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Abstract
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(value) for the new information structure that arises. We define a ‘limit full information’
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core (value) x* alocation for the limit full information economy. (ii) Private core (vaue)
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x& of approximate private core (value) alocations in each time period. The approximate
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1. Introduction

There is an interesting growing literature on learning which mainly focuses on
non-cooperative equilibrium concepts in either normal or extensive form games,
e.g., Feldman (1987), Kalai and Lehrer (1993), Nyarko (1994) among others. We
depart from the above literature by examining learning in differential information
economies with solution concepts which may be cooperative. In particular, we
abandon the rational expectations equilibrium notion and examine concepts such
as the core and the Shapley value. We wish to emphasize at the outset that the
study of cooperative solution concepts (e.g., the core and the value) in differential
information economies appears to be a successful aternative to the traditional
rational expectations equilibrium, because they provide sensible and reasonable
outcomes in situations where any rational expectations equilibrium (REE) notion
fails to do so. *

We begin by defining the concept of an economy with differential information
[or Radner-type economy, Radner, 1968].

Let Y=R{ be the positive cone of /fold Cartesian product of the set of real
numbers R and let (2,7 ,u) be a probability measure space. > An exchange
economy with differential information & is given by & ={(X,u;,%;,&,q):
i=12,...,n}, where
1. X;: Q- 2" isthe consumption set of agent i,

2. u;: XY — Risthe utility function of agent i,
3. 7, is a (finite measurable) partition of 2 denoting the private information of

agent i, 3
4. e: - Y istheinitial endowment of agent i, where each g is #;-measurable,

(Bochner) integrable and e(w) € X; (w) u-ae,

5. q: 2—-R,, isaRadon—-Nikodym derivative denoting the prior of agent i,

such that [ g; (@) du (w) = 1.

For each i, (i=1,2,...,n), denote by E, (w) the event in .7, containing the
redized state of nature w € (2 and suppose that [, ¢ ¢ ()9 (Ddu(t) > 0 for al i.

! See Koutsougeras and Y annelis (1994) for examples to that effect. Recently, Kurz (1994) has also
introduced an alternative to the rational expectations equilibrium. Although his viewpoint is different
than ours, it also appears to provide more sensible results than the traditional rational expectations
equilibrium.

2 The results of this paper hold true even if Y is the positive cone of a Banach lattice with an order
continuous norm (see Section 5 for a precise definition). Hence infinitely, many commodities are
alowed in our model.

8 Throughout our analysis we follow Aumann (1987) and assume that the private information sets
{F}=, are common knowledge.
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Given E(w in 7, define the conditional (interim) expected utility of agent i,
v XL, > Rby*

0i(W, X)) = fre g Ui (1 X (1)) 6 (tHE (W) )d(t)
where
0 ift € E(w)
G (tE(w)) = (1)
Jie E‘(W)qi(t)dl‘i’(t)

A possible interpretation of the above economy is the following: one may think
that there are two periods where actual consumption takes place in the second
period. In period one, there is uncertainty over the states of nature and in this
period agents make agreements in an interim stage, i.e., once they are informed
which is the event which contains the realized state of nature. Agents have
different priors and they update them using the Bayes rule. Once the state of
nature is realized agents carry out the agreements made in the interim stage and
consumption takes place.

The traditional notion which has been adopted in the literature to analyze trade
in a differential information economy is the rational expectation (price) equilib-
rium. One of the criticisms of the above notion is that it does not provide a
mechanism which describes how equilibrium prices reflect the information asym-
metries of the economy. To this end we adopt the private core (Yannelis, 1991)
and the private (Shapley) value (Krasa and Y annelis, 1994) in order to analyze the
trading procedure under differential information. Both notions are not fully
cooperative in a differential information economy framework, because within a
coalition agents make redistributions of their initial endowments based on their
own private information (without necessarily sharing it). Hence, despite the fact
that coalitions of agents get together and make redistributions (the cooperative
aspect of the model) there is a non-cooperative element in that agents in the
coalition bargain using their differential information. This non-cooperative feature
of the private core and private value results in alocations which are aways
codlitionally incentive compatible and they take into account the information
superiority of an individual (contrary to the REE). °

t € E(w).

“Note that L, = X; € Li(u,Y):X:02 — Y is F-measurable and X, (w) € X; (w) p-ae), where
L(w,Y) denotes the space of equwalence classes of Y-valued (Bochner) |ntegrable functions y:
0 -, see aso Section 5.1 for a precise definition of the Bochner integral. If Y =R this is the
standard Lebesgue integral.
® See Koutsougeras and Yannelis (1993) and Krasa and Yannelis (1994) for a treatment of the
coalitional incentive compatibility properties of the private core and value. In a different context and
prior to the above papers Myerson (1984) has analyzed individually incentive compatible cooperative
solution concepts.
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Moreover, it has been indicated in Koutsougeras—Y annelis and Krasa—Y anne-
lis, that the resulting private core (value) allocation will aways depend on the
underlying information structure. Thus, it is natural to conclude that the set of
private core (or private value) allocations will be affected by changes in the
underlying information structure of the economy. The concept of learning intro-
duces changes in the information structure in a natural way. In particular, we will
define a differential information economy that extends to many periods. Agents
are endowed with some initial private information, drawn from their personal
characteristics (i.e., their random preferences and random initial endowment).
However, in each period agents acquire new information by observing the realized
core (or value) alocation and they use this new information in subsequent periods.
To be precise consider the differential information economy & in a dynamic
framework.

