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We provide some new Caratheodory-type selection theorems. i.e.. selections for 
correspondences of two variables which are continuous with respect to one variable 
and measurable with respect to the other. These results generalize simultaneously 
Michael’s [2l] continuous selection theorem for lower-semicontinuous correspon- 
dences as well as a Caratheodory-type selection theorem of Fryszkowski [IO]. Ran- 
dom lixed point theorems (which generalize ordinary fixed point theorems, e.g., 
Browder’s 161) follow as easy corollaries of our results. 1 19X7 Aoademic Press, Inc. 

1. INTRODUCTION 

The two major types of selection theorems are continuous selection 
results of Michael-type [21], and measurable selection results of von 
Neumann-Aumann-type [l, 8, 191. Both types of selection theorems have 
found important applications in general equilibrium theory as well as in 
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other areas of analysis [I I, 15, 17. 23, 29, 30, 311. The present paper is 
concerned with so-called Caratheodory-type selections which combine both 
measurable and continuous selections via the setting of a product space. 
Thus Caratheodory-type selections are selections for correspondences of 
two variables which are continuous with respect to one of the variables and 
measurable with respect to the other. The main reference for this type of 
result appears to be Fryszkowski’s paper [lo], which in turn generalizes 
results of Cellina and Castaing [7]. We ourselves have encountered need 
for this type of result in [ 17, 311 while studying equilibria in economies 
with a measure space of agents. 

Our main result (Theorem 3.1) is a simultaneous generalization of 
Michael’s continuous selection theorem for lower-semicontinuous 
correspondences (Theorem 3.1”‘, [21, p. 3681) as well as of Fryszkowski’s 
Theorem 1 [ 10, p. 443. As an application of Theorem 3.1 we obtain a ran- 
dom fixed point theorem, Theorem 3.3, which generalizes the fixed point 
theorem of BohnenblusttKarlin [4] as well as a result of ltoh [16]. The 
random fixed point theorems, in turn, are generalizations of ordinary fixed 
point theorems, e.g., Browder’s 161, but only when the underlying space is 
separable. 

Now, we would like to comment on the relationship between our results 
and those of Fryszkowski. We consider the following setting. Let T be a 
measure space, and X and Y be topological spaces. Let 4: T x X -+ 2 ’ be a 
(possibly empty-valued) correspondence and 

A function f: I/ 4 Y such that f‘( t, X) E &t, X) for all (t, X) E U, f( ., x) is 
measurable for each x and f(t, .) is continuous for each t is said to be a 
Caratheodory-type selection for the correspondence 4. In the actual results, 
ours as well as Fryszkowski’s, it is assumed that T is a complete measure 
space, X is complete separable metric, and Y is a Banach space. In 
addition, Fryszkowski assumes that X is locally compact and U = T x A’. 

In our view, Fryszkowski’s arguments are somewhat ad hoc. In effect, by 
an application of Michael’s continuous selection theorem, he reduces the 
problem to an application of the measurable selection theorem of [19] to 
an auxiliary correspondence into a function space. This type of argument 
cannot be readily adapted to the setting when U is an arbitrary subset of 
TX X. Likewise, we do not need the local compactness. By comparison, our 
arguments are more direct. To a large extent we simply just mimic 
Michael’s proof. That is, we carry out a “parametrized” version of his 
proof, where the parameter t ranges over the measurable space T. We think 
that the details here are far from routine. We need a number of results scat- 
tered throughout the literature on measurable selections (Castaing- 
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Valadier [S] is especially helpful) as well as some simple ideas of “descrip- 
tive set-theoretic” character. 

Finally, we suggest that allowing U to be an arbitrary subset of TX X, 
rather than T x X itself, is a significant generalization. We needed this type 
of results in [ 171 and [31] to extend the theory of Nash equilibria, 
developed in [9, 11, 13, 14, 20, 22, 24, 26, 29, 301 to the setting of an 
arbitrary measure space of agents and an infinite dimensional strategy 
space. Moreover, random fixed point theorems also follow as easy 
corollaries of this more general version, 

In [lS] we have proved the Caratheodory-type selection theorem which 
we needed in [ 173. This result did not require the full strength of Michael’s 
methods but only a rather direct argument involving partitions of unity. 
The present paper deals primarily with the kinds of situations arising in 
applications of the theory of measurable selections in analysis (lower- 
semicontinuous closed-valued mappings), see [l, 2, 81. By contrast, [lS] 
is focused on a different and narrower situation which arose in [17]. 

The paper is organized as follows. Section 2 contains notation and 
definitions. Section 3 contains the statements of the main results of the 
paper. Several technical lemmata needed for the proof of our main results 
are given in Section 4. Finally, Section 5 contains proofs of the main 
results. 

