
under the common knowledge information is coalitional incentive compati-
ble. It is important to emphasize here that we look at the coalitional incen-
tive compatibility and not at the individual incentive compatibility as, for
example, Crampton and Palfrey (1990). An individual incentive compatible

LA collusive agreement is coalitional incentive compatible when there does not exist
a coalition of firms that can misreport the true state of nature and benefit its members.
For a precise definition see definition 7.1.
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outcome may not be coalitional incentive compatible which in turn means
that coalitions of firms, rather than individual firms, may have an incentive
not to report truthfully the realized state of nature. We also propose that
a sensible rule for allocating production and distributing the profits among
the firms is according to the Shapley value of each firm. The Shapley value
rule yields individually rational and Pareto optimal outcomes, captures the
informational asymmetries between the firms as well as the contribution of
each firm to the total profits. We also point out that the a-core of the
differential information game is non-empty. We provide several examples
that illustrate and clarify our results.

The rest of the paper is organized as follows. In Section 2, we provide the
notation and definitions. In Section 3, we present the model and Section 4
contains existence results. In Section 3, we outline three information rules
and in Section 6 we rank the industry profits under the different information
rules. Section 7 addresses the incentive compatibility issue. In Section 8,
the issue of profit distribution is addressed. Finally, Section 9 contains two
illustrative examples.

2 Notation and definitions
2.1 Notation

R! denotes the 1-fold Cartesian product of the set of real numbers.
]Rl_F denotes the positive cone of RL.

R, denotes the strictly positive elements.

24 denotes the set of all non-empty subsets of the set A.

) denotes the empty set.

\ denotes set theoretic subtraction.

2.2 Definitions

If X and Y are sets, the graph of the set-valued function (or correspon-
dence), ¢ : X — 2Y is denoted by

Go ={(z,y) € X xY : y € ¢(z)}.

Let (2, F, 1) be a complete, finite measure space, and X be a separable
Banach space. The set-valued function ¢ : @ — 2% is said to have a mea-
surable graph if G4 % B(X), where 8(X) denotes the Borel o-algebra on X
and ® denotes the product o-algebra. The set-valued function ¢ : £ — 2%
is said to be lower measurable or just measurable if for every open subset
V of X, the set

{we:pw)NV #£0}

is an element of F. It is well known that if ¢ : @ — 2% has a measurable
graph, then ¢ is lower measurable. Furthermore, if ¢(- ) is closed valued and
lower measurable then ¢ : @ — 2% has a measurable graph. A theorem



458

of Aumann tells us that if (Q,F,u) is a complete finite measure space,
X is a separable metric space and ¢ : Q@ — 2% is a non-empty valued
correspondence having a measurable graph, then ¢(-) admits a measurable
selection, i.e., there exists a measurable function f :  — X such that
fw) € p(w), u — a.e.

Let (Q,F, ) be a finite measure space and X be a Banach space. Fol-
lowing Diestel-Uhl (1977), the function f: Q — X is called simple if there
exist 2y, Zg, ..., Z, in X and ay,ay, ..., in F such that > " | z;x,, where
Xo,(w) = 1if w € a; and x,,(w) =0if w ¢ o;. A function f: Q — X
is said to be p-measurable if there exists a sequence of simple function
fn: @ — X such that lim,,_,o || fn(w) = f(w)|| = 0 for almost all w € Q. A
p-measurable function f : 0 — X is said to be Bochner integrable if there
exists a sequence of simple functions {f, : n =1,2,...} such that

lim /Q fnlw) = £(@)ldpw) = 0.

n—oo

In this case we define for each E € F the integral to be

/ fw)du(w) = lim fr(w)dp(w).
¥ E n—0o0 E
It can be shown [see Diestel-Uhl (1977), Theorem 2, p.45] that if f : @ — X
is a p- measurable function then f is Bochner integrable if and only if
Jo I 7 )ldu(w) < co.

For 1 < p < oo, we denote by L,(u, X') the space of equivalence classes
of X-valued Bochner integrable functions z : 2 — X normed by

el = ( /Q () |Pdu(w))?