Let the set T={1,2,...} denote the time horizon, and denote by o (e€',u,) the
o-algebra that the random initial endowment and random utility function of agent
i, generate a time t in T. This is the initial information of agent i at time t. At
any given point in time t € T, the private information set of agent i is defined as:

Fl=o(e,u{x'"*x72,...}), (1.2)

where x'" %, x'"2 ... are past period private core alocations. In other words, at
any given point in time t, the private information which is available to agent i is
his/her initial information o (€!,u;) together with the information that private core
allocations generated in al previous periods, i.e, t— 1, t—2,... In this scenario,
the private information set of agent i in period t + 1 will be ;' together with the
information that the private core alocation generated at period t, i.e, o(x").
Thus, the private information set of agent i at time t+ 1 will be 7;'" 1 =7' v
a(xY), (where the symbol Vv denotes the ‘join,’ i.e, ;' V o(x") is the smallest
o-agebracontaining .7, and o (x")). Clearly, in period t + 2 the private informa-
tion set of agent i will be.7,'"2=7""* v o(x'*1) and so on. Consequently, for
each player i and each time period t we have that

'/Ttg'/?it‘Flg%t'FzQ... (13)

Eq. (1.3) represents a learning process for agent i and it generates a sequence of
differential information economies {&": t € T} defined as above where now the
private information set of each agent is given by Eq. (1.2)

It is important to note that agents are myopic, in the sense that they do not form
expectations over the entire horizon but only for the current period, i.e., each
agent’s interim expected utility is based on the current period private information.
Obvioudly, since the private information set of each agent becomes finer from
period to period (because of the acquired new information), the interim expected
utility of each agent is changing from period to period as well. In this scenario the
information that the private core (or value) allocation generates at a given time t
in T, obviously will affect the private core (or value) outcome in the subsequent
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periods, t+ 1, t+ 2,... Let us motivate this further by means of the following
example.

Example 1.1: Consider the following differential information economy with two
agents denoted by K, L and three equally probable states denoted by a, b, c (i.e,
0 ={a,b,c}). There are two goods per state denoted by x and y. The time horizon
is denoted by t,t +1,... The random initial endowment and the private informa-
tion set of each agent in period t are as follows: ®

ek =((10,0),(10,0),(0,0)), F={{ab}}.{{c}}

el =((0,10),(0,0),(0,10)), #'={{a,c}}.{{b}}. (1.4)

Both agents have the same utility function given by u,(w,x,y) = y/xy, for each
w € (. Suppose that nature chooses state a (which is in the event {a,b} for agent
K and {a,c} for agent L). It can be checked that in period t the private core
alocation is the initial endowment, ” i.e., the private core allocation in period t is
the vector (xy,x{)=(ek,el) and each agent gets zero utility. Notice that
a(xi,x}) = {{a}{b},{c},{a,b},{b,c},{a,c},{a,b,c}, T}, i.e, the information that the
private core allocation generates in period t is the full information partition.
Therefore, the private information set of each agent in period t + 1 will be:

Ft =gV o (xox) = {{a{b}.{c}}
Flr =7 v o (xox) = {a},{b}.{c}}.

Now in the second period, agents will make contracts based on the private
information sets given by Eq. (1.5). One can show that the private core allocation
in period t + 1 is the following:

X = ((55).(10,0)(00))
X1 = ((55),(00).,(0.10)).

Notice that the above alocation makes both agents better off from the allocation
given by Eq. (1.4) (they both now have positive utility). In other words, both
agents by observing the private core allocation in period t and refining their
private information they result in a Pareto superior alocation.

® In other words the endowment pattern is as follows:

a b c
K (10,0) (10,0 0,0
L (0,10) 0,0 (0,10)

"Since the partitions are independent, agents cannot insure each other and no trade is the
equilibrium outcome in period t. See aso definition 2.1 for a rigorous definition of the private core.
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In the above simple example, learning enabled the two agents to reach the limit
full information private core in period t + 1 where no further trade improvement is
possible. However, in a general model with more than two agents and a continuum
of states there is no need to reach the limit full information private core outcome
in two periods. Our main objective in this paper is to examine the convergence of
the private core (or private value) of the infinitely repeated differential information
economy. In partlcular let us denote the one shot limit full information economy 8
by &=(X, u, 7,8, q):i= .,n} where 7 ; isthe pooled information of
agent i over the entire horlzon |e Fi=Vi_ ! and & is ¥ ;-messurable.