2. NOTATION AND DEFINITIONS 

2.1. Notation 

2* the set of all subsets of the set A, 
cl A the closure of the set A, 

\ the set theoretic subtraction, 

If 4: X + 2 ’ is a correspondence then 4 I (.: U + 2 ’ denotes 
the restriction of 4 to U, 

B(x, E) the open ball centered at x of radius E, 
diam diameter, 
dist distance, 

proj projection. 

2.2. Definitions 

Let X and Y be sets. The graph G, of a correspondence I$: X + 2’ is the 
set G, = {(x, JJ) E X x Y: y E Q(x)}. If X and Y are topological spaces, 
4: X+ 2’ is said to be lower semicontinuous (1.s.c.) if the set {x E X: 
4(x)n VZ@} P is o en in X for every open subset V of Y. 

If (X, a) and (Y, 9) are measurable spaces and 4: X-+ 2’ is a 
correspondence, I$ is said to have a measurable graph if G, belongs to the 
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product a-algebra 0 0.8. We are often interested in the situation where 
(X, (Y) is a measurable space, Y is a topological space and .$I = .W( Y) is the 
Bore1 o-algebra of Y. For a correspondence 4 from a measurable space into 
a topological space, if we say that d has a measurable graph, it is 
understood that the topological space is endowed with its Bore1 a-algebra 
(unless specified otherwise). In the same setting as above, i.e., (X,(r) a 
measurable space and Y a topological space, d is said to be lo~rrr 
measurable if 

(.c&x)n V#@) EfI for every V open in Y. 

A continuous selection for a correspondence 4 between topological spaces 
is a function ,fdelined on the set 2 = is E X: 4(.x) # @ >, continuous on this 
set and satisfying ,f’(.u) E d(x) for .Y E ,I’. 

A measurable selection is defined analogously: if w is as above, we require 
,f to be measurable on 2 with respect to the a-algebra of relatively 
measurable subsets of 2. That is, if (X, a) is a measurable space, the 
relatively measurable subsets of 2 are sets of the form 8n A, where A E a. 
Of main interest is the case when R belongs to Ct and then, of course, the 
relatively measurable subsets of 2 are just the (ordinary) measurable sub- 
sets of .P. 

Let (X, 0’) be a measurable space and Y and Z be topological spaces. 
Let 4: Xx Z + Y be a (possibly empty-valued) correspondence. Let U = 
{(x, :) E Xx Z: &s, z) # @j. A Cururheodory selection ,for 4 is a function 

,fi U -+ Y such that .f’(x, 2) E 4(x, 2); for each x E X, .f’(x, . ) is continuous on 
I/‘ = [: E Z: (x, 2) E U}, and for each -? E Z, ,f‘( ., :) is measurable on U, = 
{XE.x (s, Z)E u;. 

If (X, fir), (Y, ti) and (Z, +?) are measurable spaces, UGXXZ and 
j! U + Y. we callJ’joinrly tmasurahle if for every BE 2, ,f ‘(B) = U n A for 
some A ~0’8%. It is a standard result that if Z is a separable metric 
space, Y is metric and ,fl Xx Z -+ Y is such that for each fixed x E X, f(x, ) 
is continuous and for each fixed = E Z, .f( ., z) is measurable, then,fis jointly 
measurable (where .3=&(Y), % =.%I(Z)) However, when U is a proper 
subset of Xx Z, the situation is more delicate. The appropriate result is 
stated as Lemma 4.12. 

Recall that an open cover oli of a topological space X is locally finite if 
every x E X has a neighborhood intersecting only finitely many sets in ‘)/. 
With all these preliminaries out of the way, we can now turn to our main 
results. 

3. MAIN THEOREMS 

The theorem below generalizes the Caratheodory-type selection theorem 
of Fryszkowski [lo]. 
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THEOREM 3.1. Let (T, t, u) be a complete finite measure space, Y be a 
separable Banach space and Z be a complete, separable metric space. Let 
4: T x Z + 2’ be a convex, closed (possibly empty-) valued correspondence 
such that: 

(i) b( ., . ) is lower measurable with respect to the a-algebra 5 @S?(Z) 
and 

(ii) ,for each t E T, q5( t, . ) is 1s.~. 

Then there exists a Caratheodory-type selection for 4. Moreover this selec- 
tion is jointly measurable. 

THEOREM 3.2. The statement qf Theorem 3.1 remains true without closed 
valueness of 0: T x Z + 2’ if either 

(i ) Y is ,finite dimensional or 

(ii) Q(t, x) has a nonempty interior .for all (t, x) E U. 

Let T be any measure space and X be a nonempty subset of any linear 
topological space. Let 4 be a correspondence from TX X into 2x. The 
correspondence q5 is said to have a random ,fixed point if there exists a 
measurable function x: T + X such that x(t) E q5( t, x(t)) for almost all t in 
T. Below we provide a random fixed point theorem. This result generalizes 
a theorem of Bohnenblust and Karlin [4]. For other random fixed point 
results see [ 16, 231. 