It is a standard result that normed by the functional ||- ||, above, L,(u, X)
becomes a Banach space [see Diestel-Uhl (1977), p.50].

3 The Cournot game with differential information

We assume that there are n firms, {i = 1,...,n}, that produce an output
g = {q1,....qn}. The subscript — will be used to denote all firms other
than firm 4. Let (Q, F,u) be a complete probability measure space. We
interpret 2 as the states of nature of the world and assume that it is large
enough to include all events that we consider to be interesting. As usual
F denotes the o-algebra of events and u is a common probability measure.
Let Y be a separable Banach space denoting the production space.

Definition 3.1: A Cournot game with differential information is a set
€ ={{C, s Fi. b} : § = 1,...,n], whate

i) Qi: 2 — 2Y is the random production set of firm i;
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ii) m; : Q(w) — R is the random profit function® of firm i, (where Q(w) =
Qi(w) X -+ X Qn(w));

iii) J; is a sub o-algebra of F, which denotes the private information of
firm i;

iv) p is a probability measure on {2 denoting the common prior.

Let Lo, denote the set of all Bochner integrable and F;-measurable se-
lections from the production set @; of firm i, i.e..

Lo, = {geLi(wY):q:Q—Y is F; — measurable and
gi(w) € Qi(w) and p —a.e.}.

Let Lg = Lg, % -+ X Lq,. Given a Cournot game, a production plan for
firm ¢ is an element g; € Lo,.
The ez-ante expected profit function® of firm i, II; : Lg — R is defined

as?

i(g:, i) = ./erz mi(gi(w), g—i(w))dp(w).

A Cournot-Nash equilibrium for C = {(Q;, 7, Fi, ) :1=1,...,n}isan
element ¢g* € Lg such that for all i,

Mi(g") = max TLi(q”;,3)-

We can now state the assumptions needed to prove the existence of a
Cournot-Nash equilibrium.

(A1)

2If p(w) : Q(w) — R is the inverse demand function and C; : Q;(w) — R is the cost
function of firm i, then mi(g(w)) = p(q(w))qi(w) — Ci(gi(w)). We could have allowed
the payoff function w to depend also on the state of nature w. The resuits of the paper
remain valid.

3The entire analysis would go through if instead of the ex-ante profit function we
used the interim one. That is, the conditional (interim) crpected profit function of firm
i I(-,+): Lo, X Q—i(w) — R is defined as

My(gid—s) =/ el o, s (o Ve ) B o)) i),
w!' €B;(w)
where
if W ¢ By (w)

0
ki(w'| B (w)) = L )
Toer, ;(L)d_u(ﬁ) if o' € By(w)

is the prior of agent i, (where k; is a Radon-Nikodym derivative such that [ k;(w)dp(w) =
1 and B;(w) denotes the event in firm #’s partition which contains the realized state of
nature).

1For simplicity we assume that the profit function does not depend on Q. As we
mentioned above all the results of the paper remain valid.
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Q; : Q — 2¥, is a non-empty, convex, weakly compact-valued and
integrably bounded correspondence having an Fj;-measurable graph, i.e.,
Go, € Fi 0 B(Y).

(A.2)
i) For each i, m;(-,-) : Q(w) — R, is weakly continuous.
ii) The function 7; is concave in the i-th coordinate for all i.

iii) 7, is integrably bounded.

4 Existence of a Cournot-Nash equilibrium

We can now state the first existence result. We assumne that there exists a
finite or countable partition A;, (¢ = 1,...,n) of £, and the o-algebra F; is
generated by A;.

Theorem 4.1: Let C = {(Qi, mi, Fi,u) i =1,...,n} be a Cournot game
satisfying (A.1) - (A.2). Then, there exists a Cournot-Nash equilibrium.

Proof: For each i, define the correspondence ; : Lo , — 2L@: by

wi(aX;) = {yi € Lq, : I;(¢") = max II;(¢;,v:)}
Yi€LQ,

Also define the correspondence F : Lg — 2L by
F(q) = IT_1¢;(qZy)-

As in Yannelis and Rustichini (1991), we will show that the correspondence
F' satisfies all the hypotheses of the Fan-Glicksberg Fixed Point Theorem.
It can then be easily checked that a fixed point of the correspondence F
is by construction a Cournot-Nash equilibrium for C. We will complete the
proof in three steps.