The questions that this paper addressas are the following.

() If {&": t = T} is a sequence of differential information economies and x' is
a sequence of private core (or value) alocation for &' can we extract a
subsequence which converges to a limit full information private core (or vaue)
allocation for the limit full information economy &?

(i) Is question (i) still true if we allow for bounded rationality in the sense that
the sequence x' is now an approximate or e-private core (or e-value) allocation for
&', but nonetheless it converges to an exact private core (or value) allocation?

(iii) Given alimit full information private core (or value) allocation say X for &
can we construct a sequence of approximate or e-private core (or e-vaue)
alocations x' in &' which converges to the limit full information private core (or
value) allocation X of &7? In other words, given a limit full information private
core (or value) dlocation can we construct a sequence of bounded rational plays
(i.e., e-private core or e-private value allocations) which converges to the limit full
information private core (value) allocation.

We indeed provide positive answers to al the above questions. It should be
noted that in this paper not only do we address learning in differential information
economies adopting cooperative solution concepts for the first time, but we also
make severa technical advances. In particular, we will alow for continuous time,
i.e., the time horizon set T, may be any arbitrary infinite set, utility functions are
concave (hence risk aversion is allowed) agents are allowed to be bounded rational
during the learning process and the state space and the commaodity space need not
be finite. The above generalization necessitates the use of functional and measure
analytic methods.

Finally, it should be noted that since our framework is quite general, it may be
the case that in the limit incomplete information may still prevail. In other words,
it could be the case that

7.

N

II
<3
‘9
<3

-
I
[
I
-

Hence, in the limit a private core (or value) allocation may not be a fully revealing

8 An alternative terminology may be maximal information economy.
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core (or value) alocation. However, if the learning through the private core
(value) alocation of each period reaches the complete information in the limit, i.e.,

N
<s

D
i

?i ’
1

then our first converge result indicates that the private core (value) alocation is
indeed a fully revealing core (value) alocation.

The paper proceeds as follows: In Section 2, we provide definitions of the
private and approximate private core. Sections 3 and 4 contain the main results
and all the proofs are collected in Section 5.

2. The private core and the e-private core

Before we state our main results for the private core we will redefine below the
private core in a more convenient way.
For each i, let L, denote the set of all (Bochner) integrable and 7 ;-measurable
n

selections from the consumption set X; of agent i. Set L, =TII{_,L,. We can
now restate definition 1.1 in a more convenient way as follows:

Definition 2.1: The alocation x € L, is said to be a private core allocation for &
if:
O X, x,=Xx",e and
(ii) it is not true that there exist codition S and yeTIT;csL, such that
YisYi=Lise and v(w,y) > v(w,x) p-ae, andforal ieS

Note that since the initial endowment of each agent is measurable with respect to
his/her own partition and each vector x,(@) is .#,-measurable, the net trades are
always & ,-measurable.

Definition 2.2: The allocation x € L, is said to be an approximate or e-private
core alocation for & if in addition to (i) above it satisfies
(ii") it is not true that there exist codlition S and y €Il sL, such that
TisY = X6 ad v(w,y) > v(w, %)+ € n-ae andforal i €S

Condition (ii’) in definition 2.1 is almost identical to condition (ii”) in definition
2.2, except that it requires the dominance of a contending allocation to be stronger.
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One may think of e (which is a small positive number) as the cost of coalition
formation, although a wide variety of interpretations (involving agents' reluctance
to join a coalition) may also apply. Denote by C(&) the set of al private core
alocations for &, and by C_(&) the set of e-private core allocations for &.

If the exchange economy with differential information & satisfies for each
agent i the following assumptions:

Assumption a2.1l: X;: 2—2' is a convex, closed, non-empty valued and
F-measurable correspondence. °

Assumption a.2.2: u;: 2XY— R is norm continuous, integrably bounded and
concave, then a private core allocation exists in & (see Yannelis, 1991; Kout-
sougeras and Yanndlis, 1993).

3. Conver gence and approximation theoremsfor the private coreand e-private
core

3.1. Learning

Let T be any infinite set denoting the time horizon. Denote by o (€l,u;) the
o-algebra that the random initial endowment and utility function of agent i
generate at time t. Obviously, thisis interpreted as the initial information of agent
i at time t. However, the private information which is available to agent i at any
given period t is not only o(el,u,) but also the information that he/she has
acquired from past period private core allocations, denoted by x!, t' <t, t,t' in T.
Hence, the private information set of agent i at time t, denoted by ;' is defined
as.