THEOREM 3.3. Let (T, z, u) be a complete finite measure space, and X be 
a nonempty compact convex subset of a separable Banach space Y. Let 
4: T x X -+ 2x be a nonempty, convex, closed valued correspondence such 
that: 

(i) d( ., . ) is lower measurable and 

(ii) for each t E T, &t, ) is I.s.c. 

Then 4 has a random fixed point. 

THEOREM 3.4. The statement of Theorem 3.3 remains true without closed 
valueness of 4: T x X -+ 2x tf either 

(i) Y is j&rite dimensional or 

(ii) q5( t, x) has a nonempty interior for all (t, x) E T x X. 

Remark 3.1. We wish to comment further on Theorem 3.1. Let U = 
{(t,x)ETxZ: qS(t,x)#@]. It follows at once from (i) that UEZ@S~(Z). 
Hence clearly U, E z for every x E Z, and by (ii) U’ is open for every t E T. 
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Assumption (i) can be relaxed to supposing the lower measurability with 
respect to the a-algebra of t@ J(Z)-relatively measurable subsets of C’ 
together with the hypothesis U, E r for every x~ Z, and Theorem 3.1 still 
holds. 

Remurk 3.2. Theorem 3.4(i) can be seen as a generalization of a version 
of a theorem of GaleeMas-Cole11 [ 111 given in YannelissPrabhakar [29, 
Theorem 3.43. 

4. LEMMATA 

LEMMA 4.1 (Aumann). I f  (T, 5, u) is u complete finite measure space, Y 

is a complete, separable metric space, and F: T + 2 ’ is a correspondence with 
measurable graph, i.e., G, E z @ g( Y), then there is a measurable ,function 
.fi proj.(G,:) -+ Y such that,f(t) E F(t),for all t E proj.(G,). 

Proof See Aumann [ 1 ] or Castaing-Valadier [3]. 

LEMMA 4.2 (Projection theorem). Let (T, t, p) be u complete finite 
measure space and Y be a complete, separable metric space. [f  G belongs to 
z @ &?( Y), its projection proj J G) belongs to 5. 

Proof See Theorem III.23 in CastainggValadier [3]. 

LEMMA 4.3. Let (T, T) be a measurable space, Z he an arbitrary 
topological space, and W,,, n = 1, 2 ,..., be correspondences from T into Z with 

measurable graphs. Then the correspondences (Jn W,,(. ), fin W,,(. ) and 
Z\ W,,( ) have measurable graphs. 

The proof is obvious. 

LEMMA 4.4. Let (T, z, u) be a complete finite measure space, Z be a 
complete separable metric space and W: T -+ 2z be a correspondence with 
measurable graph. Then for every x E Z, dist(x, W( .)) is a measurable 

,function, kvhere d&(x, 0) = +co. 

Proof First, observe that S-(tET: W(t)#@) belongs to r 
by Lemma 4.2. Now {s E S: dist (x, W(s)) < j-} = {s E S: W(s) n 
B(x, jW) # 0} = proj7[Gw n (T x B(x, A))]. Another application of 
Lemma 4.2 concludes the proof. 

LEMMA 4.5. Let (T, 5, p) be a complete finite measure space, Z be a 
complete separable metric space, and W: T + 2” be a correspondence with 
measurable graph. Then the correspondence V: T -+ 2z defined by 

V(t)= {xEZ:dist(x, W(t))>/lf (where A is any real number) 
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has a measurable graph. The same holds for the correspondence V(t) = 
{FEZ: dist(x, W(t))<i}. 

Proof: Consider the function g: T x Z -+ [0, + CD] given by g(t, x) = 
dist(x, W(t)). By Lemma 4.4, g( ., x) is measurable for each x, and 
obviously g(t, . ) is continuous for each t. It is well known that g is 
therefore jointly measurable, i.e., measurable with respect to the product 
o-algebra SOB(Z). For this result see, e.g., Lemma 111.14, [3]. Finally, 
G,=gm’([je, +x1), hence G.E~@~(Z). 

LEMMA 4.6. Let (T, z) he a measurable space and Z he a separable 
metric space. Lf F: T + 2z is a lower measurable correspondence, then the 
correspondence I/J: T + 2z defined by $(t) = cl F(t) has a measurable graph. 

Proof See Himmelberg [ 12, Theorem 3.31. 

LEMMA 4.7. Let (S, 05) he a measurable space, X a separable metric 
space and W: S + 2x a lower measurable correspondence. Then the 
correspondence V: S + 2x defined by 

V(s) = J-YE X: dist(x, W(s)) < i.}, 

where ,! is any real number, has a measurable graph with respect to the 
o-algebra (;% @ B(X). 