I. Lg s non-empty, convex, weakly compact and metrizable.

The non-emptiness of Lg follows from the Aumann measurable selection
theorem. Also, since each (); is non-empty, convex and weakly compact, it
follows from Diestel’s Theorem that each Lg, is a weakly compact subset
of Li(u,Y). Obviously, each Lq, is convex. Furthermore, since each L, is
a weakly compact subset of a separable Banach space Li(u,Y), it is also
metrizable [for more details see Yannelis and Rustichini (1991), Theorem
5.1].

II. The function I1; is weakly continuous for each i.

Since, by assumption, 7; is concave, weakly continuous and 7; is inte-
grably bounded, the result follows by an application of Theorem 2.8 in
Balder and Yannelis (1993).

I1I. Each correspondence @, : Lo , — 25%i, is non-empty, convex valued
and weakly u.s.c.
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Since II(g) is a concave function of ¢; on Lg,, it follows that ¢, is convex
valued. By virtue of Berge’s Maximum Theorem, it follows that ¢, is weakly
u.s.c. Finally, an appeal to Weierstrass’ Theorem it is guaranteed that ¢,
is also a non-empty valued correspondence.

Now since each ¢; is non-empty, closed, convex valued and weakly u.s.c.,
it follows that likewise is F' : Lg — 2%@. Thus, the correspondence F
satisfies all the conditions of the Fan-Glicksberg Fixed Point Theorem.
Consequently, there exists some ¢* € Lg such that ¢* € F(¢*). O

5 Collusion under different information rules

It is a well known result that a Cournot-Nash equilibrium may not be
Pareto optimal. In other words, there is a surplus that has not been ex-
tracted by the firms. If the firms collude and play a cooperative game,
then a Pareto optimal outcome will be reached. This problem has been
examined when firms have symmetric information. However, in the pres-
ence of differential information there may be different ways for the firms
to collude, depending on how they want to share their private information.
Before we proceed, let’s define the three different information rules that we
will consider in the sequel.

Definition 5.1: A Pooled information rule is the one where firms share
their information, i.e., the information they use is, ] = ViL,F;,j =
1,...,n, where V denotes the join.’

Definition 5.2: A Private information rule is the one where firms use
their own private information, i.e., 7,2 =1,...,n.

Definition 5.3: A Common knowledge information rule is the one where
firms use only the information that is common to them, i.e., .7-}'- =
AP Fi,j=1,...,n, where A denotes the meet.®

Let Lp denote the set of all Bochner integrable and V', F;- measurable
selectlons from the production set @; of firm i, i.e.,
Ly, = {aieLi(wY):q:Q2—Yis VI, F; — measurable and
g:(w) € Qilw), p—ae}.
Also let L) = L x---x L .
Let Lg, denote the set of all Bochner integrable and A ; F;— measurable
selectlons from the production set Q; of firm i, i.e.,
Ly, = {ai€eLli(p,Y):¢:Q—Yis AL F; — measurable and
gi(w) € Qi(w),u—ae.}.

3That is the smallest o-algebra containing all of the sub o-algebras F,i=1,...,n.
6That is the largest o-algebra contained in all of the sub o-algebras F;,i=1,...,n.
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Alsolet L§ = L x -+ x Lg
A colluszon equzlzb’rzum under the pooled imformation rule for C =
{(Qs,mi, Fiypu) : 1,...,n} is an element ¢* € L such that

II7(¢") = max » Tli(q).
9€LY

A collusion equilibrium under the private information rule for C =
{(Qi,mi, Fi,p) : i =1,...,n} is an element ¢* € Lg such that

n

fi(4") = s 3 T0)

A collusion equilibrium under the common knowledge information rule
for C = {(Qi, ™, Fi,pp) :i=1,...,n} is an element ¢* € L§ such that

Pt = — ;Hi(Q)-

Next we present the second existence result of this paper.