F'=o(eu {x"t' <t}). (3.1)
Eqg. (3.1) indicates what agent i has learned from past experience. Note that the
private information of agent i at period t°>t will be #°=7' v o({x"
t<t<t% (where 7' v o({x: t<t<t%) denotes the'join,’ i.e., the smallest
o-algebra containing .7;' and o ({x": t <! <t%). Therefore for each agent i and
each time period t we have that:

FleF' fort<ttt%inT. (3.2)
Eqg. (3.2) represents a learning process for agent i.
° By &;-measurable we mean that the graph of x;, i.e, G, =(w,x)€ 2 X Y:x€ X,(w) is an

element of 7 ®B(Y), where B(Y) denotes that Borel aalgebra on Y and ® denotes the product
o-algebra
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A learning process generates a sequence of differential information economies
{g" te T}, where &' = {X,u;,el,.7.,q): i =1,2,...,n} is defined as in Section
1.

3.2. The limit full information economy

Let &, be the pooled information of agent i over the entire time horizon T,
i.e, 7, =V, .7 The differential information economy & = {(X,,u, &.,7,,q):
i =1,2,...,n} represents an economy where the private information of each agent,
i.e, 7, is his/her pooled information over the entire time horizon, and may be
thought of as a limit full information economy. In the economy &, X;, u;, and ¢
are defined as before but now each & is .7,-measurable and Bochner integrable.
Note that since in the sequel we will assume that for each i, (i=1,2,...,n),
(e, 7 <7 isamartingale, it follows that e/(w), converges u-ae. to &;. Hence,
theinitial endowment of agent i in the limit full information economy, i.e., & may
be viewed as the limit of €', and consequently each & will be #,-measurable. By
replacing in definition 2.1.1 %, by %, one can obtain the notion of limit full
information core allocation for the economy &. Denote by C(&) the set of all
limit full information core allocations for the economy &.

Throughout our analysis we will assume that the net of private information
economies {&,: t € T} as well as the limit full information economy &, satisfies
the assumptions a.2.1 and a2.2 and therefore for each te T, C(&") # & and
C(&) # . Moreover, since C(£') ¢ C/(&") the latter set is non-empty as
well. Finally, we assumethat E[X!_ ; &|A ", 7, 1=X_; €. Thiswill guarantee
the L,( u,Y)-norm convergence of the aggregate initial endowment.

3.3. Theorems

Theorem 3.3.1: Let {&" teT} be a net of private information economies
satisfying the following assumption:

(a.3.2) for any coalition S {X; .5 €/, A,cs Fi'her isamartingale.
If the net {x": te T} belongs to C_(£') then we can extract a sequence {x'":
m=1,2,...} from the net x' which converges (weakly) to x* € C(&).

Theorem 3.3.2: Let {&" tT} be a net of private information economies
satisfying

(@.3.3) for eachi, (i=12,...,n), {e!,7,},c; isa martingale.

(@34 {x_, e, A, 7'} isamartingale.
Let x* be a limit full information core allocation for the economy &, i.e.,, x* €
C(&). Then, there exists a net of allocations {x": t € T} such that x' € C_(£") and
x' converges (in the L,(w,Y)-norm) to x*.

An immediate conclusion of theorem 3.3.1 is the following result.
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Corollary 3.3.1: Let {&" t=T} be a net of private information economies
satisfying assumption 3.2. If the net {x": t€ T} belongs to C(£") then we can
extract a sequence from the net x' which converges weakly to x* € C(&).

3.4. Discussion

Assumptions 3.3 and 3.4 together imply atype of consistency of individual and
aggregate expectations that we discuss below. In particular, assumption 3.4
implies that

n n n
Ta- ez

=1
n n

— ZE[e}“L/\y‘jt}.
i=1 j=1

Since by assumption a.3.3, €' = E[e'"* .%;'] by substituting this expression in the
left-hand side of the above equation we obtain that

n n n

YE[eUFt] =% E[e}“l /\Zt} or

i=1 i=1 j=1
n n

)y ( Ele* 7] - E[e}+l|/\,zt” =0.

i=1 =1

The above expression implies that private expectations, i.e., what an individua
believes his/her initial endowment will be in period t+ 1, (which is given by
Ele"! .7.']) and common knowledge expectations, i.e., what the common belief

of al agents about agent i's initial endowment at period t + 1 is, (which is given

by Ele**| A ]_.7,']D, must balance out on aggregate. Similarly it follows from

assumption a.3.2 that for each codlition S

Z(E[e}“l%t] — E[e{“l_/\?j‘}) =0, (3.2a)
ies €S

i.e., private expectations and coalitional common knowledge expectations ° must
cancel out coalitionally.

Notice that assumption a.3.2 is equivalent to the fact that the information that
the aggregate initial endowment that the coalition S generates, must be common
knowledge to its members, i.e, for each t, o (X, . g€l C A o s7;". (For a proof of
this statement see lemma 5.1.)