Proof: We consider the function 

g(s, x) = dist(x, W(s)), 

where g(s, x)= fnrj if W(s)= @. Since W(.) is lower measurable, it 
follows at once that g( ., x) is measurable for every fixed x, for 

(s E S: dist(x, W(s)) < 3,) = {s E S: W(s) n B(x, i.) # @j 

and the latter set belongs to 62 by the assumption of lower measurability. 
(In particular, {SE S: W(s) # 0) E a.) 

Obviously, for each fixed s E S, g(s, . ) is continuous. Hence by Lem- 
ma 111.14, [8] (or see Lemma 4.12), g is measurable with respect to the 
product a-algebra a @ g(X). Finally 

((s, x): XE V(S)} =g I(( - E, A)) E a @g(X), which is the desired result. 

LEMMA 4.8. Let (S,, ai j ,for i = 1, 2, be measurable spaces. S c S, , 
S E a,, h: S -+ S2 be a measurable function and A E a, 0 an2. Then 

proj,,(G,,nA)EQ,. 

Proof. See [ 18, Lemma 4.43. 



LEMMA 4.9. Let (T,, T,) ,fkr i = I. 2, 3, he measurable spaces, .I’: T, --) T, 
hc N measurahk ,fimtion und 4: T, x T, + 2” he a correspondence w,ith 
meusurahk graph. i.e., G, E T , @ 72 @ T ?. Let W: T, + 2 ‘- he defined /I), 

W(t)= ;XE T1: y(t)E&t, .r,;. 

Then W has u tncJusurahk gruph, i.e., G‘ Le E T , @ T:. 

Proof: See [ 18, Lemma 4.51. 

LEMMA 4.10. Let (T, t) he a measurable space, S c T, SE T and Y be u 
complete, separable metric space. Let 4: T + 2’ he a lower measurable 
correspondence und,f: S + Y he a measurable function. Then the correspon- 
dence $1 T--f 2 ’ ricfhed /I)% 

Q(t) = d(t) n (.f’(t) + WC)) 

is louver measurable. Here Eve understund that f( t) + B(0, E) = 0 $’ t 4 S. 

Proof: We must show that {t E T: $(t) n U # a} E T for every open 
subset U of Y. Set e(t) = (d(t) n U) + B(0, c). Observe that 

(t~T:~(t)nU#(ZI)={t~T:(q5(t)nU)n(,f(t)+B(O,~))#@) 

= itES:,f(t)EH(t)}=proj7(G,nG,,). 

Since U is open, d(t) n U is lower measurable, and since H(r) = (~1 E Y: 
dist( j’, q5( t) n U) < E}, 0(. ) has a measurable graph by Lemma 4.7. There- 
fore by Lemma 4.8, projr(G, n G,,) E T. Therefore (t E T: Ic/( t) n U # 0 ) E T. 
This completes the proof of the lemma. 

LEMMA 4.11. Let A’, Y be topological spaces and 4: X -+ 2 ‘, II/: X + 2 ’ 
be nonempty tialued kc. correspondences. Let V be an open entourage for 
some umform structure on Y. Suppose that b(x) n V($(x)) # @for all x E X. 
Then the correspondence 8: X+ 2’ defined by 8(.x) = d(x) n V($(x)) is kc. 

Proqc See Michael [21, Proposition 2.51. 

LEMMA 4.12. Let (T, T) be a measurable space, Z be a separable metric 
space, Y be a metric space and U E T x Z be such that: 

(i) ,ftir each tE T the .set U’= j.u~Z: (t, X)E U) is open in Z and 

(ii) for each x E Z the set U, = { t E T: (t, .\r) E U) belongs to r. 

Moreover, let $ U + Y be such that for each t E T, f‘(t, ) is continuous 
on U’ and for each x E Z, .f( ., x) is measurable on U,. 
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Then f is relatively jointly measurable with respect to the a-algebra 
z 0 B(Z), i.e., for every V open in Y, 

for some A E 7 0 S(Z). 
Finally, condition (ii) is implied by either one of the following two con- 

ditions: 

(ii’) UEE@O(Z); 

(ii”) 2 is complete separable metric; for some u’ G T x Z x .? such 
that u’ E r 0 g(Z) @g(z), U = proj Tx z( U’) and (T, z) is the underlying 
measure space of some complete finite measure space (T, z, p). 

Remark. When U= TX Z the above lemma is standard; see, e.g., Lem- 
ma 111.14, [8]. The proof from [S] gives even the more general version of 
Lemma 4,12 after only minor modifications. We give the details for reader’s 
convenience. 