Theorem 5.1: Under assumptions (A.1)-(A.2), a collusion equilibrium
exists for all the information rules.

Proof: Notice that the objective function is weakly continuous and Lg yLo
and Lf, are non-empty and weakly compact. Therefore the maximum is
attained and the argmax is the set of all equilibrium points. O

6 Comparison of profits under the three information
rules

In this section, we will put the industry profits under the three different
information rules in a hierarchy. It is known that under symmetric informa-
tion the industry profits when firms collude are greater than or equal to the
industry profits derived from the Cournot-Nash game. But what happens
under differential information?

Let I1°(¢*),TI(¢*) and II°(¢*) be the value functions under the three
information rules, as defined in the previous section.

Proposition 6.1: II?(g*) > II(g*) > II°(g*).

Proof: First observe that A7 F; C F;,i=1,...,n,C Vi F;. This implies
that L‘é? CLgC L’é. Since the objective functions are the same, the desired
result follows. O

Let I[TV(¢*) denote the industry profits derived from the Nash game.
Proposition 6.2: [17(¢*) > TI(¢g*) > [TV (g*).
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Proof: Obvious. O

However, as the following proposition indicates, we cannot compare the
industry profits derived under the common knowledge rule with those de-
rived from the Cournot-Nash game. The reason is that when firms collude
using the common information, essentially they throw away some valuable
information, which means lower profit. On the other hand, the joint maxi-
mization alone, gives them higher profits. In this general setting we cannot
tell which effect outweighs the other.

Proposition 6.3: The industry profits derived from the collusz'gn under
the common knowledge information rule and the ones derived from the
Cournot-Nash game are not comparable.

Proof: Consider a Cournot game with two firms {1,2}, three states of
nature, i.e., Q = {a,b, ¢} and one homogeneous output g. Each state occurs
with the same probability. Each firm’s private information is given by the
following partition of the state space,

Fi = {a,b,c}, Fo = {{a}, {b}, {c}}.
The inverse demand function is, p(w) = 5 — 1.5(¢q1 (w) + g2(w)). The cost
function which is measurable with respect to each firm’s private information
is: For firm 1, C)(w,q1(w)) = 4q¢? for all w € Q and for firm 2,
@2 fw=a
Co(w,q2(W)) =< 4¢3 fw=1b
B¢ Hw=c

Notice that firm 1 has trivial information, while firm 2 has complete infor-
mation. The following production plan is a Cournot-Nash equilibrium,

q1(w) = 1.00275, for all w € Q;

699 ifw=a
gw)=< 919 fw=0>b
759 ifw=c

Observe that the production plan is also measurable with respect to each
firm’s private information. The expected industry profits from the Cournot-
Nash game are 3.296.

Now assume that firms collude using the common knowledge information
rule. Since the information that is common to both of them is the trivial
information, the production plan must be constant in all states. This is,

g1(w) = .9194, g2 (w) = .502, for all w € Q.
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The expected industry profits are 3.5537.

Thus, in this example the profits from collusion with common knowledge
information are higher than the profits from the Cournot-Nash game. Next
we present an example where the profits from the Cournot - Nash game are
higher than the profits from collusion with common knowledge information.

Consider now a Cournot game with two firms {1,2} that produce a ho-
mogeneous output g. Uncertainty is generated by the marginal cost func-
tions ¢; : 2 — R4,7 = 1,2. Firm 1 has trivial information and its cost
function is: C; = ¢,q%, where ¢; = 5 for all w € Q. Firm 2 has complete
information and its cost function is: Cy = c«2q§. We assume that ¢y is dis-
tributed uniformly on [0,10]. The above information about the Cournot
game is common knowledge. Moreover, the inverse demand function is
p(w) = 50 — 1.5(q1(w) + g2(w)). Since firm 1 has trivial information, its
production plan will be constant across all states, while firm’s 2 produc-
tion plan will be contingent on each realization of the random variable cs.
Therefore, the Cournot-Nash equilibrium is

22.5122

g1 (w) = 3.317, for all w € Q and g(w) = 5+

The expected industry profits from the Cournot-Nash game are 174.747.