In view of assumptions a.3.3 and a.3.4, theorem 3.3.2 shows that approximate
private core alocations have the martingale property. As a consequence of this,

19 By this we mean that the expression E[e!* 1 A je S&“jt] indicates what the belief of codition Sis
about the initial endowment of agent i at period t + 1.
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any limit full information private core alocation (i.e, any x* € C(£) can be
reached by a net of approximate private core allocations. One may view this as a
kind of stability property that the private core enjoys, in the sense that we can
always find an alocation process which leads to the limit full information private
core. Alternatively, one may view the conclusion of theorem 3.3.2 as a ‘kind' of
lower-semicontinuity (I.s.c.) of the private core and the conclusion of theorem
3.3.1 as akind of upper-semicontinuity (u.s.c.). * It is important however to note
that we cannot speak about |.s.c. or u.s.c. of the private core in a rigorous way
because the net of differential information economies {&": t € T} we consider
need not converge (in a certain topological sense) to the limit full information
economy &. 2 In particular, this would only happen if one topologizes appropri-
ately the space of utility functions and the private information sets. Although in
principle this can be done we have not pursued this here because we will
complicate significantly the technical apparatus of the modeling without advancing
the economic insights any further.

4. The private value allocation

We now define the notion of a private value allocation (see Krasa and Y anndlis,
1994).

Definition 4.1.1: A game with side-payments I"= (1,V), consists of a finite set of
agents | ={1,...,n} and a superadditive, real vaued function V defined on 2!
such that V(&) =0. Each S c | is caled a codlition and V(S) is the ‘worth’ of
the codlition S

The Shapley value of the game I', (Shapley, 1953) is a rule which assigns to
each agent i a ‘payoff’ Sh; given by the formula

1SI= )11 —=1S)!
vy = £ S v - vsy ().
Sofi}

For each economy with differential information & and each set of non-negative

" Gale (1992) studies the stability of equilibrium for an incomplete information model. Roughly
speaking it amounts to the fact that the equilibrium will not change very much in response to small
perturbations. In our setting, one may also view our ‘stability’ as changes in the information sets will
not change the core outcome too much.

2 The u.sc. of the private core in a rigorous setting will mean that if &' converges (in a certain
sense) to & written as &' — & and x! converges (weakly) to x where x! € C(Z"), then x €(C&).
Similarly I.s.c. will mean that if &'— & and x € C(Z) then there exists {x!: t T} such that x'
converges to x and x'e C(&£"). In a different setting and for a deterministic economy with a
continuum of agents, Grodal (1971) has examined the upper-semicontinuity of the core correspon-
dence.
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weights (not al equal to zero), {A;: i=1,...,n}, we associate a game with
side-payments (1,V,) according to the rule: For Sc | let

VA(W,S) =max ) ;v (W, X; )

Xi jes
subject to
(i) Lx(w) =) e(w),u-ae.
ies ieS
(i) x, — g is.#, — measurable for every i € S. (4.1)

Definition 4.1.2: An alocation x € L, is said to be a private value alocation of
the economy with differential information & if the following holds:
(i) Each net-trade x; — € is #,-measurable.
() XL x(w) = 2 e(w), u-ae.
(iii) There exist A; >0, (i =1,2,...,n) which are not al equal to zero, with A,
vi(w, %) = Sh; (V,) for every i, where Sh; (V,) is the Shapley value of agent i
derived from the game (1,V,), defined in Eq. (4.1).

Condition (i) is equivalent to the &-measurability of x; and it was discussed in
Section 2 together with condition (ii). Condition (iii) says that the interim expected
utility of each agent multiplied with his/her weight A; must be equal to his/her
Shapley value derived from the side-payment game (1,V,).

An alocation x € L, is said to be an approximate or e-private value alocation
for & if in addition to conditions (i) and (ii) of definition 4.1.2, we have (iii) there
exist A;>0, (i=1.2,...,n) which are not al equal to zero such that A;v;(w,X;)
— Sh(V)) < e for al i, where Sh;(V,) is the Shapley value of agent i derived
from the game (1,V,) defined in Eq. (4.1)

Denote by VA(Z) the set of all private value allocations for the economy &.
Denote by VA (&) the set of al approximate private value allocations for the
economy &. Assumptions a.2.1 and a.2.2 assure that VA(Z) # J (see Krasa and
Yannelis, 1996). Since VA(&) c VA (&) it follows that VA & # .

We can state the analogues of theorems 3.3.1, 3.3.2 and corollary 3.3.1 for the
private value.

Denote by VA(&) the set of all limit full information value allocations for &. It
follows from assumptions 2.1 and 2.2 that VA(Z) # .

We now state the convergence and approximation results for the private value
allocation.

Theorem 4.2.1: Let {&% te Tt be a net of private information economies
satisfying assumption 3.3 and 3.4 of theorem 3.3.2 and let x* € VA(&). Then
there exists a net of allocations {x": te T} such that x'e VA(&' and X'
converges (in the L,(w,Y)-norm) to x *.
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Theorem 4.2.2: Let {&": te T} be a net of private information economies
satisfying the assumption 3.2 of theorem 3.3.1. If the net of allocations {x": t € T}
belongs to VA_(&"), then we can extract a sequence from the net {x": t € T} which
converges (weakly) to x* € VA(Z).