Prooj: Let x,, (n = 0, 1, 2 ,...) be dense in Z. For p >, 1 put &( t, x) = 
.f’( t, x,,), for (t, x) E U, if n is the smallest integer such that .Y E B(x,,, l/p) and 
(t, x,,) E U. It is easy to see that f,(t, x) =,f(t, x,,) if (t, x) belongs to the set 

Note that by the hypothesis (ii), Ui,, E z. 
Now, we observe that f, is defined everywhere on Ii. To see this, let 

(t, x) E U. By (i), U’ is open. Hence let E > 0 be such that B(x, E) G U’. Since 
x,, (n = 0, 1, 2 ,...) are dense in Z, there is some n such that 
X,,E B(x, min(e, l/p)). Thus X,E U’. Hence XE B(x,,, l/p) and (t, x,) E U. 
Therefore, .&( t, x) is defined. 

We shall now show that f, is relatively jointly measurable. For this pur- 
pose let V be open in Y and set 

s,= {tEU,n:,f(t,X,)E V). 

Since t!Jyn E 5 and f( ., x,) is measurable on Uym, it follows that S,, E 5. It is 
now easy to see that 

f,‘(V)= fi s ,,-,[ ~x~B~x~~~~~..u.“~x~~~~~lnu~ 
Thus f, is relatively jointly measurable. 

Since ,f(t, .) is continuous on U’, we obtain at once that f,,(t, x) con- 
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verges to .f’( t. X) when /J approaches infinity. Thus /‘(f. .x) is relatively jointly 
measurable. That a limit of relatively jointly measurable functions is 
relatively jointly measurable is clear, since relative joint measurability is 
just the ordinary measurability with respect to an appropriate o-algebra; in 
our case, with respect to the g-algebra of subsets of JJ which are of the 
form U n A where A E r@.&(Z). 

That (ii’) implies (ii) is well known and easy to see. Finally let U and U’ 
be as in (ii”) and let .Y E Z. Set 

U” = {(f, II): (f, x, y) E U’ ). 

Again clearly U” E T O.@(p) and it is easy to see that proj.( U”) = CJ,. 
Hence U,. E T by Lemma 4.2. 

5. PROOF OF THE MAIN THEOREMS 

We begin with an approximate Caratheodory-type selection result which 
is needed for the proof of Theorem 3.1. 

MAIN LEMMA 5.1 (Approximate Caratheodory-Type Selection). Let 
(T, T, p) he u complete measure space, Y be a separable Banach space and Z 
he u complete, separable, metric .space. Let 4: TX Z -+ 2’ be a comer wlued 
correspondence (possibly empty) such thut 

(i) q5( ., ) is lower measurable und 
(ii) ,for each t E T, q5( t, ) is 1,s.~. 

Let U=j(t,x-)cTxZ: Q(t,.y)#@}, andfor each XEX, let U.,={tcT: 
(t, X) E U) and ,for each t E T, let U’ = 1.x E Z: (t, X) E U I. Then there exists 
un approximate or c-Caratheodory-type Selection from d 1 U, i.e., given E > 0, 
there e.uists u ,function ,f’“: U + Y such that ,f”( t, x) E q5( t, x) + B(0, E), and for 
each .Y E Z, ,f’j ., x) is nzeasurahle on U, und ,for each t E T, ,f “( t, . ) is con- 
tinuous on I/‘. 

Proqf: Since Y is separable we may choose { ~1,~: n = 1, 2,... } to be a 
countable dense subset of Y. For each t E T and E > 0, let Wi( t) = {x E Z: 
J’,~E [q5(t, s)+ B(0, E)]}. It follows from (ii) that for each te T and 
n = 1, 2,..., W;,(t) is open in Z. Since for each (t, x) E U, &t, x) # 0, the set 
( W:i(t): n = 1, 2,...} 1s an open cover of U’. Note that &t, x) + B(0, E) = 
(YE Y: dist(y,#(t,x))<&}. Setting S=TxZ, X= Y, ~K=T@~(Z) and 
W(s) = d( t, X) for ,y = (t, X) E S in Lemma 4.7, we conclude that q5( ., .) + 
B(0, E) has a measurable graph. By Lemma 4.9, W;( .) has a measurable 
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graph. This is also easy to see directly. For each m = 1, 2,..., define the 
operator ( ), on subsets of Z by 

( w),, = w  E W: dist(w, Z\ W) >$ . 