Now assume that firms collude using the common knowledge information
rule. This now implies that production must be constant across all states.
The production plan is

q1(w) = ga(w) = 3.125, for all w € Q.

The expected industry profits now are 156.25. O

7 Coalitional incentive compatibility

One of the basic questions that one may ask is whether the different equi-
librium notions we defined previously are coalitional incentive compatible.
That is, whether a coalition of firms has an incentive to misreport the
true state of nature and benefit its members. This is an important ques-
tion especially for the collusion equilibrium. If a collusion equilibrium is
not coalitional incentive compatible, then it is not sustainable. We define
rigorously below the notion of coalitional incentive compatibility which is
related to the one in Krasa-Yannelis (1994).

Definition 7.1: An output function ¢ € Lg is said to be coalitional
incentive compatible if and only if the following does not hold: There exist
a coalition of firms” S C I and two states a, b that members of I\ S cannot
distinguish (i.e., a and b are in the same partition for the firms in I\ S)

7T is the set of all firms.



465

and such that members of S are better off by announcing b whenever a
has actually occurred. Formally, ¢ € Lg is said to be coalitional incentive
compatible for C if it is not true that there exist coalition S, and states a, b
with® a € NgsE;(b), such that® m;(g%(b), ¢"\% (b)) > m:(¢5(a), ¢! \5 (b)), for
all ¢ € S, that is, each firm in coalition § is strictly better off announcing
that state b occurred rather than the true state a and firms not in S are
unable to distinguish between state a and b.

It turns out that a Cournot-Nash equilibrium is incentive compatible.
Also a collusion equilibrium under the common knowledge information rule
is coalitional incentive compatible. However, a collusion equilibrium under
the pooled information rule and under the private information rule may
not be coalitional incentive compatible.

Proposition 7.1: A Cournot-Nash equilibrium for C = {(Qi, ®, Fi, ) :
1=1,...,n} s incentive compatible.

Proof: Since we are dealing with a non-cooperative concept it is appropri-
ate to reduce the coalition S to the singleton coalition, i.e., S = {i}. Then,
—1 denotes all the firms but i. Suppose that ¢* € Lg is a Cournot-Nash
equilibrium and there exist a,b, where a € E_;(b), such that

i(g7 (0),92:(0)) > mi(gi (a), ¢2(b))-

First, since ¢* ; is F_;-measurable, it is implied that ¢* ;(a) = ¢* ,(b). Thus,
for all w € E;(a) N E_;(a) and t € E;(b) N E_;(a),

mi(g: (£),674(1) > milgi (w), 42 (w)).

Now consider the following production plan for firm i,

| qw) =g ifwe Ea)nE_i(a)
Gi(w) =

g (w) otherwise.

It follows that
/MMWﬁAMW>/m@WMMWMA

This contradicts the fact that ¢* is a Nash equilibrium. O

Proposition 7.2: A collusion equilibrium under the private information
rule for C = {(Qi,m:, Fi,pt) 11 = 1,...,n} may not be coalitional incentive
compatible.

¥ E;(b), is the event in firms’ information partition that contains the realized state b.
9¢5 and ¢/\5 are vectors of outputs for firms in coalition S and I\ S respectively.
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Proof: Cousider two firms {1,2} that produce a homogeneous output.
The state space is Q@ = {a,b,c} where each state occurs with probabil-
ity 3 and the private information of each firm is: 7y = {{a,b}, {c}} and
Fa = {{a,c}, {b}}. We denote by g;(w), g2(w) the production in state w
of firm 1 and firm 2 respectively. The inverse demand that firms face is
= (5 — 1.5(q1(w) + g2(w))). The marginal cost function of each firm,
which is measurable with respect to each firm’s private information is

25 A &y =a,b
a(w) = :

1 1 g =1

25 ifw=a,c
ca(w) =

| if w=.
A collusion equilibrium under the private information rule is
g1 (a) = g1 (b) = 916, ¢7 (c) = .416,

g3(a) = ga(c) = -91§,45(b) = .16,

and the profit of each firm in each state is
m1(a) = 1.833,71(b) = 2.52,m1(c) = .832,

ma(a) = 1.833, ma(b) = '832.3 ma(c) = 2.52.