Corollary 4.2.1: Let {&€": t= T} be a net of private information economies
satisfying the assumption 3.2 of theorem 3.3.1. If the net {x": t = T} belongs to
VA(£"), then we can extract a sequence from the net {x": t € T} which converges
weakly to x* € VA(&).

The interpretation of theorems 4.2.1, 4.2.2 and corollary 4.2.1 is similar to the
corresponding results for the core and the discussion in Section 3.4 aso applies
here.

5. Proof of the theorems
5.1. Mathematical preliminaries

Let (T, 7, u) be afinite measure space and X be a Banach space. Following
Diestel and Uhl (1977) the function f: T— X is called simple if there exists
X, Xp, o Xy N Xand ay,ay,...,a, in 7 such that f=X7 X x;, where x,.
(O=1if t&¢a; and x, ()=0if t& ;. A function f: T— X is sad to be
pu-measurable if there exists a sequence of simple functions f,: T — X such that
lim,_ /7 f(t)—f(t) =0 for almost all teT. A u-measurable function f:
T— X is said to be Bochner integrable if there exists a sequence of simple
functions {f,: n=1,2,...} such that

lim [/ f,(t) — f(t)ldu(t) = O.

In this case we define for each E € 7 theintegral to be [z f()du(t) =lim .. [E
f.()du(t). It can be shown (see Diestel and Uhl, 1977, theorem 2, p. 45) that, if
f: T— X is a u-measurable function then f is Bochner integrable if and only if
f71f (Dldw(t) <oo. It is important to note that the Dominated Convergence
Theorem holds for Bochner integrable functions, in particular, if f: T— X,
(n=12,...) is a sequence of Bochner integrable functions such that lim,_, .
f.()=1f(t) p-ae, and |f (D)< g(t) p-ae, (where g: T— R is an integrable
function), then f is Bochner integrable and lim,, _, .. [7|f,(t) — f(DIdu(t) = 0.

For 1< p <, we denote by L (u,X) the space of equivalence classes of
X-valued Bochner integrable functions x: T — X normed by

1

IXIp=(JrIx(D)Pdu(t)) "
It is a standard result that normed by the functional | - ||, above, L,(u,X)
becomes a Banach space (see Diestel and Uhl, 1977, p. 50).
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We will close this section by collecting some basic results on Banach lattices
(for an excellent treatment see Aliprantis and Burkinshaw, 1985). Recall that a
Banach lattice is a Banach space L equipped with an order relation > (i.e, > is
areflexive, anti-symmetric and transitive relation) satisfying:

1. x>y implies x+z>y+zforevery zin L,

2. x>y implies Ax> Ay for al A >0,

3. for all x,y in L there exists a supremum (least upper bound) x Vy and an
infimum (greatest lower bound) x Ay,

4. x >y implies [[x|| > [lyll for @l x, yin L.

Asusual x*=x VO, x =(=x) VOand x=x V (=x)=x"+ x"; wecal
x", X~ the positive and negative parts of x, respectively and x the absolute value
of x. The symbol || - || denotes the norm on L. If X,y are elements of the Banach
lattice L, then we define the order interval [ x,y] as follows:

[x,y]={zeL:x<z<y}.

Note that [x,y] is norm closed and convex (hence weakly closed). A Banach
lattice L is said to have an order continuous norm if, x, | 0in L implies x,, | 0. =3
A very useful result which is going to play an important role in the sequel is that if
L is a Banach lattice then the fact that L has order continuous norm is equivalent
to the weak compactness of the order interval [ x,z] ={y e L: x<y < z} for every
X,z in L (see for instance Aliprantis and Burkinshaw, 1989, theorem 2.3.8).
Moreover, Cartwright's theorem (Cartwright, 1974) asserts that if X is a Banach
lattice with an order continuous norm, then L,( u, X) has order continuous norm
(i.e., order intervalsin L,( u, X) are weakly compact). This theorem will be used
for the case where X =R'.

Recall that if (T,7,u) is afinite measure space, a sub-o-field of 7 is a subset of
7 that contains T and that is a o-field itself. Let A be a sub-o-field of = and x be
an element of L,(u,X). We say that g € L,( i, X) is the conditional expectation
of x relativeto A (denoted by E(xA)) if g is A-measurable and

fBg(t)d,u(t) =fBX(t)d,u(t) foral Bin A.

We close this section by defining the notion of a martingale and stating the
martingale convergence theorem.

Let | be a directed set, and let {#,: t 1} be a monotone increasing net of
sub-o-fields of = (i.e, 7, €7, for t; <t,, ti,t, in 1). A net {x;: t€1}in
Lo(, X), (1 <p <) isamartingale if

E(x|7,,)=x, forall t>t,.