For n = 1, 2,..., let V”,(t) = V;ff)\U;: I( kQ(t)),,. It can be easily checked 
that { V;(t): n = 1, 2,...} is a locally finite open cover of the set U’. Since 
W;,(. ) has a measurable graph, by Lemmata 4.3 and 4.5, V;( .) has a 
measurable graph. Let { g;(t, x): n = 1, 2,... ) be a partition of unity sub- 
ordinated to the open cover { V:(t): n = 1, 2,...}, for instance, for each 
n = 1, 2,..., let 

gi( t, x) = 
dist(x, Z\ P’;j t)) 

C;= , dist(x, Z\ V;( t))’ 

Then { g;( t, * ): n = 1, 2,... i is a family of continuous functions giI( t, ): U’ -+ 
[0, 1 ] such that gf(t, x) = 0 for x $ V:(r) and C;;=, g:;(t, x) = I for all 
(t, x) E U. Define f”: U + Y by ,f”(t, x) = C,:-=, g;( f, x) yn. Since ( k’~~(t): 
n = 1, 2,...) is locally finite, each x has a neighborhood N, which intersects 
only finitely many v”;(t). Hence, f”(r, . ) is a finite sum of continuous 
functions on N, and it is therefore continuous on N,. Consequently,f”(t, . ) 
is a continuous function on U’. Moreover, for any M such that g”,(t, x) > 0, 
?CE y,(r)c W:;(t)= {zfzZ: y,,~ [f5(t,z)+B(O,~)]}, i.e., y,,E&t,x)+ 
B(0, E). Sof”(r, x) is a convex combination of elements from the convex set 
b( t, x) + B(0, E). Therefore, f”( t, x) E &t, x) + B(0, E) for all (t, x) E U. Since 
y,( .) has a measurable graph, by Lemmata 4.3 and 4.4, dist(x, Z\V:;(. )) is 
a measurable function for every x E Z. Hence, for each n, x, g;( ., x) is a 
measurable function. Consequently, f‘“(., x) is measurable for each x. 
Therefore f’: is an approximate or c-Caratheodory-type selection from Q 1 U. 
This completes the proof of the Main Lemma. 

Proqf qf’ Theorem 3.1. Now, we construct inductively, functions 
.f,: U--t Y, I = 1, 2 ,..., such that 

(a) ,f,(t, . ) is continuous on U’ and f,( ., x) is measurable on U.,, 

(b) f;(r, X)E&Z, x)+ B(0, l/2’), I= 1, 2 ,..., 

(c) f,(t,X)Ef,-,(t,X)+2B(O, l/2’-‘), 1=2,3 ).... 

The existence off, satisfying (a) and (b) for I= 1, is guaranteed by the 
Main Lemma 5.1. Suppose that we havef, ,..., fk satisfying (a), (b), and (c) 
for I = 1, 2 ,..,, k. We must find fk + ,: U + Y which satisfies (a), (b), and (c) 
for I = k + 1. Now define &k + I (t, x) = d( t, x) n (fk( t, x) + B(0, l/2’)). Then 
dA + ,(t, x) is nonempty, by the induction hypothesis, and 4k + ,(t, ) is I.s.c. 
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by Lemma 4.1 I. It follows from Lemma 4.10 that til. + ,( ., ) is lower 
measurable. By the Main Lemma 5.1 there exists ,fl, + ,: U + Y such that 
.~~+,(~,.K)E~~+,(~,.K)+B(O, l/2’“‘). But then f;+,(t,.~)~(,f~(t,,~)+ 
B(0, 1/2’))+B(O. l;i2“+‘)c(f,(f,.u)+28(0, l/2’)) ‘which is (c) and 
.f~+,(r,.K)E~(t,.K)+B(O, 1/2L I’ ) which is (b). By (c). {,f,: I= 1, 2 ,... 1 is 
uniformly Cauchy, and therefore converges uniformly to ,f: CI + Y. Since 4 
is closed valuedJ’( t, X) E d( t, X) for all (t, .y) E U. Furthermore, ,f’( t, . ) is con- 
tinuous in Ii’ and .f‘( ., .v) is measurable on I/,. By Lemma 4.12, ,f’( ., ) is 
jointly measurable. This completes the proof of the theorem. 

MAIN LEMMA 5.2. Under the conditions of Theorem 3.1 there exists a 
count&e collection .F of Curatheodory-type selections ,from d I U such that 

,for ever~~ (t, .Y)E U, [,f(t, x):,f~F-) is dense in &t, x). 

Proof: Let jE”: n = I, 2,... ) be a convex open basis of Y. For each 
n = 1, 2,..., lY”={(t,x)~TxZ: ~(t,x)nE”#12(}~rO.~(Z). For each 
t E T, define U”(t) = {X E Z: (t, x) E Cl”}. Note that for each t E T, U”(f) is 
open in Z. Moreover, U”(. ) has a measurable graph. For each k = I, 2,..., 
and f~ T, let A;(r)= (xEZ: dist(x, Z\U,,(t))a l/2”}. By Lemma4.5, A;(.) 
has a measurable graph. Note that U;= , A;(t) = U”(t), and for each t E T, 
A; is closed in Z. Define 4;: T x Z -+ 2 ’ by 

i 

cl(qqt, x) n .,,) 
&x4 -xl = &/, dK) 

if .Y E A;(f) 

if x $ A;(t). 