The ex-ante expected profit for the industry is II; + Iy = 1.725 + 1.725 =
3.45.

Suppose that state b occurs. Firm 2’s profit is .832. However, if firm 2
reports that state a occurred and produce as if a had actually occurred, its
profit is 1.146. Since 1.146 > .832 the collusion equilibrium with differential
information is not incentive compatible. O

Remark: It follows from the above proposition that a collusion equilibrium
under the pooled information rule may not be incentive compatible as well.
The reason is that although information is now symmetric, still firms cannot
distinguish between the states that could not distinguish before the pooling
took place. Hence, the above proposition is applicable here as well.

Proposition 7.3: A collusion equilibrium under the common knowledge
information rule is incentive compatible.

Proof: It is rather obvious, since now there do not exist states a and b
such that one firm can distinguish between the two and the others cannot.
O
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8 Distribution of profits

So far, we showed that when firms collude (under the pooled and the private
information rules), industry profits are higher than the profits obtained
by the Cournot-Nash game. Moreover, profits may be higher when firms
collude under the common knowledge information rule. The question that
remains to be answered is how are these extra profits being distributed
among the firms in a way that captures the contribution of each firm to
the total profits.

8.1 The private value production plan

‘We propose that each firm should be rewarded according to its contribution
to the total profits. One way to do this is to reward each firm according
to its Shapley value. Then a production plan will be determined, so as
each firm will get its Shapley value. This production plan will be the value
production plan.

As in the definition of the standard value allocation concept, we must
first derive a transferable profit game (TP) in which each firm’s profits are
weighted by a factor A;, (: = 1,...,n), which allows for profits comparisons.
In the value allocation itself no side payments are necessary.'? A game with
side payments is then defined as follows:

Definition 8.1.1: A game with side payments I' = (I,V) consists of a
finite set of agents (firms) I = {1,...,n} and a superadditive, real valued
function V defined on 27 such that V() = 0. Each S C I is called a
coalition and V'(S) is the “worth” of the coalition S.

The Shapley value of the game ' (Shapley 1953) is a rule that assigns
to each firm i a “payoff”, Sh;, given by the formula,!!

sn(v) = 3> L=y (s) - vis i,

The Shapley value has the property that Y, ; Shiy(V) = V(I), i.e., the
Shapley value is Pareto efficient. Moreover, it is individually rational, i.e.,
Sh; > V({i}),Vs.

We now define for each Cournot game with differential information, C,
and for each set of weights, {\; : ¢ = 1,...,n}, the associated game with
side payments (I, VY) (we also refer to this as a “transferable profits” (TP)
game) as follows:

YSee Emmons and Scafuri (1985, p.60) for further discussion.
11 The Shapley value measure is the sum of the expected marginal contributions a firm
can make to all the coalitions of which it is a member.
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For each coalition S C I, let

maXZ/\ /w(q (W), ¢\ (w))dp(w) —maxZ/\H . (8.1)

ieS
We are now ready to define the private value production plan.

Definition 8.1.2: An output plan ¢ € Lg is said to be a private value
production plan of the Cournot game with differential information, C, if
there exist A\; > 0 (i = 1,...,n, which are not all equal to zero), with

Ailli(q) = Shy(V?P), Vi,

where Sh;(VY) is the Shapley value of firm ¢ derived from the game (I, V),
defined in (8.1).

The above definition says that the expected profits of each firm multiplied
by its weight \; must be equal to its Shapley value derived from the (TP)
game (I,VY).

An immediate consequence of Definition 8.1.2 is that the private value
production plan is individually rational (profits for firm i are greater than
of equal from the ones derived from the Cournot-Nash game). This follows
immediately from the fact that the game (I, V) is superadditive for all
weights. In addition, it is Pareto efficient.'?

We are now ready to state the first existence result of this section.