We will denote the above martingale by {x,, &}, . The following convergence
result will be used in some of the proofs. A martingale {x,, ;< in L,(u,X),
(1< p <) converges in the L (u,X)-norm if and only if there exists x in

B x, L0 meansthat x, is a decreasing net with inf, x, =0.
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L(u,X) such that E(x ) =x, for adl tel. Note that if the martingale
{X, e, convergesin the L,( u, X)-norm, it also converges almost everywhere,
i.e, lim, X, =x amost everywhere (Diestel and Uhl, 1977, p. 49).

With all these preliminaries out of the way we can now turn to the proofs of our
theorems.

Proof of theorem 3.3.1: We begin with some preliminary observations. For each
i, (i=12...,n) let L, be the set {x,€L,(n,Y): x: Q=Y isor V, q
F;-measurable and x,(w) € X(w) p-ae}. Also for each i, and each te T, let
L, be equal to {x; eLl(MY) X;: 2-Y is . F;"“measurable and x,(w) € X,(w)
,ua.e} Since 7¥ c.F ! for t1 > t2, we have that L,acL,e, i.e, as the
information increases the consumption set of each agent expands. Moreover, for
each te T we have that L ‘C_L and by asumption for each t and each i,
e'eL, and for exch i, & € L Not|ce that if x'e L, is a feasible allocation,
i.e, Z,zlxI =Y e =¢, then for each i, 0< x/ < e Recal that the space
L,(w,Y) is a Banach lattice and the martlngale Z _,el =¢€' converges to the
L,(u,Y)-norm in =X ;&. By a standard result (e.g., Aliprantis and Burkin-
shaw, 1985) we can extract a subsequence e':k=1,2,... from {e':.te T} and
aso find a positive element u in L,( u,Y) such that |e' — e| <_lu Hence, we can

conclude that e% is order bounded above by an element say v in L(u,Y) and
clearly below by 0, i.e,, €' belongs to the order interval [O,v] in L,(u,Y). Aswe
noted above for each i, and each t, 0 < x! < e' and therefore we can conclude
that each x liesin the order interval [0,v]. Recall that by the Cartwright Theorem
the order interval [0,v] is weakly compact. Finaly by claim 4.1 in Yannelis (1991)
each v; is weakly continuous. With all these preliminary observations out of the
way, we are now ready to proceed with the proof.

To thisend, for each t € T, let the dlocation x' be in C_(&,). Then each X! is
F,'-measurable and by the above construction for each i, each subsequence
xime[0,v]. Let [O,v]"=[0,v] x... x [0,v], i.e, the n-fold Cartesian product of
[0,v]. By the Cartwright Theorem the [0,v]" is weakly compact. Hence, from the
sub%quence x' we can obtain a further subsequence till denoted by x' such
that x'™ converges weakly to x* [0, v]" We need to show that x* isin C(&).
First note that since L, x{m= X" el x'», converges weakly to x* and e
converges in the L,( w, Y) norm (and thus weakly) to & (recall assumption a.3.2)
we conclude that X_, x;" = L['_,&. Let 8= X ;8. Since for each i, x;" €[0,€]
cXp,L, it follows that each X is V. &, '-measurable. Hence, al that
remains to be shown is that:

(5.3.1) there is no codlition Sand yeIT, S[Xi suchthat ¥ s Vi=Xics &
and v(w,y) > v(w,x*) p-ae foradl ieS

Suppose by way of contradiction that (5.3.1) is not true. Then there exist
codlition S and y yeIT;csLk, such that Xc Jy, =X g8 and v(w,y) >
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vi(w,x") p-ae and for dl i€S For each ieSand each teT, let y/=E
[y A 7'l Notice that

bine] -

A%ﬂ
ieS

/\zt} for t' >t
ieS

= E[yi" /\%t} for t' > t.

ieS

Hence, {y!, A cs7 %<1 iSamartingae. Also, It follows from assumption a.3.2
that

L&
ies
Hence, Xi.s ¥ = L;.s€l, i.e, Yy' is afeasible allocation for the coalition S

By virtue of the martingale convergence theorem y' converges in the
L,( u,Y)-norm and therefore weakly to y;. Since x' also converges weakly to x *
and v,(w, + ) isweakly continuous for each fixed w € 2, we may chooset € T so
that [v;(w,y) — v;(w,y)I < 252 and [v;(w, x}) — v;(w, x| < 25° where 8=
vi(w,¥) — v(w, % > e. Thus,

loi (W, y;) = oy (W) + o (W, X ) = v (W, %)

<lv;(w,y;) — Ui(W'yit)H— |Ui(W'Xit) — v (w, %)l

60— O-—c¢

+
2 2

Therefore, v,(w,y,) — v;(w,¥i") + v,(@, X)) — (0, X" ) <5 — & & —v(w,y})
+ (0, x)< —& or e+ v(w,x) <v(wy) for dl ieS Consequently, we
have shown that the allocation y' is feasible for the codlition S i.e, X, gV =
Yi.s€ and vj(w,y) > v(w,x)) + ¢ p-ae, and for al i €S a contradiction to
the fact that x' € C(&") for dl t € T. Hence, (5.3.1) holds and this completes the
proof of the theorem.