Since for each t E T, A;(( 1) is closed in Z, #;t( t, ) is 1,s.~. Moreover, since for 
every open subset v of Y, {(t,X): d;(r,,~)nv#IZI}={(t,x): 
cl(#(t,u)nE”)n I’#@, x~A;(t)} u {(t, x): 4th x) n V# 0, .Y # A;(t)} E 
T @A’(Z), qQ( ., ) is lower measurable. By Theorem 3.1 there exist 
Caratheodory-type selection ,f z( ., . ) from &( ., ). Let 9 be the collection 
of all ,f;, n, k = 1, 2,... Then .P is a countable collection of Caratheodory- 
type selections from 4 I U, and it can be easily seen that {f(t, x): f e 9 ) is 
dense in d( t, X) for all (f, X) E U. This completes the proof of the lemma. 

We will need the following notions. If K is a closed, convex subset of a 
normed linear space, then a supporting set of K is a closed convex subset S 
of K, Sf K, such that if an interior point of a segment in K is in S, then the 
whole segment is in S. The set of all elements of K which are not in any 
supporting set of K will be denoted by Z(K). The following facts below are 
due to Michael [21, p. 3721. 

FACT 5.1. If any convex subset K of Y is either closed or has an 
interior point or is finite dimensional, then I(cl K) c K. 
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FACT 5.2. Let K be a nonempty, closed, convex separable subset of a 
Banach space Y, and { y;: i= 1,2,...} be a dense subset of K. If 

(Yi-Y,) 
Z’=yf+max(l, I1y,-yJ) 

for all i and z = f (4)’ zi, 
!=I 

then z E I(K). 

Proof See Michael [ 17, Lemma 5.1, p. 3721. 

ProqfqfTheorem3.2. Detine$:TxZ+2Yby$(t,x)=cl~(t,x).Since 
&t, .) is 1.s.c. so is $(t, ). Moreover, I+!J is lower measurable. By the Main 
Lemma 5.2 there exist Caratheodory-type selections { gk( t, x): k = 1, 2,... ) 
dense in $( t, x) for all (t, X) E U. Let for each k = 1, 2 ,..., 

.f;(c -xl =g,(t, x) + g!Jc xl -s,(c xl 
max(l, IIgJf, xl-g,(f, -x)11)’ 

.f(c x) = f $,f&, x). 
k=l 

By Fact 5.2, f(t, x) E Z($(t, x)) for all (t, x) E U. Since the series defining f 
converges uniformly, it follows that for each t E T, ,f(r, .) is continuous and 
for each XE X, .f(., X) is measurable. By Fact 5.1, f(t, X)E I($([, x)) c 
q(r, X) if either (i) or (ii) of Theorem 3.2 are satisfied. This completes the 
proof of the theorem. 

Proqf of Theorem 3.3. It follows from Theorem 3.1 that there exists a 
functionfl TX X+ X such that f(t, X) E d(t, X) for all (t, x) E T x X, and for 
each .Y E X, ,f( ., x) is measurable and for each t E T, ,f(r, ) is continuous. 
Moreover, ,f( ., . ) is jointly measurable. 

For each t E T, let F(t) = { x E A’: g( t, x) = 0}, where g( t, x) = f( t, X) - x. 
It follows from the Tychonoff fixed point theorem that the functionf(t, . ): 
X -+ X has a fixed point. Therefore, for each t E T, F(t) # @. Since g is 
jointly measurable, F has a measurable graph. Hence by Aumann’s 
measurable selection theorem (Lemma 4.1), there exists a measurable 
function x*: T + X such that for almost all t in T, x*(t) EF(?), i.e., x*(t) = 
,f(t, x*(r)) E d(t, x*(r)). This completes the proof of the theorem. 

Proof of Theorem 3.4. The argument is similar to that adopted in the 
proof of Theorem 3.3 except that one must use now Theorem 3.2 instead of 
Theorem 3.1. 



406 

REFERENCES 

I. J P. AI “IN /,%I) A. C‘F.I.I ,%A, “Diffcrcnt~al Inclusions,” Springer-Verlap. New York. 1984. 
2. J. P. ACJHIN AYI) I. EKI.L.ANI), “Apphed Nonlinear Analysis.” Wiley~lntersclcnce. New 

York. 1984. 
3. R. J. AUMANN, Measurable utility and the measurable choice theorem, it, “La Decision.” 

pp. 15-26, C.N.R.S.. Aix-en-Provcnce, 1967. 
4. H. BOHNENBLIJST ANI) S. KAKLIN. On a theorem of Ville. in “Contributions to the Theory 

of Games I” (H. Kuhn and A. Tucker, Eds.), Princeton Univ. Press, Princeton, N.J., 1950. 
5. P. A. BOKGLI~~ ANI) H. K~IIIING, Existence of equilibrium actions and equilibrium: A note 

on the “new” existence theorems, J. Ma/h. .&on. 3 ( 1976). 313-316. 
6. F. BKOWDEK. The lixcd point theory of multivalued mappings in topological vector 

spaces. Ma/h. Ann. 177 (196X). 283 301. 
7. C. CASTAING. Sur I’existence des sections sCpar&ment mesurable et skparement continues 

d’une multi-application. &I “Travaux du Seminaire d’analyse Convexe,” Univ. des. Sci. et 
Techniques du Languedoc, No. 5, p. 14, 1975. 