Theorem 8.1.1: Let C = {(Q;, 7, Fi,pt) : i = 1,...,n} be a Cournot game
as defined in Section 3, satisfying assumptions (A.1)-(A.2).
Then, a private value production plan exists in C.

Proof: This result can be proved along the lines of Krasa and Yannelis
(1996), Theorem 1. O

Remark: One can easily show that a pooled information (where the in-
formation that is being used is the pooled information) value production
plan'? exists as well.

8.2 The common knowledge value production plan

We now introduce another notion of a value production plan for the
Cournot gamie with differential information. The difference stems from the
measurability restriction on the type of production plans. It is an ana-
log of the coarse core of Yannelis (1991). We call it a common knowledge
value production plan, since the information that is being used is the com-
mon knowledge information. As we saw in the previous section a common

Y2For more details see Krasa and Yauuelis (1996), p.169.
13Since it is not incentive compatible we will not examine it thoroughly.
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knowledge production plan is coalitional incentive compatible. Therefore,
it is of great importance if we know that there is also a way to distribute
the surplus (if there is any) in a manner that the contribution of each firm
is rewarded.

We now define for each Cournot game with differential information, C,
and for each set of weights, {\; : ¢ = 1,...,n}, the associated game with
side payments (I, V) (we also refer to this as a “transferrable profits” (TP)
game) as follows:

For each coalition S C I, let

Vi) =max Y [ mi(e (@) ™S @)dute) (82)

i€S

subject to

i) for each i, g; is Aj_,F;-measurable.

The common knowledge value production plan can now be defined as in
definition (8.1.2), except that we replace (8.1) by (8.2) and also replace V7
by Ve.

Thus, in contrast to the private value production plan, we now require the
production plan within a coalition to be based on the common knowledge
information. Notice that the common knowledge value production plan is
coalitional incentive compatible. However, we cannot prove a general exis-
tence theorem. In fact, if, for example, one firm has “trivial” information
and the other has “full” information, the common knowledge information
implies that the trivial information must be used and therefore the super-
additivity condition of the function V{(-) may be violated, i.e., there can
exist coalitions S, 7 with SN7T =@ and VE(S) + VE(T) > VE(SUT).M In
the proof of proposition 6.3, we present an example with two firms where
the Cournot-Nash equilibrium yields higher profits than collusion under
common knowledge information, which destroys the superadditivity condi-
tion. This causes problems with the existence of a common knowledge value
production plan. Therefore, we cannot prove a general existence theorem
of a common knowledge value production plan.

9 Examples

Below we give examples with two firms, with differential information, that
collude using the common knowledge information rule and the distribution
of profits is determined by a common knowledge value production plan.
These examples illustrate how the common knowledge production plan is
determined and also show that firms with superior information, while keep-
ing the other characteristics of the firms (i.e., marginal cost) fixed, have
higher Shapley value and higher share of the industry profits. The profits

14See Krasa and Yannelis (1996), p.177, for more details.
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from collusion are higher than the Cournot-Nash profits and the Shapley
value of each firm captures its contribution to the total industry profits. It
is important to note here that in these examples the value allocation is in
the core and therefore the cartel can be viewed as stable, in the sense that
no coalition of firms can deviate from the cartel agreement and become
strictly better off.

Example 9.1

Consider two firms {1,2} that produce a homogeneous product. The
state space is 2 = {a,b} where each state occurs with probability 3 and
the private information of each firm is: 71 = {{a}, {b}} and F, = {{a,b}}.
We denote by ¢;(w), g2(w) the production in state w of firm 1 and firm 2
respectively. The inverse demand that firms face is: p = (5 — f(w)(q1(w) +
g2(w))). The marginal cost is zero for both firms. The slope [ takes on the
following values:

8 fw=a

1.2 fw=5b

Blw) =

A Cournot-Nash equilibrium is
q; (a) = 2.2916, g7 (b) = 1.25,
g3 (a) = q3(b) = 1.666.

Notice that the production is measurable with respect to each firm’s private
information. The ex-ante expected profit for the industry is II; + Iy =
3.03819 + 2.77778 = 5.81597.