AFi'=Lel

ieS ies

< =6—e¢.

Proof of theorem 3.3.2: Let x be an element of C(&). Consider the alocation
x'=E[x A" ,.7'] and notice that for r >t

n n n
IE[X| A" =E[E[X AF| A7
=1 i=1 i=1

n
A7

Hence, {x',A_, %'} <+ is a martingale and by virtue of the martingale conver-
gence theorem x' converges in the L,( u,Y)-norm to x. By the definition of the
conditional expectation we know that for each i, x! is .7;"-measurable. We must
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show that the net {x": t € T} liesin C_(&"). We first show that x' is feasible for
the grand coalition. Note that

En‘,lx{=znle[xi/f\lzr} _E[Zn:l | /_“\ly_}
-effefA]

= Zeit (recall assumption a.3.4),
i=1
and we can conclude that x' is feasible. We now show that the alocation x'
cannot be e-blocked by any coalition, i.e.,

(5.3.2) there does not exist codition S and alocation y € IT[_ ;L= L, such
that Xics Vi=Xics € and vj(w,y) > v,(w,X) + & u-ae and for all |€S

Suppose by way of contradiction that (5.3.2) is fase for some t € T. Given
&> 0, for each codition S define Ks(g)—{teT there exists y' eI, gL,
such that ¥, sy = X s€ and v;(w,Y, )> v(w,x) + e u-ae, and for al i e S}
Notice that for te T\ U, Kd(e), x' e Cl (&Y. If for each Scl, KJ(e) isa
finite set or empty then the set {x": te T\ U ., K4(&)} belongsto C(&£") and
by construction x' converges (in the L,( w,Y)-norm) to x, in which case the proof
is complete. Hence, all we need to show is that K (&) cannot be infinite. To this
end suppose that for some SU | the set K4(&) has an infinite number of elements,
then there exists a net {y'},c «_, y'€ I‘IIGSLX( cIl,.sL, having the property
that ¥, sy = Xi.s€ and v;(w, y)>u(w x) + e p-ae, and for al i €S Note
that by a similar argument as in the proof of the previous theorem we can
conclude that for each t, each subsequence y~ lies on the order interval * [0,v]®
which is weakly compact (recall Cartwright's theorem). Hence, by the weak

compactness of [0, v]‘s‘ we can find a subsequence {y"}, c ¢, so that y"
converges weakly to y* € [0, v]S. For this subsequence we have that

Yyir= el

ies ies
Recall that by assumption a3.3 and the martingale convergence theorem €'
converges (in the L,(u,Y)-norm) and hence weakly to & In particular e
converges weakly to & Hence, taking limits in the above expression we aobtain that
Licd¥i=Licsl.

Since t, € K{(¢) we have that for each t,, v,(w,y") > v,(w,x") + eu — ae.
and for al i € S Thus, by the weak continuity of v,(w, *), v;(w,y") = vj(w,X,)

11t Aisaset, the symbol A denotes the cardinality of the set A, i.e., the number of elements in the
set A
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+ ¢ p-ae and for al i € S Hence, v(w,y") > v;(w,%;) p-ae andforadl ieS

i.e., the coalition S qualifies to block x, a contradiction to the fact that x € C(&).
This completes the proof of theorem 3.3.2.

Lemma 5.1: Assumption a.3.2 is equivalent to:
(a3.2), for each codlition Sand for each t, (X, .5 €) C A o7

Proof: (a3.2')) < (a3.2). Since for each codition S T, _s€,A csFiicT iSa
martingale we have that:

Ye|AF

ies lies

E =Y e foralrxt. (A1)

ieS

By the definition of conditional probability E[X;.ce A .57 'lis A )T
measurable. Since ¥, e is o (X, sel)-measurable it follows that the left-hand
side and the right-hand side terms of Eq. (A.1) are o (X, .s€) A(A | .sF;")-mea
surable. Since o (X, s€!) is the smallest o-algebra for which X; . s€' is measur-
able, it must be the case that o (X, s€)) C A 57"

(a3.2) <= (a3.2'). We only need to show that for each codlition S {¥,_ €,
o(Xics €Dl c7 isamartingae. Indeed, since o (X, s€) C A, o7 it follows
that {¥,cs €, AjcsFher isamartingale as well. Observe that for r > t:

zelo(ze)] -zeel(ze)
=i§SE:E[ei,|zt] (x|
R
gz (z]

Hence, {Xics €, 0(Zics €D} e iSamartingde.

The proofs of theorems 4.2.1 and 4.2.2 can follow by mimicking the arguments
of theorems 3.3.1 and 3.3.2, respectively. (The reader must recall that the Shapley
value of each agent i, i.e., Sh; (V,) is continuousin A.) In order to avoid repetition
we do not provide the straightforward details.
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