8. C. CASTAINC; ANI) M. VALAIIWK. “Convex Analysis and Measurable Multifunctions.” Lec- 
ture Notes in Mathematics, No. 580, Springer-Verlag. New York. 1977. 

9. G. DEHK~U. A social equilibrium existence theorem, Pro<.. Nuf. Awd. SC;. U.S.A. 38 
(1952). 88&X93. 

IO. A. FKYSZKOWSKI. Caratheodory-type selectors of set-valued maps of two variables, Bull. 
.Aud. Poh. Sc,i. 25 (1977), 4146. 

I I. D. GAI.~ ANI) A. MAS-COLILL, An equilibrium existence theorem for a general model 

without ordered preferences, J. Mafh. Ewn. 2 (1975), 9-l 5. 
12. C. J. HIMMELBEKG, Measurable relations, Fund. Mu/h. 87 (1975), 53-72. 
13. M. A. KHAV. “Equilibrium points of nonatomic games over a non-retlcxlve Banach 

space.” J. A~~r0.v. Tlleor!, 43 ( 1985 ). 370-376. 
14. M. A. KHA’U. On extensions of the Cournot-Nash theorem, in “Advances in Equilibrium 

Theory” (C. D. Aliprantis (‘I N/.. Eds.), Springer-Verlag, Berlin, 1985. 
15. M. A. KHAN AYII N. S. PA~AGEOKGIW. “On Cournot&Nash Equilibria in Generalized 

Quantitative Games with a Continuum of Players,” Univ. of Illinois. Urbana, 1985. 
16. S. ITOH, Random fixed point theorems with applications to random differential equations 

in Banach spaces, J. Math. Anal. Appl. 67 (1979), 261-273. 
17. T. KIM, K. PKIKKY. ANII N. C. YANNELIS, “Equilibria in Abstract Economies with a 

Measure Space of Agents and with an Infinite Dimensional Strategy Space,” Univ. of 
Mmnesota, Minneapolis, 1985. 

18. T. KIM. K. PKIKKY. ANU N. C. YANNELIS. “On a Caratheodory-Type Selection Theorem,” 
Univ. of Minnesota, Minneapolis, 1985. 

19. K. KI~KATOWSKI ANI) C. RYL.I.-NAKDZEWSKI, A general theorem on selectors, Bull. Acud. 
Pohrr. Ski. Ser. .%i. Marsh. As/ronom Phv.s. 13 (1965). 397403. 

20. A. MAS-COL~LL. On a theorem of Schmeidler, J. Math. Econ. 13 (1984), 201-206. 
21. E. MICHAEL, Continuous selections I, Ann. Molh. 63 (1956), 363-382. 
22. J. F. NASH. Noncooperative games, Ann. Math. 54 (1951), 286-295. 
23. N. S. PAPAGEOKGIOIJ, Random fixed point theorems for measurable multifunctlons in 

Banach spaces, Proc,. Amer. Math. Sot.. in press. 
24. D. SCHMEIDLEK, Equilibrium pomts of nonatomic games, J. Sfu/kt. Phys. 7 (1973). 

295-300. 
25. W. SHAFCK ATW H. SOI\;NENSCHEIN, Equilibrium in abstract economies without ordered 

preferences. J. Mu/h. Econ. 2 (1975), 345-348. 
26. S. TOLSSAIN-~. On the existence of equilibrium with infinitely many commodities and 

without ordered preferences. J. Econ. Theory 33 (1984), 98-t 15. 



CARATHEODORY-TYPE SELECTION THEOREMS 407 

27. E. WESLEY, Bore1 preference orders in markets with a continuum of traders, J. Mar/t. 
Econ. 3 (1976), 155-165. 

28. A. WIECZOKEK, On the measurable utility theorem, J. Math. Econ. 7 (1980), 165-173. 
29. N. C. YANNELIS AND N. D. PRABHAKAR, Existence of maximal elements and equilibria in 

linear topological spaces, J. M&h. Eron. 12 (1983) 233.-245. 
30. N. C. YANNELIS AND N. D. PRABHAKAR, “Equilibrium in Abstract Economies with an 

Infinite Number of Agents, an Intinite Number of Commodities and without Ordered 
Preferences,” Univ. of Minnesota, Minneapolis, 1983. 

31. N. C. YANNELIS. Equilibria in non-cooperative models of competition, J. Econ. Theory, in 
press. 