Now suppose that the two firms collude under the common knowledge
information rule. The information they use now is the trivial information
and the optimum total production is 2.5. The expected industry profits are:
6.25. The problem that arises is how this surplus will be distributed among
the two firms. Or put it in different words, what is the production that will
be assigned to each firm? Without taking the information superiority of the
first firm into account, both firms are identical. Hence, one solution would
be just to split the profits. However, this is not a “fair solution” since firm
1 contributes more to the coalition than firm 2 does. The value production
plan allocation we discussed above provides a more sensible outcome.

The Shapley value of the two firms (with A} = Ay =1) is

1
Shi = 5[6.25 - 2.77778] + %[3.03819] = 3.25521

1
2
Then, a value production will be a solution to the following problem:

Shy = %{6.25 — 3.03819] + =[2.77778] = 2.99479.

(35— (g1 +¢2))q1 = 3.25521
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(5 — (g1 + g2))g2 = 2.99479.

Hence, a value production plan is ¢; = 1.30208 and ¢ = 1.19792. To
conclude, the firm with the superior information gets rewarded in the value
production plan, by being assigned a higher level of production and thus
higher profits (IT; = 3.25521 and Iy = 2.99479).

In the next example, the asymmetry of information comes from the cost
side.

Example 9.2

Consider two firms {1,2} that produce a homogeneous product. The
state space is 2 = {a,b} where each state occurs with probability % and
the private information of each firm is: F2 = {{a}, {b}} and F, = {{a,b}}.
We denote by ¢;(w), g2(w) the production in state w of firm 1 and firm 2,
respectively. The inverse demand that firms face is p = (5 — 1.5(¢qy (w) +
g2(w))). The marginal cost of each firm, which is measurable with respect
to each firm’s private information, is

8 Hw=a

cp(w) =
.2 e b
1 fw=a
c(w) =
1l fwa=b

A Cournot-Nash equilibrium is
q;(a) = g} (b) = .888889,

g5 (a) = 955556, g3 (b) = 822222,

The ex-ante expected profit for the industry is II; + Iy = 1.18519 +
1.19185 = 2.37704.

Now suppose that the two firms collude under the common knowledge
information rule. The information they use now is the trivial information
and the optimum total production is 1.33333. The expected industry profits
are 2.66667.

The Shapley value of the two firms (with \y = Xy =1) is

1 1
Shy = 5[2.66667 — 1.19185] + 7[1.18519] = 1.3,

[\

1
Shy = -;-[2.66667 ~ 1.18519] + 3[1.19185] = 1.33667.

Then, a value production will be a solution to the following problem:

(5—1.5(q1 +g2))q1 — 1 = 1.33,
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(5 —1.5(q1 + q2))g2 — g2 = 1.33667.

Hence, a value production plan is ¢; = .665 and ¢go = .668333. To conclude,
as in the above example, the firm with the superior information gets re-
warded in the value production plan, by being assigned a higher level of
production and thus higher profits.

10 Concluding remarks

Remark 1: Alternatively, one could have used the notion of the a—core
which is defined as follows: We say that ¢ € Lg is an a-core of the game C
if

it is not true that there exist S C I and (y;)ies € ILiesLg, such that
for any 27\ € g5 Lg,, i(y®.2"\%) > I;(g) for all i € S.

It follows that under our assumptions in Section 3 the a-core is non-
empty [see Yannelis (1991)]. A collusive agreement that is an element of
the a-core is individually rational, Pareto optimal and coalitional stable.
Although these are clearly desirable properties, we do not have a straight-
forward way of selecting an element from the core that would capture the
“worth” of each firm. To this end, the Shapley value provides a relatively
easy way of figuring out the contribution of each firm to the total profits
and how to distribute them among the firms.

Remark 2: In the two firms case, the Shapley value is in the core and there-
fore in this case the duopoly with differential information can be viewed
as stable. This is not the case for more than two firms unless the corre-
sponding TU game is convex. Zhao (1998) provides necessary and sufficient
conditions for the deterministic TU game to be convex. In a subsequent pa-
per we intend to examine the conditions which guarantee the convexity of
the side-payments game defined in (8.1) or (8.2).
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